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Architectural Decay Prediction from
Evolutionary History of Software

Joshua Garcia, Ehsan Kouroshfar, and Sam Malek, Member, IEEE

Abstract—As a software system evolves, its architecture tends to decay, leading to the occurrence of defects or architectural elements that become
resistant to maintenance. To address this problem, engineers can significantly benefit from determining which architectural elements will decay before
that decay actually occurs. Forecasting decay allows engineers to take steps to prevent decay, such as focusing maintenance resources on the
architectural elements most likely to decay. To that end, we construct novel models that predict the quality of an architectural element by utilizing
multiple architectural views (both structural and semantic) and architectural metrics as features for prediction. We conduct an empirical study using
our prediction models on 38 versions of five systems. Our findings show that we can predict low architectural quality, i.e., architectural decay, with high
performance—even for cases of decay that suddenly occur in an architectural module. We further report the factors that best predict architectural
quality.

Index Terms—Software Architecture, Decay, Defects, Prediction.
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1 INTRODUCTION

In a software system’s life cycle, software maintenance tends
to dominate other activities, in terms of time, effort, and cost.
Throughout that life cycle, a major artifact that must undergo
maintenance is a software system’s architecture, which determines
the key properties of a software system. Architectural elements
abstract away unnecessary complexity (e.g., details of source-code
constructs), allowing engineers to focus on higher-level design
decisions. However, a software system’s architecture is known
to commonly undergo the phenomenon of architectural decay
[1], where design decisions are added to and may even violate
an architecture, leading to defects and other major architectural
problems.

Although decay is typically treated once its detrimental effects
(e.g., highly defective component or one that is highly resistant
to change) are detected in a system, engineers can benefit from
stemming architectural decay before such effects occur. To make
such a determination, engineers must be able to predict which
architectural elements are most likely to undergo decay, so that
they can allocate resources to those elements in the most effective
manner. Previous work has produced models for predicting only
defects for packages or directories [2]–[4]. However, defects are
not the only forms of architectural decay [5], [6]. Futhermore,
packages represent a structural view of the architecture [7]. Al-
though such a view is valuable for determining decay, a semantic
view of the architecture is needed to identify decay involving the
concerns attributed to different architectural elements.

To stem architectural decay, techniques need to be constructed
that predict a variety of constructs related to architectural quality,
including indicators of architectural decay, i.e., architectural bad
smells [5], [6], and the quality of an architecture’s modularization
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[8]. Architectural bad smells—which are patterns of architectural
constructs that may negatively affect the maintenance of software
systems—reduce the quality of a software system’s architecture
but do not constitute an error that should be fixed in all cases,
unlike a defect. Determining that an architectural module is
decaying, even before it is involved in an architectural smell or
exhibits low modularization quality, can reduce maintenance time
and effort.

To forecast architectural decay, we constructed novel models
that predict the quality of an architectural element (i.e., archi-
tectural module) by utilizing multiple architectural views (both
structural and semantic) and architectural metrics as features
for prediction. To obtain multiple architectural perspectives, we
utilize two module-level views: a package-level view and a
semantic view, obtained by leveraging an information retrieval-
based technique [9], [10] shown to work accurately based on the
latest evaluations of techniques for recovering a software system’s
architecture [10], [11]. Our architectural-quality prediction models
utilize an effective set of prediction metrics (i.e., file-level metrics,
smell-based metrics, and architectural metrics) and metrics for
representing architectural quality at the module level (i.e. defects,
smell-based metrics, and modularization quality). Each architec-
tural view provides an alternative perspective that can be used to
prioritize architectural modules and allocate resources to them for
maintenance purposes.

We conduct our study on 38 versions of five systems. The
overarching findings of our experiments are as follows:

• Our models can predict low architectural quality, indicat-
ing decay, with high performance. Specifically, our models
can predict defectiveness of modules with AUC results
of 0.76-0.88 and the occurence of architectural smells in
modules with AUC of 0.84-1.0. Furthermore, our models
can rank modules with high accuracy based on their num-
bers of defects (as represented by Spearman correlation
results of 0.48-0.73) and their modularization quality (as
represented by a Spearman correlation of 0.70-0.98). All
the Spearman correlations we report are significant at the
0.01 level.
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• We study the degree of change for architectural smells
that modules may suffer from and observe that some
smells exhibit little change across releases, while others
significantly change.

• Although at most 12% of modules exhibit smell emer-
gence—which represent sudden occurrence of smells in
modules—we are able to predict them with AUC of 0.79-
0.96.

• We investigate which factors are important for predict-
ing different aspects of architectural decay. Our findings
suggest that to predict each aspect of architectural decay,
different combinations of factors are needed. In particu-
lar, file-level metrics are not enough to comprehensively
predict architectural quality.

The remainder of this paper is organized as follows: Section 2
introduces the research questions we study. Section 3 describes
our approach for predicting architectural quality. That section
is followed by a description of our experiments’ design and
setup (Section 4), the results of our experiments (Section 5),
practical importance of our findings (Section 6), and the threats
to validity (Section 7). A discussion of related work (Section 8)
and conclusions round out the paper (Section 9).

2 RESEARCH QUESTIONS

For our study, we seek to answer research questions that assess
the effectiveness of our architectural-quality prediction models.
To that end, we study different regression models, the extent of
change of each architectural-smell metric, the ability of our models
to predict the emergence of an architectural smell, and the metrics
that work best for each of our models.

We produce a different prediction model for each architectural-
quality metric. To ensure high performance of these prediction
models, we intend to determine the most effective regression
models for making these predictions. Note that performance in
this context means the correctness of a prediction model—i.e.,
performance in the sense used in prediction-model literature.
Consequently, we study the following research question:

RQ1: What is the performance of each prediction model for
the different architectural-quality metrics?

To better understand the applicability of our models for
predicting architectural smells, the architectural-smell metrics we
predict should exhibit change. To that end, we must determine the
extent of change for each architectural-smell metric in our study.
As a result, we study the following research question:

RQ2: What is the amount of change across releases for each
architectural-smell metric?

Potentially, predicting architectural smells is most important
in the case of smell emergence, i.e., the addition of smells to a
software system. For example, if a module has not had a type of
smell in the current release but will have that smell in the next
release, our models should predict this occurrence, allowing an
engineer to take preventive measures to stem that decay. To that
end, we aim to answer the following research question:

RQ3: Can we effectively predict architectural-smell emer-
gence between two consecutive releases?

Although we select prediction metrics that intuitively deter-
mine architectural quality, the exact combinations of metrics that
best predict architectural quality must be assessed empirically.
For our study, we select combinations of metrics that are (1)
obtained at the file level and aggregated to modules, and (2) are
architectural in nature. Thus, we investigate the following final
research question:

RQ4: What are the important metrics for predicting each
architectural-quality metric?

3 PREDICTION MODEL CONSTRUCTION

Figure 1 overviews our approach for predicting architectural
quality. Our approach begins with a set of source files, a version
control repository, and architectural modules identified by an
Architectural Module Extractor from the source files. Given those
three artifacts, four Metrics Extractors—Lifted File-Level Ex-
tractor, Architectural Co-Change Extractor, Architectural Smell
Extractor, and Architectural Dependency Extractor—compute 19
metrics that are used as independent variables for a stepwise
regression analysis. A user selects a metric among 6 architectural-
quality metrics to be predicted, which serves as the dependent
variable inputted to the stepwise regression analysis. The result of
regression analysis is a prediction model for the selected quality
metric. Each prediction model produced by our approach utilizes
independent variables of release k of system s and predicts the
selected architectural-quality metric for k+1 of system s.

In the remainder of this section, we describe the major parts of
our approach: the techniques we leveraged to obtain architectural
modules, our selected regression models, the six quality metrics
to be predicted, and the metrics extracted and used as independent
variables.
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Fig. 1: Overview of our approach for architectural-quality metric
prediction
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3.1 Obtaining Architectural Modules

We consider two different techniques for recovering architectural
modules, which are used by Architectural Module Extractor. As
a result, we obtain multiple architectural views [12], allowing
an engineer to obtain architectural-quality metrics from differ-
ent perspectives. This maximizes the possibility of identifying
architectural-quality problems throughout a software system. Note
that an architecture-recovery technique can be substituted for a
ground-truth architecture verified as correct by a software system’s
architects. In such a situation, our prediction models would likely
achieve better performance, since they would not need to correct
for improperly recovered modules.

The package structure of a system can be treated as a proxy
for the decomposition of the system into architecturally significant
elements, as packages are created by the developers of the system.
In fact, package structuring has been used as a decomposition
reference in prior research [13]–[15]. Packages and their sub-
packages can be represented in a tree structure corresponding
to the packaging hierarchy. Each leaf of the tree is a Java class
contained in a package, which itself may belong to a higher level
package. The root of the tree is the top-level package.

In our previous work, we showed that high-level packages are
not suitable for studying the evolution of architecture—due to the
coarse granularity—and low-level packages should be used instead
[16]. Therefore, we use low-level packages in this study. In low-
level packages, architectural modules correspond to packages that
only contain Java classes and no sub-packages.

In addition to packages, we include a semantic view of
modules obtained using an architecture-recovery technique called
Architectural Recovery using Concerns (ARC) [9], [10], [17],
which utilizes hierarchical clustering and information retrieval to
produce modules. ARC leverages a statistical language model,
Latent Dirichlet Allocation (LDA) [18], to represent each source
file of a system as textual documents consisting of concerns, which
are extracted from the identifiers and comments of each file. A
concern could be a role, concept, or responsibility of a system.
The number of modules recovered by ARC is selectable by an
engineer, enabling the consideration of recovered modules at a
high level and low level, just as in the case of packages. For ARC’s
implementation, every entity in a module is a Java source file.

Once modules have been identified or recovered, we must be
able to determine which module mk in release k is the same module
mk+1 in release k + 1. This determination allows us to make
predictions for mk+1 based on our metrics for mk. We leverage
a technique described in prior work that traces modules across
releases based on the degree of overlap among them [17].

3.2 Regression Analysis Selection

We constructed the prediction models in this study using the
releases of each project. We use three well-known regression
models in this study and compare the results: linear regression
(LR), negative binomial regression (NBR), and random forest
(RF). We used the MASS library in R [19] for building LR and
NBR and the randomForest library for RF [20].

Although LR is popular and widely used in the literature, some
have argued that NBR is a more appropriate regression model for
defect prediction [21]. Unlike LR, NBR makes no assumptions
about the linearity of the relationship between the variables, or
the normality of the variable distributions. NBR is applicable to

non-negative integers and, more importantly, can be used for over-
dispersed count data (i.e., when the conditional variance of the
data exceeds the conditional mean) [22]. We also chose RF since
it has been shown to perform best for software defect prediction
[23], making RF potentially suitable for predicting architectural
quality. For NBR, we use the log2 transformation of our metrics
to reduce the influence of extreme values, similar to prior work
[22].

We do not want our prediction metrics to exhibit multi-
collinearity, a phenomenon where prediction metrics are corre-
lated, since this can cause our prediction models to become
unstable [24]. To avoid the multicollinearity problem, we use
stepwise regression to build the models. We leverage the stepAIC
function in the MASS library of R for this purpose. Akaike
Information Criteria (AIC) is a commonly used static measure
for goodness of fit. Models can be built in two ways: forward and
backward. Forward stepwise regression begins with no variable
in the model. The variable that improves the model the most is
identified and added to the model. The process continues until
none of the remaining variables can improve the model. Backward
stepwise regression starts with the full model, improves the model
by deleting variables, and repeats this deletion until no further
improvement is possible. To determine the optimal model, we ran
both forward and backward stepwise regression. We used stepwise
regression when building models with LR and NBR. We utilized
all of the metrics when building models using RF because it works
well with a large number of independent variables [25], where our
model includes only 19 such variables.

3.3 Dependent Variables

We selected the following six metrics that serve as representations
of architectural decay: the number of defects in a module; four
architectural-smell metrics, where each metric indicates whether a
module has a specific type of smell; and a metric that indicates a
module’s quality in terms of coupling and cohesion. Each of these
metrics is a dependent variable for a single architectural-quality
prediction model.

The number of defects per module are determined by summing
up the defects in each file contained within an architectural
module.

The coupling and cohesion of a module is a strong indicator
of the module’s quality. To that end, we included Cluster Factor
(CF) [8], a metric used widely in previous architectural studies
[8], [10], [26], [27] that represents the coupling and cohesion of a
module. We calculate CF for a module m as follows:

CFm =
µi

µi +0.5×∑ j εi j + ε ji

where µi is the number of dependencies between entities within
a module, εi j is the number of dependencies from module i to
module j, and ε ji is the number of dependencies from module j
to module i.

The presence or absence of architectural bad smells in a
module may inform our prediction models as to the future
occurrence of architectural decay. To that end, we select four
architectural smells for our study that represent structural or
semantic maintainability problems of a module. Each smell falls
into one of two categories: concern-based smells or dependency-
based smells. Concern-based smells are caused by inappropriate
or inadequate separation of concerns; dependency-based smells
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arise due to module interactions resulting from code relationships
among entities within a module.

We identify the following smells that a module may suffer
from, which have been studied in previous work [5], [6], [28].

• Scattered Functionality (SF) is a concern-based archi-
tectural smell that describes a system in which multiple
modules are responsible for realizing the same high-level
concern, while some of those modules are also responsible
for additional, orthogonal concerns.

• Concern Overload (CO) is a concern-based architectural
smell that occurs for a module when it implements an
excessive number of concerns. For practical identification
of such a smell, a given number of concerns is excessive
if that number exceeds the mean plus standard deviation
of the number of concerns across the modules of the
software system in question. This selection of a threshold
representing “excessiveness” minimizes the bias of making
such a determination [28].

• Dependency Cycle (DC) is a dependency-based architec-
tural smell that occurs when a set of modules are linked in
such a way that they form a cycle, causing changes to one
module to possibly affect all other modules involved in the
cycle.

• Link Overload (LO) is a dependency-based smell that
occurs when a module is involved in an excessive number
of dependencies to other modules. A module can have an
excessive number of incoming links, outgoing links, or
both.

To represent each of these smells as an architectural-quality
metric to be predicted, we create a binary metric for each smell:
ss f , sco, sdc, and slo. If a module m has a smell s, then s = 1.
Otherwise, s= 0. For example, if a module m1 has CO, then sco = 1
for m1. As another example, if module m2 is involved in a DC with
other modules, sdc = 1 for m2.

3.4 Independent Variables

We use four types of metrics extractors to obtain a combination
of file-level and architectural-level metrics for predicting architec-
tural quality. Many prediction models from existing literature have
focused on predicting software defects [21], [29]–[31]. We chose
a subset of metrics from the prior literature, particularly at the file
level, as independent variables for prediction, since they may be
indicators of architectural problems.

Lifted File-Level Extractor obtains the following file-level
metrics:

• The lines of code (LOC) of a file is a measure of the size
of a file determined by counting the number of non-empty
non-comment lines.

• Sum cyclomatic complexity (SCC) of any structured pro-
gram with only one entry point and one exit point is equal
to the number of decision points contained in that program
plus one.

• The depth of inheritance tree (DIT) is the depth of a class
within an inheritance hierarchy calculated as the maximum
number of nodes from the class node to the root of the
inheritance tree.

• Coupling between objects (CBO) for a class C is the
number of other classes to which C is coupled. Class A is

coupled to class B if class A uses a type, data, or member
from class B.

• Lack of cohesion in methods (LCM) is calculated as 100%
minus average cohesion for class data members. Average
cohesion is calculated as the percentage of pairs of meth-
ods in a class that have at least one field in common. A
lower percentage means higher cohesion between class
data and methods.

• Number of changes (NC) is the number of times that a file
is committed to a repository.

• Number of co-changed files (NCF) is the number of other
files that a file f is changed with [32].

To represent file-level metrics at the module-level, we lift them
up to the architectural level by summing up the values of each
file-level metric across all files inside each module. The resulting
sum is then used as a representation of each file-level metric for
a module. For example, in the case of SCC, a module m with
four files can have the following SCC values, one for each file:
2, 5, 6, and 9. The SCC for module m is the sum of all SCCs
of its constituent files, i.e., 22. This approach has been used for
predicting defects for packages [2], [3].

Among our architectural metrics, we include metrics involving
co-changes between modules that are extracted by Architectural
Co-Change Extractor. Co-changes are process metrics that rep-
resent modifications that occur simultaneously within or across
modules. Our previous work has demonstrated that architectural
co-changes correlate with defects [16], [33]. Consequently, archi-
tectural co-change metrics may potentially improve our prediction
models. We select the following architectural co-change metrics:

• Cross-module co-changes (CMC) is the number of co-
changes for a file, where the co-changes are made across
more than one architectural module.

• Inner-module co-changes (IMC) is the number of co-
changes for a file, where there is at least another co-
changed file in the same architectural module.

A number of our selected architectural-quality metrics are
based on dependencies between modules, which are code relation-
ships among source-level entities within a module (e.g., method
invocations, field accesses, import statements, etc.). To predict
architectural quality based on such dependencies, Architectural
Dependency Extractor obtains module-dependency metrics.

We consider two methods for measuring the dependencies
between modules. The first method models the dependencies as a
binary variable, meaning that we only measure whether a module
has a dependency on another module. The second method is
to count all of the dependencies between the modules, which
considers the number of dependencies between the files inside
each of the modules. Using these two methods, we select the
following dependency-based metrics:

• Incoming module dependency (CMD) is a binary metric
for a module m1 with a value of 1 if there is at least
one dependency from another module m2 to m1, and 0
otherwise.

• Outgoing module dependency (OMD) is a binary metric
for a module m1 with a value of 1 if there is at least
one dependency from m1 to another module m2, and 0
otherwise.

• Total incoming module dependencies (TCMD) is the total
number of dependencies to a module m1 and originating
from other modules in a software system.
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TABLE 1: Studied Projects and Release Information

Project Description Releases SLOC

HBase Distributed Scalable Data Store 0.1.0 ,0.1.3 ,0.18.0 ,0.19.0, 0.19.3, 0.20.2, 0.89.20100621, 39K-246K0.89.20100924, 0.90.2, 0.90.4, 0.92.0
Hive Data Warehouse System for Hadoop 0.3.0, 0.4.1, 0.5.0, 0.6.0, 0.7.0, 0.8.1 66K-226K
OpenJPA Java Persistence Framework 1.0.1, 1.0.3, 1.1.0, 1.2.0, 2.0.0-M3, 2.0.1 153K-407K
Camel Enterprise Integration Framework 1.6.0 ,2.0.M ,2.2.0 ,2.4.0, 2.5.0, 2.6.0, 2.7.1, 2.8.0, 2.8.3 99K-390K
Cassandra Distributed Database Management System 0.3.0 ,0.4.1 ,0.5.1 ,0.6.2, 0.6.5, 0.7.0 50K-90K

• Total outgoing module dependencies (TOMD) is the total
number of dependencies from a module m1 to other mod-
ules in a system.

• Internal module dependencies (IMD) is the total number
of dependencies among all files within a module.

• External module dependencies (XMD) is the total number
of incoming and outgoing dependencies of a module.

The existence of architectural smells in a module may indicate
further architectural decay in the future for that module. For
example, a module with CO may be more likely to exhibit LO
in the future. As another example, LO may be an indicator of
future reductions in a module’s CF. To that end, Architectural
Smell Extractor identifies the four architectural smells described
in Section 3.3 and computes the corresponding metrics.

4 EXPERIMENTAL SETUP

To evaluate our prediction models, this section discusses the
experimental setup we use to answer our research questions.

4.1 Projects Studied and Data Collection

Our experimental subjects include five projects, listed in Table 1.
They are all written in Java and are maintained by Apache
Software Foundation (ASF). However, they vary in their sizes and
application domains, allowing us to draw broader conclusions.
For our experiments, we excluded test code, since such code is
generally not part of the system’s architecture, from a traditional
architectural perspective [7].

Project Statistics. As part of our overview of the projects that
we studied, we provide statistics showing the number of modules,
smells, and defects as box plots that present these numbers across
our five studied projects and recovered architectural views. In the
following paragraphs we introduce and discuss those plots.

Figure 2 shows the number of modules across different re-
leases and projects for both ARC and packages. We set ARC to
produce a number of modules equivalent to 20% of the classes
in a version of a project, which is the number of modules for
which ARC obtained accurate results in a comparative analysis of
recovery techniques [10]. Across the five projects, we obtained 29-
391 modules for ARC and 12-545 modules for packages. Except
for Camel, most of the projects contained more ARC modules than
packages.

Figure 3 illustrates the number of defects across releases and
projects, and for both architectural views. The figure indicates that
the number of defects tends to be greater for packages than for
ARC modules across projects and releases. Specifically, the ARC
view contains 15-378 defects, while the package view has 23-457
defects.

Figure 4 depicts the number of architectural smells obtained
from the ARC and package views across releases and projects.
The number of smells are greater in the ARC view—containing

Fig. 2: Number of Modules Across Projects.

Fig. 3: Number of Defects Across Projects.

16-212 smells—than the package view—which has 3-78 smells.
This result is unsurprising since concern-based smells (i.e., CO
and SF) are not obtainable from the package view, as that view
does not represent a software system’s concerns (recall Section
3.1).

Data Collection. To enable prediction of architectural quality,
we collect data about bug fixes and metrics at both the code and
architectural levels. We utilize different tools for that purpose.

We obtain code-level metrics per file and for each release. The
first five file-level metrics (LOC, SCC, DIT, CBO and LCM) are
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Fig. 4: Number of Smells Across Projects.

measured using UNDERSTAND from Scitools1 for each release.
The change metrics (NC, NCF, CMC and IMC) are calculated

by processing the developer commits from an SVN repository and
extracting the groups of files in the same commit transaction that
have been modified together (i.e., co-changes). We use SVNKit, a
Java toolkit providing APIs to subversion repositories.

To obtain architectural metrics, we leverage Architecture Re-
covery, Change, And Decay Evaluator (ARCADE) [17], [28], a
workbench containing tools for addressing architectural decay.
Specifically, ARCADE consists of algorithms for detecting ar-
chitectural smells and computing architectural dependency in-
formation, enabling the extraction of our four selected architec-
tural smell metrics (SF, CO, DC, and LO) and six architectural
dependency-based metrics (CMD, OMD, TCMD, TOMD, IMD,
and XMD).

In the ASF software repositories and, by extension, the
projects studied in this paper, the commits that are bug fixes are
identifiable since bugs are referred to by a project name and bug
number in SVN commit logs. For example, all of the bug fixes
in HBASE begin with HBASE-<bug number> (e.g., HBASE-
3172). This enabled us to find all bug fixes by just parsing the
log of commits in SVN and finding the keyword HBASE-<bug
number>. To determine the number of defects for each module,
we sum up the number of bug fixes in all files within each module.

We chose releases so that the period of time between each
release is 3 to 4 months. Choosing releases with near-equal time
intervals reduces the effects of wide disparities between releases.
For example, if one pair of releases in our study are weeks apart,
while another pair are years apart, our prediction models may
be affected by the large difference in time between the pairs
of releases. As a result, we control for time to an extent. Our
chosen approach for dealing with time intervals between releases
is consistent with previous literature on prediction models for
software engineering [34] and empirical studies on architectural
co-change [16].

4.2 Data Splitting and Evaluation Metrics

We first discuss the splitting strategy we select for training our
models and testing them. We then cover the two criteria we chose

1. http://www.scitools.com/

to evaluate the performance of our prediction models: predictive
power and ranking.

Data Splitting. In order to evaluate the performance of
the models, we use data splitting, a commonly used evaluation
technique, where a data set is divided into subsets for building
and evaluating the model. For evaluating the performance of our
prediction models on release k, we use the data of all releases up to
but not including that release to train the models, and then we use
the data of release k as test data. We assess the performance of our
prediction models for multiple releases depending on the number
of releases for a project. For HBase and Camel, we evaluate our
prediction models for the last three releases. For the remaining
projects, we test the models on the last two releases.

Predictive Power.We assess the predictive power of a model
by selecting an appropriate performance measure. We considered
a variety of measures often utilized to evaluate the performance
of predictive models for software-engineering purposes. We will
briefly discuss some commonly used measures—accuracy, preci-
sion, and recall—and why they are undesirable for our study. We
then follow that discussion with an introduction and justification
of our chosen measure for predictive performance: area under the
curve (AUC) of the receiver operating characteristic (ROC).

Precision and recall are pairs of performance measures com-
monly used together for prediction models. Precision is a measure
of a model’s ability to predict modules without falsely marking
them as having low architectural quality. Recall is a measure
of a model’s ability to correctly predict all modules with low
architectural quality. A prediction model should have a high
precision and recall; however, increasing one often decreases the
other.

Accuracy is the proportion of correct predictions, which can be
a bad performance measure for imbalanced data [35]. For example,
if we only have a few defective modules in our data set, a model
that considers all modules as clean would have a high accuracy.

Precision, recall, and accuracy all require the arbitrary setting
of discrimination thresholds to declare a module as having low
architectural quality. To avoid arbitrary setting of thresholds in our
experiments, we utilize AUC of ROC as the performance measure
for comparing prediction models, as suggested by [23], and further
described below.

Receiver operating characteristic (ROC) is a curve that plots
true-positive rates (y-axis) against false-positive rates (x-axis) for
all possible thresholds between 0 and 1—precluding the need to
arbitrarily set thresholds. AUC is a scalar performance measure
derived from ROC and is the area enclosed by the curve and
the x-axis. AUC separates predictive performance from class and
cost distributions, which are based on characteristics of projects.
The best possible model is a curve close to y = 1 with AUC of
1.0; a random classifier would obtain AUC of 0.5. In code-level
defect prediction literature, an AUC of 0.7 or above is considered
a high level of performance for a prediction model [23], [30].
Given the similarity of architectural decay and defects, we also
consider AUC of 0.7 and above as a high level of performance for
architectural-quality prediction.

For illustration, Figure 5 shows an ROC curve corresponding
to one of our models for predicting defects in architectural mod-
ules of OpenJPA project. By choosing a different discrimination
threshold for declaring a module defective, the prediction model
would produce a different performance, as shown in this curve.
Rather than reporting the results using an arbitrary threshold, we
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Fig. 5: ROC Curve for Defect Prediction.

use AUC to holistically compare the classification performance of
different prediction models under all possible thresholds.

Our approach for evaluating the prediction models is orthog-
onal to how the engineers would use the models in software
projects. In practice, the engineer can choose a discrimination
threshold that achieves the desired balance of precision and recall
based on the characteristics of a project. For instance, if a project
is understaffed and there are insufficient resources to thoroughly
review the system’s architecture/code, the engineer may choose
a threshold that achieves a higher precision and a lower recall,
meaning less wasted effort investigating false positives, at the
expense of not fixing all architectural issues in time. On the
other hand, if a project has the necessary staff and resources to
thoroughly review the system’s architecture/code, the engineer
may choose a threshold that achieves a lower precision and a
higher recall, meaning more wasted effort of investigating false
positives, but increased likelihood of fixing all architectural con-
cerns. As another example, in a safety-critical software project, the
engineers may choose to use thresholds that maximize the recall to
reduce architectural decay factors, and thereby improve the quality
of software, as much as possible.

Ranking. Determining the modules with the lowest architec-
tural quality allows engineers to prioritize their efforts to those
modules first. To that end, we assess if a model can correctly pre-
dict the order of modules according to their architectural-quality
metrics. Ranking is not applicable to architectural smells since
they are binary variables. However, we can obtain ranking results
for defects and CF. In defect ranking, we build the prediction
models using data splitting, predict the number of faults for each
module, and compare the ordering of the predicted defect numbers
with actual defect numbers using Spearman correlation. Similarly,
we predict CF values for each module and compare the ranking of
predicted CF values with the ranking of actual CF values.

We consider a Spearman correlation greater than 0.4 that is
statistically significant at the 0.01 level to be a reliable ranking of
modules. A correlation of 1.0 denotes a perfect ranking. Previous
work on code-level defect prediction has considered Spearman

(a) AUC Performance Defects (b) Spearman Correlation for
Ranking Defective Modules

Fig. 6: Defect Prediction Performance

correlation values greater than 0.4 to be sufficiently strong [2],
[36]. Given the similarity of predicting code-level defects and
architectural decay, this consideration is sensible for our prediction
models. Note that all the Spearman correlations that we report are
significant at the 0.01 level.

5 EXPERIMENTAL RESULTS

Given our approach and the experimental design described in the
previous sections, we now discuss the results obtained for each
of our research questions. We begin by assessing the overall
performance of our prediction models for each architectural-
quality metric. We follow that study by assessing the degree of
change for each architectural-smell metric. Afterwards, we focus
on prediction results for smell emergence. Lastly, we determine
the metrics that best predict architectural quality.

RQ1: What is the performance of each prediction model for
the different architectural quality metrics?

We first assess our model’s ability to predict whether a module
has at least one defect, which we refer to as defect existence
prediction. Figure 6a shows AUC results for defect existence
prediction for RF (F), LR (L), and NBR (N), using both ARC
and packages. The results show that the prediction performance of
NBR is higher than LR and RF. Particularly in the case of NBR,
our models predict module defectiveness with AUC of at least
0.76.

We further observe that AUC results for module-level defect
prediction are higher for packages than ARC. This higher per-
formance for packages may result from the fact that no special
technique is needed to obtain packages and are, thus, less suscep-
tible to error. However, given that our models can obtain at least
0.76 AUC, they exhibit resilience to errors that may exist in ARC.

Only predicting which modules have defects in future releases
does not help in prioritizing modules for defect analysis and
removal. Particularly, roughly 50% of modules in our study tend to
have defects, which provides engineers with little information as to
which modules should be allocated more maintenance resources.
To address this issue, our models can predict the amount of defects
a module may have, rather than simply whether a module has
a defect. Predicting the magnitude of a module’s defectiveness
allows an engineer to prioritize modules for defect analysis and
removal.
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Fig. 7: AUC Performance Architectural Smells

We assess our model’s ability to predict the extent of a
module’s defectiveness by using Spearman correlation to compare
the actual ranking of defective modules with our model’s predicted
rankings. Figure 6b shows these results. As in the case of defect
existence prediction of modules, NBR outperforms LR and RF:
Prediction for ARC modules obtains Spearman correlation of
0.48-0.69; for packages, our models obtain a spearman correlation
of 0.62-0.73. Similar to defect existence prediction for modules,
ranking results are higher for packages than ARC. Again, this is
likely due to error introduced by ARC when recovering modules.

For smell prediction, we determine whether our models can
predict the occurrence of different types of smells. To that end,
we utilize AUC as our performance measure. Figure 7 shows the
AUC results for predicting smells in ARC. We have the results
of all four smells from ARC; however, two of the smells are
concern-based and only applicable to ARC. Thus, for packages,
we have results for DC and LO only. Recall from Section 3.1 that
ARC represents each source file as containing a set of concerns.
These concerns are needed to identify SF and CO in a software
system’s architecture, precluding these types of smells from being
determined from the package view. As shown in Figure 7, we
can predict the occurrences of smells in modules with a high
AUC of 0.84 or above. Furthermore, LR, NBR, and RF obtain
similar prediction results, in terms of AUC, for smells. Overall,
prediction results are better for packages than ARC modules,
which is consistent with the prediction results for defects.

The overwhelming majority of modules in projects have low
architectural quality as measured by CF. We consider a module m
as having a low CF when CF < 0.2 for m. This CF value indicates
that the vast majority of m’s dependencies are with entities outside
of m, as opposed to within m, indicating high coupling and low
cohesion. Using the threshold of CF < 0.2, we created a binary,
independent variable that we used to assess the CF prediction
performance in terms of AUC.

Figure 8a shows AUC results for predicting the CF values of
modules. Similar to our previous results, RF and NBR outperform
LR. Both RF and NBR obtain AUC values for CF of at least 0.71,
demonstrating high effectiveness for predicting CF. Just as with
AUC performance for defects, AUC values for CF are higher for
packages than ARC. This result further indicates that our models
are resilient to errors that may exist in ARC.

Given that modules mostly have low CF values, it is particu-
larly important that engineers identify the modules with the worst
CF. With such information, engineers can allocate maintenance
resources to those modules first. To that end, we further assess the
ranking results of CF.

(a) AUC Performance Cluster
Factor

(b) Spearman Correlation Clus-
ter Factor

Fig. 8: Cluster Factor Prediction Performance

Figure 8b depicts the ranking results for CF values compared
using Spearman correlation. For both ARC and packages, NBR
and RF perform similarly, achieving more than 0.7 correlation,
with RF performing slightly better than NBR. Both models
outperform LR. The superior performance of NBR and RF is
significantly more pronounced for ARC. This difference in CF
may be due to ARC ignoring dependency-based coupling and
cohesion, which is what CF is based on.

To illustrate how the results of this research might be used
by the engineers, we describe one of the prediction models from
Figure 8b in more detail. We show the CF prediction results for
a subset of packages in HBase version 0.92. Table 2 shows the
actual values of CF for packages, the predicted value of CF, and
also the corresponding ranking. As shown, the predicted values of
CF is very close to the actual values of CF. Out of 15 modules, 12
modules are ranked correctly by the prediction model, while for
the 3 remaining modules (i.e., handler, executor, and replication)
the actual and predicted rankings are quite close. Engineers could
use such information to identify architectural problems (e.g.,
identify the modules with low CF) and prioritize their effort (e.g.,
refactor the modules with lowest CF).

In summary, the results show that our models can effectively
predict the different architectural-quality metrics. For most cases,
NBR provides superior results and is the best overall model for
predicting architectural quality.

Next we report the results of the amount of change for each
architectural-smell metric.

RQ2: What is the amount of architectural change across
releases for each architectural-smell metric?

Figure 9a shows the percentages of changes across all releases
and systems for each architectural smell. We compute smell
change σ∆ for release r using the following equation:

σ∆(Mr,r,r+1) =
|{ma ∈Mr : σδ(ma,r,r+1)}|
|{mb ∈Mr : hasσ(mb)}|

×100

σδ(m,r,r+1) = σem(m,r,r+1)∪σre(m,r,r+1)

Mr is the set of modules for release r. σem is true when module
m has no smell in release r but has a smell in release r+ 1, and
false otherwise—representing a smell emergence. σre is true when
a module m has a smell in release r but does not have that same
smell in release r+1, and is false otherwise—representing a smell
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TABLE 2: Prediction of CF for Packages in HBase (version 0.92)

Package Name CF Predicted CF Rank of CF Rank of Predicted CF

org.apache.hadoop.hbase.mapreduce 0.11 0.11 10 10
org.apache.hadoop.hbase.filter 0.27 0.31 15 15
org.apache.hadoop.hbase.io.hfile 0.25 0.28 14 14
org.apache.hadoop.hbase.client.coprocessor 0.01 0.02 2 2
org.apache.hadoop.hbase.mapred 0.13 0.14 11 11
org.apache.hadoop.hbase.io 0.03 0.03 3 3
org.apache.hadoop.hbase.master.handler 0.05 0.05 5 6
org.apache.hadoop.hbase.regionserver 0.18 0.20 12 12
org.apache.hadoop.hbase.executor 0.04 0.04 4 5
org.apache.hadoop.hbase.rest.client 0.11 0.10 9 9
org.apache.hadoop.hbase.thrift.generated 0.00 0.01 1 1
org.apache.hadoop.hbase.replication.regionserver 0.09 0.08 8 8
org.apache.hadoop.hbase.replication 0.05 0.04 6 4
org.apache.hadoop.hbase.rest 0.22 0.24 13 13
org.apache.hadoop.hbase.util.hbck 0.06 0.06 7 7

being removed or changed to another smell. hasσ(m) returns true
if module m has any smell, and false otherwise. Intuitively, the
denominator calculates the number of modules for a release that
have any smells; the numerator calculates the number of modules
in the current release that will change in the next release.

Although all types of architectural smells change across re-
leases, the amount of change varies: SF, DC, and CO exhibit
relatively little change; LO changes drastically across all releases
of our systems.

Our results for smell changes indicate that, for our selected
systems, modules that suffer from concern-based smells (CO and
SF) tend to retain those smells across releases—with little addition
or removal of such smells afterwards. At the same time, change
for SF is significantly higher than CO.

For each dependency-based architectural smell (DC and LO),
change across releases varies significantly. The amount of change
represented by LO varies drastically between ARC and packages.
This difference is likely due to the fact that ARC does not take
dependencies into account, which are used to compute LO.

DC exhibits a similar amount of architectural change, across
releases and systems, for both ARC and packages. Furthermore,
the amount of change for DC is quite low (largely between 1%-
26%). Consequently, across releases, the same modules tend to be
involved in a DC, for our selected systems.

Overall, we find that architectural smells do exhibit signifi-
cant change worth predicting. However, we would like to deter-
mine if our prediction models can forecast a particular type of
architectural-quality change, i.e., smell emergence, so that engi-
neers can possibly take action before a smell occurs—resulting in
possible savings of future time and effort. To that end, we examine
the results for our next research question:

RQ3: Can we effectively predict architectural-smell emer-
gence between two consecutive releases?

As part of answering this research question, we first assess the
frequency of smell emergence. Figure 9b shows the percentages of
smell emergence in architectural modules across all systems and
releases. We compute the percentage of smell emergence σem

∆
for

release r using the following equation:

σ
em
∆ (Mr,r,r+1) =

|{ma ∈Mr : σem(ma,r,r+1)}|
|{mb ∈Mr : hasσ(mb)}|

×100

This equation is highly similar to σ∆; however, σem
∆

does not
utilize σre and, thus, only accounts for smell emergence.

LO is the most frequent type of smell emergence with a median
of 9% occurring for modules. SF and DC smell emergence occurs
less than 5% in ARC; DC smell emergence does not occur in
most projects. Although smell emergence occurs infrequently, this
phenomenon is intuitively difficult to predict and preventing its
occurrence may reduce future maintenance issues.

To build a model for predicting smell emergence cases, we
created new binary variables for each smell: seco, sedc, selo, ses f . se
variables are equal to one whenever the value of the corresponding
smell is 0 in the current release and 1 in the next release—
meaning that the smell does not exist in the previous release, but
it emerges in the next release. We created models for predicting
smell emergence using these new dependent variables.

Figure 10 shows the AUC prediction results for smell emer-
gence for all systems and releases. Although the number of smell-
emergence instances are low, we predict those instances with AUC
of 0.83 on average using NBR.

The performance of RF drops considerably for smell-
emergence prediction compared to LR and NBR. This occurs
because RF can lose significant performance when a dataset is
extremely imbalanced [37]; however, stepwise regression with LR
and NBR are less susceptible to imbalanced data.

(a) Any Changes (b) Smell Emergence

Fig. 9: Percentages of Changes for Architectural Smells
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In summary, our models can predict smell emergence—and
architectural-quality metrics in general—with high performance.
To obtain such prediction models, it is important to identify the
metrics that best improve our prediction models. We make that
determination as we answer the following research question:

Fig. 10: AUC Performance for Architectural Smell Emergence

RQ4: What are the important metrics for predicting each
architectural-quality metric?

Our previous results show that prediction models using NBR
tend to perform as well or outperform LR and RF in the majority
of cases. Consequently, to answer RQ4 we focus on identifying
the best metrics, obtained through stepwise regression, for NBR.
We produced 50 prediction models for architectural quality using
NBR. These were obtained from the combination of five systems,
two architectural views (ARC and packages), and six dependent
variables (defects, SF, CO, DC, LO and CF), where SF and CO
are only applicable for ARC. Similarly, we constructed several
prediction models for smell emergence. Due to the number of
prediction models, we do not report the coefficient values and
significance level of all of the independent variables in each
model. 2

Table 3 showcases the factors, i.e., independent variables, that
contribute to prediction models for each quality metric: Each
column represents an independent variable; each row represents
a dependent variable. Factors for smell-emergence models are
denoted by -SE. Values in the table depict the number of times
each independent variable contributes to a prediction model. The
maximum value in each cell is 10 (the combination of two
architectural views and five systems). However, for concern-
based architectural smells (SF, CO, SF-SE and CO-SE), 5 is the
maximum value, because the package view does not include such
smells. For example, LOC contributes to all models for predicting
defects and, thus, is included in all 10 models.

A wide variety of metric types, from all categories, are impor-
tant factors–with values of at least 5—for predicting defects: lifted
file-level metrics (LOC, CBO, and NC), architectural co-changes
(CMC and IMC), architectural smells (DC), and architectural-
dependency metrics (OMD and XMD).

In general, for three of the four types of architectural smells
(SF, CO, and DC), the important factor for predicting those smells
is if the smell exists for a module in the current release. For
example, if a module has CO, it is likely to continue having CO in

2. Readers may find the study artifacts, including the prediction models and
results, at: http://www.ics.uci.edu/∼seal/projects/archprediction

the next release. However, a wider variety of metrics are important
factors for predicting LO.

Overall, these smell results indicate that architectural smells
are rarely restructured, meaning that smell-oriented decay tends to
remain in a system once it emerges. This result further motivates
the need to predict smell emergence and prevent smell occurrence.

The factors for predicting CF are mainly from the
architectural-dependency metrics. Given that CF is a measure of
coupling and cohesion based on architectural dependencies, this
result is intuitive and expected.

The important factors for predicting smell emergence are
starkly different from predicting the general case of architectural
quality: A wide variety of metrics predicted each type of smell
emergence. This result indicates that smell emergence originates
from a complex set of factors that warrants further research.

Overall, our results indicate that all categories of independent
variables are important for predicting architectural quality. Unlike
previous work for predicting defects in packages [4], [38], which
only used lifted file-level metrics, we show that both lifted file-
level metrics and architectural metrics are important for predicting
architectural quality. Futhermore, stepwise regression using NBR
provides the best results for such prediction.

6 DISCUSSION

In the previous section, we relied on statistical criteria to em-
pirically assess the performance of our prediction models. To
determine the usefulness of these predictions from a practical per-
spective, we also manually studied some of the results produced
by our models. Without being exhaustive, here we describe some
of our findings in the case of the Camel project, providing concrete
evidence as to how the prediction models can be useful in practice
for identifying the architectural problems. We focus on Camel as
a case study for two key reasons. First, Camel is a popular project
with many commits and LOC, making it particularly interesting
as a case study. Second, Camel is one of the larger projects in our
study, with a higher number of LOC and versions studied.

We manually investigated whether architectural quality met-
rics, such as architectural smells, used in the construction of
our prediction models, are indeed architectural problems the
developers care about and aim to resolve. We found many cases
corroborating the validity of our quality metrics through the devel-
opers’ commit logs and changes that involved restructuring of the
system’s architecture. As a case in point, our metrics identified
the following four packages to have DC on 2/17/09: compo-
nent.cxf, component.cxf.util, converter.stream and converter. But
those packages did not have a DC in a version that was released
two months later. To confirm our DC metric is indeed properly
capturing an issue in the architecture of the system, we looked at
the log commits of Camel, filtered the changes that include those
packages, and found the following messages:

• revision: 749227, date: 3/2/2009, log message:
CAMEL-588: LoggingLevel moved from model to
root pacakge to improve API package.

• revision: 749236, date: 3/2/2009, log message:
CAMEL-588: Fixed bad package tangle.

• revision: 749561, date: 3/3/2009, log message:
CAMEL-588: Removed package dependency and
using the type converter API to find the right
converter instead of direct usage.

http://www.ics.uci.edu/~seal/projects/archprediction
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TABLE 3: Factors contributing to each model

LOC SCC DIT CBO LCM NC NCF CMC IMC SF CO DC LO CMD OMD TCMD TOMD IMD XMD

Defects 10 2 4 7 1 8 4 6 7 0 3 5 1 1 6 1 4 4 6

SF 1 4 1

CO 1 5 1 1

DC 10

LO 3 1 4 1 3 3 1 1 2 2 9 2 1 4 3 4 4

CF 1 1 2 1 9 5

SF-SE 1 2 1 1 2 1 2 1 1 1 1

CO-SE 1 1 1 1 1

DC-SE 1 3 1 1 1 3 1 2 3 3 1 2 2

LO-SE 4 1 4 1 3 1 2 2 1 2 1 4 3 3 2 3 8

We also looked at CAMEL-588 in Jira; the description of issue
starts as follows: ‘‘Currently there is a bad dependency
cycle between camel, spi and model...’’. These com-
ments clearly describe the same phenomenon intended to be
measured by the DC metric (recall Section 3.3). Experiences such
as this provide concrete evidence that architectural smell metrics
can be effective in practice with helping the practitioners identify
architectural problems and decaying elements.

We also found many cases in which our smell emergence
predictions were found to be issues that the developers had
acknowledged in their commit logs and had attempted to re-
solve. A concrete example of this situation occurred with the
language.simple package, which did not have DC for multiple
releases, but our model predicted that it will start to have DC
from version 2.5 (10/31/2010). When we manually investigated
the commit logs, excerpts of which are shown below, not only
did we find evidence of DC emergence, but also attempts by the
developers to fix the problem afterwards:

• revision: 1150991, date: 7/26/2011, log
message: CAMEL-3961: Polished and reduced
some package tangling

• revision: 1171490, date: 9/16/2011, log
message: CAMEl-4457 Move types of the simple
language to a new package simple.types to
avoid dependency cycle

The description of CAMEl-4457 in Jira summarizes
the issue: ‘‘Currently we have a big dependency cycle
between language.simple and language.simple.ast’’.

We believe using our smell emergence prediction models,
Camel developers could have identified and refactored the decay-
ing architectural modules earlier.

Our experiences were not limited to DC. As another case
in point, we were able to predict component.log will not have
the LO smell in a future release, even though it had that smell
in preceding releases. When we investigated the commit logs,
we found evidence that the architecture of the system had been
refactored in between the releases:

• revision: 749193, date: 3/2/2009, log message:
CAMEL-588: Package tangle fixes. Tokenizer
in spring renamed to Tokenize. And fixed a
CamelCase.

• revision: 749212, date: 3/2/2009, log message:
CAMEL-588: Moved LoggingLevel from model to
core package, to fix bad tangle.

In summary, our analysis suggests that we can accurately
predict many architectural quality concerns and that such concerns
are indeed taken seriously by the developers of open-source
software, as evidenced by commit logs showcasing their attempts
to fix degraded architectural modules. We believe our prediction
models could help developers detect software architectural decay
in a systematic fashion, possibly prior to its full manifestation in
code.

7 THREATS TO VALIDITY

We now describe the main threats to validity of our findings.
Construct validity is concerned with whether we are actually or

accurately measuring the constructs we are interested in studying.
One such threat involves the correctness of our linking of modules
and their constituent files with defects. However, recall from
Section 4.1 that the process used by engineers in ASF to link
bug-fixing commits and issues significantly mitigates this threat.

Another threat to construct validity has to do with the accuracy
of the architectural modules we obtain. We address this threat in
several ways: We selected a technique, ARC, that has exhibited
higher accuracy when compared to other techniques in previous
work [10]. We further complement the semantic view provided
by ARC with a structural view obtained through packages. Ad-
ditionally, any inaccuracies in our identification of architectural
modules would only degrade the results of our predictions, by
potentially reducing the possibility of accurately relating simi-
lar modules across releases. However, our models still achieve
high performance. Nevertheless, to ensure that the architectural
modules we obtained are meaningful, we attempted to use our
prediction models on randomly generated modules for each of our
five subject systems. Given that the resulting modules have random
files in them, no traceability can be achieved between modules—
i.e., there is no longer a module mk+1 in release k+1 that is similar
to a module mk in release k. This result further validates that we
obtain meaningful architectural modules.

Another manner of constructing an architecture to consider
inaccuracy of identified architectural modules is to simply take any
release r+1 and, for any new entities not existing in the previous
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release r, randomly assign such entities to an existing module.
However, there is no reason to believe such modules would be
accurate, in the general case: An architecture in industrial or
open-source software systems is not created at random; instead,
it is affected by explicit design decisions, and design decisions
influenced by implementation decisions made in, largely non-
random fashions, by developers [39]. Therefore, there is no reason
to believe that such modules would be meaningful, whether for
simply understanding a system’s architecture or performing a
maintenance task requiring modification to the existing system.

The final threat to construct validity involves whether our
selected metrics actually represent architectural decay or the
factors that predict architectural quality. To ensure that we have a
comprehensive set of metrics that represent architectural decay, we
included three types of architectural-quality metrics: architectural
defects, architectural smells, and CF. For the factors that may
indicate architectural decay, i.e., the independent variables of our
models, we selected a wide variety of metrics that do not overlap,
in order to avoid the multicollinearity problem.

Threats to external validity involve the generalizability of our
findings. One such threat is that all our projects are from ASF
and are implemented in Java. To mitigate this threat, we selected
projects from different application domains that vary in their sizes.
Furthermore, Java is a widely used language, making our results
more generalizable. Specifically, our results become particularly
generalizable to the many software projects worldwide that are
implemented in Java, or similar languages.

Another threat involves the fact that we only include open-
source projects. However, ASF projects are widely used, even in
industrial settings, which allows our study’s results to generalize
further, because our study’s projects are more likely to represent
software that is actually built and used in real-world industrial
settings.

8 RELATED WORK

We overview prior work covering three areas: defect prediction,
one of the most commonly studied prediction models in software-
engineering literature; studies focused on architectural evolution
or architectural decay; and studies concerned with architectural-
quality metrics.

8.1 Defect Prediction

Several studies have shown that metrics mined from code change
history can be effective in locating defect-prone code areas [29],
[32], [40]–[48].

There are several studies that use different learning techniques
and statistical methods in order to predict the location or number
of faults in a software system [31]. Ostrand et al. [21] developed
a model based on NBR to predict the number of faults in files.
Menzies et al. [30] demonstrated that the method for building pre-
diction models is significantly more important than the attributes
selected for those models.

While most of the bug prediction studies are at the file-level,
some studies focus on the subsystem level. Mockus and Weiss
[41] found that in a large switching software system, the number
of subsystems modified by a change can be a predictor of whether
the change results in a fault. Nagappan et al. [38] used post-release
defect history of five Microsoft software systems and found that
failure-prone software entities are statistically correlated with code

complexity measures. Zimmermann and Nagappan [49] investi-
gated the architecture and dependencies in Windows Server 2003,
demonstrating how the complexity of a subsystem’s dependency
graph can be used to predict the number of failures.

Several studies used packages as modules. Martin and Mar-
tin [50] introduced the Common Closure Principle (CCP) as a
design principle about package cohesion. This principle implies
that a change to a component may affect all the classes in that
component, but should not affect other components. Although the
authors introduce CCP as a guideline for good decomposition of
architecture, they do not investigate the impact of it on software
defects. Zimmermann et. al [2] showed that complexity metrics are
indicators of defects in Eclipse using files and packages. Kamei
et. al [3] showed that package-level predictions do not outperform
file-level predictions when the effort needed to review or test
the code is considered. Schroter et. al [4] showed that import
dependencies can predict defects using both files and packages.
Bouwers et. al [51] investigated twelve architecture metrics for
their ability to quantify the encapsulation of an implemented
architecture and used packages for evaluation.

In summary, while the majority of existing studies on defect
prediction are at the file level, our study is at the architectural
level. We further examine other indicators of architectural decay
and quality other than defects (i.e., architectural smells and mod-
ularization quality). Furthermore, existing studies of prediction
models at the subsystem level used either packages as architectural
modules or other pre-defined modules (e.g. studies on Windows
that used binaries as architectural modules). In this work, we use
packages and recovery techniques for identifying modules from
source code. These recovered architectural views enable us to
build architectural prediction models for any system, even if a
ground-truth architecture is unavailable.

8.2 Architectural Evolution and Decay

Several studies are concerned with architectural decay across
multiple versions of a software system. None of the following
studies aim to predict architectural quality or decay.

Two studies have examined architectural decay by using the
reflexion method [52], a technique for comparing descriptive
architectures (i.e., architectures as designed by its architects)
and recovered architectures (i.e., architectures as represented by
implementation-level artifacts). Brunet et al. [53] studied the
evolution of architectural violations from four subject systems.
Rosik et al. [54] conducted a case study using the reflexion method
to assess whether architectural drift, i.e., unintended design deci-
sions, occurred in their subject system and whether instances of
drift remain unsolved.

Four additional studies investigate different facets of archi-
tectural decay. Hassaine et al. [55] present a recovery technique,
which they use to study decay in three systems. van Gurp et
al. [56] conduct two qualitative studies of software systems to
better understand the nature of architectural decay and how to
prevent it. D’Ambros et al. [57] present an approach for studying
software evolution that focuses on the storage and visualization of
evolution information at the code and architectural levels. Mo et
al. [58] study patterns of recurring architectural problems at the
file and package level, finding evidence of proneness to errors and
changes for such entities involved in such patterns.

In our previous work [16], we studied the effects of changes
spanning architectural modules and within architectural modules
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on the likeliness of introducing defects in those modules. Our
study considered multiple architectural views and identified that,
except for high-level packages, changes spanning architectural
modules are more likely to introduce architectural defects than
those restricted to individual modules.

8.3 Architectural-Quality Metrics

A variety of metrics have been established in the software-
engineering literature that quantify architectural quality and are
applicable to architectural modules. Most of the metrics focus on
representing coupling and cohesion between architectural entities.
Other metrics consider the concerns (i.e., concepts, roles, or re-
sponsibilities) of the software system. Furthermore, some metrics
have been applied to studies of architectural evolution.

Several studies focus on coupling and cohesion metrics for
architectural modules. Allen and Khoshgoftaar [59] define cou-
pling and cohesion metrics based on information theory. Briand
et al. [60] present coupling and cohesion metrics based on object-
oriented design princples. Sarkar et al. [61], [62] defined a series of
metrics concerned with quality at the module and object-oriented
levels. Most of these metrics highly overlap with previous metrics
and are based on coupling and cohesion. Many of these metrics
overlap with constructs measured by our selected metrics, while
others are dependent on specific technologies or are not fully
automatable—precluding their inclusion in our study.

Sant’Anna et al. [63] present architectural metrics based on
concerns. These metrics are highly similar to concern-based archi-
tectural smells and focus on aspect-oriented systems. They do not
provide mechanisms for identifying concerns that are not aspect-
oriented, precluding the use of these metrics for our study.

Wermelinger et al. [64] apply architectural-decay metrics
across multiple releases of Eclipse, with a focus on coupling,
cohesion, and stability metrics. Sangwan et al. [65] apply architec-
tural complexity metrics to multiple versions of Hibernate. Finally,
Zimmerman et al. [66] propose that true coupling is determined
by studying revision histories and code-level entities rather than
the decomposition of modules or files. None of this previous work
aims to predict architectural quality, which is the focus of our
research.

9 CONCLUSION

Architectural decay is a phenomenon of software systems that
leads to defects and increases maintenance time and effort. To ad-
dress this issue, we constructed models for predicting three types
of architectural decay: architectural defects, architectural smells,
and modularization quality. For 40 versions of five software
systems, we can predict architectural decay with high performance
across two architectural views—one semantic view and another
structural view. Even when architectural smells suddenly emerge
in a module, we can predict these rare cases with high performance
(AUC of 0.79-0.96). We further discovered that architectural
smells tend to remain in modules once they emerge. Lastly, we
discovered that a wide variety of metrics—of which file-level
metrics are only a subset—are needed to predict architectural
decay.

In the future, we intend to move beyond prediction of architec-
tural decay by determining the specific actions that can be taken
to prevent decay once it occurs. One possible direction is the uti-
lization of the important factors of our prediction models to iden-
tify specific preventative measures. As an example, a promising

possibility is applying architectural restructurings that minimize
coupling between modules. Once such preventive measures are
applied, we can perform further assessment. For example, we can
conduct a study to examine whether engineers can more quickly or
easily perform maintenance tasks, after restructurings are applied.

To enable replication of our results and improvement over
our approach for architectural-quality prediction, we make our
prediction models and results available online at http://www.ics.
uci.edu/∼seal/projects/archprediction.
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[55] S. Hassaine, Y. Guéhéneuc, S. Hamel, G. Antoniol, Advise: Architectural
decay in software evolution, in: Software Maintenance and Reengineer-
ing (CSMR), 2012 16th European Conference on, IEEE, 2012.

[56] J. van Gurp, S. Brinkkemper, J. Bosch, Design preservation over subse-
quent releases of a software product: a case study of baan erp, Journal of
Software Maintenance and Evolution: Research and Practice.

[57] M. D’Ambros, H. Gall, M. Lanza, M. Pinzger, Analysing software
repositories to understand software evolution, Springer, 2008.

[58] R. Mo, Y. Cai, R. Kazman, L. Xiao, Hotspot Patterns: The Formal
Definition and Automatic Detection of Architecture Smells, in: 2015 12th

http://dx.doi.org/10.1109/ICSM.2012.6405308
http://dx.doi.org/10.1109/ICSM.2012.6405308
http://dx.doi.org/10.1109/CSMR.2011.8
http://dl.acm.org/citation.cfm?id=2820518.2820548
http://dl.acm.org/citation.cfm?id=2820518.2820548
http://dl.acm.org/citation.cfm?id=2820518.2820548
http://dl.acm.org/citation.cfm?id=2820518.2820548
http://dl.acm.org/citation.cfm?id=2820518.2820547
http://dl.acm.org/citation.cfm?id=2820518.2820547
http://dl.acm.org/citation.cfm?id=2820518.2820547
http://dx.doi.org/10.1109/TSE.2005.49
http://dx.doi.org/10.1109/TSE.2008.35
http://dx.doi.org/10.1007/978-3-540-74469-6_35
http://dx.doi.org/10.1109/ICSM.2005.31
http://dx.doi.org/10.1109/ICSM.2005.31
http://dx.doi.org/10.1109/TSE.2010.26
http://dx.doi.org/10.1109/TSE.2009.42
http://dx.doi.org/10.1109/TSE.2009.42
http://dx.doi.org/10.1109/TSE.2007.256941
http://dx.doi.org/10.1109/MSR.2010.5463279
http://dx.doi.org/10.1145/2025113.2025155
http://dx.doi.org/10.1109/ICSE.2013.6606741
http://dx.doi.org/10.1109/ESEM.2007.13
http://doi.acm.org/10.1145/1368088.1368161
http://doi.acm.org/10.1145/1368088.1368161
http://dx.doi.org/10.1145/1368088.1368161
http://doi.acm.org/10.1145/1368088.1368161
http://dx.doi.org/10.1145/1134285.1134349
http://dl.acm.org/citation.cfm?id=2486788.2486911
http://dl.acm.org/citation.cfm?id=2486788.2486911
http://dl.acm.org/citation.cfm?id=2486788.2486911
http://dx.doi.org/10.1109/32.859533
http://dx.doi.org/10.1002/bltj.2229
http://dx.doi.org/10.1109/ICSE.2009.5070510
http://dx.doi.org/10.1109/ICSE.2009.5070510
http://dx.doi.org/10.1109/WCRE.2009.19
http://dx.doi.org/10.1109/WCRE.2009.19
http://dx.doi.org/10.1109/ICSE.2005.1553571
http://dx.doi.org/10.1109/ICSE.2005.1553571
http://dx.doi.org/10.1109/32.895984
http://dx.doi.org/10.1109/TSE.2002.995435
http://dx.doi.org/10.1007/s10664-008-9088-2
http://dx.doi.org/10.1109/ISSRE.2007.19
http://dx.doi.org/10.1109/ICSME.2014.43


ISR TECH REPORT NUMBER: UCI-ISR-18-7 15

Working IEEE/IFIP Conference on Software Architecture (WICSA),
2015, pp. 51–60. doi:10.1109/WICSA.2015.12.

[59] E. Allen, T. Khoshgoftaar, Measuring coupling and cohesion: an
information-theory approach, in: Software Metrics Symposium, 1999.
Proceedings. Sixth International, 1999, pp. 119–127. doi:10.1109/
METRIC.1999.809733.

[60] L. Briand, S. Morasca, V. Basili, Measuring and assessing maintainability
at the end of high level design, in: Proceedings of the Conference on
Software Maintenance, Montreal, Canada, 1993. doi:10.1109/ICSM.
1993.366952.

[61] S. Sarkar, G. Rama, A. Kak, Api-based and information-theoretic metrics
for measuring the quality of software modularization, Software Engineer-
ing, IEEE Transactions on 33 (1) (2007) 14–32. doi:10.1109/TSE.
2007.256942.

[62] S. Sarkar, A. Kak, G. Rama, Metrics for measuring the quality of modu-
larization of large-scale object-oriented software, Software Engineering,

IEEE Transactions on 34 (5) (2008) 700–720. doi:10.1109/TSE.2008.
43.

[63] C. Sant’Anna, E. Figueiredo, A. Garcia, C. Lucena, On the modularity
of software architectures: A concern-driven measurement framework, in:
F. Oquendo (Ed.), Software Architecture, Vol. 4758 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2007, pp. 207–224.
doi:10.1007/978-3-540-75132-8_17.

[64] M. Wermelinger, Y. Yu, A. Lozano, A. Capiluppi, Assessing architectural
evolution: a case study, Empirical Software Engineering.

[65] R. S. Sangwan, P. Vercellone-Smith, C. J. Neill, Use of a multidi-
mensional approach to study the evolution of software complexity,
Innovations in Systems and Software Engineering.

[66] T. Zimmermann, S. Diehl, A. Zeller, How history justifies system
architecture (or not), in: Software Evolution, 2003. Proceedings. Sixth
International Workshop on Principles of, IEEE, 2003.

http://dx.doi.org/10.1109/WICSA.2015.12
http://dx.doi.org/10.1109/METRIC.1999.809733
http://dx.doi.org/10.1109/METRIC.1999.809733
http://dx.doi.org/10.1109/ICSM.1993.366952
http://dx.doi.org/10.1109/ICSM.1993.366952
http://dx.doi.org/10.1109/TSE.2007.256942
http://dx.doi.org/10.1109/TSE.2007.256942
http://dx.doi.org/10.1109/TSE.2008.43
http://dx.doi.org/10.1109/TSE.2008.43
http://dx.doi.org/10.1007/978-3-540-75132-8_17

	DecayPredictionTSE (1).pdf
	Introduction
	Research Questions
	Prediction Model Construction
	Obtaining Architectural Modules
	Regression Analysis Selection
	Dependent Variables
	Independent Variables

	Experimental Setup
	Projects Studied and Data Collection
	Data Splitting and Evaluation Metrics

	Experimental Results
	Discussion
	Threats to Validity
	Related Work
	Defect Prediction
	Architectural Evolution and Decay
	Architectural-Quality Metrics

	Conclusion
	Acknowledgment
	References


