
Institute for Software Research
University of California, Irvine

isr.uci.edu/publications

Alireza Sadeghi
Univ. of California, Irvine
alirezs1@uci.edu

Hamid Bagheri
Univ. of California, Irvine
hamidb@uci.edu

Joshua Garcia
Univ. of California, Irvine
joshua.garcia@uci.edu

Sam Malek
Univ. of California, Irvine
malek@uci.edu

A Taxonomy and Qualitative Comparison of
Program Analysis Techniques for Security

Assessment of Android Apps

January 2016
ISR Technical Report # UCI-ISR-16-1

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

1

A Taxonomy and Qualitative Comparison of
Program Analysis Techniques for Security

Assessment of Android Apps
Alireza Sadeghi, Hamid Bagheri, Joshua Garcia and Sam Malek

Institute for Software Research
School of Information and Computer Sciences

University of California, Irvine

Abstract—In parallel with the meteoric rise of mobile software, we are witnessing an alarming escalation in the number and
sophistication of the security threats targeted at mobile platforms, particularly Android, as the dominant platform. While existing
research has made significant progress towards detection and mitigation of Android security, gaps and challenges remain. This
paper contributes a comprehensive taxonomy to classify and characterize the state-of-the-art research in this area. We have
carefully followed the systematic literature review process, and analyzed the results of more than 100 research papers, resulting
in the most comprehensive and elaborate investigation of the literature in this area of research. The systematic analysis of
the research literature has revealed patterns, trends, and gaps in the existing literature, and underlined key challenges and
opportunities that will shape the focus of future research efforts.

Index Terms—Taxonomy and Survey, Security Assessment, Android Platform, Program Analysis

F

1 INTRODUCTION

Android, with well over a million apps, has become
one of the dominant mobile platforms [28]. Mobile
app markets, such as Android Google Play, have
created a fundamental shift in the way software is de-
livered to consumers, with thousands of apps added
and updated on a daily basis. The rapid growth of app
markets and the pervasiveness of apps provisioned
on such repositories have paralleled with an increase
in the number and sophistication of the security
threats targeted at mobile platforms. Recent studies
have indicated mobile markets are harboring apps
that are either malicious or vulnerable, leading to
compromises of millions of devices.

This is nowhere more evident than in the Android
markets, where many cases of apps infected with
malwares and spywares have been reported [87].
Numerous culprits are in play here, and some are
not even technical, such as the general lack of an
overseeing authority in the case of open markets and
inconsequential implication to those caught provi-
sioning applications with vulnerabilities or malicious
capabilities. The situation is even likely to exacerbate
given that mobile apps are poised to become more
complex and ubiquitous, as mobile computing is still
in its infancy.

• UCI-ISR-16-1
January 2016

In this context, Android’s security has been a thriv-
ing subject of research in the past few years, since
its inception in 2008. These research efforts have in-
vestigated the Android security threats from various
perspectives and are scattered across several research
communities, which has resulted in a body of litera-
ture that is spread over a wide variety of domains
and publication venues. The majority of surveyed
literature has been published in the software engineer-
ing and security domains. However, the Android’s
security literature also overlaps with those of mobile
computing and programming language analysis. Yet,
there is a lack of a broad study that connects the
knowledge and provides a comprehensive overview
of the current state-of-the-art about what has already
been investigated and what are still the open issues.

This paper presents a comprehensive review of the
existing approaches for Android security analysis.
The review is carried out to achieve the following
objectives:

• To provide a basis taxonomy for consistently and
comprehensively classifying Android security as-
sessment mechanisms and research approaches;

• To provide a systematic literature review of the
state-of-the-art research in this area using the
proposed taxonomy;

• To identify trends, patterns, and gaps through
observations and comparative analysis across An-
droid security assessment systems; and

• To provide a set of recommendations for deriving

2

a research agenda for future developments.
We have carefully followed the systematic literature

review process, and analyzed the results of more
than 100 research papers published in diverse jour-
nals and conferences. Specifically, we constructed a
comprehensive taxonomy by performing a “survey of
surveys” on related taxonomies and conducting an
iterative content analysis over a set of papers collected
using reputable literature search engines. We then
applied the taxonomy to classify and characterize the
state-of-the-art research in the field of Android secu-
rity. We finally conducted a cross analysis of different
concepts in the taxonomy to derive current trends
and gaps in the existing literature, and underline
key challenges and opportunities that will shape the
focus of future research efforts. To the best of our
knowledge, this study is the most comprehensive and
elaborate investigation of the literature in this area of
research.

The rest of the paper is organized as follows: Sec-
tion 2 overviews the Android framework to help the
reader follow the discussions that ensue. Section 3
lists the existing surveys that are directly or indirectly
related to the Android security analysis. Section 4
presents the research method and the underlying
protocol for the systematic literature review. Section 5
presents a comprehensive taxonomy for the Android
security analysis derived from the existing research
literature. Section 6 presents a classification of the
state-of-the-art research into the proposed taxonomy
as well as a cross analysis of different concepts in
the taxonomy. Section 7 provides a trend analysis of
surveyed research, discusses the observed gaps in the
studied literature, and identifies future research direc-
tions based on the survey results. Section 8 presents
the conclusions.

2 ANDROID OVERVIEW

This section provides a brief overview of the Android
platform and its incorporated security mechanisms
and protection measures to help the reader follow the
discussions that ensue.

Android Platform. Android is a platform for mobile
devices that includes a Linux OS, system libraries,
middleware, and a suite of pre-installed applications.
Android applications (apps) are mainly written in the
Java programming language by using a rich collection
of APIs provided by the Android Software Develop-
ment Kit (SDK). An app’s compiled code alongside
data and resources are packed into an archive file,
known as an APK.1 Once an APK is installed on an
Android device, it runs by using the Android runtime
(ART) environment.2

1. Android application package.
2. ART is the successor of the Dalvik VM, which was Android’s

runtime environment until version 4.4 KitKat.

Application Components. Android defines four
types of components: Activity components that pro-
vide a user interface, Service components that execute
processes in the background without user interaction,
Content Provider components that provide the capabil-
ity of data sharing across applications, and Broadcast
Receiver components that respond asynchronously to
system-wide announcement messages.

Application Configuration. The manifest is a
mandatory configuration file (AndroidManifest.xml)
that accompanies each Android app. It specifies,
among other things, the principal components that
constitute the application, including their types and
capabilities, as well as required and enforced per-
missions. The manifest file values are bound to the
Android app at compile-time, and cannot be modified
at run-time.

Inter-Component Communication. As part of its
protection mechanism, Android insulates applications
from each other and system resources from appli-
cations via a sandboxing mechanism. Such applica-
tion insulation that Android depends on to protect
applications requires interactions to occur through a
message passing mechanism, called inter-component
communication (ICC). ICC in Android is mainly con-
ducted by means of Intent messages. Component ca-
pabilities are specified as a set of Intent-Filters that
represent the kinds of requests a given component
can respond to. An Intent message is an event for
an action to be performed along with the data that
supports that action. Component invocations come
in different flavors, e.g., explicit or implicit, intra-
or inter-app, etc. Android’s ICC allows for late run-
time binding between components in the same or
different applications, where the calls are not explicit
in the code, rather made possible through event mes-
saging, a key property of event-driven systems. It
has been shown that the Android ICC interaction
mechanism introduces several security issues [26]. For
example, Intent event messages exchanged among
components, among other things, can be intercepted
or even tampered, since no encryption or authentica-
tion is typically applied upon them [30]. Moreover, no
mechanism exists for preventing an ICC callee from
misrepresenting the intentions of its caller to a third
party [31].

Permissions. Enforcing permissions is the other
mechanism, besides sandboxing, provided by the An-
droid framework to protect applications. In fact, per-
missions are the cornerstone for the Android security
model. The permissions stated in the app manifest
enable secure access to sensitive resources as well
as cross-application interactions. When a user installs
an app, the Android system prompts the user for
consent to requested permissions prior to installation.
Should the user refuse to grant the requested per-
missions to an app, the app installation is canceled.
No dynamic mechanism is provided by Android for

3

granting permissions after app installation. Besides
required permissions, the app manifest may also in-
clude enforced permissions that other apps must have
in order to interact with this app. In addition to built-
in permissions provided by the Android system to
protect various system resources, any Android app
can also define its own permissions for the purpose
of self-protection. Because the Android access control
model is at the level of individual apps, there is no
mechanism to check the security posture of the entire
system. This causes several security issues, such as re-
delegation attacks [40] and app collusions [21], which
are shown to be quite common in the apps on the
market [30], [38].

3 RELATED SURVEYS

Related prior surveys can be classified into two
thrusts: studies on mobile malware and studies on
Android security. We have sought survey papers from
both research domains.

Identifying, categorizing and examining mobile
malware have been an interesting field of research
since the emergence of mobile platforms. Several
years before the advent of modern mobile platforms,
such as iOS and Android, Dagon et al. [29] provided
a taxonomy of mobile malware. Although the threat
models were described for old mobile devices, such
as PDAs, our article draws certain attributes from this
study for the Android security taxonomy that will be
introduced in Section 5.

More recently, Felt et al. [39] analyzed the behavior
of a set of malware spread over iOS, Android, and
Symbian platforms. They also evaluated the effective-
ness of techniques applied by the official app markets,
such as Apple AppStore and Google playStore, for
preventing and identifying such malware. Along the
same line, a comprehensive survey on the evolution
of malware for smart devices is provided by Suarez-
Tangil et al. [90], showing a particular increase in
malware targeting mobile devices just in the past few
years. The paper also provides an analysis of 20 re-
search efforts that detect and analyze mobile malware.
While the focus of these surveys is on malware for
diverse mobile platforms, the area of Android security
analysis has not been investigated in detail. They
do not analyze, among other things, properties of
the approaches for detecting and analyzing Android
malware, nor the techniques for Android vulnerability
detection.

Besides these general, platform-independent mal-
ware surveys, we have found quite a number of
relevant surveys that describe subareas of Android
security, mainly concerned with specific types of se-
curity issues in the Android platform. For instance,
Chin et al. [26] studied security challenges in the An-
droid inter-application communication, and presented
several classes of potential attacks on applications.

Another example is the survey of Shabtai et al. [86],
[87], which provides a comprehensive assessment of
the security mechanisms provided by the Android
framework, but does not thoroughly study other re-
search efforts for detection and mitigation of secu-
rity issues in the Android platform. The survey of
Zhou et al. [107] analyzes and characterizes a set of
1,260 Android malware. This collection of malware,
called Malware Genome, are then used by many
other researchers to evaluate their proposed malware
detection techniques.

Each of these surveys overview specific domains,
such as analysis of Android inter-app vulnerabilities
or families of Android malware. However, none of
them provide a comprehensive overview of the exist-
ing research in the area of Android security analysis.

4 RESEARCH METHOD

This survey follows the general guidelines for sys-
tematic literature review (SLR) process proposed by
Kitchenham [59]. We have also taken into account
the lessons from Brereton et al. [20] on applying SLR
to the software engineering domain. The process in-
cludes three main phases: planning, conducting, and
reporting the review. Based on the guidelines, we have
formulated the following research questions, which
serve as the basis for the systematic literature review.

• RQ1: How can existing research on Android app
security analysis be classified?

• RQ2: What is the current state of Android secu-
rity analysis research with respect to this classifi-
cation?

• RQ3: What patterns, gaps, and challenges could
be inferred from the current research efforts that
will inform future research?

For RQ1, in order to define a comprehensive taxon-
omy suitable for classifying Android security analysis
research, we first started with a quick “survey of
surveys” on related taxonomies. After an initial taxon-
omy was formulated, we then used the initial paper
review process (focusing on abstracts, introduction,
contribution, and conclusions sections) to identify
new concepts and approaches to augment and refine
our taxonomy. The resulting taxonomy is presented
in Section 5.

For the second research question (RQ2), we used
the validated paper collection and the consolidated
taxonomy to conduct a more detailed review of the
papers. Each paper was classified using every dimen-
sion in the taxonomy, and the results were captured in
a research catalog. The catalog, consisting of a set of
spreadsheets, allowed us to perform qualitative and
quantitative analysis not only in a single dimension,
but also across different dimensions in the taxonomy.
The analysis and findings are documented in Sec-

4

tion 6. 3

To answer the third research question (RQ3), we
analyzed the results from RQ2 and attempted to iden-
tify the gaps and trends, again using the taxonomy
as a critical aid. The possible research directions are
henceforth identified and presented in Section 7.

In the planning phase, the search engines and the
keywords for the related papers were selected. We
used reputable literature search engines and databases
in our review protocol with the goal of finding
high-quality refereed research papers from respectable
venues. The selected search engines consist of IEEE
Explore, ACM Digital Library, Springer Digital Li-
brary, USENIX Proceedings, and Google Scholar.

Given the scope of our literature review, we focused
on selected keywords to perform the search. These
keywords were continuously refined and extended
during the search process. Examples of the keywords
include Android security, Android vulnerability, An-
droid static analysis, and Android dynamic analysis.

Inclusion Criteria. Not all the retrieved papers
based on the selected keywords fit within the scope
of this paper. As illustrated in Figure 1, the scope of
surveyed research in this study falls at the intersection
of three domains:

1) Program Analysis domain that includes the tech-
niques used for extracting the models of individ-
ual Android apps and/or the Android platform.

2) Security Assessment domain that covers the analy-
sis methods applied on the the extracted models
to identify the potential security issues among
them.

3) Android Platform domain that takes into account
the special features and challenges involved in
the Android platform, its architecture, and secu-
rity model.

Papers that fall at the intersection of these three
domains are included in our review.

Exclusion Criteria. We excluded papers that:
1) exclusively developed for platforms other than

Android, such as iOS, Windows Mobile and

3. The research artifacts, including the survey catalog,
are available to the public and can be accessed at
https://seal.ics.uci.edu/and-sec-taxonomy

Fig. 1. Scope of this survey.

BlackBerry. However, approaches that cover mul-
tiple platforms, including Android, fall within the
scope of this survey.

2) focused only on techniques for mitigation of
security threats [27], [31], [42], but not on any
security analysis technique. Note that approaches
that consider both security assessment and pre-
vention/mitigation were included in the survey.

3) have not leveraged any program analysis tech-
nique, which is one of the three dimensions spec-
ifying the scope of this survey. Although a sig-
nificant portion of the surveyed papers employ
techniques that are supplementary to program
analysis, such as machine learning or formal
analysis, the approaches that purely rely on such
supplementary techniques are excluded from our
study. Examples include WHYPER [71] and An-
dromaly [88] that, unlike the approaches surveyed
in this paper, do not leverage any program-
analysis technique.

4) have employed low-level monitoring and profil-
ing techniques in identifying anomaly for mal-
ware detection [?], [?], [?], [?], [?], [?]. Such ap-
proaches perform dynamic analysis at the level
of either hardware signals (e.g., power consump-
tion, memory usage, network traffic, etc.) or ker-
nel system call, yet do not leverage any program
analysis technique, partially scoping this survey.

Moreover, the analysis tools that are not accompa-
nied by any peer-reviewed paper were excluded, as
most of the taxonomy dimensions are not applicable
to such tools. Androguard [1] and DroidBox [5] are
two examples that respectively leverage static and dy-
namic analysis techniques, but lack any peer-reviewed
paper, thus were excluded from this survey.

As a result, after excluding the out-of-scope papers,
we have included 100 papers published from 2009
to October 20154, out of the total of over 200 papers
found. Figure 2 shows the number of selected papers
by the publication year. Figure 3 shows more detailed

4. The papers published in or after October 2015 are not included
in this survey.

Fig. 2. Number of Surveyed Papers by Publication
Year.

5

Fig. 3. A timeline of the distinguished research in this survey.

information as a timeline5, where different surveyed
research efforts are presented along with their pub-
lication years, objectives, i.e., detection of malicious
behaviors, vulnerabilities or both, and the type of
program analysis used. Research efforts that employ
both static and dynamic analysis techniques appear at
both the top and bottom of the timeline.

Threats to Validity. By carefully following the SLR
process in conducting this study, we have tried to
minimize the threats to the validity of the results
and conclusions made in this article. Nevertheless,
there are three possible threats that deserve additional
discussion.

One important threat is the completeness of this
study, that is, whether all of the appropriate papers in
the literature were identified and included. This threat
could be due to two reasons: (1) some relevant papers
were not picked up by the search engines or did not
match our keyword search, (2) some relevant papers
that were mistakenly omitted, and vice-versa, some ir-
relevant papers that were mistakenly included. To ad-
dress these threats, we used multiple search engines,
including both scientific and general-purpose search
engines. We also adopted an iterative approach for
our keyword-list construction. Since different research
communities (particularly, software engineering and
security) refer to the same concepts using different
words, the iterative process allowed us to ensure that
a proper list of keywords were used in our search
process.

Another threat is the validity of the proposed taxon-
omy, that is, whether the taxonomy is sufficiently rich
to enable proper classification and analysis of the liter-
ature in this area. To mitigate this threat, we adopted
an iterative content analysis method, whereby the
taxonomy was continuously evolved to account for

5. The approaches without name are shown in the form of
“first author’s name-” throughout the paper.

every new concept encountered in the papers. This
gives us confidence that the taxonomy provides a
good coverage for the variations and concepts that
are encountered in this area of research.

Another threat is the objectiveness of the study,
which may lead to biased or flawed results. To mit-
igate this risk, we have tackled the individual re-
viewer’s bias by crosschecking the papers, such that
no paper received a single reviewer. We have also
tried to base the conclusions on the collective numbers
obtained from the classification of papers, rather than
individual reviewer’s interpretation or general obser-
vations, thus minimizing the individual reviewer’s
bias.

5 TAXONOMY

To define an Android security analysis taxonomy for
RQ1, we started with selecting suitable dimensions
and properties found in existing surveys. The afore-
mentioned studies described in Section 3, though
relevant and useful, are not sufficiently specific and
systematic enough for classifying the Android secu-
rity analysis approaches in that they either focus on
mobile malware in general, or focus on certain sub-
areas, such as Android inter-application vulnerabili-
ties or families of Android malware software, but not
on the Android security analysis as a whole.

We thus have defined our own taxonomy to help
classify existing work in this area. Nonetheless, the
proposed taxonomy is inspired by existing work sur-
veyed in Section 3. The highest level of the taxonomy
hierarchy classifies the surveyed research based on the
following three questions:

1) What are the problems in the Android security
being addressed?

2) How and with which techniques the problems are
solved?

6

3) How is the validity of the proposed solutions
evaluated?

For each question, we derive the sub-dimensions of
the taxonomy related to the question, and enumerate
the possible values that characterize the studied ap-
proaches. The resulting taxonomy hierarchy consists
of 15 dimensions and sub-dimensions, which are de-
picted in Figures 4–6, and explained in the following.

5.1 Approach Positioning (Problem)
The first part of the taxonomy, approach positioning,
helps characterize the “WHAT” aspects, that is, the
objectives and intent of Android security analysis
research. It includes five dimensions, as depicted in
Figure 4.

5.1.1 Analysis Objectives (T1.1)
This dimension classifies the approaches with respect
to the goal of their analysis. Thwarting malware apps
that compromise the security of Android devices is
a thriving research area. In addition to detecting
malware apps, identifying potential security threats
posed by benign Android apps, that legitimately pro-
cess user’s private data (e.g., location information,
IMEI, browsing history, installed apps, etc.), has also
received a lot of attention in the area of Android
security.

5.1.2 Type of Security Threats (T1.2)
This dimension classifies the security threats being ad-
dressed in the surveyed research along the Microsoft’s
threat model, called STRIDE [91]:

Spoofing violates the authentication security prop-
erty, where an adversary is illegally accessing and
using the information of another authenticated user.
An example of this threat in the Android platform
is Intent Spoofing, where a forged Intent is sent to

Fig. 4. Proposed Taxonomy of Android Security Anal-
ysis, Problem Category.

an exported component, exposing the component to
components from other applications (e.g., a malicious
application) [26].

Tampering affects the integrity property and in-
volves a malicious modification of data. Content Pol-
lution is an instance of this threat, where an app’s
internal database is manipulated by other apps [108].

Repudiation is in contrast to non-repudiation prop-
erty, which refers to the situation in which entities
deny their role or action in a transaction. An example
of this security threat occurs when an application tries
to hide its malicious behavior by manipulating log
data to mislead a security assessment.

Information Disclosure compromises the confiden-
tiality by releasing the protected or confidential data
to an untrusted environment. In mobile devices, sensi-
tive or private information such as device ID (IMEI),
device location (GPS data), contact list, etc., might,
intentionally or unintentionally, be leaked to an un-
trusted environment, via different channels as SMS,
Internet, Bluetooth, etc.

Denial of service (DoS) affects availability by deny-
ing service to valid users. A common vulnerability
in Android apps occurs when a payload of an Intent
is used without checking against the null value, re-
sulting in a null dereference exception to be thrown,
possibly crashing the Android process in which it
occurs. This kind of vulnerability has been shown
to be readily discoverable by an adversary through
reverse engineering of the apps [33], which in turn
enables launching a denial of service attack. Unautho-
rized Intent receipt [26] and battery exhaustion [67]
are some other examples of DoS attacks targeted at
Android apps.

Elevation of Privilege subverts the authorization
and happens when an unprivileged user gains privi-
leged access. An example of the privilege escalation,
which is shown to be quite common in the apps on
the Android markets [51], happens when an applica-
tion with less permissions (a non-privileged caller) is
not restricted from accessing components of a more
privileged application (a privileged callee) [30].

5.1.3 Breadth of Security Threats (T1.3)
This dimension classifies the approaches based on
the granularity of identifiable security threats. In the
basic form, a security issue, either vulnerability or
malicious behavior, occurs by the execution of a single
(vulnerable and/or malicious) component. However,
there exists more complicated scenarios where a secu-
rity issue may arise from the interaction of multiple
components. Moreover, it is possible that interact-
ing components belong to different applications. For
example, in an instance of the app collusion attack,
multiple applications can collude to compromise a
security property, such as the user’s privacy [22],
[30]. Accordingly, security assessment techniques that
consider the combination of apps in their analysis are

7

able to reveal more complicated issues compared to
non-compositional approaches.

Type of Vulnerable Communication (T1.3.1) An-
droid platform provides a variety of Inter-Process
Communication (IPC) mechanisms for app com-
ponents to communicate among each other, while
achieving low levels of coupling. However, due to in-
trinsic differences with pure Java programming, such
communication mechanisms could be easily misim-
plemented, leading to security issues. From a program
analysis perspective, Android communication mech-
anisms need to be treated carefully, to avoid missing
security issues. Our taxonomy showcases three major
types of IPC mechanisms that may lead to vulnerable
communication:

• As described in Section 2, Intents provide a flex-
ible IPC model for communication among An-
droid components. However, Intents are the root
of many security vulnerabilities and malicious
behaviors.

• Android Interface Definition Language (AIDL) is
another IPC mechanism in Android that allows
client-server RPC-based communication. The im-
plementation of an AIDL interface must be
thread-safe to prevent security issues resulting
from concurrency problems (e.g., race condi-
tions) [?].

• Data Sharing is another mechanism that al-
lows app components to communicate with each
other. Among the other methods, using Content
Providers is the main technique for sharing data
between two applications. However, misusage of
such components may lead to security issues,
such as passive content leaks (i.e., leaking private
data), and content pollution (i.e., manipulating
critical data) [108].

5.1.4 Depth of Security Threats (T1.4)

The depth of security threats category reflects if the
approach addresses a problem at the application level
or the framework level. The former aims at solely
analyzing the application software. Third party apps,
especially those from an unknown or untrustworthy
provenance, pose a security challenge. However, there
are some issues, such as overarching design flaws,
that require system-wide reasoning, and are not easily
attainable by simply analyzing individual parts of the
system. Approaches at the framework level include
research that focuses on modeling and analyzing the
Android platform (e.g., for potential system-level de-
sign flaws and issues encountered in the underlying
framework).

Source of App (T1.4.1) An application’s level of
security threat varies based on the source from which
its installation package (i.e., apk file) is obtained. As
a result, it is important to include a sub-dimension
representing the source of the app in our taxonomy,

which indicates whether the app is obtained from the
official Android repository:

• Official Repository: Due to the continuous vetting
of the official Android repository (i.e., Google
Play), apps installed from that repository are safer
than third-party apps.

• Sideloaded App: Sideloading, which refers to in-
stalling apps from sources other than the official
Android repository, exposes a new attack surface
for malware. Hence, it is critical for security
research to expand their analysis beyond the
existing apps in Google Play.

5.1.5 Type of Artifact (T1.5)
Android apps are realized by different kinds of soft-
ware artifacts at different levels of abstraction, from
high-level configuration files (e.g., Manifest) to low-
level Java source code or native libraries implemented
with C or C++. From the security perspective, each
artifact captures some aspects essential for security
analysis. For instance, while permissions are defined
in the manifest file, inter-component messages (i.e.,
Intents) are implemented at the source code level. This
dimension of the taxonomy indicates the abstraction
level(s) of the models extracted for the analysis.

Type of Code (T1.5.1) The approaches that perform
the analysis at the code level, are further distinguish-
able based on the type of code they support, which
includes the following:

• Java Source Code: Since Android apps are mostly
written in the Java language, a basic analysis
approach can only rely on the availability of Java
source code of Android apps. This assumption,
however, limits the applicability of the analysis
to either open-source apps or the developers of
an app.

• Java Byte Code: Techniques that are able to per-
form their analyses on byte-code6 widely broaden
their applicability compared to the first group.
Such techniques can be employed by third-party
analysts to assess millions of publicly available
apps.

• Obfuscated Code: Benign app developers tend to
obfuscate their application to protect the source
code from being understood and/or reverse en-
gineered by others. Malware app developers also
use obfuscation techniques to hide malicious be-
haviors and avoid detection by antivirus prod-
ucts. Depending on the complexity of obfusca-
tion, which varies from simple renaming to in-
voking behavior using reflection, security assess-
ment approaches should tackle the challenges in
analyzing the obfuscated apps.

• Native Code: Beside Java code, Android apps may
also consist of native C or C++ code, which is

6. Distinct from Java, Android has its own Dalvik byte-code
format called Dex, which is executable by Android virtual machine.

8

usually used for performance or portability re-
quirements. An analysis designed for Java is not
able to support these kinds of apps. To accurately
and precisely analyze such apps, they need to be
treated differently from non-native apps.

• Dynamically Loaded Code: Applications may dy-
namically load code that is not included in the
original application package (i.e., apk file) loaded
at installation time. This mechanism allows an
app to be updated with new desirable features or
fixes. Despite the benefits, this mechanism poses
significant challenges to analysis techniques and
tools, particularly static approaches, for assessing
security threats of Android applications.

• Reflection: Using Java reflection allows apps to
instantiate new objects and invoke methods by
their names. If this mechanism is ignored or
not handled carefully, it may cause incomplete
and/or unsound static analysis. Supporting re-
flection is a challenging task for a static analysis
tool, as it requires precise string and points-to
analysis [?].

5.2 Approach Characteristics (Solution)

The second group of the taxonomy dimensions is
concerned with classifying the “HOW” aspects of
Android security analysis research. It includes three
dimensions, as shown in Figure 5.

5.2.1 Type of Program Analysis (T2.1)

This dimension classifies the surveyed research based
on the type of program analysis employed for security
assessment. The type of program analysis leveraged in
security domain could be static or dynamic. Static anal-
ysis examines the program structure to reason about
its potential behaviors. Dynamic analysis executes the
program to observe its actual behaviors at runtime.

Fig. 5. Proposed Taxonomy of Android Security Anal-
ysis, Solution Category.

Each approach has its own strengths and weak-
nesses. While static analysis is considered to be con-
servative and sound, dynamic analysis is unsound yet
precise [35]. Dynamic analysis requires a set of input
data (including events, in event-based systems like
Android) to run the application. Since the provided
test cases are often likely to be incomplete, parts of the
app’s code, and thereby its behaviors, are not covered.
This could lead to false negatives, i.e., missed vulner-
abilities or malicious behaviors in security analysis.
Moreover, it has been shown that dynamic approaches
could be recognized and deceived by advanced mal-
ware, such as what anti-taint tracking techniques do
to bypass dynamic taint analyses [84].

On the other hand, by abstracting from the actual
behavior of the software, static analysis could derive
certain approximations about all possible behaviors of
the software. Such an analysis is, however, susceptible
to false positives, e.g., a warning that points to a
vulnerability in the code which is not executable at
runtime.

Analysis Data Structures (T2.1.1) A few well-
known data structures that abstract the underlying
programs are widely used in various static analysis
techniques. The most frequently encountered data
structures are as follows:

• Control Flow Graph (CFG) is a directed graph that
represents program statements by its nodes, and
the flow of control among the statements by the
graph’s edges.

• Call Graph (CG) is a directed graph, in which each
node represents a method, and an edge indicates
the call of (or return from) a method.

• Inter-procedural Control Flow Graph (ICFG) is a
combination of CFG and CG that connects sepa-
rated CFGs using call and return edges.

In addition, variation of these canonical data struc-
tures are used for special-purpose analyses. The goal
of this dimension is to characterize the analysis based
on the usage of these data structures.

Input Generation Technique (T2.1.2) The tech-
niques that employ dynamic analysis for security
assessment need to run mobile applications in order
to perform the analysis. For this purpose, they require
test input data and events that trigger the application
under experiment. Security testing is, however, a no-
toriously difficult task. This is in part because unlike
functional testing that aims to show a software system
complies with its specification, security testing is a
form of negative testing, i.e., showing that a certain
(often a priori unknown) behavior does not exist.

In addition to manually providing the inputs, which
is not systematic and scalable, two approaches are
often leveraged by the surveyed research: fuzzing and
symbolic execution.

• Fuzz testing or fuzzing [46] executes the app with
random input data. Running apps using inputs

9

generated by Monkey [2], the state-of-the-practice
tool for the Android system testing, is an example
of fuzz testing.

• Symbolic execution [58] uses symbolic values,
rather than actual values, as program inputs. It
gathers the constraints on those values along each
path of the program and with the help of a solver
generates inputs for all reachable paths.

5.2.2 Supplementary Techniques (T2.2)

Besides various program analysis techniques, which
are the key elements employed by approaches in the
surveyed research, other supplementary techniques
have also been leveraged to complement the analysis.
Among the surveyed research, Machine Learning and
Formal Analysis are the most widely used techniques.
In fact, the program analysis either provides the input
for, or consumes the output of, the other supplemen-
tary techniques. This dimension of the taxonomy de-
termines the techniques other than program analysis
(if any) that are employed in the surveyed research.

5.2.3 Automation Level (T2.3)

The automation level of a security analysis method
also directly affects the usability of such techniques.
Hence, we characterize the surveyed research with
respect to the manual efforts required for applying the
proposed techniques. According to this dimension,
existing techniques are classified as either automatic
or semi-automatic.

5.3 Assessment (Validation)

The third and last section of the taxonomy is about the
evaluation of Android security research. Dimensions
in this group, depicted in Figure 6, provide the means
to assess the quality of research efforts included in the
survey.

The first dimension, evaluation method, captures
how, i.e., with which evaluation method, a paper
validates the effectiveness of the proposed approach,
such as empirical experimentation, formal proof, case
studies, or other methods.

Fig. 6. Proposed Taxonomy of Android Security Anal-
ysis, Assessment Category.

The other dimension captures the extent to which
surveyed research efforts enable a third party to re-
produce the results reported by the authors. This di-
mension classifies replicability of research approaches
by considering the availability of research artifacts.
For example, whether the approach’s underlying plat-
form, tools and/or case studies are publicly available.

6 SURVEY RESULTS AND ANALYSIS

This section presents the results of our literature
review to answer the second research question. By
using the proposed taxonomy as a consistent point of
reference, many insightful observations surface from
the survey results. The number of the research papers
surveyed will not allow elaboration on each one of
them. Rather, we highlight some of them as examples
in the observations and analyses below.

6.1 Approach Positioning (Problem)
Table 1 tabularizes a summary of the problem-specific
aspects that are extracted from our collection of pa-
pers included in the survey. Note that the classifi-
cations are meant to indicate the primary focus of
a research paper. For example, if a certain approach
is not mentioned in the Spoofing column under the
Type of Security Threat, it does not necessarily indicate
that it absolutely cannot mitigate such threat. Rather,
it simply means spoofing is not its primary focus.
Furthermore, for some taxonomy categories, such as
Depth of Threat, a paper may have multiple goals and
thus listed several times. On the other hand, number
of dimensions only applies to specific part of research,
e.g., Test Input Generation only applies for dynamic or
hybrid approaches. As a result, percentages presented
in the last column of the table may sum up to more or
less than 100%. In the following, we present the main
results for each dimension in the problem category.

6.1.1 Analysis Objective
Based on the analysis of the research studies in the
literature, it is evident that the majority of Android
security approaches have been applied to detection
of malicious behaviors, comprising 75% of the overall
set of papers collected for this literature review.

Several research efforts on malicious behavior de-
tection target the analysis of advertisement (ad) li-
braries that are linked and shipped with applications.
In fact, a variety of private user data, including a
user’s call logs, phone numbers, browser bookmarks,
and the list of apps installed on a device are collected
by ad libraries. Since the required permissions of ad
libraries are merged into a hosting app’s permissions,
it is challenging for users to distinguish, at installation
time, the permissions requested by the embedded ad
libraries from those actually used by the app [72].
For this reason, AdRisk [50] decouples the embedded
ad libraries from the host apps and examines the

10

TABLE 1
Problem Specific Categorization of the Reviewed Research

Dimension Approaches Percentage

A
na

ly
si

s
O

bj
ec

ti
ve

Vulnerability
Detection

Amandroid [96], AndroidLeaks [44], Chex [64], ComDroid [26], ContentScope [108], COPES [17],
COVERT [16], DroidChecker [23], Enck- [33], Epicc [70], MalloDroid [37], PermCheckTool [95], Permission-
Flow [85], SCanDroid [43], Scoria [94], SEFA [98], SMV-HUNTER [52], Stowaway [38], Woodpecker [51]

32%

Malicious
Behavior
Detection

AdDroid [72], AdRisk [50], Amandroid [96], AndroidLeaks [44], AppInspector [45], AppIntent [103],
Apposcopy [41], AppsPlayground [76], AsDroid [55], Batyuk- [19], BlueSeal [54], Chabada [48], Chex [64],
CopperDroid [78], COVERT [16], DidFail [60], Drebin [12], Droidmat [97], DroidRanger [109], Droid-
Safe [47], DroidScope [100], DroidTrack [82], Enck- [33], Flowdroid [13], FUSE [77], IccTA [61], Kirin [34],
LeakMiner [102], Mann- [65], Marforio- [66], Mudflow [15], PCLeaks [62], Pegasus [25], Permlyzer [99],
Poeplau- [73], Riskranker [49], ScanDal [57], SCanDroid [43], SmartDroid [106], Sparta [36], TaintDroid [32],
TrustDroid [105], VetDroid [104], Xmandroid [21]

75%

Ty
pe

of
Se

cu
ri

ty
Th

re
at

Spoofing Amandroid [96], Chex [64], ComDroid [26], Epicc [70], MalloDroid [37], PCLeaks [62], SMV-HUNTER [52] 12%
Tampering ContentScope [108], MalloDroid [37], SMV-HUNTER [52] 5%

Repudiation 0%

Information
Disclosure

AdRisk [50], Amandroid [96], AndroidLeaks [44], AppInspector [45], AppIntent [103], Apposcopy [41], App-
sPlayground [76], AsDroid [55], Batyuk- [19], BlueSeal [54], Chex [64], ComDroid [26], ContentScope [108],
CopperDroid [78], CopperDroid2 [92], COVERT [16], DidFail [60], DroidSafe [47], DroidTrack [82], Enck- [33],
Epicc [70], Flowdroid [13], IccTA [61], LeakMiner [102], Mann- [65], Mudflow [15], PCLeaks [62], Pegasus [25],
ScanDal [57], SEFA [98], Sparta [36], TaintDroid [32], TrustDroid [105]

55%

Denial of Service ComDroid [26], Enck- [33] 3%

Elevation of
Privilege

AdDroid [72], AppsPlayground [76], Chex [64], ComDroid [26], CopperDroid [78], COVERT [16], Droid-
Checker [23], Enck- [33], Epicc [70], FUSE [77], PCLeaks [62], Pegasus [25], PermissionFlow [85], SEFA [98],
Woodpecker [51], Xmandroid [21]

27%

Br
ea

th
of

Th
re

at Single
Component

AdRisk [50], Amandroid [96], AndroidLeaks [44], AppInspector [45], AppIntent [103], Apposcopy [41], App-
sPlayground [76], AsDroid [55], Batyuk- [19], BlueSeal [54], Chex [64], ComDroid [26], ContentScope [108],
CopperDroid [78], CopperDroid2 [92], COVERT [16], DidFail [60], DroidSafe [47], DroidTrack [82], Enck- [33],
Flowdroid [13], FUSE [77], IccTA [61], Kirin [34], LeakMiner [102], MalloDroid [37], Mann- [65], Mudflow [15],
PCLeaks [62], Pegasus [25], PermissionFlow [85], Poeplau- [73], ScanDal [57], SCanDroid [43], SEFA [98],
Sparta [36], TaintDroid [32], TrustDroid [105], Woodpecker [51]

65%

In
te

r-
C

om
p. Intent Amandroid [96], AppIntent [103], COVERT [16], DidFail [60], Epicc [70], FUSE [77], IccTA [61], PCLeaks [62],

Apposcopy [41] 22%

AIDL BlueSeal [54], Woodpecker [51] 3%
SharedData ContentScope [108] 2%

D
ep

th
of

T
hr

ea
t App Level

(Installed from
Google Play

or Sideloaded)

AdRisk [50], Amandroid [96], AndroidLeaks [44], AppInspector [45], AppIntent [103], Apposcopy [41],
AppsPlayground [76], AsDroid [55], Batyuk- [19], BlueSeal [54], Chabada [48], Chex [64], ComDroid [26],
ContentScope [108], COPES [17], COVERT [16], DidFail [60], Drebin [12], Droidmat [97], DroidChecker [23],
DroidRanger [109], DroidSafe [47], DroidTrack [82], Enck- [33], Epicc [70], Flowdroid [13], FUSE [77],
IccTA [61], Kirin [34], LeakMiner [102], MalloDroid [37], Mudflow [15], PCLeaks [62], Pegasus [25],
PermCheckTool [95], PermissionFlow [85], Permlyzer [99], Poeplau- [73], Riskranker [49], ScanDal [57],
SCanDroid [43], Scoria [94], SEFA [98], SmartDroid [106], SMV-HUNTER [52], Sparta [36], TaintDroid [32],
TrustDroid [105], VetDroid [104], Woodpecker [51]

83%

Framework
Level

AdDroid [72], AppInspector [45], Bagheri- [?], COPES [17], CopperDroid [78], CopperDroid2 [92],
COVERT [16], DroidSafe [47], DroidScope [100], DroidTrack [82], Marforio- [66], PScout [14], ScanDal [57],
Scoria [94], SmartDroid [106], Sparta [36], Stowaway [38], TaintDroid [32], VetDroid [104], Xmandroid [21]

32%

Ty
pe

of
A

rt
if

ac
t

Configuration

AdRisk [50], Amandroid [96], AndroidLeaks [44], Apposcopy [41], AsDroid [55], Batyuk- [19], BlueSeal [54],
Chabada [48], Chex [64], ComDroid [26], ContentScope [108], COPES [17], COVERT [16], DidFail [60],
Drebin [12], DroidChecker [23], Droidmat [97], DroidRanger [109], DroidSafe [47], Epicc [70], Flow-
droid [13], FUSE [77], IccTA [61], Kirin [34], LeakMiner [102], MalloDroid [37], Mann- [65], Mudflow [15],
PCLeaks [62], Pegasus [25], PermCheckTool [95], PermissionFlow [85], Permlyzer [99], Poeplau- [73],
PScout [14], Riskranker [49], ScanDal [57], SCanDroid [43], Scoria [94], SEFA [98], SmartDroid [106], SMV-
HUNTER [52], Sparta [36], Stowaway [38], TrustDroid [105], Woodpecker [51]

77%

C
od

e

Source Enck- [33], Mann- [65], PermCheckTool [95], SCanDroid [43], Sparta [36] 8%

Byte

AdRisk [50], Amandroid [96], AndroidLeaks [44], Apposcopy [41], AsDroid [55], Batyuk- [19], BlueSeal [54],
Chabada [48], Chex [64], ComDroid [26], ContentScope [108], COPES [17], COVERT [16], Drebin [12],
Droidmat [97], DidFail [60], DroidChecker [23], DroidRanger [109], DroidSafe [47], Epicc [70], Flowdroid [13],
FUSE [77], IccTA [61], LeakMiner [102], MalloDroid [37], Mudflow [15], PCLeaks [62], Pegasus [25],
PermissionFlow [85], Permlyzer [99], Poeplau- [73], PScout [14], Riskranker [49], ScanDal [57], Scoria [94],
SEFA [98], SmartDroid [106], SMV-HUNTER [52], Stowaway [38], TrustDroid [105], Woodpecker [51]

68%

Obfuscated Apposcopy [41] 2%
Native CopperDroid [78], CopperDroid2 [92], DroidRanger [109], Flowdroid [13], Poeplau- [73], Riskranker [49] 10%

Dynamic AdRisk [50], AppsPlayground [76], DroidRanger [109], Poeplau- [73], Riskranker [49] 8%

Reflection AdRisk [50], AppsPlayground [76], DroidSafe [47], FUSE [77], Pegasus [25], Riskranker [49], ScanDal [57],
Sparta [36], Stowaway [38], TaintDroid [32], VetDroid [104] 18%

potential unsafe behavior of each library that could
result in privacy issues. Beyond this risk assessment
of ad libraries, [72] introduces AdDroid, an advertising
framework with dedicated permissions and APIs that
separates privileged advertising functionality from
host applications.

Android vulnerability analysis has also received at-
tention from a significant portion of existing research
efforts (32% of the studied papers). Since techniques
and methods used for one of the above goals are

often applicable to other goals, the target of many
surveyed research papers falls in both categories.
However, there are some approaches that only tar-
get vulnerability detection. Among such approaches,
Woodpecker [51] tries to identify vulnerabilities in the
standard configurations of Android smartphones, i.e.,
pre-loaded apps in such devices, that may lead to
capability leaks. A capability (or permission) leak is an
instance of a privilege-escalation threat, where some
privileged functions (e.g., sending of a text message) is

11

left exposed to apps lacking the required permissions
to access those functions.

6.1.2 Type of Security Threat
The Android security approaches studied in this lit-
erature review have covered diverse types of security
threats. It can be observed from Table 1 that among
the STRIDE security threats (cf. Section 5.1.2), in-
formation disclosure is the most considered threat in
Android, comprising 55% of the papers. This is not a
surprising result, since mobile devices are particularly
vulnerable to data leakage [56]. Elevation of privilege
is the second class of threats addressed by 27% of
the overall studied papers. Examples of this class of
threats, such as confused deputy vulnerability [53], are
shown to be quite common in the Android apps on
the market [30], [38], [40].

Spoofing, tampering, and denial of service issues
are also considered in the literature, comprising 12%,
5%, and 3% of the papers, respectively. Spoofing has
received substantial attention, particularly because
Android’s flexible Intent routing model can be abused
in multiple ways, resulting in numerous possible at-
tacks, including Broadcast injection and Activity/Service
launch [26]. Among the STRIDE’s threats, repudiation
is not explicitly studied in the surveyed research. We
will revisit this gap in Section 7.

6.1.3 Breadth of Threat
We can observe from Table 1 that the majority of the
Android security approaches are intended to detect
and mitigate security issues in a single component,
comprising 65% of the overall papers studied in this
literature review, while a comparatively low num-
ber of approaches (27%) have been applied to inter-
component analysis.

These compositional approaches take into account
inter-component and/or inter-app communication
during the analysis to identify a broader range of
security threats that cannot be detected by techniques
that analyze a single component in isolation. Among
others, IccTA [61], [63] performs data leak analysis
over a bundle of apps. It first merges multiple apps
into a single app, which enables context propagation
among components in different apps, and thereby
facilitates a precise inter-component taint analysis.

The main challenge with such approaches for com-
positional analysis is the scalability issue. Because
as the number of apps increases, the cost of pro-
gram analysis grows exponentially. To address the
scalability issue intrinsic to compositional analysis,
some hybrid approaches are more recently proposed
that combine program analysis with other reason-
ing techniques [16], [41]. For example, COVERT [16],
[81] combines static analysis with lightweight formal
methods. Through static analysis of each individual
app, it first extracts relevant security specifications
in an analyzable formal specification language (i.e.,

Alloy). These app specifications are then combined
together and checked as a whole with the aid of a
SAT solver for inter-app vulnerabilities.

Intent is the main inter-component communication
mechanism in Android and thus, it has been studied
and focused more than other ICC mechanism (22%
compared to 2% and 3%). Epicc [70] and its successor
IC3 [?], try to precisely infer Intent values, which
are necessary information for identifying vulnerable
communications. BlueSeal [54] and Woodpecker [51]
briefly discussed AIDL, as another ICC mechanism,
and how to incorporate it in control flow graph. Fi-
nally, ContentScope [108] examines the security threats
of using shared data as the third way of achieving
ICC.

6.1.4 Depth of Threat
We observe that most approaches perform the analysis
at the application-level (83%), but about one third
of the approaches consider the underlying Android
framework for analysis (32%). The results of analyses
carried out at the framework-level are also benefi-
cial in analysis of individual apps, or even reveal-
ing the root causes of the vulnerabilities found at
the application-level. For example, PScout [14] and
Stowaway [38], through the analysis of the Android
framework, captured the permission mappings that
specify mappings between Android API calls/Intents
and the permissions required to perform those calls.
Such permission mappings are then used by many
other approaches, among others for detecting over-
privileged apps that violate the “Principle of Least
Privilege” [83].

Apps installed from arbitrary sources pose a higher
security risk than apps downloaded from Google Play.
However, regardless of the source of the app, it must
be installed using the same mechanism for importing
the app’s code into the Android platform, i.e., by
installing APK files. Nevertheless, to measure the
effectiveness of a technique for identifying security
threats, researchers need to evaluate the proposed
technique using both Google Play and sideloaded
apps. We discuss, in detail, the sources of apps used
to evaluate Android security analysis techniques in
Section 6.3.1.

6.1.5 Type of Artifact
As discussed in Section 5, Android apps are composed
of several artifacts at different levels of abstraction,
such as high-level configuration files and code im-
plementation. Here by “code” we mean either source
code or any kind of compiled code, including Java
or Dalvik byte-code. We can observe from Table 1
that most of the studied approaches analyze multiple
artifacts.

Manifest is an XML configuration file, shipped with
all Android apps, and includes some high-level archi-
tectural information, such as the apps’ components,

12

their types, permissions they require, etc. Since a large
portion of security-related information are encoded
in the apps’ manifest files (e.g., required or defined
permissions), some techniques only focus on the anal-
ysis of this file. Kirin [34], for instance, is among
the techniques that only performs the analysis on
the app manifest files. By extracting the requested
permissions defined in the manifest file and com-
paring their combination against a set of high-level,
blacklist security rules, Kirin is able to identify the
apps with potential dangerous functionality, such as
information leakage. However, the security policies
in Kirin, or similar techniques that are limited to the
abstract level of configuration files, may increase the
rate of false warnings. For instance, a Kirin’s security
rule, for mitigating mobile bots that send SMS spam,
is stated as “An application must not have SEND SMS
and WRITE SMS permission labels [34]”. As a result,
an application requesting these two permissions is
flagged as malware, even if there are no data-flow
between the parts of code corresponding to these two
permissions.

In addition to the manifest file, there are some
other resources in the Android application package
(a.k.a., apk file) that also do not require complicated
techniques to be analyzed. One example is the layout
file that represents the user interface structure of the
apps in an xml format. The layout file can be parsed,
among other things, to identify the callback methods
registered for GUI widget, which in turn improves
the precision of generated call graphs. CHEX [64]
and BlueSeal [54], [89] are among the techniques that
leverage layout files for this purpose.

Moreover, the layout file contains information that
is critical for security analysis. Password fields,
which usually contains sensitive data, is an example
of security-critical information embedded in layout
files [13]. An example of a technique that leverages
this information is AsDroid [55]. It examines the lay-
out file to detect stealthy malicious behavior through
identifying any contradiction between the actual app
behavior and the user interface text initiating that
behavior (e.g., the name of a button that was clicked),
which denotes the user’s expectation of program be-
havior.

In addition to the configuration files, most of the
surveyed research perform analysis over apps’ code.
Different approaches analyze various formats of the
Java code, which are broadly distinguishable as source
code vs. byte code. The applicability of the former
group of approaches, such as SCanDroid [43], are
confined to apps with available source code.

Most recent approaches, however, support byte-
code analysis. Such approaches typically perform a
pre-processing step, in which Dalvik byte code, encap-
sulated in the APK file, is transferred to another type
of code or intermediate representation (IR). Figure 7
shows the distribution of the approaches based on the

target IR of the analysis.
Jimple [93] and Smali [8] are the most popular inter-

mediate representations, used in 29% and 27% of the
studied approaches, respectively. Dexpler [18] is a plu-
gin for the Soot framework that translates Dalvik byte-
code to Jimple. According to the diagram, 17% of the
approaches, in the pre-processing step, retarget Dalvik
byte-code to Java byte-coded JAR files. Examples of
publicly available APK-to-JAR libraries widely used
by approaches studied in this survey are dex2jar [3]
and Dare [69]. An advantage of this approach is
the ability to reuse pre-developed, off-the-shelf Java
analysis libraries and tools. In exchange, APK-to-JAR
decompilers suffer from performance overhead and
incomplete code coverage.

Obfuscation challenges security analysis of applica-
tion code. For this reason, nearly all of the surveyed
static analyses cannot handle heavily obfuscated code.
An example of a technique that handles certain ob-
fuscations is Apposcopy [41]. It is a static approach
that defines a high-level language for semantically
specifying malware signatures. Apposcopy is evaluated
against renaming, string encryption, and control-flow
obfuscation.

Besides the type of obfuscations that Apposcopy is
resilient to, more sophisticated obfuscations include
hiding behaviors through native code, reflection, and
dynamic class loading. Each of these types of obfus-
cations have highly limited support among Android
security analysis techniques.

Among the static analysis techniques studied in
our survey, none are able to perform analysis directly
on native code, which is written in languages other
than Java, such as C or C++. However, some ap-
proaches [49], [73], [109] can only identify the usage
of native code, particularly if it is used in an abnormal
way. For instance, RiskRanker [49] raises red flags if it
finds encrypted native code, or if a native library is
stored in a non-standardized place.

Few approaches consider dynamically loaded code,
which occurs after app installation. Some static ap-

Fig. 7. Distribution of research based on the type
of code or intermediate representation (IR) used for
analysis.

13

proaches, such as the tool developed by Poeplau et
al. [73], are able to identify the attempts to load exter-
nal code that might be malicious. Nevertheless, more
advanced techniques are required to distinguish the
legitimate usages of dynamically loaded code from
malicious ones. For example, handling of dynamically
loaded code that considers an Android component’s
life-cycle, where a component can execute from mul-
tiple entry points, is not considered. As another ex-
ample, dynamically loaded code that is additionally
encrypted poses another challenge to static or hybrid
analyses.

Approaches that consider Java reflection can be
classified into two categories. One category, adopts a
conservative, black-box approach and simply marks
all reflective calls as suspicious. An example of such
an approach is AdRisk [50]. The other thrust of re-
search attempts to resolve reflection using more ad-
vanced analysis. For example, DroidSafe [47] employs
string and points-to analysis to replace reflective calls
with direct calls. As another example, Pegasus [25]
rewrites an app by injecting dynamic checks when
reflective calls are made.

6.2 Approach Characteristics (Solution)
Table 2 presents a summary of the solution-specific
aspects that are extracted from the collection of papers
included in the literature review. In the following, we
summarize the main results for each dimension in the
solution category.

6.2.1 Type of Program Analysis
Table 2 separates the approaches with respect to the
type of program analysis they leverage. As discussed
in Section 5, dynamic analysis is unsound but precise,
while static analysis is sound yet imprecise. According
to their intrinsic properties, each type of analysis
has its own merits and is more appropriate for spe-
cific objectives. In particular, for security analysis,
soundness is considered to be more important than
precision, since it is preferred to not miss any potential
security threat, even with the cost of generating false
warnings. This explains why the percentage of static
analysis techniques (73%) surpasses the percentage of
approaches that rely on dynamic analysis techniques
(17%).

SCanDroid [43] and TaintDroid [32] are among the
first to explore the use of static and dynamic analysis
techniques respectively for Android security assess-
ment. SCanDroid employs static analysis to detect
data flows that violate the security policies specified
within an app’s configuration. TaintDroid leverages
dynamic taint analysis to track the data leakage from
privacy-sensitive sources to possibly malicious sinks.

In addition to pure static or dynamic approaches,
there exist few hybrid approaches that benefit from
the advantages of both static and dynamic techniques.

These methods usually first apply static analysis to
detect potential security issues, and then perform
dynamic techniques to improve their precision by
eliminating the false warnings. For example, SMV-
HUNTER [52] first uses static analysis to identify
potentially vulnerable apps to SSL/TLS man-in-the-
middle attack, and then uses dynamic analysis to
confirm the vulnerability by performing automatic UI
exploration.

Despite the fact that Android apps are mainly de-
veloped in Java, conventional Java program analysis
methods do not work properly on Android apps,
mainly due to its particular event-driven program-
ming paradigm. Such techniques, thus, need to be
adapted to address Android-specific challenges. Here,
we briefly discuss these challenges and the way they
have been tackled in the surveyed papers.

Event-Driven Structure. Android is an event-driven
platform, meaning that an app’s behavior is formed
around the events caused by wide usage of callback
methods that handle user actions, component’s life-
cycle, and requests from other apps or the underlying
platform. If an analysis fails to handle these call-
back methods correctly, models derived from Android
apps are disconnected and unsound. This problem
has been discussed and addressed in several prior
efforts. Among others, Yang et al. [101] introduced a
program representation, called callback control-flow
graph (CCFG), that supports capturing a rich variety
of Android callbacks, including life-cycle and user
interactions methods. To extract CCFG, a context-
sensitive analysis traverses the control-flow of the
program and identifies callback triggers along the
visited paths.

Multiple Entry Points. Another dissimilarity between
an Android app and a pure Java program, is the
existence of multiple entry points in Android apps.
In fact, unlike conventional Java applications with a
single main method, Android apps comprise several
methods that are implicitly called by the Android
framework based on the state of the application (e.g.,
onResume to resume a paused app).

The problem of multiple entry points has been
considered by a large body of work in this area [13],
[54], [61], [64], [89], [102]. For instance, FlowDroid [13]
models different Android callbacks, including the
ones that handle life-cycle, user interface, and system-
based events by creating a “dummy” main method
that resembles the main method of conventional Java
applications. Similar to FlowDroid, IccTA [61], [63]
also generates dummy main methods, but rather than
a single method for the whole app, it considers one
per component. In addition to handling multiple entry
points problem, the way that entry points are dis-
covered is also crucial for a precise analysis. Some
approaches [51] [108] simply rely on the domain
knowledge, including the Android API documenta-
tion, to identify entry points. Some other approaches

14

TABLE 2
Solution Specific Categorization of the Reviewed Research

Dimension Approaches Percentage

Type of
Program
Analysis

Static

AdDroid [72], AdRisk [50], Amandroid [96], AndroidLeaks [44], Apposcopy [41], AsDroid [55],
Batyuk- [19], BlueSeal [54], Chabada [48], Chex [64], ComDroid [26], COPES [17], COVERT [16],
DidFail [60],Drebin [12], DroidChecker [23], DroidRanger [109], DroidSafe [47], Enck- [33],
Epicc [70], Flowdroid [13], FUSE [77], IccTA [61], Kirin [34], LeakMiner [102], MalloDroid [37],
Mann- [65], Mudflow [15], PCLeaks [62], Pegasus [25], PermCheckTool [95], Permission-
Flow [85], Poeplau- [73], PScout [14], Riskranker [49], ScanDal [57], SCanDroid [43], Scoria [94],
SEFA [98], Sparta [36], Stowaway [38], TrustDroid [105], Woodpecker [51]

73%

Dynamic
AppInspector [45], AppIntent [103], AppsPlayground [76], CopperDroid [78], Copper-
Droid2 [92], DroidScope [100], DroidTrack [82], Marforio- [66], TaintDroid [32], VetDroid [104],
Xmandroid [21]

17%

Hybrid ContentScope [108], Woodpecker [51], Droidmat [97], Permlyzer [99], SmartDroid [106], SMV-
HUNTER [52] 10%

Supplementary
Techniques

Machine Learning Chabada [48], Drebin [12], Droidmat [97], Mudflow [15] 7%

Formal Analysis Apposcopy [41], AsDroid [55], Bagheri- [?], COVERT [16], Mann- [65], Pegasus [25], Scan-
Dal [57], SCanDroid [43], Scoria [94] 13%

Automation
Level

Automatic

AdDroid [72], Amandroid [96], AndroidLeaks [44], AppInspector [45], AppIntent [103], App-
sPlayground [76], AsDroid [55], BlueSeal [54], Chabada [48], Chex [64], ComDroid [26], Con-
tentScope [108], COPES [17], CopperDroid [78], CopperDroid2 [92], COVERT [16], DidFail [60],
DroidChecker [23], DroidRanger [109], DroidSafe [47], DroidScope [100], DroidTrack [82],
Enck- [33], Epicc [70], Flowdroid [13], FUSE [77], IccTA [61], Kirin [34], LeakMiner [102],
MalloDroid [37], Marforio- [66], Mudflow [15], PCLeaks [62], Pegasus [25], PermCheckTool [95],
PermissionFlow [85], Permlyzer [99], Poeplau- [73], PScout [14], Riskranker [49], ScanDal [57],
SCanDroid [43], SEFA [98], SmartDroid [106], SMV-HUNTER [52], Stowaway [38], Taint-
Droid [32], TrustDroid [105], VetDroid [104], Woodpecker [51], Xmandroid [21], Drebin [12],
Droidmat [97]

88%

Semi-Automatic AdRisk [50], Apposcopy [41], Batyuk- [19], Chaudhuri- [24], Mann- [65], Scoria [94], Sparta [36] 12%

Analysis
Data Structure

Control Flow
Graph (CFG)

AsDroid [55], Chex [64], ContentScope [108], DroidChecker [23], Enck- [33], PCLeaks [62],
Pegasus [25], ScanDal [57], SCanDroid [43] 15%

Call Graph (CG)

AdDroid [72], AndroidLeaks [44], AppIntent [103], AsDroid [55], BlueSeal [54], Con-
tentScope [108], COPES [17], COVERT [16], DroidRanger [109], DroidSafe [47], Epicc [70],
FUSE [77], LeakMiner [102], Mudflow [15], Pegasus [25], PermCheckTool [95], Permission-
Flow [85], PScout [14], Riskranker [49], SCanDroid [43], SEFA [98], SMV-HUNTER [52],
TaintDroid [32], TrustDroid [105]

40%

Customized
Data Structures

Amandroid [96], Apposcopy [41], DroidChecker [23], Epicc [70], Flowdroid [13], IccTA [61],
Poeplau- [73], Chex [64], COVERT [16], SmartDroid [106], Woodpecker [51] 19%

Input
Generation
Technique

Fuzzing
AppsPlayground [76], ContentScope [108], CopperDroid [78], CopperDroid2 [92], Droid-
Scope [100], DroidTrack [82], Marforio- [66], Permlyzer [99], SmartDroid [106], SMV-
HUNTER [52], TaintDroid [32], VetDroid [104]

20%

Symbolic Execution AppInspector [45], AppIntent [103], Woodpecker [51] 5%

employ more systematic methods. For instance, CHEX
describes a sound method to automatically discover
different types of app entry points [64].

Inter-component communication. Android apps are
composed of multiple components. The most widely
used mechanism provided by Android to facilitate
communication between components involves Intent,
i.e., a specific type of event message in Android, and
Intent Filter. The Android platform then automatically
matches an Intent with the proper Intent Filters at
runtime, which induce discontinuities in the stati-
cally extracted app models. This event-based inter-
component communication (ICC) should be treated
carefully, otherwise important security issues could
be missed. The ICC challenge has received a lot of
attention in the surveyed research [26], [33], [60],
[61], [70]. Epicc [70], among others, is an approach
devoted to identify inter-component communications
by resolving links between components. It reduces
the problem of finding ICCs to an instance of the
inter-procedural distributive environment (IDE) prob-
lem [79], and then uses an IDE algorithm to solve the
ICC resolution problem efficiently.

Modeling the underlying framework. In order to reason
about the security properties of an app, the underly-

ing Android platform should be also considered and
included in the security analysis. However, analyzing
the whole Android framework would result in state
explosion and scalability issues. Therefore, a precise,
yet scalable model, of the Android framework is
crucial for efficient security assessment.

Various methods have been leveraged by the sur-
veyed approaches to include the Android framework
in their analysis. Woodpecker [51] uses a summary
of Android built-in classes, which are pre-processed
ahead of an app analysis to reduce the analysis costs
associated with each app. To enable a more flexible
analysis environment, CHEX [64] runs in two modes.
In one mode, it includes the entire Android frame-
work code in the analysis, and in the other only a par-
tial model of the Android’s external behaviors is used.
To automatically classify Android system APIs as
sources and sinks, SuSi [74] employs machine learning
techniques. Such a list of sources and sinks of sensitive
data is then used in a number of other surveyed
approaches, including, FlowDroid [13], DroidForce [75],
IccTA [61], [63], and DidFail [60].

6.2.2 Supplementary Techniques
We observe that most approaches (80%) only rely on
program analysis techniques to assess the security

15

of Android software. Only 20% of the approaches
employ other complementary techniques in their anal-
ysis. Among them, formal analysis and machine learn-
ing techniques are the most widely used, comprising
13% and 7% of the overall set of papers collected for
this literature review, respectively.

These approaches typically first use some type
of program analysis to extract specifications from
the Android software that are input to the analysis
performed by other supplementary techniques. For
example, COVERT, combines formal app models that
are extracted through static analysis with a formal
specification of the Android framework to check the
overall security posture of a system [16].

Machine learning techniques are mainly applied
to distinguish between benign and malicious apps.
The underlying assumption in this thrust of effort
is that abnormal behavior is a good indicator of
maliciousness. Examples of this class of research
are CHABADA [48] and its successor MUDFLOW [15],
which are both intended to identify abnormal be-
havior of apps. The focus of CHABADA is to find
anomalies between app descriptions and the way
APIs are used within the app. MUDFLOW tries to
detect the outliers with respect to the sensitive data
that flow through the apps.

6.2.3 Automation Level
We observe that most approaches (88%) are designed
to perform Android security analysis in a completely
automated manner, which is promising as it enables
wide-scale evaluation of such automated techniques,
discussed more in the following section (§ 6.3).

A number of approaches, however, require some
manual effort (12%), for example annotating an app’s
code with labels representing different security con-
cerns. Once the code is annotated manually, an auto-
matic analysis is run to identify the security breaches
or attacks in the source code. For instance, Sparta [36]
requires app developers to annotate an app’s source
code with information-flow type qualifiers, which are
fine-grained permission tags, such as INTERNET, SMS,
GPS, etc. Subsequently, app repository auditors can
employ Sparta’s type system to check information
flows that violate the secure flow policies. Manually
applying the annotations affects usability and scala-
bility of such approaches, however, enables a more
precise analysis to ensue.

6.2.4 Analysis Data Structures
Data structures that represent apps in an abstract
level are commonly used in the program analysis. We
observe that call graph (CG) is the most frequently
used data structure in the surveyed papers (40%).

Taint information are propagated through call
graph, among other things, to determine the reach-
ability of various sinks from specific sources. Leak-
Miner [102], RiskRanker [49], TrustDroid [105], Con-

tentScope [108] and IPC Inspection [40] are some ex-
amples that traverse the call graph for taint analy-
sis. Among others, ContentScope traverses CG to find
paths form public content provider interfaces to the
database function APIs in order to detect database
leakage or pollution.

Moreover, generating and traversing the app’s CG
is also essential in tracking the message (i.e., Intent)
transfer among the app’s components. Epicc [70] and
AsDroid [55] are among the approaches that use call
graph for this purpose. In addition, PScout [14] and
PermissionFlow [85] perform reachability analysis over
the CG to map Android permissions to the corre-
sponding APIs.

Control flow graph (CFG) is also widely used in the
surveyed analysis methods (15%). ContentScope [108],
for example, extracts an app’s CFG to obtain the
constraints corresponding to potentially dangerous
paths. The collected constraints are then fed into a
constraint solver to generate inputs corresponding to
candidate path executions. Enck et al. [33] have also
specified security rules over CFG to enable a control-
flow based vulnerability analysis of Android apps.

More advanced and comprehensive program anal-
yses rely on a combination of CFG and CG, a data
structure called inter-procedural control flow graph
(ICFG) that links the individual CFGs according to
how they call each other. FlowDroid [13], for example,
traverses ICFG to track tainted variables; Epicc [70]
also performs string analysis over ICFG; IccTA [61],
[63] detects inter-component data leaks by running
data-flow analysis over such a data structure. Since
the generated ICFG for the entire application is mas-
sive, complicated, and potentially unscalable, a num-
ber of approaches leverage a reduced version of ICFG
for their analysis. For example, Woodpecker [51] lo-
cates capability leaks (cf. section 6.1.1) by traversing
a reduced permission-specific ICFG, rather than the
generic one.

In addition to such canonical, widely-used data
structures, a good portion of existing approaches
leverage customized data structures for app analysis
(19%). One examples is G*, an ICFG-based graph,
in which each call site is represented by two nodes,
one before the procedure call and the other after
returning [70]. CHEX [64] introduces two customized
data structures of split data-flow summary (SDS) and
permutation data-flow summary (PDS) for its data
flow analysis. SDS is a kind of CFG that also considers
the notion of split, “a subset of the app code that is reach-
able from a particular entry point method”. PDS is also
similar to ICFG, and links all possible permutations
of SDS sequences.

6.2.5 Input Generation Technique
The Android security assessment approaches that
rely on dynamic analysis require test input data and
events to drive the execution of apps.

16

TABLE 3
Assessment Specific Categorization of the Reviewed Research

Dimension Approaches Percentage

Evaluation

Case Studies DroidScope [100], DidFail [60], SCanDroid [43], SmartDroid [106], DroidTrack [82], Scoria [94] 12%

Empirical

AdDroid [72], AdRisk [50], Amandroid [96], AndroidLeaks [44], AppInspector [45], AppIn-
tent [103], Apposcopy [41], AppsPlayground [76], AsDroid [55], Batyuk- [19], BlueSeal [54],
Chabada [48], Chex [64], ComDroid [26], ContentScope [108], COPES [17], CopperDroid [78],
CopperDroid2 [92], COVERT [16], DroidChecker [23], DroidRanger [109], DroidSafe [47],
Enck- [33], Epicc [70], Flowdroid [13], FUSE [77], IccTA [61], Kirin [34], LeakMiner [102],
MalloDroid [37], Marforio- [66], Mudflow [15], PCLeaks [62], Pegasus [25], PermCheckTool [95],
PermissionFlow [85], Permlyzer [99], Poeplau- [73], PScout [14], Riskranker [49], ScanDal [57],
SEFA [98], SmartDroid [106], SMV-HUNTER [52], Sparta [36], Stowaway [38], TaintDroid [32],
VetDroid [104], Woodpecker [51], Xmandroid [21]

86%

Proof Apposcopy [41], Chaudhuri- [24], Mann- [65], ScanDal [57], Scoria [94] 10%

Tool

Executable Artifact
Amandroid [96], Chabada [48], ComDroid [26], CopperDroid [78], CopperDroid2 [92],
COVERT [16], DidFail [60], DroidSafe [47], DroidScope [100], Enck- [33], Epicc [70], Flow-
droid [13], FUSE [77], IccTA [61], Kirin [34], MalloDroid [37], Mudflow [15], PermCheck-
Tool [95], PScout [14], SCanDroid [43], Sparta [36], Stowaway [38], TaintDroid [32]

39%

Source Code Amandroid [96], DidFail [60], DroidSafe [47], DroidScope [100], Enck- [33], Flowdroid [13],
IccTA [61], Kirin [34], MalloDroid [37], PermCheckTool [95], PScout [14], SCanDroid [43],
TaintDroid [14]

22%

Documentation Amandroid [96], CopperDroid [78], CopperDroid2 [92], COVERT [16], DidFail [60], Droid-
Safe [47], DroidScope [100], Enck- [33], Epicc [70], Flowdroid [13], FUSE [77], IccTA [61],
Kirin [34], MalloDroid [77]

24%

We can observe from Table 2 that most of such
approaches use fuzz testing, comprising 20% of the
overall set of papers collected for this literature re-
view. Fuzzing is a form of negative testing that feeds
malformed and unexpected input data to a program
with the objective of revealing security vulnerabili-
ties. For example, it has been shown that an SMS
protocol fuzzer is highly effective in finding severe
security vulnerabilities in all three major smartphone
platforms [68]. In the case of Android, fuzzing found
a security vulnerability triggered by simply receiving
a particular type of SMS message, which not only
kills the phone’s telephony process, but also kicks the
target device off the network [68].

Despite the individual success of fuzzing as a gen-
eral method of identifying vulnerabilities, fuzzing has
traditionally been used as a brute-force mechanism.
Using fuzzing for testing is generally a time consum-
ing and computationally expensive process, as the
space of possible inputs to any real-world program
is often unbounded. Existing fuzzing tools, such as
Android’s Monkey [2], generate purely random test
case inputs, and thus are often ineffective in practice.

A comparatively low number of approaches (5%)
employ symbolic execution, mainly to improve the
effectiveness of generated test inputs. For example,
AppInspector [45] applies concolic execution, which is
the combination of symbolic and concrete execution.
It switches back and forth between symbolic and
concrete modes to enable analysis of apps that com-
municate with remote parties. Scalability is, however,
a main concern with symbolic execution techniques.
More recently, some approaches try to improve the
scalability of symbolic execution. For instance, Ap-
pIntent [103] introduces a guided symbolic execution
that narrows down the space of execution paths to be
explored by considering both the app call graph and
the Android execution model. Symbolic execution is

also used for feasible path refinement. Among others,
Woodpecker [51] models each execution path as a
set of dependent program states, and marks a path
“feasible” if each program point follows from the
preceding ones.

6.3 Assessment (Validation)

We used reputable sites in our review protocol (cf. sec-
tion 4), which resulted in the discovery of high-quality
refereed research papers from respectable venues. To
develop better insights into the quality of the research
papers surveyed, here we use Evaluation Method
(T 3.1) and Replicability (T 3.2), which are the two
validation dimensions in the taxonomy.

Table 3 presents a summary of the validation-
specific aspects that are extracted from the collection
of papers included in the literature review. In the
following, we summarize the main results for each
dimension in this category.

6.3.1 Evaluation Method
The first row in Table 3 depicts the share of different
evaluation methods in assessing the quality of An-
droid security analysis approaches. Most (86%) of the
approaches have used empirical techniques to assess
the validity of their ideas using a full implementa-
tion of their approach (e.g., Chabada [48], Chex [64],
Epicc [70], and COVERT [16]). Some research efforts
have developed a proof-of-concept prototype to per-
form limited scale case studies (e.g., SCanDroid [43]
and SmartDroid [106]). A limited number (10%) of
approaches (e.g., Chaudhuri et al. [24]) have provided
mathematical proofs to validate their ideas.

Availability of various Android app repositories,
such as the Google Play Store [6], is a key enabling
factor for the large-scale empirical evaluation wit-
nessed in the Android security research. Figure 8

17

shows the distribution of surveyed research based
on the number of selected apps that are used in the
experiments. We observe that most of the experiments
(82%) have been conducted over sets of more than one
hundred apps.

Figure 9 depicts the distribution of app repositories
used in the evaluations of surveyed research. It can
be observed that the Google Play Store, the official
and largest repository of Android applications, is the
most popular app repository, used by 70% of the pa-
pers. There are several other third-party repositories,
such as F-Droid open source repository [?], used by
20% of the surveyed research. A number of malware
repositories (such as [9], [10], [107]) are also widely
used in assessing approaches designed for detecting
malicious apps (32%). Finally, about 18% of the sur-
veyed research use hand-crafted benchmark suites,
such as [4], [7], in their evaluation. A benefit of apps
comprising such benchmarks is that the ground-truth
for them is known, since they are manually seeded
with known vulnerabilities and malicious behavior,
allowing researchers to easily assess and compare
their techniques in terms of the number of issues that
are correctly detected.

6.3.2 Replicability
The evaluation of security research is generally known
to be difficult. Making the results of experiments
reproducible is even more difficult. The second row
in Table 3 shows the availability of the executable
artifact, as well as the corresponding source code
and documentations. According to Table 3, overall
only 39% of published research have made their arti-
facts publicly available. The rest have not made their
implementations, prototypes, tools, and experiments
available to other researchers.

Having such artifacts publicly available enables,
among other things, quantitative comparisons of dif-
ferent approaches. Figure 10 depicts the comparison
relationships found in the evaluation of the studied
papers. In this graph, X → Y means research method
X compared itself to method Y. The nodes with higher

Fig. 8. Distribution of surveyed research based on the
number of apps used in their experiments.

fan-in (i.e., incoming edges) represent the tools that
are widely used in evaluation of other research efforts.
For instance, FlowDroid [13], with 6 incoming edges,
has an active community of developers and discussion
group, and is widely used in several research papers
surveyed in our study.

6.4 Cross Analysis

In this section, we extend our survey analysis across
the different taxonomy dimensions. Given the obser-
vations from the reviewing process, we develop the
following cross-analysis questions (CQs):

• CQ1. What type of program analysis have been
used for each security assessment objectives?

• CQ2. What type of program analysis have been
used for detecting each of the STRIDE’s security
threats?

• CQ3. Is there a relationship between the granular-
ity of security threats and the type of employed
program analysis techniques?

• CQ4. Is there a relationship between the depth
of security threats, i.e., app-level vs. framework-
level, and the type of analysis techniques em-
ployed in the surveyed research?

• CQ5. Which evaluation method(s) is used for
different objectives and types of analysis?

• CQ6. How reproducible are the surveyed re-
search based on the objectives and types of anal-
ysis?

CQ1 Analysis objectives and type of program
analysis. As shown in Figure 11 a©, static analysis
has been widely used for identifying both malicious
behavior and vulnerabilities (69%-89%). Pure dynamic
analysis, however, are only employed for malware de-
tection, indicating a potential opportunity for further
research. Hybrid approaches, though at lower scales,
have also been used (9%-11%) for both purposes.

CQ2 STRIDE’s security threats and type of pro-
gram analysis. According to Figure 11 b©, static anal-
ysis has been widely used for identifying various
security threats, except the repudiation that is not
considered in the literature at all. Dynamic analysis
has also been used for detecting both elevation of

Fig. 9. Distribution of App Repositories used in the
Empirical or Case Study-based Evaluations.

18

Fig. 11. Types of program analysis have been used for a© detecting each security assessment objectives (i.e.
Malware vs. Vulnerability Detection), and b© each type of STRIDE’s security threats.

privilege and information disclosure. Finally, hybrid
approaches have been employed for detecting spoof-
ing, tampering, and information disclosure.

CQ3 Granularity of security threats and type of
analysis techniques. Static analysis techniques are
the most common methods (about 80%) used by the
state-of-the-art approaches in both single and com-
positional app analysis (cf., Figure 12 a©). However,
it can be observed that due to the high complexity
of problems that arise in compositional app analy-
sis, a good portion of approaches have used hybrid
methods (18%) to identify the security issue may arise
from the interaction of multiple components (inter-
component).

CQ4 Depth of security threats and type of anal-
ysis techniques. The depth of security threats also
exhibit a relation with the type of analysis techniques
(cf., Figure 12 b©). We observe that the dynamic ap-
proaches are employed more often for analysis at the
framework-level (48%). One reason is that dynamic
approaches can employ runtime modules, such as
monitors, which are deployed in the Android frame-

Fig. 10. Comparison Graph: X → Y means research
method X has quantitatively compared itself to method
Y.

work, thereby enabling tracking otherwise implicit
relations between system API calls and the Android
permissions. Such runtime framework-level activity
monitoring is not readily possible using static analysis
techniques.

CQ5 Reproducibility vs. the objectives and types
of analysis. We observe a similar distribution pattern
in use of different evaluation methods across various
analysis objectives and types of analysis. Empirical
evaluation is the most widely used, followed by the
case study method and formal proof (cf., Figure 13).

CQ6 Reproducibility vs. the objectives and types
of analysis. As shown in Figure 14, the research
artifacts intended to identify security vulnerabilities
are more likely to be available in comparison to those
designed for malware detection (47% vs. 37%). We
also observe that no tool using hybrid (both static
and dynamic) program analyses is publicly available,
which prevents the other researchers from reproduc-
ing, and potentially adopting, achievements in this
thrust of research.

Fig. 12. a© Breadth and b© Depth (Level) of each type
of program analysis.

19

Fig. 15. Observed trends in Android security analysis research with respect to a© objectives of the analysis, b©
type of analysis, and c© number of apps used in the evaluation.

7 DISCUSSION AND DIRECTIONS FOR FU-
TURE RESEARCH

To address the third research question (RQ3), in this
section, we first provide a trend analysis of surveyed
research, and then discuss the observed gaps in the
studied literature that can help to direct future re-
search efforts in this area.

Based on the results of our literature review (cf.,
Section 6), it is evident that Android security has
received a lot of attention in recently published lit-
erature, due mainly to the popularity of Android as
a platform of choice for mobile devices, as well as in-
creasing reports of its vulnerabilities. We also observe
important trends in the past decade, as reflected by
the results of the literature review. Figure 15 shows
some observed trends in Android security analysis
research.

• According to Figure 15 a©, malicious behavior
detection not only has attracted more attention,
compared to vulnerability identification, but also
research in malware analysis tends to grow at an
accelerated rate.

• As illustrated in Figure 15 b©, static analysis tech-
niques dominate security assessment in the An-
droid domain. Dynamic and hybrid analysis tech-
niques are also showing modest growth, as they
are increasingly applied to mitigate the limita-

Fig. 13. Approach validation versus a© research objec-
tives and b© types of analysis.

tions of pure static analysis (e.g., to reason about
dynamically loaded code, and obfuscated code).

• The more recent approaches reviewed in this
survey have used larger collections of apps in
their evaluation (cf., Figure 15 c©). Such large-
scale empirical evaluation in the Android security
research is promising, and can be attributed to the
meteoric rise of the numbers of apps provisioned
on publicly available app markets that in some
cases provide free or even open-source apps.

Despite considerable research efforts devoted to
mitigating security threats in mobile platforms, we
are still witnessing a significant growth in the num-
ber of security attacks targeting these platforms [80].
Therefore, our first and foremost recommendation
is to increase convergence and collaboration among
researchers in this area from software engineering,
security, mobility, and other related communities to
achieve the common goal of addressing these mobile
security threats and attacks.

More specifically, the survey—through its use of our
proposed taxonomy—has revealed research gaps in
need of further study. To summarize, future research
needs to focus on the following to stay ahead of
today’s advancing security threats:

• Pursue integrated and hybrid approaches that span not
only static and dynamic analyses, but also other sup-
plementary analysis techniques: Recall from Table 2
that only 20% of approaches leverage supplemen-

Fig. 14. Availability of tools/artifacts based on the a©
objective and, b© type of analysis.

20

tary techniques, which are shown to be effective
in identifying modern malicious behaviors or
security vulnerabilities.

• Move beyond fuzzing for security test input genera-
tion: According to Table 2, only 20% of test input
generation techniques use a systematic technique
(i.e., symbolic execution), as opposed to brute-
force fuzzing. Fuzzing is inherently limited in its
abilities to execute vulnerable code. Furthermore,
such brute-force approaches may fail to identify
malicious behavior that may be hidden behind
obfuscated code or code that requires specific
conditions to execute.

• Continue the paradigm shift from basic single app
analysis to overall system monitoring, and explor-
ing compositional vulnerabilities: Recall from Sec-
tions 6.1.3 and 6.1.4, and Table 1, that the main
body of research is limited to analysis of single
apps. However, malware exploiting vulnerabili-
ties of multiple benign apps in tandem on the
market are increasing. Furthermore, identifying
some security vulnerabilities, such as the case
described in [?], require a holistic analysis of the
Android framework.

• Construct techniques capable of analyzing ICC beyond
Intents: Only 5% of papers, as shown in Table 1,
consider ICCs involving data sharing using Con-
tent Providers and AIDL. These mechanisms are,
thus, particularly attractive vectors for attackers
to utilize, due to the limited analyses available.
Consequently, research in that space can help
strengthen countermeasures against such threats.

• Consider dynamically loaded code that is not bundled
with installed packages: Recall from Table 1 that a
highly limited amount of research (8%) analyzes
the security implications of externally loaded
code. This Android capability can be easily mis-
used by malware developers to evade security
inspections at installation time.

• Analyze code of different forms and from different
languages: Besides analyzing Java and its basic
constructs, future research should analyze other
code constructs and languages used to construct
Android apps, such as native C/C++ code or
obfuscated code. The usage of complicated ob-
fuscation techniques and/or native libraries for
hiding malicious behavior are continually grow-
ing. Recall from section 6.1.5 and Table 1 that only
2% and 10% of surveyed approaches consider
obfuscated and native codes, respectively.

• Consider studying Android repudiation: The SLR
process returned no results for Android repudia-
tion, as shown in Table 1. Consequently, there is
a large opening for studying such threats, partic-
ularly in terms of digital signatures, certificates,
and encryption. However, repudiation also has
a major legal component [?], which may require
expertise not held by researchers in software se-

curity, software engineering, or computer science.
This gap may require inter-disciplinary research
to properly fill.

• Promote collaboration in the research community:
To that end, we recommend making research
more reproducible. This goal can be achieved
through increased sharing of research artifacts.
Recall from Table 3 that less than 40% of re-
viewed research artifacts are publicly provided.
To further aid in achieving reproducibility, re-
searchers can focus on developing common eval-
uation platforms and benchmarks: Recall from
Figure 9 that only 18% of studied approaches con-
sidered benchmarks for their evaluation. At the
same time, Figure 10 shows that few approaches
conduct quantitative comparisons, mainly due to
unavailability of prior research artifacts.

8 CONCLUSION

In parallel with the growth of mobile applications and
consequently the rise of security threats in mobile
platforms, considerable research efforts have been
devoted to assess the security of mobile applications.
Android, as the dominant mobile platform and also
the primary target of mobile malware threats, has
been in the focus of much research. Existing research
has made significant progress towards detection and
mitigation of Android security.

This article proposed a comprehensive taxonomy to
classify and characterize research efforts in this area.
We have carefully followed the systematic literature
review process, resulting in the most comprehensive
and elaborate investigation of the literature in this
area of research, comprised of 100 papers published
from 2008 to 2015. The research has revealed patterns,
trends, and gaps in the existing literature, and under-
lined key challenges and opportunities that will shape
the focus of future research efforts.

In particular, the survey showed the current re-
search should advance from focusing primarily on
single app assessment to a more broad and deep
analysis that considers combination of multiple apps
and Android framework, and also from pure static
or dynamic to hybrid analysis techniques. We also
identified a gap in the current research with respect to
special vulnerable features of the Android platform,
such as native or dynamically loaded code. Finally, we
encourage researchers to publicly share their devel-
oped tools, libraries and other artifacts to enable the
community to compare and evaluate their techniques
and build on prior advancements. We believe the
results of our review will help to advance the much
needed research in this area and hope the taxonomy
itself will become useful in the development and
assessment of new research directions.

21

REFERENCES

[1] “Androguard.” [Online]. Available:
https://code.google.com/p/androguard/

[2] “Android monkey.” [Online]. Available:
http://developer.android.com/guide/developing/tools/
monkey.html/

[3] “dex2jar.” [Online]. Available:
https://code.google.com/p/dex2jar/

[4] “Droidbench.” [Online]. Available: http://sseblog.ec-
spride.de/tools/droidbench

[5] “Droidbox.” [Online]. Available:
https://code.google.com/p/droidbox/

[6] “Google play market.” [Online]. Available:
http://play.google.com/store/apps

[7] “Icc-bench.” [Online]. Available:
https://github.com/fgwei/ICC-Bench

[8] “smali.” [Online]. Available:
https://code.google.com/p/smali/

[9] “Virusshare.” [Online]. Available: http://virusshare.com/
[10] “Virustotal.” [Online]. Available:

https://www.virustotal.com/
[11] “Protecting your privacy: App ops, privacy

guard, and xprivacy,” Mar. 2015. [Online]. Avail-
able: http://www.xda-developers.com/protecting-your-
privacy-app-ops-privacy-guard-and-xprivacy/

[12] D. Arp, M. Spreitzenbarth, M. Hbner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detection
of android malware in your pocket,” in Proceedings of the 21st
Annual Network & Distributed System Security Symposium, San
Diego, CA, 2014.

[13] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” in Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and
Implementation. Edinburgh, UK: ACM, 2014, p. 29.

[14] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “PScout: An-
alyzing the android permission specification,” in Proceedings
of the 2012 ACM Conference on Computer and Communications
Security, ser. CCS ’12. Raleigh, NC: ACM, 2012, pp. 217–228.

[15] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt,
S. Rasthofer, and E. Bodden, “Mining apps for abnormal
usage of sensitive data,” 2015.

[16] H. Bagheri, A. Sadeghi, J. Garcia, and S. Malek, “Covert:
Compositional analysis of android inter-app permission leak-
age,” IEEE Transactions on Software Engineering (TSE), 2015.

[17] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Au-
tomatically securing permission-based software by reducing
the attack surface: An application to android,” in Proceedings
of the 27th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE 2012. Essen, Germany: ACM,
2012, pp. 274–277.

[18] ——, “Dexpler: converting android dalvik bytecode to jimple
for static analysis with soot,” in Proceedings of the ACM
SIGPLAN International Workshop on State of the Art in Java
Program analysis. ACM, 2012, pp. 27–38.

[19] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A.-D.
Schmidt, and S. Albayrak, “Using static analysis for auto-
matic assessment and mitigation of unwanted and malicious
activities within android applications,” in Proceedings of the
2011 6th International Conference on Malicious and Unwanted
Software, ser. MALWARE ’11. Fajardo, PR: IEEE Computer
Society, 2011, pp. 66–72.

[20] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, “Lessons from applying the systematic literature
review process within the software engineering domain,”
Journal of Systems and Software, vol. 80, no. 4, pp. 571–583,
Apr. 2007.

[21] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R.
Sadeghi, “Xmandroid: A new android evolution to mitigate
privilege escalation attacks,” Technische Universitt Darmstadt,
Technical Report TR-2011-04, 2011.

[22] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi,
and B. Shastry, “Towards taming privilege-escalation attacks
on android.” in NDSS, San Diego, CA, 2012.

[23] P. P. Chan, L. C. Hui, and S. M. Yiu, “DroidChecker: Analyz-
ing android applications for capability leak,” in Proceedings
of the Fifth ACM Conference on Security and Privacy in Wireless
and Mobile Networks, ser. WiSec ’12. Tucson, Arizona: ACM,
2012, pp. 125–136.

[24] A. Chaudhuri, “Language-based security on android,” in
Proceedings of the ACM SIGPLAN Fourth Workshop on Pro-
gramming Languages and Analysis for Security, ser. PLAS ’09.
Dublin, Ireland: ACM, 2009, pp. 1–7.

[25] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNa-
mara, T. R. Magrino, E. X. Wu, M. Rinard, and D. X. Song,
“Contextual policy enforcement in android applications with
permission event graphs.” in NDSS, San Diego, CA, 2013.

[26] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings
of the 9th international conference on Mobile systems, applications,
and services. Washington, DC: ACM, 2011, pp. 239–252.

[27] M. Conti, B. Crispo, E. Fernandes, and Y. Zhauniarovich,
“Crêpe: A system for enforcing fine-grained context-related
policies on android,” Information Forensics and Security, IEEE
Transactions on, vol. 7, no. 5, pp. 1426–1438, 2012.

[28] R. Cozza, I. Durand, and A. Gupta, “Market Share: Ultra-
mobiles by Region, OS and Form Factor, 4Q13 and 2013,”
Gartner Market Research Report, February 2014.

[29] D. Dagon, T. Martin, and T. Starner, “Mobile phones as com-
puting devices: The viruses are coming!” Pervasive Computing,
IEEE, vol. 3, no. 4, pp. 11–15, 2004.

[30] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy,
“Privilege escalation attacks on android,” in 13th International
Conference, ser. ISC’10, M. Burmester, G. Tsudik, S. Magliv-
eras, and I. Ili, Eds. Boca Raton, FL, USA: Springer Berlin
Heidelberg, Oct. 2010, pp. 346–360.

[31] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach,
“QUIRE: Lightweight provenance for smart phone operating
systems.” in USENIX Security Symposium, San Francisco, CA,
2011.

[32] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: an information flow tracking
system for real-time privacy monitoring on smartphones,”
pp. 393–407, 2010.

[33] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study
of android application security,” in Proceedings of the 20th
USENIX Conference on Security, ser. SEC’11. San Francisco,
CA: USENIX Association, 2011, pp. 21–21.

[34] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight
mobile phone application certification,” in Proceedings of the
16th ACM conference on Computer and communications security.
Chicago, IL: ACM, 2009, pp. 235–245.

[35] M. D. Ernst, “Static and dynamic analysis: synergy and dual-
ity,” in Proceedings of the ACM-SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, 2004,
pp. 35–35.

[36] M. D. Ernst et al., “Collaborative verification of information
flow for a high-assurance app store,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. Scottsdale, AZ: ACM, 2014, pp. 1092–
1104.

[37] S. Fahl, M. Harbach, T. Muders, L. Baumgrtner, B. Freisleben,
and M. Smith, “Why eve and mallory love android: An
analysis of android SSL (in)security,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security, ser.
CCS ’12. Raleigh, NC: ACM, 2012, pp. 50–61.

[38] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,
“Android permissions demystified,” in Proceedings of the 18th
ACM Conference on Computer and Communications Security, ser.
CCS ’11. Chicago, IL: ACM, 2011, pp. 627–638.

[39] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A
survey of mobile malware in the wild,” in Proceedings of the
1st ACM workshop on Security and privacy in smartphones and
mobile devices. ACM, 2011, pp. 3–14.

[40] A. P. Felt, S. Hanna, E. Chin, H. J. Wang, and E. Moshchuk,
“Permission re-delegation: Attacks and defenses,” in In 20th
Usenix Security Symposium, San Francisco, CA, 2011.

[41] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy:
Semantics-based detection of android malware,” in Int’l
Symp. on the Foundations of Software Engineering, Hong Kong,
China, Nov. 2014.

22

[42] E. Fragkaki, L. Bauer, L. Jia, and D. Swasey, “Modeling and
enhancing androids permission system,” in 17th European
Symposium on Research in Computer Security, ser. Lecture Notes
in Computer Science, S. Foresti, M. Yung, and F. Martinelli,
Eds. Pisa, Italy: Springer Berlin Heidelberg, Sep. 2012, pp.
1–18.

[43] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, SCanDroid:
Automated Security Certification of Android Applications, 2009.

[44] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androi-
dLeaks: Automatically detecting potential privacy leaks in
android applications on a large scale,” in Proceedings of the 5th
International Conference on Trust and Trustworthy Computing,
ser. TRUST’12. Vienna, Austria: Springer-Verlag, 2012, pp.
291–307.

[45] P. Gilbert, B.-G. Chun, L. P. Cox, and J. Jung, “Vision: auto-
mated security validation of mobile apps at app markets,” in
Proceedings of the second international workshop on Mobile cloud
computing and services. ACM, 2011, pp. 21–26.

[46] P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated
whitebox fuzz testing.” in NDSS, vol. 8, 2008, pp. 151–166.

[47] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and
M. Rinard, “Information-Flow Analysis of Android Appli-
cations in DroidSafe,” in Proceedings of the 22st Network and
Distributed System Security Symposium, San Diego, CA, 2015.

[48] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app
behavior against app descriptions,” in Proceedings of the 36th
International Conference on Software Engineering, ser. ICSE 2014.
Hyderabad, India: ACM, 2014, pp. 1025–1035.

[49] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
“Riskranker: scalable and accurate zero-day android malware
detection,” in Proceedings of the 10th international conference on
Mobile systems, applications, and services. Washington, DC:
ACM, 2012, pp. 281–294.

[50] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe
exposure analysis of mobile in-app advertisements,” in Pro-
ceedings of the Fifth ACM Conference on Security and Privacy in
Wireless and Mobile Networks, ser. WISEC ’12. Tucson, AZ:
ACM, 2012, pp. 101–112.

[51] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic
detection of capability leaks in stock android smartphones.”
in NDSS, San Diego, CA, 2012.

[52] D. S. J. S. G. Greenwood and Z. L. L. Khan, “SMV-HUNTER:
Large scale, automated detection of SSL/TLS man-in-the-
middle vulnerabilities in android apps,” 2014.

[53] N. Hardy, “The confused deputy:(or why capabilities might
have been invented),” ACM SIGOPS Operating Systems Re-
view, vol. 22, no. 4, pp. 36–38, 1988.

[54] S. Holavanalli, D. Manuel, V. Nanjundaswamy, B. Rosenberg,
F. Shen, S. Ko, and L. Ziarek, “Flow permissions for android,”
in 2013 IEEE/ACM 28th International Conference on Automated
Software Engineering (ASE), Nov. 2013, pp. 652–657.

[55] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “AsDroid:
detecting stealthy behaviors in android applications by user
interface and program behavior contradiction.” in ICSE, Hy-
derabad, India, 2014, pp. 1036–1046.

[56] P. Institute, “Big data analytics in cyber defense,” Feb. 2013.
[Online]. Available: http://www.ponemon.org/library/big-
data-analytics-in-cyber-defense

[57] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center, “ScanDal: Static
analyzer for detecting privacy leaks in android applications,”
in MoST 2012: Mobile Security Technologies, 2012.

[58] J. C. King, “Symbolic execution and program testing,” Com-
munications of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[59] B. Kitchenham, “Procedures for performing systematic re-
views,” Keele, UK, Keele University, vol. 33, p. 2004, 2004.

[60] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer, “An-
droid taint flow analysis for app sets,” in Proceedings of the
3rd ACM SIGPLAN International Workshop on the State of the
Art in Java Program Analysis. Edinburgh, UK: ACM, 2014,
pp. 1–6.

[61] L. Li, A. Bartel, T. Bissyande, J. Klein, Y. L. Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta:
Detecting inter-component privacy leaks in android apps,”
in Proceedings of the 37th International Conference on Software
Engineering, ser. ICSE 2015, Florence, Italy, 2015.

[62] L. Li, A. Bartel, J. Klein, and Y. L. Traon, “Automatically ex-
ploiting potential component leaks in android applications,”

in Proceedings of the 13th International Conference on Trust,
Security and Privacy in Computing and Communications, Beijing,
China, 2014, pp. 388–397.

[63] L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer,
E. Bodden, D. Octeau, and P. McDaniel, “I know what
leaked in your pocket: uncovering privacy leaks on
android apps with static taint analysis,” arXiv:1404.7431
[cs], Apr. 2014, arXiv: 1404.7431. [Online]. Available:
http://arxiv.org/abs/1404.7431

[64] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically
vetting android apps for component hijacking vulnerabili-
ties,” in Proceedings of the 2012 ACM conference on Computer
and communications security. Raleigh, NC: ACM, 2012, pp.
229–240.

[65] C. Mann and A. Starostin, “A framework for static detection
of privacy leaks in android applications,” in Proceedings of the
27th Annual ACM Symposium on Applied Computing, ser. SAC
’12. Riva del Garda, Italy: ACM, 2012, pp. 1457–1462.

[66] C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun,
“Analysis of the communication between colluding appli-
cations on modern smartphones,” in Proceedings of the 28th
Annual Computer Security Applications Conference, ser. ACSAC
’12. Orlando, Florida: ACM, 2012, pp. 51–60.

[67] T. Martin, M. Hsiao, D. S. Ha, and J. Krishnaswami, “Denial-
of-service attacks on battery-powered mobile computers,” in
Pervasive Computing and Communications, 2004. PerCom 2004.
Proceedings of the Second IEEE Annual Conference on. IEEE,
2004, pp. 309–318.

[68] C. Miller and C. Mulliner, “Fuzzing the phone in your
phone,” in Black Hat Technical Security Conference, 2009.

[69] D. Octeau, S. Jha, and P. McDaniel, “Retargeting android
applications to java bytecode,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of
Software Engineering. ACM, 2012, p. 6.

[70] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden, J. Klein,
and Y. Le Traon, “Effective inter-component communication
mapping in android with epicc: An essential step towards
holistic security analysis,” in Proceedings of the 22Nd USENIX
Conference on Security, ser. SEC’13. Washington, DC: USENIX
Association, 2013, pp. 543–558.

[71] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “WHYPER:
Towards automating risk assessment of mobile applications,”
in Proceedings of the 22Nd USENIX Conference on Security, ser.
SEC’13. Washington, DC: USENIX Association, 2013, pp.
527–542.

[72] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner, “AdDroid:
Privilege separation for applications and advertisers in an-
droid,” in Proceedings of the 7th ACM Symposium on Informa-
tion, Computer and Communications Security, ser. ASIACCS ’12.
Seoul, Republic of Korea: ACM, 2012, pp. 71–72.

[73] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vi-
gna, “Execute this! analyzing unsafe and malicious dynamic
code loading in android applications,” in Proceedings of the
20th Annual Network & Distributed System Security Symposium,
San Diego, California, 2014.

[74] S. Rasthofer, S. Arzt, and E. Bodden, “A machine-learning
approach for classifying and categorizing android sources
and sinks,” in 2014 Network and Distributed System Security
Symposium (NDSS), 2014.

[75] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden, “Droidforce:
Enforcing complex, data-centric, system-wide policies in an-
droid,” in Availability, Reliability and Security (ARES), 2014
Ninth International Conference on. IEEE, 2014, pp. 40–49.

[76] V. Rastogi, Y. Chen, and W. Enck, “AppsPlayground: Au-
tomatic security analysis of smartphone applications,” in
Proceedings of the 3rd ACM Conference on Data and Application
Security and Privacy, ser. CODASPY ’13. San Antonio, TX:
ACM, 2013, pp. 209–220.

[77] T. Ravitch, E. R. Creswick, A. Tomb, A. Foltzer, T. Elliott,
and L. Casburn, “Multi-app security analysis with FUSE:
Statically detecting android app collusion,” in Proceedings of
the 4th Program Protection and Reverse Engineering Workshop,
ser. PPREW-4. New Orleans, LA: ACM, 2014, pp. 4:1–4:10.

[78] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric
analysis and stimulation technique to automatically recon-
struct android malware behaviors,” in ACM European Work-

23

shop on Systems Security (EuroSec), Prague, Czech Republic,
2013.

[79] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of
the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 1995, pp. 49–61.

[80] S. S. Response, “2015 internet security threat report,” 2015.
[Online]. Available: http://www.symantec.com

[81] A. Sadeghi, H. Bagheri, and S. Malek, “Analysis of android
inter-app security vulnerabilities using covert,” in Proceedings
of the 37th International Conference on Software Engineering, ser.
ICSE 2014. Florence, Italy: IEEE, 2015.

[82] S. Sakamoto, K. Okuda, R. Nakatsuka, and T. Yamauchi,
“DroidTrack: Tracking and visualizing information diffusion
for preventing information leakage on android,” Journal of
Internet Services and Information Security (JISIS), vol. 4, no. 2,
pp. 55–69, 2014.

[83] J. H. Saltzer and M. D. Schroeder, “The protection of infor-
mation in computer systems,” Proceedings of the IEEE, vol. 63,
no. 9, pp. 1278–1308, 1975.

[84] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kaafar, “On
the effectiveness of dynamic taint analysis for protecting
against private information leaks on android-based devices.”
in SECRYPT, 2013, pp. 461–468.

[85] D. Sbirlea, M. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar,
“Automatic detection of inter-application permission leaks in
android applications,” IBM Journal of Research and Develop-
ment, vol. 57, no. 6, pp. 10:1–10:12, Nov. 2013.

[86] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, and S. Dolev,
“Google android: A state-of-the-art review of security mech-
anisms,” arXiv preprint arXiv:0912.5101, 2009.

[87] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and
C. Glezer, “Google android: A comprehensive security as-
sessment,” IEEE security and Privacy, vol. 8, no. 2, pp. 35–44,
2010.

[88] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
“Andromaly: a behavioral malware detection framework for
android devices,” Journal of Intelligent Information Systems,
vol. 38, no. 1, pp. 161–190, 2012.

[89] F. Shen, N. Vishnubhotla, C. Todarka, M. Arora, B. Dhan-
dapani, E. J. Lehner, S. Y. Ko, and L. Ziarek, “Information
flows as a permission mechanism,” in Proceedings of the
29th ACM/IEEE international conference on Automated software
engineering. ACM, 2014, pp. 515–526.

[90] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Rib-
agorda, “Evolution, detection and analysis of malware for
smart devices,” Communications Surveys & Tutorials, IEEE,
vol. 16, no. 2, pp. 961–987, 2014.

[91] F. Swiderski and W. Snyder, Threat Modeling. Microsoft Press,
2004.

[92] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Cop-
perDroid: Automatic Reconstruction of Android Malware
Behaviors,” in Proceedings of the 22st Network and Distributed
System Security Symposium, San Diego, CA, 2015.

[93] R. Vallee-Rai and L. J. Hendren, “Jimple: Simplifying java
bytecode for analyses and transformations,” 1998.

[94] R. Vanciu and M. Abi-Antoun, “Finding architectural flaws
using constraints,” in Automated Software Engineering (ASE),
2013 IEEE/ACM 28th International Conference on. Silicon
Valley, CA: IEEE, 2013, pp. 334–344.

[95] T. Vidas, N. Christin, and L. Cranor, “Curbing android per-
mission creep,” in 2011 Web 2.0 Security and Privacy Workshop,
vol. 2, Oakland, CA, 2011.

[96] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A precise
and general inter-component data flow analysis framework
for security vetting of android apps,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’14. Scottsdale, AZ: ACM, 2014, pp. 1329–
1341.

[97] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu,
“Droidmat: Android malware detection through manifest
and api calls tracing,” in Information Security (Asia JCIS), 2012
Seventh Asia Joint Conference on. IEEE, 2012, pp. 62–69.

[98] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The
impact of vendor customizations on android security,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer

and Communications Security, ser. CCS ’13. Berlin, Germany:
ACM, 2013, pp. 623–634.

[99] W. Xu, F. Zhang, and S. Zhu, “Permlyzer: Analyzing permis-
sion usage in android applications,” in 2013 IEEE 24th Inter-
national Symposium on Software Reliability Engineering (ISSRE),
Nov. 2013, pp. 400–410.

[100] L. K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing
the OS and dalvik semantic views for dynamic android mal-
ware analysis,” in Proceedings of the 21st USENIX Conference on
Security Symposium, ser. Security’12. Bellevue, WA: USENIX
Association, 2012, pp. 29–29.

[101] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static
control-flow analysis of user-driven callbacks in Android ap-
plications,” in International Conference on Software Engineering,
2015.

[102] Z. Yang and M. Yang, “LeakMiner: Detect information leak-
age on android with static taint analysis,” in 2012 Third World
Congress on Software Engineering (WCSE), Hong Kong, China,
Nov. 2012, pp. 101–104.

[103] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“AppIntent: analyzing sensitive data transmission in android
for privacy leakage detection,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’13. Berlin, Germany: ACM, 2013, pp. 1043–1054.

[104] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang,
and B. Zang, “Vetting undesirable behaviors in android apps
with permission use analysis,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’13. Berlin, Germany: ACM, 2013, pp. 611–622.

[105] Z. Zhao and F. Osono, “TrustDroid: Preventing the use of
SmartPhones for information leaking in corporate networks
through the used of static analysis taint tracking,” in 2012
7th International Conference on Malicious and Unwanted Software
(MALWARE), Fajardo, PR, Oct. 2012, pp. 135–143.

[106] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“SmartDroid: An automatic system for revealing UI-based
trigger conditions in android applications,” in Proceedings of
the Second ACM Workshop on Security and Privacy in Smart-
phones and Mobile Devices, ser. SPSM ’12. New York, NY,
USA: ACM, 2012, pp. 93–104.

[107] Y. Zhou and X. Jiang, “Dissecting android malware: Charac-
terization and evolution,” in Security and Privacy (SP), 2012
IEEE Symposium on. San Francisco, CA: IEEE, 2012, pp. 95–
109.

[108] ——, “Detecting passive content leaks and pollution in an-
droid applications.” in NDSS, San Diego, CA, 2013.

[109] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get
off of my market: Detecting malicious apps in official and
alternative android markets.” in NDSS, San Diego, CA, 2012.

