
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Usability Inspection Method-based Analysis of a
Socio-Technical Visualization Tool

June 2012
ISR Technical Report # UCI-ISR-12-6

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Erik H. Trainer	
University of California, Irvine	
etrainer@ics.uci.edu

Stephen Quirk	
University of California, Irvine	
squirk@ics.uci.edu

Cleidson de Souza	
Universidade Federal do Pará, Brazil
cdesouza@ufpa.br

David F. Redmiles	
University of California, Irvine	
redmiles@ics.uci.edu

Usability Inspection Method-based Analysis of
a Socio-Technical Visualization Tool

ISR Technical Report #UCI-ISR-12-6

June 2012

Erik Trainer1 Stephen Quirk1 Cleidson de Souza2 David Redmiles1
1Institute for Software Research
University of California, Irvine

Irvine, CA, USA – 92697
[etrainer, squirk, redmiles]@ics.uci.edu

2Faculdade de Computação
Universidade Federal do Pará

Belém, PA, Brazil – 66075
cdesouza@ufpa.br

Abstract

Ariadne is a visualization tool that allows end users
to explore the socio-technical relationships in software
development projects. Essentially the visualization is a
variant of a social network graph. It is based on the
observation that dependencies between software
components create dependencies between the
developers implementing those components. This
relationship emerged in our own and other
researchers' field studies of software projects. Large
software development projects require management of
dependencies by managers and developers to ensure
the smooth coordination of work. We sought to
evaluate our visualization to assess its utility. Although
we had some informal trials with potential end users,
we sought a deeper analysis before further refinement
of the tool and evaluation on a larger scale. Usability
inspection methods provided one potential avenue.
Moreover, such inspection methods yield a kind of
rationale not directly derived from human subjects
evaluations. We report on the application of these
inspection methods, the results of evaluating Ariadne
in particular, and implications for evaluating visual
information interfaces.

1. Introduction

It has been long recognized that breakdowns in
communication and coordination efforts constitute a
major problem in collaborative software development
[8]. One of the reasons for these problems is the large
number of dependencies among activities in the
software development process and the dependencies
among different software artifacts.

Parnas was one of the first researchers to recognize
the relationship between software dependencies and

coordination: he suggested that by reducing
dependencies among software development artifacts, it
is possible to reduce developers’ dependencies on one
another, creating a managerial advantage [12, 19].
Nowadays, this is a well-known argument among
researchers and practitioners that can even be found in
textbooks [10].

Conversely, but also supporting this relationship
between dependencies and coordination, Conway [6]
postulated that the structure of a software system
would reflect the communication needs of the people
performing the work. In short, while Parnas argues that
dependencies shape the coordination and
communication activities software developers perform,
Conway argues the converse, that dependencies reflect
these coordination and communication activities. That
is, technical dependencies between components create
a need for communication and coordination between
developers, and similarly, dependencies between the
development tasks are reflected in the product
dependencies.

Both Parnas’ and Conway’s arguments have been
validated by a host of different empirical studies [1, 4,
8, 12, 21, 24], including our own [9].

Ariadne’s visualization, the target of our evaluation
in this paper, was created with the aim of reducing the
acknowledged gap between software dependencies and
coordination by exploring socio-technical relationships
to support software developers’ activities. During
early development of the tool, we performed two key
field studies, each 2-3 months in duration, that
provided us insight into several types of
communication and coordination problems in
distributed software development projects. Of these
issues, we derived several representative scenarios that
revealed the types of dependency relationships

managers and developers need to understand in order
to coordinate their work. Next, we designed and
implemented the visualization.

The visualization went through iterative
development and was demonstrated to colleagues and
visiting researchers for general suggestions and
improvement. Initially, the visualization used a graph-
based approach traditionally used by practitioners in
the social network analysis domain [25], but our
attempts to visualize the complete set of this
information proved to be unmanageable for large
software projects due to the number of connections and
inconsistency of the graph layout. We therefore began
experimentation with a new visualization. In order to
keep the visualization linked to human needs, we
applied several usability inspection methods and
cognitive theories to evaluate it against typical usage
tasks we observed earlier. This paper reports on our
inspections and suggests important avenues for future
work.

The rest of this paper is structured as follows. In the
following section we briefly describe the process by
which Ariadne infers dependencies between developers
based on the code they write. Next, in section 3, we
present Ariadne’s visualization. We follow up in
sections 4 and 5 with the results of our evaluation and
discuss implications for evaluating visual information
interfaces. We conclude in section 6.

2. Ariadne’s process

Ariadne uses APIs from the popular Eclipse IDE to
infer dependencies between developers based on the
code they write. It calculates dependencies between
source-code artifacts before run-time. As such, these
dependencies represent a static call-graph. Ariadne
annotates this graph with authorship information for
each line of code by connecting to the project’s
configuration management repository. Finally, Ariadne
calculates a sociogram [25], representing dependencies
between developers, using a matrix multiplication
method described in [4, 9].

The visualization is a stand-alone application that
users launch from the development editor. In the early
stages of design, this allows us to test the tool with
publically available projects and refine it further. The
intended users of Ariadne, however, will want to see
the visualization in the context of current software
development activities. We intend to more carefully
explore this tension as we conduct eventual trials with
human subjects.

3. Visualization

Ariadne’s visualization takes a graph-based
approach to visualizing a reduction of the dependency

information collected by the tool. We implemented it
using Prefuse, a Java-based visualization toolkit
(http:///www.prefuse.org). In the past, we represented
complete socio-technical dependency information as a
series of three edges connecting a dependent author to
the author they depend upon through the code units
authored by each (Figure 1). Our attempts to visualize
the complete set of this information proved to be
unmanageable for large software projects due to the
number of connections and variability of the graph
layout.

Recognizing the challenges of displaying all three
elements of the socio-technical relationship, we
removed one of the relationships (Figure 2) reducing
the number of connections needed to be displayed, but
still allowing a consistent layout of the dependency
information. The rationale for eliminating the C1 to C2
relationship has to do with the scenarios of usage that
we identified for Ariadne in our previous work [9]
which emphasize the work authors must undertake in
order to determine the code and other developers that
impact their own code.

Figure 1. Old

conceptual socio-
technical

dependency
representation.

Figure 2. New

conceptual
socio-technical

dependency
representation.

Figure 3. New
visualizationʼs
socio-technical

dependency
representation.

The visualization interface allows users to easily
reveal information about the technical dependency
information, meaning no information is lost. The
layout of this reduced dependency graph keeps
important graph characteristics and benefits from a
consistent layout that helps highlight information
required to reason about coordination needs.

To take advantage of available screen real estate,
Ariadne lays out dependency information in a table-
based fashion, placing the most numerous data items
along the longest screen dimension. Called code units
occupy the x-axis and authors occupy the y-axis, with
both ordered alphabetically by default. The
visualization lays out code units organized by package,
much how a programmer or manager might expect to
see them in a development editor. To see
dependencies within these packages (Figure 4), users
can Ctrl+click on a package. Similarly they can click
on classes to see method dependencies.

Figure 4. Closeup of socio-technical dependencies in the

“main” package of open-source Java project “Tyrant.”

Users can also reorder the axes based upon queries

against all the data and its associated meta-data. We
draw connections from a dependent author to the code
unit they are dependent upon and back to the author
responsible for that code unit (Figure 3) and repeat for
each set of socio-technical dependency information in
the project. The color of each line (or dependency)
denotes the directionality of the dependency and shares
its color with the originating (dependent) author. For
example, if A1 is blue, a blue line connecting A1 to C2
to A2 denotes an outbound dependency from A1's code
(C1, not shown) to A2's code (C2, shown). The opacity
of each line color denotes how many duplicate
technical dependencies exist between two authors.

Viewing dependency information using this hybrid
table- and graph-based approach offers pattern
recognition capabilities, easy filtering, and
comparisons. An unfiltered overview of the
dependency information allows us to show the state of
dependencies for an entire project at once. From this
perspective it is possible to recognize patterns in the
way developers call other developers code, prominent
code modules, and prominent authors even for a
specific area of the code.

Filtering the overview by artifact reveals
connections only from authors using that artifact
(Figure 5). Managers and developers can focus on
artifacts at different granularities that may be
undergoing many changes in order to determine
developers' progress, as indicated by our field studies
[9]. Focusing on an artifact may allow managers and
developers to locate other developers affecting or
affected by changes to that artifact.

Figure 5. Filtering the overview to show socio-technical

dependencies for the artifact “mikera.tyrant.Scripts.”

Using an additive approach, we can compare the
calls on code units made by one author with those
made by another author. The user can click on authors'
names to reveal only their dependency information
(Figure 6). Ariadne's visualization technique preserves
the ease of identifying connections between authors
found in simple social network graphs of developers.
Looking at only the y-axis, users can readily determine
the inbound and outbound connections between a
project's developers. The presence of a color
corresponding to an author's name indicates an
outbound dependency, while the presence of other
authors' colors indicates an inbound socio-technical
dependency from those other authors. While Ariadne's
visualization makes a significant departure from a
more traditional graph-based approach, it does not
eliminate the advantages of that method of data
display.

Figure 6. Filtering the overview to show two authorsʼ

socio-technical dependencies.

4. Application of usability inspection
methods

In order to assess the presentation, usability, and
ease of learning of Ariadne’s visualization, we
evaluated it using the Heuristic Evaluation [17], the
Cognitive Walkthrough [26], and the Cognitive
Dimensions of Notations [11]. First, we checked the
interface against well-established usability principles
with Nielsen’s Heuristic Evaluation. Second, we
evaluated the interface with the Cognitive
Walkthrough, a method that is particularly good at
focusing on the user’s role, a priori assumptions, and
what they can accomplish with and without training.
Third, we used Cognitive Dimensions to uncover
further mentally demanding operations.

We performed each inspection method with the
help of four research colleagues. For the most part,
they had no experience using the new visualization.
This unfamiliarity helped us to identify problematic
assumptions about users’ expectations and perceptions
of the tool. In short, it helped to broaden the collective
experience and expertise brought to bear on the
evaluation.

4.1. Heuristic evaluation

In this section we describe how the visualization
meets or fails to meet each usability heuristic. A
complete description of each heuristic can be found in
[17]. Below, we just summarize the evaluation.
4.1.1. Visibility of system status. In general, we found
that the visualization needs improvement with regards
to reporting system status. For example, once the user
loads a project dependency graph to analyze, there is
no progress reporting bar alerting the user how much
load time is left. This problem is compounded by the
fact that large graphs can take several minutes to load.
The user may in fact believe that an error has occurred
and give up waiting for the tool to finish. Similarly,
redrawing dependencies after the user has filtered data
can be unnecessarily slow at times. Last, when
hovering over dependencies to see more information,
the visualization does not always highlight the
dependency the user expected until after some delay.

While there are delays in the feedback presented to
the user, the feedback itself is obvious. Generally, the
user will manipulate the interface by filtering data to
display only dependencies, code, or authors of interest.
When the interface responds, the difference in the look
of the interface is clear. Many items on the screen that
were there before will not be there. For example, bright
colors will fade into the black background, creating a
contrast between the filtered out data and the data left
on the screen.

4.1.2. Match between system and real world.
Ariadne displays the name of the project, the code
modules in the project, and the CM login names of the
developers in the project. However, managers may not
know the CM login names of their developers or the
names of fine-grained code modules. The latter can be
mitigated by filtering the visualization to see the code
at a higher abstraction, such as packages in Java.

Since the tool is intended to be used in conjunction
with Eclipse, we reused Eclipse’s icons for code
granularity to more completely describe the code
granularity of the artifacts as they appear on the
horizontal axis.
4.1.3. User control and freedom. Currently, the
visualization does not support undo or re-do. We
believe that because the visualization is exploratory
and the user never really “manipulates” data – rather
they just change the view – these functions are not
critical in the interim. The user can always clear a
filter. But at the same time, as they perform many
filtering operations, it may become difficult to
remember the whole chain of filters they have applied.
It also might be beneficial to give the user the freedom
to rearrange data on the axes into a configuration he
desires, and then save this configuration for future use.
For example, managers may want to see dependencies
between teams rather than individual developers
themselves. Demonstrations of Ariadne’s visualization
to colleagues and visiting researchers in software
engineering have corroborated this idea. As such, we
have marked this as an important addition to the next
iteration of the tool.
4.1.4. Consistency and standards. The only major
inconsistency we found is how the visualization
responds to filtering by typing and filtering by clicking
the desired artifact, author, or dependency. When it
detects a filter by click, the visualization highlights the
results and all other elements fade to grey against the
black background. However, when the tool detects a
filter by typing, it highlights the dependency results but
fails to fade out the names of the other labels (code and
authors). This may lead the user to believe they have
not applied the filter correctly.
4.1.5. Error prevention. The visualization only allows
users to load files of the type “.graph” to prevent errors
that may occur when loading a project.
4.1.6. Recognition rather than recall. The most
critical problem we found is that it is not obvious to the
user that they can click on a code or author to filter on
only that object. Instead, a status bar could update
when the user hovers over filter-enabled toggleable
labels, for instance, to communicate what can be done
with that object. Another option would be to have the

mouse cursor change shape to indicate that the object is
clickable.
4.1.7. Flexibility and efficiency of use. The closest
thing to a shortcut is dynamic single-character filtering
with complex SQL-like queries. As the user enters
each character into the filter text box, the visualization
actively searches for matches and displays them. An
avenue for future work, as mentioned earlier in section
4.1.3, is to allow the user to save configurations,
including layout and filters, to speed up interactions
with the tool.
4.1.8. Aesthetic and minimalist design. As discussed
in 4.1.4, the filters provided by Ariadne do a sufficient
job of pruning information not of importance to the
user. However, the inconsistency in the behavior of the
filters results in clearly readable labels of no interest to
the user. As a result, they should not be displayed.
4.1.9. Help users recognize, diagnose, and recover
from errors. The only errors we identified occurred
when the visualization loaded a malformed graph file.
The visualization should clearly indicate the
malformed section(s) of the graph and provide a
solution, such as re-running the dependency analysis
plug-in.
4.1.10. Help and documentation. While there is no
documentation for the tool yet, it is definitely part of
our future work. We are aware that the visualization
takes some learning before one can be proficient with
it. In the documentation we plan to cover how to select
dependencies, perform filtering, and show how to trace
social dependencies from one author to another
through the code.

4.2 Cognitive walkthrough

For the second part of our interface inspection, we
employed the Cognitive Walkthrough. A complete
description of the process and the questions asked at
each step can be found in [26]. In short, the Cognitive
Walkthrough involves specifying tasks that users will
attempt to accomplish with an interface and then
analyzing the ease with which users can perform those
tasks. Evaluators perform the analysis by asking a set
of four questions at each step to uncover usability and
learning issues.

We constructed our tasks based on the data we
collected during our field studies [9]. We categorized
our observations and distilled them into four scenarios
that describe coordination problems in large software
development projects with code being reused by
different teams. These scenarios share a common
theme: software developers’ usage of dependency
information to facilitate software development tasks. In
the interest of space, we report on the analysis of only
one task here.

4.2.1. Developer’s lack of awareness of evolving
code dependencies. In this scenario, the developer
wants to find out when others begin exercising their
code, because they want to make sure they will have
enough time to fix code in case an integration problem
occurs. This was observed among both collocated and
distributed developers. We assume that the developer
knows the name of the code of interest and may or may
not know the developers who are calling the code. The
steps involved are:

1. Select the granularity of the code of interest;
2. Select the target code if the calling developers

are not known and associate resulting
dependencies with calling developers OR
filter by code and developer if the calling
developers are known and associate resulting
dependencies with calling developers; and

3. Determine the recency of the dependencies.
In step 2, if the developer does not know the names

of the developers calling his code, they can either click
on the code of interest or perform a search and filter. If
they choose the former, they will get good feedback
because the interface will highlight connections
through the code of interest and fade out the other
connections. If no dependencies show up, then no one
has started to call that code. In the case that the
developer decides to search with the filter box,
however, we discovered that it is impossible to tell if
the dependency doesn’t show up because the code does
not exist, or because it has not yet been called by
anyone. A status message should either indicate, “Code
not found” or “Dependencies not found.”

Next, we noticed some potential problems with
associating dependencies with developers. When
looking for dependencies originating from the
developers of interest, there is a chance that colors
may not be distinguishable enough from each other.
This will make matching authors to their dependencies
almost impossible without filtering the data further.

If the developer knows the name of the developers
that should be calling their code, they can instead
perform a filter on both code and authors. We have
noted the problems with filtering by code, and they are
the same for filtering by developer. However, not
knowing whether a developer exists is likely to be less
worrisome, at least compared to the problem with
code, because there will generally be significantly
fewer developers than code.

We have not yet implemented the ability to
determine recency of the connections. One idea is to
change the coloring semantics. The developer could
theoretically define or choose a predefined coloring
scheme based on a date parameter.

4.3 Cognitive dimensions of notations
The Cognitive Walkthrough uncovered issues that

made learning how to use the visualization difficult.
We chose to complement this analysis with the
Cognitive Dimensions of Notations Framework [11]
(referred to hereafter as “Cognitive Dimensions”) in
order to further uncover mentally demanding
operations with the visualization. Cognitive
Dimensions provides a vocabulary for analyzing the
usability of tools, programming languages, and
environments that has been used to evaluate systems
such as the Z formalism in TranZit [16]. Two other
examples include [15] and [7]. Like the other
inspection methods presented here, Cognitive
Dimensions are designed for non-usability specialists
and can be applied in the early stages of design before
experiments with human subjects.

Similar to [16] we used the Cognitive Dimensions
Questionnaire Optimised for Users [3] as a starting
point to identify the relevant dimensions as a basis for
the evaluation. The questionnaire clearly presents the
concepts and introduces a set of questions that map to
each cognitive dimension. We used these questions
and details from [11] to complete our analysis. In this
section we present a summary of the evaluation.
4.3.1. Visibility and juxtaposability. In general, it is
easy to tell what has been changed or created. User
actions including filtering by author or code will result
in only those elements and dependencies displayed on
the screen after some delay. During an update of the
visualization by the user, status indicators on top of the
window display actions being performed by the
visualization (e.g. updating axes and drawing
dependencies).

Calling code (code that calls the modules on the x-
axis) is more difficult to see because it is not explicitly
represented as an element of the visualization. Instead,
users may hover over dependencies for a tooltip that
displays this information.

Users can view combinations of elements (authors
and code) at the same time by using the filtering
mechanism.
4.3.2. Viscosity. Changes to the visualization mean
changes in the way the data is presented, since users
will always be performing some sort of filtering of the
information. As such, making a change is as simple as
clicking on objects or using a text-based search to
display only information of interest on the
visualization

As explained in our Heuristic Evaluation, changes
that undo previous filtering may be complicated,
especially if the user performs a large chain of filters
and decides to undo only a small set of them. One
solution, but not the only, might be to display the

changes in a list fashion, similar to image editing
programs such as Adobe Photoshop, where users can
click on individual actions they have performed and
consequently undo them.
4.3.3. Diffuseness. The visualization’s notation allows
us to display all the relationships we have identified in
our field studies and surveys of related literature,
namely the relationship between people based on the
code they write.

Calling code takes more space to describe because
it can only be viewed by hovering over a particular
dependency.
4.3.4. Hard mental operations. When the number of
authors is large, the number of distinct colors the user
must keep track of becomes daunting, because some
colors are too similar to others to really distinguish on
the visualization. In our future work, we intend on
adding the capability to display teams on the y-axis in
addition to authors, effectively aggregating team
members and reducing the total number of colors as a
result.

Users can reduce the difficulty in understanding
multiple sets of dependencies between different
authors and code by filtering the data to display only
connections of interest. If the user performs a text-
based filter for called code and the code does not show
on the display, it is difficult to tell if the code has not
been called or the code does not exist.
4.3.5. Closeness of mapping. The notation is highly
related to the information the visualization is intended
to convey, namely dependencies between developers
through code. Labels of code represent actual artifacts
in the project, keeping the same naming scheme used
for Java, namely packages, classes, and methods.
Labels with developer names represent CM logins.
These labels can be augmented with real names when
such information is available, as in environments like
IBM’s Jazz [13]. The bracket metaphor to represent
dependencies is different from traditional
representations such as matrices or sociograms, and
requires some initial explanation.
4.3.6. Role expressiveness. It is easy to identify each
component in the notation insofar as the dependencies
are distinguishable and matchable to the developers the
user has identified as relevant.
4.3.7. Hidden dependencies. Dependencies are first
class objects in this visualization. Instead of assuming
that some dependencies are more important than
others, we allow users to find the ones of interest by
performing filtering operations. Dependencies between
authors are clear, but dependencies between code
artifacts require an extra step to find the calling code.
The visualization provides this as an easily readbale
tooltip text, however.

4.3.8. Premature Commitment. The visualization
does not assume a specific order of operations.
Instead, users can view information and perform filters
in any order they like.
4.3.9 Consistency. See our description of consistency
in section 4.1.4.

5. Discussion

The combination of inspection methods allowed us
to tease out the most important problems with the
visualization. For example, both the Cognitive
Walkthrough and Cognitive Dimensions analyses
pointed out problems with color picking. Possible
solutions include using general color design guidelines
[5] and selecting colors to support colorblind users [14,
20]. The Heuristic Evaluation and Cognitive
Dimensions revealed the potential need to allow users
to undo certain filtering actions in order to trace back
their steps, as well as the option to view different
configurations of developers (into teams, for example)
and system components. All three methods suggested
the need to improve feedback, whether to indicate that
specific dependencies have not been created, to display
the calling code for a given dependency, or to show
progress bars when the visualization undergoes a
screen refresh.

Each usability inspection has its particular focus, so
it is not surprising that the problems we found were
problems the methods were intended to reveal. The
Cognitive Walkthrough and Cognitive Dimensions
focus on actions with the visualization that are
mentally demanding. Accordingly, they revealed
problems with keeping track of different colors and
filters applied across use of the visualization. The
Heuristic Evaluation, serving as a broad checklist of
good usability principles, reinforced these findings and
helped to identify improvements to be made in the
future (e.g. help and documentation and correction of
visual inconsistencies). Although not reported on in
this paper, we complemented the Heuristic Evaluation
with a general visual inspection, using Tufte’s
principles of information visualization [22, 23].

The four analyses in total have allowed us to
identify problems in the early stage of the development
of Ariadne, before trials with human subjects.
Eventually, we will run new trials with human
subjects, though, generally speaking, human subject
evaluations yield only performance data and not
rationale that may affect design, especially in the early
stages of design.

Some experimenters obtain rationale through Talk
Aloud methods. Nielsen and colleagues provide a
recent, detailed discussion of applying this method and
extensions to limit certain biases [18]. The rationale

obtained in Talk Aloud protocols is expensive in terms
of obtaining subjects and performing the subsequent
extensive analysis. The complexity and cost make it
less appealing to early design.

Interestingly, some of the original authors of the
Cognitive Walkthrough applied it to a visual interface
[2]. The work used the Cognitive Walkthrough to
eliminate categorically different design alternatives for
a domain specific visual language. In our work, we
seek to refine our design further based on the results;
refining design decisions at a lower level. We also seek
to complement the one inspection method with others,
a total of four as mentioned above.

6. Conclusions and future work

This paper described Ariadne, a visual software tool
that translates technical dependencies in source code to
social dependencies between developers implementing
that code. Ariadne has been motivated by our own
empirical studies of software development projects and
others’.

We chose to evaluate the visual interface with
usability inspection methods. To a degree, this
approach is somewhat novel as these methods are
normally applied to user interface components and not
so often to workspace or information interface
components.

In conclusion, the inspection findings will lead us
to improve the design of Ariadne before additional
testing with human subjects. Moreover, the findings
were sufficient to confirm the usefulness of these
inspection methods in early design. Finally, inspection
methods yield design explanations, answering
questions about how and why an interface can be used
to achieve its intended objectives.

Our work is a mid point for researchers interested
both in visual interfaces to socio-technical data and
evaluation methods for visual information interfaces.

7. References
[1] Amrit, C. and van Hillegersberg, J. Detecting
Coordination Problems in Collaborative Software
Development Environments. (to appear) Information
Systems Management special issue on “Collaboration
Challenges: Bridging the IT Support Gap.”

[2] Bell, B., Rieman, J., and Lewis, C. 1991. Usability testing
of a graphical programming system: things we missed in a
programming walkthrough. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems:
Reaching Through Technology (New Orleans, Louisiana,
United States, April 27 - May 02, 1991). S. P. Robertson, G.
M. Olson, and J. S. Olson, Eds. CHI '91. ACM, New York,
NY, 7-12.

[3] Blackwell, A F, Green, T.R.G (2000), 'A cognitive
Dimensions Questionnaire Optimised for Users. " in A.F.

Blackwell & E. Bilotta (Eds.) Proceedings of the twelfth
Annual Meeting of the Psychology of Programming Interest
Group, 137-152

[4] Cataldo, M., Wagstrom, P.A., Herbsleb, J.D. and Carley,
K.M. Identification of Coordination Requirements:
implications for the Design of Collaboration and Awareness
Tools 20th Conference on Computer Supported Cooperative
Work, ACM Press, Banff, Alberta, Canada, 2006.
[5] Chisholm, W., et al. W3C Web Content and Accessibility
Guidelines 1.0, 1999

[6] Conway, M.E. How Do Committees invent? Datamation,
14 (4). 28-31.

[7] Cox K (2000), ‘Cognitive Dimensions of Use Cases –
feedback from a student questionnaire’. In A F Blackwell, E
Bilotta (Eds). Proceedings of the twelfth Annual Meeting of
the Psychology of Programming Interest Group, 99-122.

[8] Curtis, B., Krasner, H. and Iscoe, N. A field study of the
software design process for large systems. Communications
of the ACM, 31 (11). 1268-1287.
[9] de Souza, C.R.B., Quirk, S., Trainer, E. and Redmiles, D.
Supporting Collaborative Software Development through the
Visualization of Socio-Technical Dependencies. ACM
Conference on Supporting Group Work, ACM Press, Sanibel
Island, FL, 2007.

[10] Ghezzi, C., Jazayeri, M. and Mandrioli, D.
Fundamentals of Software Engineering. Prentice Hall, 2003.
[11] Green, T. (1989), "Cognitive Dimensions of Notations",
In A. Sutcliffe & L. Macaulay (Eds.), People and Computers
V Proceedings of HCI'89, Cambridge University Press.

[12] Herbsleb, J.D. and Grinter, R.E. Architectures,
Coordination, and Distance: Conway's Law and Beyond.
IEEE Software. 63-70.

[13] Hupfer, S., Cheng, L., Ross, S., and Patterson, J. 2004.
Introducing collaboration into an application development
environment. In Proceedings of the 2004 ACM Conference
on Computer Supported Cooperative Work (Chicago,
Illinois, USA, November 06 - 10, 2004). CSCW '04. ACM,
New York, NY, 21-24.

[14] Jefferson, L. and Harvey, R. 2006. Accommodating
color blind computer users. In Proceedings of the 8th
international ACM SIGACCESS Conference on Computers
and Accessibility (Portland, Oregon, USA, October 23 - 25,
2006). Assets '06. ACM Press, New York, NY, 40-47.

[15] Kadoda G (2000), ‘A Cognitive Dimensions view of the
differences between designers and users of theorem proving
assistants’. In A F Blackwell & E Bilotta (Eds), Proceedings
of the twelfth Annual Meeting of the Psychology of
Programming Interest Group, 33-44.
[16] Khazaei, B. and Triffitt, E. 2002. Applying cognitive
dimensions to evaluate and improve the usability of Z
formalism. In Proceedings of the 14th international
Conference on Software Engineering and Knowledge
Engineering (Ischia, Italy, July 15 - 19, 2002). SEKE '02,
vol. 27. ACM, New York, NY, 571-577.

[17] Nielsen, J.K. 1994. Heuristic Evaluation. In Usability
Inspection Methods, J.K. Nielson, & R.L. Mack, Eds. Wiley,
NY.

[18] Nielsen, J., Clemmensen, T., and Yssing, C. 2002.
Getting access to what goes on in people's heads?: reflections
on the think-aloud technique. In Proceedings of the Second
Nordic Conference on Human-Computer interaction (Aarhus,
Denmark, October 19 - 23, 2002). NordiCHI '02, vol. 31.
ACM, New York, NY, 101-110.
[19] Parnas, D.L. On the Criteria to be Used in Decomposing
Systems into Modules. Communications of the ACM, 15
(12). 1053-1058.
[20] Song, J., et al. Digital Item Adaptation for Color Vision
Variations. In SPIE, Conf. Human Vision and Electronic
Imaging VIII, volume 5007, pages 96--103, 2003
[21] Sosa, M.E., et al. Factors that influence Technical
Communication in Distributed Product Development: An
Empirical Study in the Telecommunications Industry. IEEE
Transactions on Engineering Management, 49 (1). 45-58.

[22] Tufte, E. 2006. Beautiful Evidence. Graphics Press,
Cheshire, CT.

[23] Tufte, E. 1990 Envisioning Information. Graphics Press,
Cheshire, CT.
[24] Valleto, G., et al. Using Software Repositories to
Investigate Socio-technical Congruence in Development
Projects Workshop on Mining Software Repositories, ACM
Press, Minneapolis, 2007.

[25] Wasserman, S. and Faust, K. Social Network Analysis:
Methods and Applications. Cambridge University Press,
Cambridge, UK, 1994.

[26] Wharton, C. W., Reiman, J., Lewis, C. & Polson, P.
1994. The cognitive walkthrough method: A practitioner's
guide. In Usability Inspection Methods, J.K. Nielsen, & R.L.
Mack, Eds. Wiley, NY.

