
Institute for Software Research
University of California, Irvine

isr.uci.edu/publications

Matias Giorgio			
University of California, Irvine
mgiorgio@uci.edu			

	 					

Richard N. Taylor
University of California, Irvine
taylor@uci.edu

Accountability Through Architecture for
Decentralized Systems:

A Preliminary Assessment

October 2015
ISR Technical Report # UCI-ISR-15-2

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

isr.uci.edu

Accountability Through Architecture for Decentralized Systems:
A Preliminary Assessment

Matías Giorgio, Richard N. Taylor

Institute for Software Research

University of California,
Irvine

Technical Report
UCI-ISR-15-2

October 2015

TABLE OF CONTENTS

Page

LIST OF FIGURES

LIST OF TABLES

ABSTRACT

1 Introduction 1
1.1 Research . 3

1.1.1 Research Goals . 3
1.1.2 Research Questions . 5

1.2 Organization of this work . 6

2 The COAST architectural style 8
2.1 Principles . 9
2.2 Functional and communication capabilities 11
2.3 Architectural elements . 11

2.3.1 Execution sites . 11
2.3.2 Capability URLs (CURLs) . 11
2.3.3 COAST Computations . 13

2.4 The Motile/Island implementation . 13
2.4.1 Islands . 14
2.4.2 Islets . 14
2.4.3 Compilation and Serialization . 14

3 Capability accounting 15
3.1 Capability events . 15
3.2 Activities . 16

3.2.1 Capture . 16
3.2.2 Transfer . 17
3.2.3 Storage . 17
3.2.4 Query . 17
3.2.5 Data preparation . 18
3.2.6 Evaluation . 19
3.2.7 Reporting . 19
3.2.8 Action . 20

3.3 Exploratory and evaluation-based analyses 21

4 Implementation of Capability accounting for evaluation 22
4.1 Capability events . 22
4.2 Activities . 23
4.3 Tools for capability accounting . 23

4.3.1 Instrumented Motile/Island implementation 24
4.3.2 Racket STOMP module . 25
4.3.3 Broker-to-DB bridge . 25
4.3.4 RabbitMQ . 26
4.3.5 MongoDB . 26
4.3.6 COast Monitoring Event Tool (COMET) 26

5 COast Monitoring Event Tool (COMET) 27
5.1 High-level architecture . 27

5.1.1 Configuration Reader . 28
5.1.2 Evaluation Implementations . 28
5.1.3 Evaluations Manager . 28
5.1.4 Query Handler . 28

5.2 Configuration . 28
5.2.1 Global properties . 29
5.2.2 Evaluations . 29
5.2.3 Output . 35

6 Electronic trading and software systems 36
6.1 Domain relevance . 37

6.1.1 Global trading volume . 37
6.1.2 Major incidents in financial trading 38

6.2 Challenges on electronic trading software systems 40

7 Evaluation 44
7.1 An electronic trading prototype . 45

7.1.1 Participants . 46
7.1.2 Subsystems and components . 47
7.1.3 Prototype’s technical information . 48

7.2 Base trading computation . 48
7.2.1 Trading strategy . 49
7.2.2 Interaction with the prototype . 50

7.3 Verifying software execution . 53
7.3.1 Verification model . 54

7.4 Execution of Base Trading Computation . 57
7.5 Problem-based evaluation . 59

7.5.1 Trading Computation does not place orders 59
7.5.2 Trading Computation does not send notifications to the trader 66
7.5.3 Trading Computation opens a backdoor 68

7.5.4 Trader uses a different service level 69
7.5.5 Trading computation places too many or too few orders 72

7.6 Summary . 74

8 Discussion 75
8.1 Application-agnostic logging . 76
8.2 Interpretation depends on the nature of available events 77
8.3 Analyzing domain-specific issues using architectural accountability 81

8.3.1 A domain-dependent case using capability accounting 83
8.3.2 Detecting and preventing spoofing automatically 85

9 Conclusion 87

ACKNOWLEDGMENTS 91

Bibliography 92

Appendices 96
A COMET Configuration . 96
B Base Trading Computation Source Code . 103

LIST OF FIGURES

Page

1.1 COAST applications capture capability events and store them in a database.
COMET performs different types of analyses using the collected data. 4

2.1 Three peers interacting following the COAST style. Peer P1 is zoomed-in to
illustrate COAST architectural elements. 10

4.1 Overview of capability accounting for evaluation. 23

5.1 COMET High-Level Architecture. 27

6.1 Impact on prices of E-Mini S&P and Dow Jones Industrial indexes caused by
the Flash Crash in 2010. [42] . 39

6.2 Challenges troubleshooting issues in the environment of an electronic trading
system. 41

7.1 Prototype of a trading system including a Trader, a Broker and an Exchange. 46
7.2 Deployment of a Trader’s trading computation in the Broker’s infrastructure. 52
7.3 A trading computation running in the Broker subscribes to receive market

and risk updates. 52
7.4 A trading computation running in the Broker places an order on the Order

Router. As a result, it receives an order’s execution report. 53
7.5 Verification model for deployment and initialization. 55
7.6 Verification model for detecting if a trading computation opens a backdoor. . 56
7.7 Verification model for number of placed orders. 57
7.8 The trading computation must use the CURL corresponding to the contracted

service level. 70

8.2 Suggested order router to handle spoofing. 84
8.1 How spoofing works in electronic trading. [25] 86

LIST OF TABLES

Page

4.1 Information available in capability events. 25

5.1 Global properties in COMET configuration. 29
5.2 How the Not evaluation transforms the result of its nested evaluation. 34

7.1 Size of the different prototype’s components. 48
7.2 Potential problems verified by COMET. 54
7.3 Summary of the execution of the base trading computation. 57
7.4 Summary of the execution of scenario 1.1. 60
7.5 Summary of the execution of scenario 1.2. 62
7.6 Summary of the execution of scenario 1.3. 63
7.7 Summary of the execution of scenario 1.4. 64
7.8 Summary of the execution of scenario 1.5. 65
7.9 Summary of the execution of scenario 1.6. 66
7.10 Summary of the execution of scenario 2.1. 67
7.11 Summary of the execution of scenario 3.1. 69
7.12 Summary of the execution of scenario 4.1. 71
7.13 Summary of the execution of scenario 5.1. 72
7.14 Summary of the execution of scenario 5.2. 73

ABSTRACT

Decentralized systems, that is, distributed systems designed, developed, operated and main-

tained by more than one authority affect people’s lives every day. Representative domains

where decentralized systems operate include e-commerce, healthcare, inter-government co-

ordination, emergency response, and electronic trading. Such systems present unique chal-

lenges in terms of evolution, adaptation, and security. It is difficult, if not impossible, to

coordinate the evolution of a decentralized system as organizations evolve the system’s con-

stituent components in response to their potentially independent organizational needs and

interests. Security is a major concern since there is no single, uniform perimeter to defend,

and it is significantly affected by complex trust relationships, susceptible to change at any

point of time; a trusted component can become the epicenter of an “insider attack” if some-

one takes control over it. Worse still, decentralized systems are the supreme example of

systems of systems, therefore, an unintentional mistake or an unexpected error can put at

risk the system’s integrity and the services offered. At the core of this research study is

the concept of capability, an unforgeable reference whose possession confers both the right

and authority to perform some action within a system. We hypothesize that capability ac-

counting – tracking the creation, exploitation, and transfer of capabilities – let us obtain

insightful information about a system, therefore, help us build, operate and maintain secure

decentralized systems. We ground our work in COmputationAl State Transfer (COAST),

an architectural style for secure and adaptive decentralized systems that permits and en-

courages continuous auditing. In COAST, capabilities are first-class architectural elements

that regulate and articulate what a computation may do, and when, how, and with whom a

computation may communicate. This work presents an assessment of capability accounting

within the financial trading domain. It includes a framework that specifies which capability

events are to be studied, and the means to represent, capture and examine those events as

well as techniques to analyze them. We evaluate the proposed framework and techniques

using COast Monitoring Event Tool (COMET), a tool we built for analyzing capabilities,

a prototype of an electronic trading system, and various trading computations. We found

that capability accounting is a valuable technique to obtain information about a system, and

that COAST is very well-suited for this form of measurement.

Chapter 1

Introduction

A decentralized system is a distributed system for which there is no central administra-

tive authority to dictate how the distributed subsystems must be developed, operated, and

maintained [21]. In decentralized systems service providers and service clients can each op-

erate under different authority and evolve independently. Examples of such systems include

e-commerce, healthcare, inter-government coordination, and electronic trading.

In decentralized systems, security is deeply affected by complex trust relationships among

participant systems that can change at any point of time. If a system is breached, all the

information it accesses may be compromised, and all the data it produces should no longer

be trusted. Ideally, a breached system should be isolated, and all interactions that include

it should be reorganized in order to minimize the impact. Service provisioning will be

potentially affected at many levels, from the services offered by the compromised system,

processes in which that system participates, to even the functionality expected from the entire

decentralized system. Such systems are not immune to “insider attacks”, one component can

abuse a right legitimately granted at a previous time. Furthermore, even in a world of

perfect security, verifying the correct operation and integrity of critical software systems is

paramount in order to ensure that services are offered as providers and consumers expect.

Designing and implementing these systems is a substantial challenge. How can one ensure

1

service, adaptivity, and security when individual subsystems are evolving independently with

little or no coordination?

We propose to address these questions from the perspective of software architecture [39]

and architectural styles [45]. Valued software properties arise from software architecture:

scalability, evolvability, dynamism, traceability [32], performance, reliability, and cost [30,

40], only to name a few. Software architecture can also arise accountability, that is, the degree

to which it can justify actions, effects, qualities, and properties associated to the system it

grounds, and facilitate the obtention of insightful information about how the system behaves.

Among the many forms of measurement that can be used to evaluate and understand

systems behavior, this research study focuses on capability accounting, in which the principal

unit of analysis is the concept of capability (an unforgeable right to perform some action

within a system [10]). We propose that capability accounting – tracking the creation, trans-

fer, and exercise of capability – is fundamental to the debugging, verification, and forensic

auditing of decentralized systems.

This work is grounded on COmputationAl State Transfer (COAST) [21], an archi-

tectural style for secure and adaptive decentralized systems. COAST constructions permit

and encourage continuous accounting and systemic auditing to verify the correct operation

and integrity of critical elements of a decentralized system. COAST provides new principles

to support the design of openly secure decentralized applications, and addresses security as

a fundamental concern. COAST targets decentralized applications where organizations offer

services formulated as execution hosts (called peers) and third-party organizations create

their own custom-tailored versions of services by dispatching computations to asset-bearing

peers. Decentralized security and guarding against untrusted or malicious mobile code are

principal concerns. To this end, COAST offers two distinct forms of capability, (1) func-

tional capability: what a computation may do, and (2) communication capability:

when, how, and with whom a computation may communicate. This work focuses on com-

munication capability accounting, that is, the activities involved in acquiring, examining and

2

acting using capabilities as the principal unit of analysis.

In COAST, communications between peers are both granted and constrained by capabil-

ity URLs (CURLs). A CURL conveys the ability for two computations to communicate.

A CURL c issued by a computation x, is an unguessable, unforgeable and tamper-proof

reference to x that grants to any computation y holding c the power to transmit messages

to x.

The reference COAST implementation used throughout this study is Motile/Island [22],

a new generation of infrastructure that supports more sophisticated forms of computational

exchange.

1.1 Research

1.1.1 Research Goals

This research work explores capability accounting in COAST systems, and focuses on com-

munication capabilities. The research goals are:

• Assess feasibility of capability accounting to help design, develop, operate, and main-

tain COAST systems.

• Propose a framework to structure the practice of capability accounting.

• Explore means to structure and analyze capability events to obtain insightful informa-

tion about a system.

Assessing feasibility of capability accounting

As part of this research work, the COAST reference implementation (Motile/Island platform)

was augmented in order to capture communication capability events and store them in a

database for inspection and analysis as shown in Figure 1.1. Additionally, A tool called

3

COMET (COast Monitoring Event Tool) was built to inspect and analyze capability events,

detect event patterns, highlight useful information, and report anomalies.

Figure 1.1: COAST applications capture capability events and store them in a database.
COMET performs different types of analyses using the collected data.

COMET performs evaluation-based analysis, where observed event patterns and expected

patterns are compared, in order to determine whether a system behaves as it should.

For the evaluation of this study, a COAST-based prototype of an electronic trading system

was developed to illustrate how capability accounting can be used by developers to: debug a

system, inspect the behavior of a component, and monitor its security. The prototype models

five of the most important components involved in trading: a Market Data Server, a Risk

Management Server, an Order Router, an Execution Host, and a Trading Computation1. It

also represents the interaction of three distinct organizations: a Trading Firm, a Broker, and

an Exchange.

It is known in advance that any trading computation must perform some actions and

interactions with the components offered by the Broker and the Exchange. COMET was

used to analyze capability events produced by the execution of the prototype, and verify its

proper execution, that is, to show evidence that the expected actions and interactions were

carried out, and that no potentially malicious actions have taken place.

A framework for capability accounting

The framework for capability accounting proposed in this study encompasses a definition of

which capability events are to be captured and examined, and a comprehensive, end-to-end
1The prototype design was inspired by the Argo Trading Platform:

http://www.argocons.com/platform.html.

4

list of activities to guide the implementation of capability accounting.

Three different types of events are captured and analyzed: the creation, exploitation,

and transfer of communication capabilities. Creation occurs when a COAST peer creates a

CURL which allows other peers to send messages to it. Exploitation occurs when one peer

sends a message to another peer via a CURL. Transfer occurs when a peer sends a CURL

embedded in a message to another peer.

The framework includes a series of activities that articulate the means to acquire and

examine capability events in compliance with technical, organizational, business-related, and

legal protocols and regulations, and act upon the evaluation results of capabilities analysis.

The activities included in the model are: capture, transfer, storage, query, preparation,

evaluation, reporting, and action.

Representation of capabilities and analysis techniques

A number of evaluation techniques and operators are proposed by this research study, and

implemented in COMET. They were used as part of the evaluation to examine the capability

events generated by the execution of the prototype and the trading computations.

1.1.2 Research Questions

The research questions I embarked to answer in this research study are the following:

• Is capability accounting a well-suited form of architectural accountability?

• How can capability accounting be used to help build, operate and maintain secure

decentralized systems?

• Is the financial trading domain a suitable domain for capability accounting?

5

1.2 Organization of this work

The organization of this work is as follows. This chapter presents the topic of decentralized

systems, and poses their salient issues. It explains the focus of this study – architectural

accountability and capability accounting – introduces COAST, the architectural style used

for this work, and describes the research goals and research questions I proposed to answer.

Chapter 2 revisits the COAST architectural style. It explains its principles, structural el-

ements and concepts, and rationale, as well as provides an overview of Motile/Island, the

reference implementation. Chapter 3 presents capability accounting, the elements that are

to be studied, an end-to-end framework for capability accounting implementation, and two

distinct analysis: evaluation-based and exploratory. Chapter 4 describes the implementation

followed by this work, the tools and technological stack used, and precisely defines how the

activities in the proposed framework are carried out to implement capability accounting.

Chapter 5 describes COMET, the main tool used in this study to examine capability events.

It explains its high-level architecture, principal components, and techniques and operators

it offers to analyze capabilities. Chapter 6 provides an overview of the electronic trading

domain, why it is a relevant domain for decentralized systems, its impact on the global

economy, and major software-related incidents occurred in the last five years as well as the

challenges on designing, developing, operating, and maintaining decentralized systems within

the domain. Chapter 7 presents the evaluation of this work. A prototype of an electronic

trading system, various computations, and all the required infrastructure to support capa-

bility accounting were developed in order to explore the topic of this research work and to

validate the findings. Chapter 8 discusses lessons learned, reflections, and issues that arose

throughout this work. In particular, it focuses on the benefits of applying capability account-

ing from application-level development, considerations that must be taken depending on the

kind of analysis that is to be performed, and capability accounting on domain-dependent

and domain-independent issues. It finally presents a real case on financial trading based

on a technique called spoofing, and proposes an approach based on COAST and capability

6

accounting to mitigate the encountered consequences. Chapter 9 concludes this work revis-

iting what has been done, my findings, questions that still remain open, and suggestions for

future work.

7

Chapter 2

The COAST architectural style

An architectural style is designed to produce architectures that arise certain properties and

qualities. Software architecture is the set of principal design decisions about a system,

governs the most essential aspects of how a software system is designed, and elicits beneficial

qualities in the resulting systems [45].

The COmputAtional State Transfer (COAST) architectural style plays a funda-

mental role in this study of capability accounting. There are four essential reasons that

explain why COAST is a natural fit for this work, whose context is secure decentralized

systems and Service-Oriented Architectures (SOA):

1. COAST implements capability-based security. To this end, capabilities are well-defined

abstractions, treated as first-class architectural elements, making COAST accountability-

friendly, and a natural candidate to evaluate capability accounting.

2. COAST is specifically designed for decentralized systems: all the constraints imposed

by COAST are intended to help developing secure decentralized systems with strong

emphasis in adaptability.

3. In COAST, security is enforced from the ground up; it is an aspect present in all

decisions that designers and developers make.

8

4. COAST offers fundamental support for SOA systems via computational exchange and

mobile code.

The rest of this chapter explains the fundamental principles and structural elements of

COAST, and introduces the Motile/Island reference implementation.

2.1 Principles

COAST is based on the following principles [21]:

• All services are computations whose sole means of interaction is the asynchronous mes-

saging of closures (functions plus their lexical-scope bindings), continuations (snapshots

of execution state), and binding environments (maps of name/value pairs).

• All computations execute within the confines of some execution site (E,B) where E is

an execution engine and B a binding environment.

• All computations are named by Capability URLs (CURLs), unforgeable, crypto-

graphic structures that convey the authority to communicate. Therefore, computation

x may deliver a message (closure, continuation, or binding environment) to computa-

tion y if and only if x holds a CURL cy of y. The interpretation of a message delivered

to computation y via CURL cy is cy-dependent.

Figure 2.1 illustrates computational exchange within a COAST environment. Peer P1 is

zoomed-in to display the internal components of a COAST peer. It contains four computa-

tions x1, x2, x3, and x4, two Execution Engines, and three Binding Environments. Peer P2

runs computation x5, who holds CURLs c1 and c3. Peer P3 runs one computation x6, who

holds a CURL c3.

The computation x5 holds CURLs c1 and c3, issued by computations x1 and x3 respec-

tively, and computation x6 holds c3. Since CURLs are the only means to communicate, the

only valid communications in this scenario are from x5 to x1 via c1, x5 to x3 via c3, and x6

9

Figure 2.1: Three peers interacting following the COAST style. Peer P1 is zoomed-in to
illustrate COAST architectural elements.

to x3 via c3. It is worth noting that communications are unidirectional, that is, if x has the

right to send a message to y, it does not imply that y can send a message to x. For that to

happen, y needs to hold a CURL issued by x.

COAST relies on two security principles: the Principle of Least Authority (POLA) [41]

and capability-based security [10]. POLA dictates the methodical and deliberate allocation of

minimal capability across the entire system; that is, the default response upon an accessibility

question is to deny, unless the principal can prove that authority should be granted. In

capability-based security, a capability is an unforgeable key that grants to its holder both

rights and authority. In COAST, the right to send a message to a computation x is granted

by holding a CURL issued by x.

10

2.2 Functional and communication capabilities

A capability [16] is an unforgeable reference whose possession confers both authority and

rights to a principal. COAST differentiates between functional and communication capa-

bilities. The former refers to the functions available to a computation (i.e. its binding

environment). The latter conveys to computations the ability to transmit messages to other

computations or receive messages from other computations.

2.3 Architectural elements

2.3.1 Execution sites

An execution site (E,B) is defined as a pair (execution engine, binding environment) and

works as a host where computations are confined to run. Multiple execution environments

can exist within the same host. An execution engine defines the semantics in which a

computation is evaluated, and can change from one computation to another. Examples of

execution engines are a Java Virtual Machine, a Racket interpreter and a Javascript JIT

compiler. A binding environment is a key/value map that represents all the functions and

global variables available to a computation. All the free variables of a computation must be

resolved within the binding environment or the execution of the computation is terminated.

A binding environment is the architectural element that reifies functional capabilities in

COAST, it determines what a computation can (and cannot) do.

2.3.2 Capability URLs (CURLs)

CURLs convey the ability to communicate between computations. A CURL u issued by a

computation x is an unguessable, unforgeable, tamper-proof reference to x, as it contains

cryptographic material identifying x and is signed by x’s underlying execution host [21].

A CURL issued by, and referencing x may be held by one or more computations y. The

11

CURL u designates the address of computation x, contains arbitrary x-specific metadata

(including closures), and enables any computation y holding u to transmit messages to x.

When a message is sent using a CURL, both the message and the CURL are delivered to

the recipient. Computations use the CURLs they issue to constrain their interactions with

other computations and to bound the services they offer. Three main benefits arise from the

use of CURLs:

• On-demand custom-tailored services: CURLs denote the services offered by a

computation x to computations y holding a CURL issued by x. As a result, a compu-

tation x can offer different implementations to clients by issuing different CURLs. The

evaluation of a message m that arrives via CURL c is constrained and governed by

CURL c’s execution environment as it defines the set of functions and global variables

available to the message m.

• Powerful communication model: Computation y can send a message to another

computation x, if and only if, y holds a CURL c issued by x. Consequently, interactions

among computations is restricted by the possession of their CURLs. Additionally, a

CURL c can be issued and revoked at any time, providing its issuer x fine-grained

control of which other computations y can communicate with x.

• Defensive message interpretation: The evaluation semantics of a message m sent

via CURL c by a computation x is x-specific and determined by x. The computation

x assigns a binding environment B to a CURL c when x creates c. However, other

computations y can send arbitrary data to x via c; as a consequence, x must (and is

responsible for) protect itself against potentially malicious closures contained in the

message m. By offering the minimal functional capability to the evaluation of m, x

can minimize the impact of a potential attack.

12

2.3.3 COAST Computations

A COAST computation x is the execution of a closure c in the context of an execution site

(E,B). An execution engine E may impose technical limits and execution semantics such

as CPU cycles, memory available, storage or network bandwidth. A binding environment B

defines the functional capability of c by providing the functions and global variables available

to c. The closure c can augment its functional capability by receiving binding environments

in messages received from other computations.

2.4 The Motile/Island implementation

An architectural style is a named collection of architectural design decisions that are applica-

ble in a given development context, constrain architectural design decisions that are specific

to a particular system within that context, and elicit beneficial qualities in each resulting

system [45]. Architectural styles are by no means linked to implementation details, although

architectural frameworks and programming languages may reify an architectural style. For

example, the Map-Reduce [15] architectural style is implemented by Hadoop1 but there are

no additional constraints imposed by the inverse relationship.

Motile/Island is a reference implementation of the COAST architectural style. It provides

an implementation for the COAST architectural elements.

Motile is a single-assignment dialect of Scheme deliberately created for defining COAST

computations and the messages and CURLs they exchange [21, 22]. Motile is the language

in which closures are written for computational exchange. All Motile data structures are

designed persistent and immutable to avoid shared memory problems [37].
1http://hadoop.apache.org/

13

2.4.1 Islands

An Island is a single, homogeneous address-space occupied by one or more Motile islets

[23]. An Island represents the concept of a COAST execution host.

Islands are self-certifying [27] entities, each of them is associated to a public key, all

their CURLs issued are cryptographically signed, and all communications among them are

encrypted. An Island is instantiated with one or more execution engines, binding environ-

ments, and trusted islets that bootstrap the COAST system.

2.4.2 Islets

In Motile/Island, islets are implemented as actors [5], that is, computational agents capable

of receiving and sending messages asynchronously. In addition to transmitting and receiving

messages, each actor is also capable of conducting private computations and spawning new

islets. An actor is initialized with a specific binding environment, thus, with a well-defined

functional capability.

2.4.3 Compilation and Serialization

Motile is both a programming language and a Scheme-to-Scheme compiler [22]. In par-

ticular, the compilation process translates from the Motile language to Racket2, another

Scheme-based programming language. After compilation, Motile structures are serialized

and transmitted to other islets. On the other end, the closure are deserialized and then

received by a given islet. It is worth noting that all free variables transmitted to an islet are

rebound to the binding environment associated to the CURL used for the communication.

2http://racket-lang.org/

14

Chapter 3

Capability accounting

As previously explained, a capability is an unforgeable reference whose possession confers

both authority and rights to a principal. Capability accounting is the practice of produc-

ing and maintaining a record or statement of capability events relating to a particular period

or purpose, as well as the examination of those capability logs, that is, how the produced

records can be queried, correlated, and analyzed in order to help design, develop, operate,

and maintain secure decentralized systems, and provide the means, when possible, to assign

blame upon malicious acts, or actions that inadvertently, break or jeopardize the integrity

of a system.

3.1 Capability events

A capability event is a single occurrence of a process applied or related to a capability

[38]. Examples of capability events are creation, exploitation, revocation, transfer, and

rejection. Implementations of capability accounting must define which capability events are

to be considered, which activities wlll take place, and in which form. Section 4.1 defines

the capability events that were used during this study. Section 4.2 explains the included

activities, and the tasks performed.

15

3.2 Activities

Capability accounting encompasses a series of activities that regulate and articulate the

means to acquire and analyze capability events in compliance with technical, organizational,

business-related, and legal protocols and regulations. Capability accounting relies on a frame-

work that emphasizes systemic auditing, that is, the sanctioned inspection of capability logs

of one or more parties, and auditing policy, the manner in which capability logs are exam-

ined, correlated, and reported, and defines the potentially required additional actions (e.g.

revoking a capability, emitting a system alert, refusing service to a specific party).

The end-to-end framework used throughout this research project is described below. It

models all the required activities that enable this implementation of capability accounting

but it can be used as well as a reference for future implementations. Modeling all the tasks

involved using an end-to-end framework helps understand their responsibilities, organization

and dependencies as well as provides a common language for this study. Each activity usually

relies on information produced by one or more of the previous activities, thus, the order of

execution needs to be taken into consideration, although it is not mandatory to execute the

activities immediately one after another. The activities included in the proposed model are:

capture, transfer, storage, query, preparation, evaluation, reporting, and action.

3.2.1 Capture

Capturing involves all the considerations related to how, when, and where capability events

are captured. It describes the technical, organizational and privacy-aware protocols and

policies to capture information. For example, what information can be technically and legally

captured? Which points in the software systems need to be instrumented or monitored to

acquire the required information? Is the information available for acquisition all the time or

only in certain periods? Is it feasible (i.e. possible without pushing the underlying system

beyond acceptable execution parameters such as performance and latency) to obtain all the

16

capability events? Are there mechanisms that need to be put in place to guarantee capturing

feasibility? Is there any transformation in the acquired events that needs to be applied?

3.2.2 Transfer

This activity describes the mechanisms used to ship out the acquired information. This is

especially important when platforms have to be instrumented for capturing. Some of the

questions that need to be addressed during this activity are: How is information routed to

storage upon capturing? How is data serialized in order to be transferred? Is it necessary to

wrap or represent the data in any specific manner? Which mechanisms are to be placed to

enable the consumption of the transferred data?

3.2.3 Storage

The considerations during this activity are related to how capability events are stored for

inspection. It includes the technical decisions to enable storing events as well as legal and

privacy compliance, and the integration with the consecutive activities: transferring and

querying. Some of the questions to address are: What database system(s) are to be used for

storing capability events? Is it required to encrypt the stored information? In that case, what

are the encryption parameters (e.g. algorithms, keys)? Are there pieces of data that cannot

be stored for privacy or legal reasons, or that need to be stored separately? Are there physical

or geographical constraints to store the information? Are there replication, performance or

other non-functional requirements for storing capability events? What mechanisms are to

be in place for retrieving the stored information?

3.2.4 Query

This activity defines where capability events are obtained or retrieved from, the manner in

which the information is accessed, and the timing and frequency for these actions. Addition-

17

ally, the technical, legal and organizational parameters for obtaining the data as well as the

use of database APIs are considerations relevant to this activity. For example, if capability

events are stored in a database, this activity will be responsible for polling the data from

it, and defining how often it will poll the database. Instead, if capability events are not

stored (real-time analysis), this activity will include setting up communication mechanisms

to subscribe for the events, or to enable other parties to send the captured events. Additional

concerns that this activity must address are authentication and any other requirement to

access the data, and data consolidation.

3.2.5 Data preparation

During this activity capability events are processed to be prepared for examination. Sub-

activities involved during this task are:

• Data selection: Defining which capability events are to be included in the analysis,

and which ones must be ignored. In addition, choosing what information from each

capability event has to be considered.

• Aggregation: Characterizing how capability events must be combined or grouped to

produce more complex structures.

• Correlation: Establishing relationships between events.

Data preparation may be coupled with the business logic behind a system evaluation.

Let us say that performing a system action a (e.g. accessing a peer’s service) produces a

capability event e, as a side effect. Imagine it is necessary to verify that the action a happens

no more than n times within t seconds. During the data preparation activity, the number of

capability events e seen within t seconds will be grouped into a structure such as a list or a

counter, that is, a structure more suitable for the information essentially required.

Therefore, this activity may also include algorithms, mechanisms and business logic to

model events and prepare them for evaluation or visual representation.

18

3.2.6 Evaluation

The evaluation activity is likely to be the most representative in verification-based analysis.

Tasks performed during evaluation aim to verify whether the capability events seen satisfy

a given criteria. That is, this activity embodies the comparison between observed events,

either in raw format or combined into more complex structures, and a comparable, expected

entity. The evaluation encompasses the analysis and interpretation of incoming data to verify

whether the system’s execution meets any form of requirements desirable or mandatory (e.g.

performance, latency, legal regulations, organizational business rules).

Designing the evaluation activity includes the definition of its algorithms and parameters.

For example, imagine that capabilities in a system are to be transferred from peer A to peer

D but with certain constraints. That is, it is acceptable that capabilities x,y and z are

shipped from A to D, as long as they pass through B or C. The data preparation activity

receives all capability events related to CURL transfers and correlates them forming lists of

related events. The evaluation activity receives paths of exchange (i.e. lists of peers P1...Pn

where a set of capabilities passed through) and verifies whether they satisfy the given criteria.

In order to do so, it is required to define 1) the algorithm to verify whether a path (P1, P2, P3)

is correct (i.e. P2 must be a valid intermediate peer), and 2) the parameters for performing

such verification (i.e. define which are the valid peers: if P1 = A and P3 = D then P2 = B

or P2 = C).

3.2.7 Reporting

Reporting includes the generation of representations for the collected data and evaluation

results. Some of the questions that must be addressed during this activity are: what infor-

mation has to be reported? Which representation methods are to be used? Where must

information be made available? Which mechanisms must be put in place so that the inter-

ested and authorized principals can get access to the reports? Are reports only temporary

or do they need to be stored for future examination?

19

3.2.8 Action

During this activity, responses upon collected and analyzed information, are to take place.

That is, responses depending on the collected data and the results of the performed eval-

uations. Those responses can take place within the software under monitoring, within the

whole information system (i.e. hardware, software, process and people), at the intra- or

inter-organizational levels or on an external systems. Furthermore, responses do not neces-

sarily need to be automatic; a valid reaction could be a notification for software developers

that a piece of code is malfunctioning and needs to be fixed or checked.

Reactions within the examined software refer to COAST-based actions that aim to ad-

just the parameters of execution of the monitored software, particularly, actions to prevent

or mitigate harmful effects, or to assure that the system continues behaving as expected.

Examples of possible actions at this level are the revocation of CURLs, the deployment of

computations (agents) to correct a specific situation, and the replacement of computations

to change the current behavior.

Responses related to the entire information system affect either the hardware, software,

people or process supporting the information system as well as the monitoring system itself.

For example, if an evaluation reports that the instrumented parts of the system under moni-

toring are impacting negatively the system performance, a viable reaction could be changing

the instrumentation method (e.g. sampling events instead of capturing all of them) or dis-

abling instrumentation in some of the points (potentially limiting some analyses, as discussed

in Section 8.2). Additionally, the interaction between users and the software, and how data

is manually or automatically prepared for input may need to be adjusted.

The activities listed in this section aim to provide a guideline for capability accounting

implementation but are not shaped as a formal model. The intention is to create awareness

of the activities that are very likely to take place, highlight dependencies between them, and

raise many of the questions that analysts should address.

20

3.3 Exploratory and evaluation-based analyses

The proposed framework enables more than one venue for analysis. Depending on the nature

of the process to model or the information to obtain, some framework activities are to be

included or omitted, and each activity included will take place on a specific form. This

research study focuses on evaluation-based analysis, that is, an expected behavior exists,

and capability accounting is used to determine whether a system under inspection behaves

in that manner. It is known in advance that the execution of the system should include

specific actions and interactions, and that particular capability events should be generated

as a side effect. Even if the capability events are not completely known, at least, some

information about them can be anticipated. Therefore, they can be somehow compared with

the observed events. Section 4 describes the implementation of evaluation-based capability

accounting used throughout this work.

Another possible implementation of capability accounting is to enable exploratory analy-

sis. The difference with the evaluation-based analysis is that, when exploring a system, there

is no certainty about how the system should behave. That is, either there is no knowledge

about the system or there are some indications that want to be confirmed by seeing the

dynamics of the system: Who is communicating to whom?, with which frequency?, are there

computations accumulating capabilities? are there capabilities being excessively revoked at

any point?

Exploratory analysis can be used to observe, understand, and help create models than

later on will be implemented using evaluation-based capability analysis [7].

An exploratory analysis based on capability accounting would make use of the capture,

transfer, storage, query, and data preparation activities; because there is no comparison

available, the evaluation would be omitted, and reporting would take place to present the

findings. The action activity may trigger responses, although it is unlikely that they can be

automated.

21

Chapter 4

Implementation of Capability accounting

for evaluation

This chapter covers the full technological stack used to implement capability accounting for

evaluation. It provides a comprehensive view of all the activities involved, the tools that

were used, and the ones created. The entire implementation is aligned with the framework

proposed in Chapter 3.

4.1 Capability events

Capability events are the principal unit of analysis of capability accounting. The capability

events considered for this study are creation, exploitation, and transfer. Creation oc-

curs when a COAST peer creates a CURL which allows other peers to send messages to it.

Exploitation occurs when one peer sends a message to another peer via a CURL. Transfer

occurs when a peer sends a CURL embedded in a message to another peer. In this imple-

mentation, capability events are represented as a map of key/values. Section 4.3.1 details

which fields are to be considered for analysis.

22

4.2 Activities

The activities included for capability accounting and the tasks executed within their context

depend on the kind of information to obtain and the analysis to perform. This implemen-

tation is evaluation-based, that is, the goal is to compare observed capability events with

expected patterns modeled beforehand.

Capture is performed by an instrumented version of the Motile/Island platform. Trans-

fer is carried out by a Racket STOMP [1] module added to the Motile/Island platform, the

RabbitMQ1 message broker, and a tool that connects RabbitMQ with MongoDB2. Storage

is performed by the NoSQL MongoDB database. Query, data preparation, evaluation,

and reporting are implemented by COMET. Next section explains how these tools were

integrated and used.

4.3 Tools for capability accounting

Figure 4.1 illustrates all the tools that were used for implementing capability accounting,

and how they interact with each other. Below, a description of all of those tools and their

connections is provided.

Figure 4.1: Overview of capability accounting for evaluation.

1http://www.rabbitmq.com/
2https://www.mongodb.org

23

4.3.1 Instrumented Motile/Island implementation

As mentioned in Section 2.4, Motile/Island is the reference implementation of the COAST

architectural style. In order to capture the capability events required for this study, a few

probes were added in specific pieces of code. Those small routines capture when 1) an Island

is started, 2) a new CURL is created, 3) a message is sent via a CURL, 4) a message is

received via a CURL, and 5) a CURL is transferred as part of the content of a message.

After acquiring the events, those routines pass them to the Racket STOMP module to be

shipped out.

Each captured capability event contains up to 7 fields:

• source-island: The Island who originated the capability event.

• source-islet: The Islet who originated the capability event.

• time: The Island’s time when the capability event was produced.

• curl-id: The ID of the CURL associated to the event.

• place: Whether the communication was within the same Island (i.e. intra) or between

different Islands (i.e. inter).

• type: The capability event type: start-island, curl-new, curl-send, curl-receive or curl-

transfer.

• mq-time: The time when the event arrived at the Broker-to-DB tool.

Table 4.1 details the captured fields for each event type.

Depending on the type of analysis to perform, some fields will need to be used but others

may need to be ignored. For example, in COAST, CURLs are unforgeable and tamper-proof,

thus, if a computation x receives a message m from another computation y, x can trust the

curl-id included in m because the CURL includes cryptographic information. However, the

24

Capability event source-island source-islet time curl-id place type mq-time

island-start X X X X

curl-new X X X X X X X

curl-send X X X X X X X

curl-receive X X X X X X

curl-transfer X X X X X X X

Table 4.1: Information available in capability events.

time field may need to be carefully interpreted because it cannot be guaranteed that the

sender did not forge it.

The size of Motile/Island (COAST version b20150315), measured in SLOC, including

tests and library bindings is 36457. The size of the instrumented version of Motile/Island is

37134 SLOC. Although no systematic tests were performed to compare performance in both

implementations, the penalty in the instrumented version was not noticeable.

4.3.2 Racket STOMP module

The STOMP module was written in Racket 6.2 based on racket-stomp 3.2 3. It implements

STOMP 1.1 [1], and it is integrated in the instrumented Motile/Island platform. The Racket

STOMP module is responsible for connecting to the RabbitMQ message broker and sending

the captured events.

4.3.3 Broker-to-DB bridge

The Broker-to-DB bridge is a tool written in Java 7, based on Apache Camel4, that subscribes

to RabbitMQ to receive events from a queue using the AMQP protocol 5, and inserts them

in a MongoDB collection.
3https://github.com/tonyg/racket-stomp
4http://camel.apache.org/
5http://www.amqp.org/

25

4.3.4 RabbitMQ

RabbitMQ is an enterprise reliable messaging system. It is used to route events from

Motile/Island to MongoDB. Other consumers of capability events can connect to it to per-

form other analyses.

4.3.5 MongoDB

MongoDB is a NoSQL, high-performance database used to store capability events for future

analysis.

4.3.6 COast Monitoring Event Tool (COMET)

COMET is a tool written in Java 7, responsible for retrieving capability events from Mon-

goDB, and evaluating whether they match an execution model or not. It offers various

techniques and operators to process capability events. Details about COMET and the fea-

tures it offers are provided in Chapter 5.

26

Chapter 5

COast Monitoring Event Tool (COMET)

As part of assessing capability accounting, a tool called COast Monitoring Event Tool

(COMET) was created to query, prepare, evaluate and report according to the capabil-

ity events found in a database. COMET is an open-source application written 100% in Java

that allows users to create assertions to verify the proper execution of a software system

based on the observed capability events generated by the system under monitoring.

5.1 High-level architecture

The principal components in COMET are the Configuration Reader, Evaluation implemen-

tations, Evaluations Manager, and Query Handler, as illustrated in Figure 5.1.

Figure 5.1: COMET High-Level Architecture.

27

5.1.1 Configuration Reader

This component is responsible for reading and parsing an XML configuration file that con-

tains parameters for execution as well as the definition of all of the evaluations that are to

be performed.

5.1.2 Evaluation Implementations

An evaluation represents how data has to be prepared for analysis and the logic to verify

whether the observed events correspond to the expected events. Implemented evaluations

are listed in Section 5.2.2.

5.1.3 Evaluations Manager

The main responsibilities of this component are the orchestration of the evaluations, that is,

preparing the evaluations to be launched and controlling their execution as well as showing

the results to the user.

5.1.4 Query Handler

A Query Handler is a database-dependent component that enables the retrieval of capability

events from a database.

5.2 Configuration

COMET provides, out-of-the-box, a self-documented XML file that can be used as a template

for custom configuration files.

The configuration file includes two main sections: global properties and assertions. The

former defines all the properties that are needed for the entire analysis such as database cre-

dentials, and global parameters for all the evaluations. The latter defines all the verifications

28

that will be performed and their parameters of execution.

5.2.1 Global properties

Property Definition

mongo-host Host where the MongoDB instance that contains the capability events is

running.

mongo-port Port where the MongoDB instance that contains the capability events is

running.

mongo-db Database where capability events are stored.

mongo-collection Collection where capability events are stored.

last-component Because the capability events logged in the database can span multiple

executions of the system under examination, this property defines the

starting point for analysis. It basically defines, as a starting point, the

time when a specific component was launched.

correlation-field For assertions where the order of capability events is considered, this

field is used to determine whether an event appeared before another.

Table 5.1: Global properties in COMET configuration.

For example, if last-component is trader and correlation-field is mq-time then the starting

point of the analysis will be the last time when the trader was launched, and all capability

events whose mq-time is greater than that, will be included.

5.2.2 Evaluations

An evaluation verifies whether the observed entities satisfy a given assertion. There are five

possible results for this process:

• PASS: The observed entities satisfy the requirements posed by the assertion.

29

• FAIL: The observed entities do not satisfy the requirements posed by the assertion.

• WARNING: The observed entities either do not satisfy the requirements but that does

not impose significant problems, or they do satisfy the requirements but with minor

(often unimportant) differences.

• ERROR: The evaluation could not be performed because an error (e.g. an exception)

occurred during the process.

• UNKNOWN: Either the evaluation could not be started or it was not able to arrive at

a result.

COMET implements different types of evaluations to correlate and analyze capability

events: sequence, volume, match, when, exists, not, unordered, and or. Most of

them can be combined to provide more flexibility.

Sequence evaluation

Sequence evaluates whether capability events with certain properties were or were not seen,

and the order in which they should or should not have appeared.

Each sequence is defined as a series of ordered capability events. For each capability

event, it is possible to define the values of the fields that are to be present. Additionally,

COMET allows the use of wildcards to connect different events. The following is an example

of a sequence assertion:

1 <sequence description="Island A ships a new inter CURL.">
2 <event description="Island A creates a new inter CURL.">
3 <source-island>A</source-island>
4 <type>curl-new</type>
5 <place>inter</place>
6 <curl-id>$capture:curl-A</curl-id>
7 </event>
8 <event description="A transfers the new inter CURL.">
9 <source-island>A</source-island>

10 <type>curl-transfer</type>
11 <curl-id>$read:curl-A</curl-id>

30

12 </event>
13 </sequence>

The previous sequence assertion is compounded by two event patterns that had to be

seen in the given order within the analysis period to satisfy the assertion.

The first event defines a capability event that represents the creation (type: curl-new)

of a CURL for inter-island communication in Island A. The $capture:curl-A value specifies

that the value present in curl-id has to be temporarily stored under the curl-A key.

The second event defines a capability event representing the transfer of the CURL created

in the previous event. It specifies that Island A is shipping out (type: curl-transfer) a CURL

whose curl-id is the one stored under the curl-A key.

Volume evaluation

Volume evaluates whether a capability event matching certain properties is seen between n

and m times within a specific time period. The following is an example of a volume assertion:

1 <volume description="Island A uses the service represented by CURL abc between 5 and 10
times per second" minrange="5" maxrange="10" timerange="1" unit="seconds">↪→

2 <event description="Island A uses service referenced by abc">
3 <source-island>A</source-island>
4 <type>curl-send</type>
5 <place>inter</place>
6 <curl-id>abc</curl-id>
7 </event>
8 </volume>

In the previous example, the given event pattern represents that a computation running

in Island A sends (type:curl-send) an inter-island (place:inter) message using a CURL whose

ID is abc. Capability events matching this pattern must appear between 5 and 10 times

within 1 second.

31

Match evaluation

The Match evaluation verifies whether a previously seen event satisfies certain criteria. In

order to identify events, the attribute capture must be declared in an event evaluation, and

used as captureKey in the Match evaluation. The following is an example of this type of

evaluation:

1 <event description="A computation in Island A created a CURL." capture="new-curl">
2 <source-island>A</source-island>
3 <type>curl-new</type>
4 </event>
5

6 <match description="CURL is xyz" captureKey="new-curl">
7 <event>
8 <curl-id>xyz</curl-id>
9 </event>

10 </match>

In this example, the event evaluation passes when a computation in the Island A creates

a new CURL (type:curl-new). That event is temporarily stored under the new-curl key

(capture=“new-curl”). When Match is evaluated, it looks up the event under the new-curl

key and compares it with the fields declared under <event>, in this case, curl-id=xyz.

When evaluation

The When evaluation is compounded of a condition and a predicate. It verifies that every

time the condition (a list of evaluations [e0...em]) passes, the predicate (a subsequent list

of evaluations [en...ez]) must pass as well. The number of evaluations in the condition is

determined by the conditions attribute.

1 <when description="Island A only exploits CURL xyz" conditions="1">
2 <event description="Island A sends a message via c" capture="send-event">
3 <source-island>A</source-island>
4 <type>curl-send</type>
5 </event>
6

7 <match description="CURL is xyz" captureKey="send-event">
8 <event>
9 <curl-id>xyz</curl-id>

32

10 </event>
11 </match>
12 </when>

Exists evaluation

The Exists evaluation is similar to theWhen evaluation with the difference that Exists passes

if the pattern is matched at least once, instead of every time.

1 <exists description="Island A only exploits CURL xyz" mandatory="1">
2 <event description="Island A sends a message via c" capture="send-event">
3 <source-island>A</source-island>
4 <type>curl-send</type>
5 </event>
6

7 <match description="CURL is xyz" captureKey="send-event">
8 <event>
9 <curl-id>xyz</curl-id>

10 </event>
11 </match>
12 </when>

The example is the same as in the When evaluation. However, in this evaluation, it

passes if and only if the condition and the predicate pass at least once. The size of the list

of conditions is determined by the mandatory attribute. The rationale for this example is

that Island A must send a message via CURL xyz at least once.

Not evaluation

The Not evaluation changes the result from an inner evaluation. The Not evaluation must

have only one nested evaluation. Table 5.2 shows the modifications applied by Not to the

result of the inner evaluation.

33

Inner result Not result

PASS FAIL

FAIL PASS

WARNING PASS

ERROR ERROR

UNKNOWN UNKNOWN

Table 5.2: How the Not evaluation transforms the result of its nested evaluation.

Unordered evaluation

The Unordered evaluation verifies that all of its inner evaluations pass, regardless of the

order.

1 <unordered description="Island A and B send messages.">
2 <event description="Island A sends a message">
3 <source-island>A</source-island>
4 <type>curl-send</type>
5 </event>
6 <event description="Island B sends a message">
7 <source-island>B</source-island>
8 <type>curl-send</type>
9 </event>

10 </unordered>

The Unordered evaluation passes if and only if the two events were seen regardless of

which one appeared first.

Or evaluation

The Or evaluation verifies that, at least, one of the inner evaluations pass.

1 <or description="Island A or B send messages.">
2 <event description="Island A sends a message">
3 <source-island>A</source-island>
4 <type>curl-send</type>
5 </event>
6 <event description="Island B sends a message">
7 <source-island>B</source-island>

34

8 <type>curl-send</type>
9 </event>

10 </or>

The Or evaluation passes if Island A or Island B sends a message.

5.2.3 Output

Final outcome displays the result of the entire execution and breaks down all the evaluations

showing the individual results and info associated to them. As evaluations can be nested,

the format of the output is displayed as a tree:

[FINAL RESULT] <Overall description>. Type: Unordered Message: <Extra information>
[RESULT 1] <Description of evaluation 1> Type: <Evaluation type> Message: <Extra
information>

[RESULT 1.1] <Description of evaluation 1.1> Type: <Evaluation type> Message:
<Extra information>
[RESULT 1.2] <Description of evaluation 1.2> Type: <Evaluation type> Message:
<Extra information>

[RESULT 2] <Description of evaluation 2> Type: <Evaluation type> Message: <Extra
information>

[RESULT 2.1] <Description of evaluation 2.1> Type: <Evaluation type> Message:
<Extra information>

[RESULT 3] <Description of evaluation 3> Type: >Evaluation type> Message: <Extra
information>

Themessage field is primarily used to display contextual information when an evaluation

fails. For example, if an event is not found, the following message will be displayed:

[FAILED] <Description of evaluation>. Type: Event Message: Event [type:curl-send (EQ),
source-island:A (EQ), curl-id:xyz (EQ), mq-time:1439083845520 (GE)] could not be found.

The format to describe an event is a set of fields defined as key : value(operator). The

operator can be equal (EQ), greater (GT), greater or equal (GE), lower (LT), lower or equal

(LE), or not equal (NE).

The default type of the root evaluation is Unordered.

35

Chapter 6

Electronic trading and software systems

Decentralized systems can be found in several domains such as healthcare, e-government,

emergency-response, army, and electronic trading [23, 21]. The basic nature of such systems

is that they are distributed systems in which components evolve with little or no coordination,

and they are designed, developed, operated, and maintained by different organizations.

Electronic trading has several parties involved, including individual traders, trading firms,

brokerage firms, exchanges, gateways, dark pools, Alternative Trading Systems (ATS), in-

frastructure firms and a myriad of systems to support traditional trading and High-Frequency

Trading (HFT). Communications among systems is dictated by open [14, 34], and by propri-

etary protocols [17] that must be integrated and adapted by most of the systems involved.

Illustratively, MagniFIX1 c©, a monitoring suite developed by CameronTec Group2, one of

the lead companies developing infrastructure for the Capital Markets industry, currently

provides support for more than 60 different protocols, and informs upcoming support for 37

more [24]. Some of those protocols have been standardized but most of them are proprietary.

In addition to the number of different venues that can be used to trade (e.g. exchanges,

dark pools, ATS), systems can interact in very diverse ways, causing the impact of a single

change to spread across several other systems. For example, a Trading Firm can connect
1http://www.greenlinetech.com/products/magnifix.php
2http://www.camerontecgroup.com/

36

directly to an exchange via a DMA3 connection [2] or through a broker. The broker, likewise,

provides financial services to their clients but also invests their own assets in potentially

multiple exchanges. Consequently, exchanges receive connections from traders and brokers,

but also from HFT4 firms. Market data generated by an exchange is consumed by all the

previously mentioned parties but also by monitoring and infrastructure systems, and from

systems in other trading venues who use their information as a reference. These examples are

intended to provide a notion of the complexity and diversity of electronic trading interactions.

6.1 Domain relevance

The introduction of this chapter explains why systems in the financial domain are consid-

ered decentralized systems, and illustrates some of the platforms, systems and components

involved in electronic trading. This section highlights the importance of the domain in the

global economy, and depicts why it is especially important that software systems are secure.

6.1.1 Global trading volume

The adoption of electronic platforms for trading has been increasing and expanding world-

wide, providing more efficiency and transparency to financial markets, and dramatically

raising trading volume and liquidity.

There are endless financial instruments that can be traded ranging from stocks, bonds,

and corporate debt, to futures, contracts, and options, just to name a few.

The World Federation of Exchanges5 groups the major exchanges around the world, and

produces statistics that are available to the general public about their members. According

to their information, the value of shares traded by their members globally between January

and June of 2015 accumulated almost 58 trillion dollars [36], that is more than three times the
3Direct-Market Access: a point-to-point connection to an exchange.
4High-Frequency Trading
5http://www.world-exchanges.org/

37

GDP of United States, the world’s largest national economy, in 2014 [19]. The same source

reported that the trade of bonds accumulated 8 trillion dollars within the same period.

Additionally, the Aite Group6, a very well-known consulting firm, reported that the average

daily volume of currencies traded was $5.5 trillion in 2014 [18]. It is worth noting that the

reported information only includes equities, bonds and currencies but does not include other

securities such as derivatives.

It is easy to see how impactful software systems are in such large economy. Obviously,

electronic trading is mostly controlled by software, and its lack of security or integrity can

be disastrous for a company or even for the entire industry.

6.1.2 Major incidents in financial trading

Trading systems are not free of software issues, and it is not surprising after reading the

enormous sum of money involved in trading, that those issues may have a tremendous impact

on the affected companies and markets.

On July 8, 2015, the New York Stock Exchange (NYSE) suffered an “internal technical

issue” [35] that forced them to stop trading activities for almost four hours. Although losses

were not published, it prevented millions of dollars from being traded within that period.

Additionally, the FBI and the Department of Homeland Security were involved to determine

if it was a cyber-attack. After investigation, the reported root cause was a configuration

issue [20].

On August 20, 2013, a software bug in Goldman Sachs’ systems that set wrong price

limits made the company flood American exchanges with stock-option orders. Although

exchanges reviewed and rolled back many of those orders, Goldman had to face losses for

more than 100 million dollars [26]. The company did not provide details about the problem

but admitted that it was a programmatic error.

On August 1, 2012, Knight Capital deployed untested software that executed a number
6http://www.aitegroup.com/

38

of orders that were supposed to be done over a period of days, in less than an hour. The

company lost $400 million and had to be acquired by investors who paid almost half a billion

dollar for it. In this case, a programmatic error almost caused a company to shut down.

On May 6, 2010, a “flash crash” caused the Dow Jones Index (DJI) the biggest intraday

point decline in its entire history (about 9%) [28], but it recovered almost to normal in

around half an hour, as seen in Figure 6.1.

Figure 6.1: Impact on prices of E-Mini S&P and Dow Jones Industrial indexes caused by
the Flash Crash in 2010. [42]

The main difference between the “flash crash” case and the previous ones is that this

one was not caused by a software bug. After five years of investigation, the Commodity

Futures Trading Commission (CFTC) concluded that Navinder Singh Sarao, a British high-

frequency futures trader, “was at least significantly responsible for the order imbalances” in

the derivatives market which affected stock markets and exacerbated the flash crash [12]. The

article’s authors highlighted an essential reflection about how electronic trading is evolving

that reinforces the motivation of this work:

39

“Sarao didn’t cause the flash crash single-handedly, authorities say. [...] Regulators ini-

tially concluded that a mutual fund company – said to be Waddell & Reed Financial Inc.

of Overland Park, Kansas – played a leading role. Many in the industry countered that a

confluence of several forces, including high-frequency trading, was probably behind the crash.

By all accounts, the flash crash was more than a mere technical glitch. It raised fundamen-

tal questions about how vulnerable today’s complex financial markets are to the high-speed,

computer-driven trading that has come to dominate the marketplace.”

6.2 Challenges on electronic trading software systems

The last sections show that software systems in the financial industry are decentralized

systems, highlight the relevance of the domain in the global economy, and list the most

important incidents and their effects in the last five years. It is clear at this point the im-

possibility of guaranteeing security and integrity in these systems, and that a programmatic

or configuration error can have disastrous consequences.

My former job as a professional developer and Tier III support (in a three-tiered techni-

cal support model) exposed me to a variety of challenges present in software in the financial

industry. Particularly, inspection, hot updating, debugging, and forensic analysis are

activities that must take place but are exceptionally problematic because of the characteris-

tics of the environments in which the systems operate.

Security and privacy concerns prevent the remote operation of systems, even by the

vendors who developed and helped deploy them. As an ironically comic example, the way

to inspect a running software in one of the top-three world’s largest banks, offering financial

services in New York was the following (see Figure 6.2): an in-site vendor employee shared

the screen of a terminal to another vendor employee working in a remote office, using the

credentials of a bank employee who visually monitored the whole process. The terminal was

connected to one of the servers running the software under inspection. The remote operator

40

had to ask the in-site operator to run every command through SSH, and saw the response

via the shared screen on the terminal. In some occasions, another hop had to be added if

the server to debug was in a region different from New York. In summary, inspecting the

execution of a system could take three people and three levels of indirection.

Figure 6.2: Challenges troubleshooting issues in the environment of an electronic trading
system.

Although execution environments host server-class computers, the hardware and software

platforms differ considerably among companies. As a result, infrastructure and application

systems must be adaptable to operating systems such as Linux, Windows, FreeBSD, Solaris

x86, and Solaris SPARC. Switches, routers and Network Interface Cards (NIC) cause differ-

ent latencies and throughput that systems must account for. Available RAM memory and

storage vary, making it difficult, and sometimes impossible, to calculate in advance how much

information a buffer can hold; worse still, the nature of that information changes, that is, size

and representation of messages depend on each particular market. Consequently, deployed

systems must be completely parameterizable to adjust to custom environments. However,

in addition to the security and privacy situations aforementioned, financial systems must be

zero-downtime, meaning that they must be prepared to gracefully handle every single change

that may potentially need to be applied during a trading session. Continuous monitoring

41

is, again, essential for this purpose. Software has to be monitored before, during, and after

changes are applied to guarantee its proper execution.

Another challenge of electronic trading systems is diagnosing when they do not behave

as expected. Systems cannot be directly accessed or restarted, as previously explained.

Many times, because of privacy resons, vendors are unable to test their software with real

data, even if both companies signed a non-disclosure agreement (NDA). The only alternative

that developers have to diagnose a problem is analyzing the log files produced by their

applications. However, two salient issues arise: First, developers must be extremely cautious

on how they instruct systems to log information; too much logging penalizes the system

performance and may eat up the available storage, but too little logging may jeopardize

finding the solution to a problem. To complicate the situation even more, some companies

do not allow log files to be shipped out of the running environment because they might

contain sensitive information, therefore, vendors must analyze the log files produced by their

applications remotely connected (as shown in Figure 6.2) to the execution host.

Capability accounting allows monitoring and verification to ensure the proper execution

of software systems, and can help software developers to localize faults without accessing

private information, as shown in the evaluation of this work. As electronic trading systems

become more autonomous overtime, the chances for a human operator to stop them when

something does not behave as expected are much lower but consequences are higher, as seen

in the latest major incidents. This fact motivates the research of practices that reduce the risk

of designing, developing, and deploying software vulnerable to attacks and human mistakes.

Even assuming that mitigating those risks will ever be possible, state-of-the-art research and

technology is far from solving present challenges: security, integrity, adaptability, differen-

tiated service to clients, and rapid implementation. Nevertheless, it is worth investigating

techniques that minimize risks, and enable and encourage continuous monitoring.

The present work explores the use of capability accounting with the COAST architec-

tural style in the electronic trading domain. COAST and capability accounting complement

42

one another by providing the principles to build secure and adaptable systems from the

ground up, while enabling continuous monitoring through architecture to verify their proper

execution.

43

Chapter 7

Evaluation

Chapter 3 presents the concept of capability accounting and a framework that includes the

fundamental capability elements and a series of activities to guide how those elements are

to be handled. Chapter 6 highlights the importance of the financial trading domain in the

global economy, and why systems in electronic trading qualify as decentralized systems.

Additionally, it presents a list of software-related incidents that caused millions of dollars in

losses.

This chapter presents an assessment of capability accounting as technique, that is, it

addresses the question is capability accounting a well-suited form of architectural account-

ability?, and verifies that the framework and techniques proposed can help design, develop,

operate, and maintain secure decentralized systems. With these goals in mind, I created a

COAST-based prototype of a financial trading system that reflects the interactions of sys-

tems from various organizations participating in electronic trading operations. Even though

real-world systems face challenges that are not present in the created prototype such as per-

formance, low-latency, and data volume; the prototype illustrates how capability accounting

can be used to overcome major challenges during development, deployment, operation, and

maintenance of decentralized systems within the financial trading domain.

The prototype allows traders to deploy trading algorithms (i.e. trading computations) in

44

a host that executes them. As part of its operation, the trading computation receives relevant

market information, and places buy and sell orders. I created various implementations of

trading computations behaving in slightly different ways. The base computation reflects a

normal execution, that is, the computation behaves as a trader would expect. All of the other

computations were modified to introduce faults1. The intention was to produce computations

that expose different failures. Because different faults can produce the same failure, some of

the problems exposed in this section have multiple faulty computations associated; capability

accounting is used to help localize these faults.

Below, a description of the prototype, the base computation and its trading strategy, and

five problems with their faulty computations are presented.

7.1 An electronic trading prototype

The created prototype illustrates the actions and interactions between a Trader, a Broker,

and an Exchange. The collaboration is carried out by systems presumably developed sepa-

rately by the three participants.

The Trader develops a trading algorithm in-house but uses a Broker’s infrastructure and

connection to trade financial instruments (such as stocks) on an Exchange. The sequence of

execution is as follows: the trading firm deploys its algorithm (i.e. a computation) to the

Broker system, where it is executed, along with many others; the computation subscribes

to the Risk Management and Market Data servers to receive risk and market updates, and

places orders, based on execution parameters and custom business logic (e.g. prices, trading

volume, risk changes) [28] with the Order Router (Figure 7.1), and receive execution reports.
1Here, fault, failure and problem follow the IEEE standard [9].

45

Figure 7.1: Prototype of a trading system including a Trader, a Broker and an Exchange.

7.1.1 Participants

• Trader: An individual who engages in the transfer of financial assets in any financial

market, either for him- or herself, or on behalf of someone else [4]. It provides the

Trading Computation.

• Broker: The firm providing financial services, computing infrastructure, and connec-

tions to exchanges for traders [43]. Any party with a direct market-access connection

(DMA) [2] to an Exchange is able to trade on it; however, those DMAs are very ex-

pensive, thus, most traders use broker services to interact with Exchanges. It provides

the Trading Computations Host.

• Exchange: The highly organized market where traders and brokers buy and sell

financial instruments such as stocks, bonds, futures, and currencies [3]. It provides the

Risk Management Server, Market Data Server, and Order Router.

46

7.1.2 Subsystems and components

• Trading computation: A piece of software representing an algorithm capable of

performing trading actions such as placing buy and sell orders. It is deployed by the

Trader in the Broker, and interacts with the Risk Management Server, Market Data

Server, and Order Router.

• Trading computations host (Broker): Infrastructure provided by a Broker to sup-

port the execution of Trading Computations. It receives a Trading Computation, and

provides computational resources for its execution. The terms Trading Computations

Host and Broker are used indistinctly in this chapter.

• Risk Management Server: A component responsible for providing risk-related in-

formation such as the exposure of a financial instrument to volatility. Trading Com-

putations receive risk-related data on a subscription basis.

• Market Data Server: It provides real-time market updates based on client sub-

scriptions. Market data includes latest prices and trade-related information. Trading

Computations subscribe to receive specific market updates.

• Order Router: It is the access point to place orders and receive execution reports.

Trading Computations place orders on a given CURL, and must provide a reply-to

CURL to receive execution reports.

The Market Data and Risk Management servers publish predefined updates. They have

input files containing records and the delay that must be applied between each update. Those

input files were intentionally created to give support to the implemented trading strategy,

and more important, they allowed us to repeat the experiment in the exact same conditions

as many times as needed. Admittedly, in real-world, trading computations do not have such

knowledge in advance; nevertheless, I strongly believe it does not have an impact on the

47

result of this evaluation because the verification of execution does not take financial data

into consideration.

In order to create the input files for the Market Data and Risk Management servers, we

created tools that receive parameters as an input, and produce the described log files. As a

result, it was possible to automatically create log files with arbitrary size, and reuse them in

all the experiments.

7.1.3 Prototype’s technical information

Component SLOC

Trading Computations Host 239

Risk Management Server Host 177

Market Data Server 198

Order Router 204

Base Trading Computation 243

11 Faulty Trading Computations 2449

Common code 191

Total: 3701

Table 7.1: Size of the different proto-
type’s components.

The prototype was developed with COAST

build 20150315, which uses Racket as the

Execution Engine, running on Ubuntu 15.04

64-bit. The Racket version used was 6.2.

COAST dependencies are packaged in the

COAST distribution, thus, it is not necessary

to download additional libraries.

The size of all the components included

in the prototype are measured in SLOC, and

shown in table 7.1. The number associated

to a component includes the SLOC of all the

source files related to it. Common code such

as utilities used in multiple components is

counted separately.

7.2 Base trading computation

The base trading computation works in the context of the created prototype; once deployed in

the Broker, it interacts with the Risk Management and Market Data servers, and the Order

48

Router. It implements an arbitrary trading strategy and follows the contracts (i.e. how

interactions should take place) defined by the Exchange’s components. This computation

works as expected, that is, it has been tested and did not show signs of faults.

This computation is the reference implementation that works well, and from which all

the faulty computations are derived.

7.2.1 Trading strategy

An arbitrary trading strategy was implemented as part of the base computation to interact

with the prototype’s other components. It does not follow precise standard strategies [43, 6]

because that is not relevant for the scope of this study. However, it does implement a basic

scenario of stop loss [44], where a trader decides to sell its partial or total possession of a

stock when it reaches certain minimum price.

The Trading Computation represents an investment in Google2, Facebook3 and Yahoo4

stocks. The prices of one GOOG share is $642, FB is $95, and YHOO is $36, at the the

beginning of the scenario.

The Trading Computation behavior depends on the market data and risk events it re-

ceives. As mentioned above, those events are provided by the Market Data Server and the

Risk Management Server, respectively. The actual updates they send depend on their input

files which were, for this study, intentionally modeled to support this scenario.

The Market Data Server was parametrized to send updates of GOOG (Google), FB

(Facebook), YHOO (Yahoo), AAPL (Apple), AMZN (Amazon) and MSFT (Microsoft),

although the last three companies were not part of the computation’s subscription, thus,

those events were ignored. Throughout the execution of this scenario, GOOG transactions

increase or decrease its price by a random number between $0 and $2, that is, each trans-

action can only increase or decrease the current price by a number within that range. FB
2http://money.cnn.com/quote/quote.html?symb=GOOG
3http://money.cnn.com/quote/quote.html?symb=FB
4http://money.cnn.com/quote/quote.html?symb=YHOO

49

transactions can move the price between $0 and $2 as well. YHOO transactions can only

decrease the price, and it is done in variations between $0.4 and $0.2, therefore, if the current

price of a YHOO stock is p, the next price will fall between p − 0.4 and p − 0.2. It can be

seen that, in the long term, GOOG and FB keep the same prices or might experience slight

variations, whereas YHOO suffers from a steady price reduction. As a consequence, in this

computation, YHOO is the stock that triggers the stop loss scenario.

The Risk Management Server was parametrized to send updates of GOOG, FB and

YHOO, since those are the stocks in which the trader is interested in. Risk events are used

by the Trading Computation to make decisions when there are multiple alternatives.

The trading scenario has four phases described as follows:

• Accumulation: The Trading Computation buys stocks of GOOG and FB at current

price. YHOO is not traded but its price is falling.

• Partial stop loss: YHOO price has reached $27, and the Trading Computation reacts

by selling 50% of its possession.

• Total stop loss: YHOO price kept falling and reached $23. The Trading Computation

sells all its remaining possession of YHOO.

• Redistribution: The Trading Computation buys stocks of GOOG and FB using the

money it obtained from the previous sells. The distribution between GOOG and FB

is determined by the latest risk information about those stocks.

7.2.2 Interaction with the prototype

Trading Computations are the unit of exchange between the Trader and the Broker, are the

subject of execution within the Broker, and during their execution, they interact with the

Market Data and Risk Management servers, and the Order Router. Considering these actions

and interactions is essential to understanding how the verification model works. Below,

50

a description of the interactions between components is included. A few considerations

must be taken in order to interpret the presented sequence diagrams. Specifically, when an

action is denoted between two components, it does not necessarily imply function invocation.

For example, send(c) must be interpreted as one islet making the action of sending the

computation c to another islet using an available underlying mechanism for that, it is not

that the sender is invoking the send() function on the receiver. The following notations are

used in the diagrams:

• send(c): An islet x sends a computation c to another islet y via some CURL.

• call(f, [args]): An islet x invokes the function f present in its binding environment. If

arguments args are present, they are passed to the function f .

• spawn(c): An islet x executes the computation c in the Island where it runs.

Trading Computation deployment

The deployment of a Trading Computation takes place in the Trading Computation Host

offered by the Broker. The host offers a service (server.registration@broker) that receives

computations to be deployed and executed. The Trader possesses the service’s CURL that

enables it to send its Trading Computation. The UML sequence diagram in Figure 7.2

illustrates how a computation c is sent from the Trader (dispatcher@trader) and executed

at the Broker side. The computation c must be a Motile thunk, that is, a Motile function

with no parameters. After receiving c, the Broker (server.registration@Broker) executes c

on its own Island.

51

Figure 7.2: Deployment of a Trader’s trading computation in the Broker’s infrastructure.

Market Data and Risk registrations

Once the Trading Computation is deployed, it has to subscribe in the Market Data and

Risk Management servers to receive market and risk updates required for its execution.

Figure 7.3 details the interaction between the Trading Computation and one of the servers5.

The computation executing on the Broker (trader@broker) ships another computation r

to each of the servers. The computation r is executed at the server side, and registers

Figure 7.3: A trading computation running in the Broker subscribes to receive market and
risk updates.

itself (call(register, symbols)) to receive the updates the (parent) Trading Computation is

interested in. Each update is sent locally by publisher@server and received by r at the
5The interaction is identical for both servers

52

server side and forwarded to the Trading Computation at the Broker.

Placing orders

The Trading Computation running at the Broker (trader@broker) holds a CURL to place

orders in the Order Router. Every time a new order x is to be put, the Trading Computation

must 1) create a sub-computation (order.x@broker) to account for the order x during its

lifespan, 2) receive a CURL (curl.x) from the sub-computation, and 3) send the order to

the Order Router, along with the CURL received in the second step (send(x, curl.x)), that

the Order Router will use to send execution reports back (send(execreport.x)). Figure 7.4

illustrates this sequence of actions and interactions.

Figure 7.4: A trading computation running in the Broker places an order on the Order
Router. As a result, it receives an order’s execution report.

7.3 Verifying software execution

I created a model based on capability accounting in COMET to verify the proper execution

of the base trading computation. In addition, a series of faulty computations were executed

to assess that 1) COMET was able to detect when an execution was not flawless, and 2)

COMET helped localize the capability event associated to the introduced fault.

As Figure 7.1 shows, the following actions and interactions are expected to take place in

the prototype:

53

1. The trader ships and deploys a customized trading computation to the Trading Com-

putations Host, running in the Broker.

2. Trading Computation subscribes to receive risk and market updates from the Risk

Management and Market Data servers.

3. Trading Computation starts receiving updates.

4. Trading Computation places orders through the Order Router.

5. Order Router sends execution reports back to the Trading Computation.

In the context of this study, we assume that the execution of a trading computation

is successful if none of the problems listed in Table 7.2 arises. Those problems fall within

application, business and security categories.

1 Trading Computation does not place orders. Application

2 Trading Computation does not notify the trader. Application

3 Trading Computation opens a backdoor. Security

4 Trader uses a different service level. Business

5 Trading Computation places too many or too few orders. Application

Table 7.2: Potential problems verified by COMET.

7.3.1 Verification model

COMET analyzes the collected capability events to evaluate whether specific events occurred

or not, the order in which they appeared, and the frequency. The evaluations described in

Chapter 5 were combined to create the verification model showed in figures 7.5, 7.6 and 7.7.

The verification model encompasses an assertion of the proper deployment and initialization

of the trading computation, the number of orders placed, and communications from a security

perspective. Appendix A shows the XML configuration file used for this evaluation.

54

Deployment and initialization

A series of actions and interactions are expected to take place after the trader starts its

system. They include shipping the trading computation to the Trading Computations Host,

Figure 7.5: Verification model for deployment and initialization.

transferring a CURL for sending notifications back to the trader, registration in the

Market Data and Risk Management servers, placing orders on the Order Router, and re-

ceiving execution reports. If any of these actions does not take place, we assume that the

trading computation was not properly deployed and initialized. A diagram representing the

execution model for deployment and initialization is included in Figure 7.5.

COMET verifies that all the anticipated capability events appeared, and that they fol-

55

lowed the expected order. After analysis, it produces an output stating the result (PASS,

FAILED, WARNING, ERROR, UNKNOWN) of each evaluation.

Trading Computation opens a backdoor

In the decentralized system represented by the created prototype, the Trading Computation

can only communicate back with the trader to send notifications. Any other form of commu-

nication with the trader is forbidden. Therefore, it is expected that the trader only exploits

the CURL created by the Broker for the deployment service. If the computation running in

the Broker creates a CURL, and it is exploited by the trader, then COMET will show that

the verification model failed. Figure 7.6 shows the model for this verification.

Figure 7.6: Verification model for detecting if a trading computation opens a backdoor.

For example, if the trader exploits a CURL created in the Broker, COMET will highlight

it.

Number of orders placed

Some application-level and business-level evaluations are based on the number of orders

placed by the trading computation. COMET supports verifications based on volume, that

is, number of events within a time period. Based on the trading volume and the trading

strategy, it is expected that the base trading computation places between 1 and 20 orders

within 10 seconds. If, at any time, this requirement is not satisfied, COMET will highlight

the time in which the volume exceeded or did not reach the expected number. Figure 7.7

shows the verification model for this requirement.

56

Figure 7.7: Verification model for number of placed orders.

7.4 Execution of Base Trading Computation

The base trading computation passes all the assertions in the verification model. It is used

as a baseline for this evaluation. Table 7.3 shows a summary of the execution.

Duration: 5m 41s

Risk events: 101

Market events: 394

Orders: 260

Execution Reports: 787

Starts: 5

News: 796

Transfers: 658

Sends: 3487

Receives: 3487

Total capability events: 8433

Table 7.3: Summary of the execution of the base trading computation.

The following output is produced by COMET when it verifies the execution of this

computation:

[PASS] Execution. Type: Unordered Message: N/A
[PASS] Trading Computation is properly deployed and up & running. Type: Sequence
Message: N/A

[PASS] Trader provides a CURL for notifications. Type: Event Message: N/A
[PASS] Trader includes its notification CURL. Type: Event Message: N/A
[PASS] Trader ships a trading computation to the robot-server. Type: Event
Message: N/A
[PASS] robot-server receives the trading computation. Type: Event Message: N/A
[PASS] Registration @ Market Data and Risk servers. Type: Exists Message: N/A

[PASS] Trading Computation @ robot-server creates a new CURL to be sent to
Risk and Market Data servers. Type: Event Message: N/A

57

[PASS] Registration @ Market Data and Risk servers. Type: Unordered Message:
N/A

[PASS] Registration @ Market Data Server. Type: Sequence Message: N/A
[PASS] Trading Computation @ robot-server transfers the new CURL (to
Market Data Server). Type: Event Message: N/A
[PASS] Trading Computation @ robot-server sends the new CURL to the
Market Data server. Type: Event Message: N/A
[PASS] Market Data server receives the new CURL. Type: Event Message:
N/A
[PASS] Trader @ Market Data creates a new CURL. Type: Event Message:
N/A
[PASS] Market Data sends local update. Type: Event Message: N/A
[PASS] Trader @ Market Data receives update. Type: Event Message: N/A
[PASS] Trader @ Market Data sends update. Type: Event Message: N/A
[PASS] Trading Computation @ robot-server receives update from Market
Data Server. Type: Event Message: N/A

[PASS] Registration @ Risk Server. Type: Sequence Message: N/A
[PASS] Trading Computation @ robot-server transfers the new CURL (to
Risk Server). Type: Event Message: N/A
[PASS] Trading Computation @ robot-server sends the new CURL to the
Risk Management server. Type: Event Message: N/A
[PASS] Risk Management Server receives the new CURL. Type: Event
Message: N/A
[PASS] Trader @ Risk Management creates a new CURL. Type: Event
Message: N/A
[PASS] Risk Management sends local update. Type: Event Message: N/A
[PASS] Trader @ Risk Management receives update. Type: Event Message:
N/A
[PASS] Trader @ Risk Management sends update. Type: Event Message:
N/A
[PASS] Trading Computation @ robot-server receives update from Risk
Server. Type: Event Message: N/A

[PASS] Trading Computation @ robot-server creates a CURL for an order. Type:
Event Message: N/A
[PASS] Trading Computation @ robot-server transfers the CURL to the Order Router.
Type: Event Message: N/A
[PASS] Trading Computation @ robot-server sends a message to the Order Router.
Type: Event Message: N/A
[PASS] Order Router receives the order. Type: Event Message: N/A
[PASS] Order Router sends an execution report for the placed order to the Trading
Computation @ robot-server. Type: Event Message: N/A
[PASS] Trading Computation @ robot-server receives the execution report sent by
the Order Router. Type: Event Message: N/A
[PASS] Trading Computation @ robot-server sends notification back to Trader.
Type: Event Message: N/A

58

[PASS] Trading computation does not open a backdoor. Type: When Message: N/A
[FAILED] Computation @ Robot Server creates a CURL. Type: Event Message: Event
[place:inter (EQ), type:curl-new (EQ), source-island:robot-server (EQ),
mq-time:1439840742418 (GE)] could not be found.
[FAILED] Trader sends a message to the created CURL. Type: Event Message: Event
[type:curl-send (EQ), source-island:trader (EQ),
curl-id:a6e7c6bb-72fb-44d9-a5fc-5dc066542b6f (EQ), mq-time:1439840742417 (GE)]
could not be found.
[UNKNOWN] CURL matches deployer. Type: Match Message: N/A

[PASS] Number of orders is within expected values. Type: Volume Message: N/A

7.5 Problem-based evaluation

This section explains a set of problems that can arise in the proposed prototype during the

execution of a trading computation. If none of these problems arise, then COMET will

show that the entire verification passed. However, if any of the verifications does not pass,

COMET will provide contextual information to the failure such as the expected capability

event that was not found.

7.5.1 Trading Computation does not place orders

The Problem

From a debugging perspective, it is very difficult to localize the fault causing this problem.

The computation placing orders depends on the right execution of the previous steps. For

example, if the trading computation could not be deployed properly, or if it was unable to

register on the Market Data Server, the computation will either not work, or will behave

erratically. It is worth noting that the computation might still be able to place orders but,

if it was not properly initialized, it is likely that it will not place the proper orders, which

could be even worse that not placing orders at all.

Six different scenarios were created where distinct faults were introduced to manifest this

problem. Below, each scenario is explained separately and details about its execution are

59

provided.

In order to deploy a computation in the Broker, the trader is expected to send a thunk 6

implementing the algorithm. In this scenario, the trader does send a function whose sig-

nature expects no parameters, however, the function body assumes that parameters exist.

Consequently, when the function is evaluated, the execution engine will find variables out of

lexical scope, and will terminate the execution immediately. Table 7.4 shows a summary of

the execution.

Scenario 1.1: Computation is not properly initialized

Duration: 0m 20s

Risk events: 0

Market events: 0

Orders: 0

Execution Reports: 0

Starts: 5

News: 7

Transfers: 1

Sends: 2

Receives: 2

Total capability events: 17

Table 7.4: Summary of the execution of scenario 1.1.

When COMET evaluates the capability events collected when this scenario was run, it

displays that the root evaluation failed:

[FAILED] Execution. Type: Unordered Message: N/A

But COMET also displays a breakdown of the execution. The following results help

understand the reasons for this failure:
6A computation with no parameters.

60

(...)
[FAILED] Trading Computation @ robot-server transfers the new CURL (to Market Data
Server). Type: Event Message: Event [place:inter (EQ), type:curl-transfer (EQ),
source-island:robot-server (EQ), curl-id:39445b2f-79c2-4d7d-9faa-1e526a30de61 (EQ),
source-islet:trader (EQ), mq-time:1438986931136 (GE)] could not be found.
(...)
[FAILED] Trading Computation @ robot-server transfers the new CURL (to Risk Server).
Type: Event Message: Event [place:inter (EQ), type:curl-transfer (EQ),
source-island:robot-server (EQ), curl-id:39445b2f-79c2-4d7d-9faa-1e526a30de61 (EQ),
source-islet:trader (EQ), mq-time:1438986931136 (GE)] could not be found.
(...)

The results displayed above show the specific capability events that are missing in the

verification. As a result, people responsible for the development and operation of the software

can check the pieces of code and the deployment process responsible for carrying out those

actions.

Scenario 1.2: Computation does not get deployed

In this scenario, instead of sending a thunk implementing the trading computation, the

trader mistakenly sends a symbol with the function name7. Table 7.5 shows a summary of

the execution.
7This error may seem farfetched but, for example, in Racket, the difference between sending a function

and sending its name is only a single quote (e.g. trading-algorithm and ’trading-algorithm).

61

Duration: 0m 14s

Risk events: 0

Market events: 0

Orders: 0

Execution Reports: 0

Starts: 5

News: 6

Transfers: 1

Sends: 2

Receives: 2

Total capability events: 16

Table 7.5: Summary of the execution of scenario 1.2.

The breakdown showed by COMET when the evaluation fails includes the following

message:

(...)
[FAILED] Trading Computation @ robot-server creates a new CURL to be sent to Risk and
Market Data servers. Type: Event Message: Event [place:inter (EQ), type:curl-new (EQ),
source-island:robot-server (EQ), source-islet:trader (EQ), mq-time:1438987974289 (GE)]
could not be found.
(...)

Since the computation could not be properly deployed, it is unable to perform its first

required action (i.e. creating a CURL for the registration in the Market Data and Risk

Management servers).

Scenario 1.3: Registration on the Market Data Server fails

In this scenario, the trading computation running in the Broker does not perform the reg-

istration on the Market Data Server properly. It does send the registration computation to

the server but, when executed at the Market Data Server side, it does not use the proper

API. Table 7.6 shows a summary of the execution.

62

Duration: 0m 56s

Risk events: 12

Market events: 0

Orders: 0

Execution Reports: 0

Starts: 5

News: 8

Transfers: 4

Sends: 30

Receives: 30

Total capability events: 77

Table 7.6: Summary of the execution of scenario 1.3.

The breakdown showed by COMET when the evaluation fails includes the following

messages:

(...)
[FAILED] Market Data sends local update. Type: Event Message: Event [place:intra (EQ),
type:curl-send (EQ), source-island:market-server (EQ),
curl-id:384c6ef7-fa8a-4693-9209-b1490c67a9c6 (EQ), source-islet:updater (EQ),
mq-time:1439068347580 (GE)] could not be found.
(...)

Since the computation did not use the API offered by the Market Data Server properly,

the server is unable to send updates.

Scenario 1.4: Registration on the Risk Management Server fails

In this scenario, the trading computation running in the Broker does not send the registration

computation to the Risk Management Server, thus, it is unable to receive any risk update.

Table 7.7 shows a summary of the execution.

63

Duration: 5m 31s

Risk events: 0

Market events: 391

Orders: 258

Execution Reports: 782

Starts: 5

News: 789

Transfers: 652

Sends: 3258

Receives: 3258

Total capability events: 7962

Table 7.7: Summary of the execution of scenario 1.4.

The breakdown showed by COMET when the evaluation fails includes the following

message:

(...)
[FAILED] Trading Computation @ robot-server sends the new CURL to the Risk Management
server. Type: Event Message: Event [place:inter (EQ), type:curl-send (EQ),
source-island:robot-server (EQ), curl-id:6264c494-b240-43dc-892f-10c7dfbea378 (EQ),
source-islet:trader (EQ), mq-time:1439067709640 (GE)] could not be found.
(...)

Since the computation did not exploit the registration service’s CURL, COMET found

that the curl-send capability event was missing.

Scenario 1.5: Order Router is not working

In this scenario, the base trading computation is used, however, the Order Router is not

working, thus, no orders can be placed. Table 7.8 shows a summary of the execution.

64

Duration: 6m 17s

Risk events: 98

Market events: 389

Orders: 257

Execution Reports: 0

Starts: 5

News: 786

Transfers: 649

Sends: 1638

Receives: 1368

Total capability events: 4446

Table 7.8: Summary of the execution of scenario 1.5.

The breakdown showed by COMET when the evaluation fails includes the following

message:

(...)
[FAILED] Order Router receives the order. Type: Event Message: Event [type:curl-receive
(EQ), source-island:order-router (EQ), curl-id:feb0741f-4b42-4497-9c46-6205a97fe400 (EQ),
source-islet:order-receiver (EQ), mq-time:1439069720523 (GE)] could not be found.
(...)

Since the Order Router was not working, it was unable to receive the order from the

trading computation.

Scenario 1.6: Algorithmic error in trading computation

In this scenario, the interaction with other systems work as expected. However, because of

an algorithmic error in the trading computation, it is unable to place orders. Table 7.9 shows

a summary of the execution.

65

Duration: 6m 38s

Risk events: 120

Market events: 390

Orders: 0

Execution Reports: 0

Starts: 5

News: 8

Transfers: 4

Sends: 1025

Receives: 1025

Total capability events: 2067

Table 7.9: Summary of the execution of scenario 1.6.

The breakdown showed by COMET when the evaluation fails includes the following

message:

(...)
[FAILED] Trading Computation @ robot-server creates a CURL for an order. Type: Event
Message: Event [place:inter (EQ), type:curl-new (EQ), source-island:robot-server (EQ),
mq-time:1439070416796 (GE)] could not be found.
(...)

Since an algorithmic error prevented the computation from placing orders, COMET was

unable to find the first of the capability events involved in placing orders.

7.5.2 Trading Computation does not send notifications to the trader

The Problem

For each order placed and each execution report received, the trading computation must

send a notification to the trader. If that does not happen, the trader will not have visibility

of the actions performed by the trading computation.

66

Scenario 2.1: Computation does not exploit its CURL for notifications

The entire execution of the trading computation works as expected with the exception of

sending notifications back to the trader. Table 7.10 shows a summary of the execution.

Duration: 8m 31s

Risk events: 154

Market events: 389

Orders: 257

Execution Reports: 780

Starts: 5

News: 786

Transfers: 649

Sends: 2517

Receives: 2517

Total capability events: 6474

Table 7.10: Summary of the execution of scenario 2.1.

The breakdown showed by COMET when the evaluation fails includes the following

message:

(...)
[FAILED] Trading Computation @ robot-server sends notification back to Trader. Type:
Event Message: Event [place:inter (EQ), type:curl-send (EQ), source-island:robot-server
(EQ), curl-id:7ae2fea9-7214-4daf-9e9f-a0d02fcdc043 (EQ), mq-time:1439068565060 (GE)]
could not be found.
(...)

Since the CURL for sending notifications back was not exploited, COMET detects the

missing capability and highlights the problem.

67

7.5.3 Trading Computation opens a backdoor

The Problem

A safe (i.e. not under attack) host may be affected by an evil computation if the host is

poorly protected or if, under the impression that the computation origin is secure, the host

grants privileges to the computation that allows it to communicate back with a malicious

host.

In COAST, all communications are enabled and constrained by Capability URLs. As a

result, if a computation needs to receive a message, it has to create a CURL and transfer it

to whomever is interested in communicating with that computation.

Monitoring the CURLs created by a visiting computation can prevent malicious external

hosts from establishing communications with the computation.

In the prototype, the trader is only allowed to talk to the Broker via its deployment

service CURL. If the trader sends a message to its trading computation or to any other

computation running in the Broker, it will be detected by COMET and corrective actions

can be taken such as revoking the CURL or killing the computation.

Scenario 3.1: Computation opens a backdoor and trader exploits it

After the trading computation is deployed, it creates a CURL to enable incoming commu-

nications and sends it back to the trader via its notifications CURL. Table 7.11 shows a

summary of the execution.

68

Duration: 7m

Risk events: 112

Market events: 389

Orders: 257

Execution Reports: 780

Starts: 5

News: 782

Transfers: 646

Sends: 3468

Receives: 3468

Total capability events: 8369

Table 7.11: Summary of the execution of scenario 3.1.

COMET detects that a CURL created in the Broker was exploited by the trader, but

the CURL was not the one for the deployment service:

(...)
[FAILED] Trading computation does not open a backdoor. Type: When Message: curl-id is
different: e95d56cd-7a48-4344-af91-55a984ade55a

[PASS] Computation @ Robot Server creates a CURL. Type: Event Message: N/A
[PASS] Trader sends a message to the created CURL. Type: Event Message: N/A
[FAILED] CURL matches deployer. Type: Match Message: curl-id is different:
e95d56cd-7a48-4344-af91-55a984ade55a

(...)

7.5.4 Trader uses a different service level

The Problem

The speed of market data delivery, decision making and order execution is tremendously

important in electronic trading. It is estimated that 1-millisecond advantage is worth one

million dollar a year to a major brokerage firm [31].

69

Brokerage firms offer different levels of service at different prices. Each plan may include

direct connections to exchanges, lower latency, more processing power, and other features.

Figure 7.8: The trading computation
must use the CURL corresponding to
the contracted service level.

COAST CURLs and execution sites enable

providers to offer highly customizable services to

clients. For example, a service provider can offer exe-

cution hosts running on hardware with different speci-

fications, and the customer can contract the hardware

specifications that better fit its business or trading

strategy. CURLs can be used to constrain who can

deploy trading computations in an execution site, and

the circumstances in which it can be done. Addition-

ally, custom-tailored APIs can be directly associated

to CURLs so that service providers can determine

which functions and implementations are available to

each client.

Using COMET and capability accounting, providers

have an extra layer of verification to make sure that they are offering the right service level

to each customer. Suppose Client X’s trading computation must be deployed on an execu-

tion host customized for it as shown in Figure 7.8 (“Broker (Client X level)”). The service

provider can create a CURL that points to the required execution host, and includes the

functions and implementations negotiated.

Scenario 4.1: Computation uses a CURL for a different service level

In this scenario, the Broker offers a Premium service in addition to the basic service the

trader contracted. Somehow, the trader got the CURL of the Premium service and deployed

its computation via that CURL. Table 7.12 shows a summary of the execution.

70

Duration: 5m 54s

Risk events: 102

Market events: 389

Orders: 257

Execution Reports: 779

Starts: 5

News: 786

Transfers: 650

Sends: 3450

Receives: 3450

Total capability events: 8369

Table 7.12: Summary of the execution of scenario 4.1.

COMET detects that the trader used a CURL for deployment different from the one it

is supposed to use:

(...)
[FAILED] Trader ships a trading computation to the robot-server. Type: Event Message:
Event [place:inter (EQ), type:curl-send (EQ), source-island:trader (EQ),
curl-id:b927dace-e6b5-4ca7-9c22-b1d4e3ba4b9f (EQ), mq-time:1439066901339 (GE)] could not
be found.
(...)

Because of the way the verification model was created, COMET does show that an

assertion failed, although the message may be misleading. It highlights that there was a

problem when deploying the computation but does not clarify exactly what the problem

was. Modifying the model to assert whether subsequent system actions were taken would

help providing clearer information.

71

7.5.5 Trading computation places too many or too few orders

The Problem

Trading algorithms work with very large amounts of data. Computations automatically dis-

patch, based on market conditions, several buy and sell orders, and cancel and replace some

of them within a few seconds. Although the number of orders placed may vary considerably,

depending on external conditions and the trading strategy, there are limits that the Trader

can foresee. If the number of orders goes beyond those limits, it is very likely that the trading

computation is not working as expected.

Scenario 5.1: A fault in the trading computation causes it to place more orders

than expected

The algorithm that places orders has a fault that causes that multiple orders are placed for

each one intended. Table 7.13 shows a summary of the execution.

Duration: 10m 33s

Risk events: 195

Market events: 389

Orders: 3062

Execution Reports: 741

Starts: 5

News: 786

Transfers: 3455

Sends: 9161

Receives: 6349

Total capability events: 19756

Table 7.13: Summary of the execution of scenario 5.1.

The COMET Volume evaluation detects that the number of orders exceeded the limit

and displays the following message:

72

(...)
[FAILED] Number of orders is within expected values. Type: Volume Message: Max volume was
exceeded. Seen: 21 at 1439083374352. Expected:[1,20]
(...)

Scenario 5.2: A fault in the trading computation causes it to place less orders

than expected

The algorithm that places orders has a fault that causes only some of the intended orders

are actually placed. Table 7.14 shows a summary of the execution.

Duration: 5m 45s

Risk events: 99

Market events: 389

Orders: 60

Execution Reports: 189

Starts: 5

News: 170

Transfers: 145

Sends: 1559

Receives: 1559

Total capability events: 3438

Table 7.14: Summary of the execution of scenario 5.2.

The COMET Volume evaluation detects that the number of orders does not reach the

lower limit and displays the following message:

(...)
[FAILED] Number of orders is within expected values. Type: Volume Message: Min volume was
not reached. More than 10 seconds passed with no events at 1439073236442. Expected:[1,20]
(...)

73

7.6 Summary

This Chapter shows how COMET, a tool based on capability accounting, was used to verify

the proper execution of a COAST-based electronic trading system prototype. The intention

was to assess that capability accounting is a suitable technique to help developers and oper-

ators to design, develop, operate, and maintain secure decentralized systems. A verification

model was created, and used in COMET to verify the execution of different trading com-

putations. The base trading computation, free of any sign of failure, passed the evaluation

with no problems. Looking at the output produced by COMET, it can be seen that all

verifications passed. Then, the same evaluations were performed on faulty computations.

COMET was able to detect the presence of an unexpected behavior in all of them, and to

highlight which capability event was missing in all of them, except for one but a modification

in the verification model would solve it. Highlighting the problematic capability event would

help developers localize where the fault is.

74

Chapter 8

Discussion

In Chapter 1, the research problem and research questions are presented, that is, the chal-

lenges of designing, developing, operating, and maintaining decentralized systems, and how

capability accounting can be used to help address or reduce the risk and impact of those

problems. This work explains what a capability is, how capabilities are abstracted and rep-

resented in the COAST architectural style, and it revisits the COAST principles and the

Motile/Island reference implementation. Chapter 6 explains why electronic trading systems

are decentralized systems, and discusses the relevancy of software in the financial industry,

and the importance of the financial industry in the global economy. In order to address the

research questions, a prototype of a COAST-based trading system, and a monitoring system

were built; several trading computations were created to run in the prototype to show that

capability accounting can be used to verify the proper execution of software, help developers

with fault-localization, control the compliance with business rules, and monitor security.

The analysis of capability accounting was based on the use of the COAST architectural

style. Implementing capability accounting required the instrumentation of the Motile/Is-

land platform to capture the creation, exploitation, and transfer of Capability URLs. Those

capability events were then stored in a database for future inspection. Finally, a verifica-

tion model was created in COMET to compare expected capability patterns with observed

75

patterns.

This Chapter includes lessons learned throughout this research project, and certain topics

that are worth presenting and discussing, although they were not fully explored.

8.1 Application-agnostic logging

As Section 6.2 explains, capturing run-time information for investigation or forensic analysis

in high-availability, real-time systems can be extremely challenging:

• First, security and privacy concerns difficult or prevent direct connections to the ap-

plications under inspection. Because servers where infrastructure and trading systems

run have a protected perimeter, it is not possible to interact with them from outside.

Thus, information retrieval must be done in-site, depending on the availability of the IT

staff to grant access, or through various levels of indirection, which makes the analysis

much more troublesome.

• Second, generated log files are, many times, the only information that developers count

with for investigating an ongoing issue, or to do forensic analysis. As a result, logging

implementation becomes very intricate because too much logging will certainly penalize

the application performance and consume too much storage, but little logging can

put at risk the proper analysis. Consequently, application developers must spend a

considerable time designing logging strategies, and carefully choosing what information

is logged, how, and where.

• Third, some companies do not let vendors ship log files outside their execution envi-

ronment because they might contain sensitive information that affects their customers.

Admittedly, companies allowing vendors to get their log files are indeed exposing sen-

sitive information because transactions could be posted in log files.

76

Consequently, an expected situation in most IT environments like inspecting the execu-

tion of software to investigate suspicious activity becomes tremendously complicated in the

financial trading industry. The aforementioned issues have an impact on how systems are

debugged and configured, and in the amount of time involved in those activities. Addition-

ally, because logging must be carefully planned in advance, developers must spend extra time

designing and implementing smart strategies to log information, but with a lack of certainty

about whether the captured information will be enough or not when an issue arises.

Several parties involved in the design, development, operation, and maintenance of soft-

ware will be benefited from the practice of capability accounting:

• Application developers can focus on logging higher-level information. Since capability

accounting can be used to verify software execution at system-level and at application-

level, developers can reduce the amount of information they need to log, focusing on

business or input-dependent information. Admittedly, uncountable situations require

custom application-level logging but this work proves that the proposed approach does

work and can be further developed to increase the coverage of situations that can be

improved by using capability accounting.

• System software developers can put in place streamlined and optimized methods for

capturing capability events in order to minimize the performance penalization.

• Clients can share logs of capability events with vendors. Because those events do not

contain sensitive information, clients are not at risk of disclosing private information,

and vendors can use it to investigate erroneous or suspicious behavior on their appli-

cations.

8.2 Interpretation depends on the nature of available events

Dealing with decentralized systems requires a cautious examination of the integrity of the

data used for analyses and the reliability of its source. Several questions need to be considered

77

in order to know whether a piece of data is safe and reliable or not:

• Where was the information produced? Is that a trusted source? By default, there are

no trusted sources unless mechanisms in place can guarantee it. Furthermore, even

peers that were reliable in the past may have been compromised, and affected in order

to produce information that looks real but it is not. For example, the name of an islet

is determined by the parent islet who creates it. Peers have little or no control over

islets naming, and there is no way to have certainty about which islet has produced a

message.

• Could someone have forged or tampered with the information? Cryptographic mech-

anisms must assure that information has not been compromised during its genera-

tion or transmission. For example, CURLs in COAST are unforgeable, tamper-proof

structures that can be safely consulted because the underlying security infrastructure

guarantees that its content is intact.

• How accurate is the information? Regardless of where a message is produced, some

information is inherently inaccurate when distributed. For example, timestamping a

message can occur when the message is created, during its transmission or when it is

received. It can also be done in multiple occasions during its lifecycle. Nevertheless,

when the source and the target of a message are different peers, unless one trusts

another (which should not happen unless one peer can prove its reliability to the

other), the organization who is analysing capabilities will use their own information.

That would be, as an example, if peer a sends a message to peer b, and the organization

responsible for peer b is performing an analysis, the organization will timestamp the

message when it arrives at b, and will use only that information because peer a may

have timestamped the message in a wrong manner to mislead peer b. Let us say that the

message that arrives at b has to be correlated with another message coming from peer

c. Because exact latency cannot be determined in advance, the order of arrival may

78

be different from the order in which messages were sent [11]. Analyzers must account

for this kind of inaccuracies. It is worth noting that although clock synchronization is

a problem that has already been solved, when analyzing security, information from an

untrusted peer has to be taken as potentially compromised.

• Could a human mistake have altered or have produced erroneous information? Even

in a world of perfect security, software is not completely autonomous; instead, it is

designed, developed, maintained, and most of the times, operated by people. As a

result, errors introduced by improper human actions are likely to happen. Synergetic

interactions among components determine the systemic behavior of a software. This

statement is true for all kind of software systems, but it is even more relevant in de-

centralized systems, where the layering of software, people and organizations affecting

the overall system behavior is much more complex. Section 6.1.2 lists only a few from

the total number of incidents that affected the financial trading industry, and mentions

their causes and consequences. As it can be seen, many of them were caused by human

mistakes or configuration issues.

• Do we count with all the required information? Capturing run-time information about

the execution of a software system is not a trivial process. Data has to be acquired,

transmitted, and stored for analysis, as explained in Chapter 3, but these activities may

face challenges depending on the data volume. When large amounts of data have to be

logged, the logging routines compete for CPU cycles with the applications they work

for. Additionally, a synchronous logging implementation will penalize the application

even more, but an asynchronous implementation will need to use internal buffers that

could overflow, and may require more RAM memory. As a result, software developers

must choose which information is going to be logged, and configure the application

to include only the most relevant logging levels, excluding the most verbose ones.

Furthermore, many times, developers have to implement smart logging strategies. As

79

a consequence of all these issues, when an investigation is performed, it is important

to know the logging policies that were in place when the information was captured.

The previous questions have to be answered in order to decide whether a specific type of

analysis can be performed, and which information is available for it. Less risky analyses such

as fault localization can make use of data even if the data is not guaranteed to be reliable

from a security perspective. A classical risk analysis can help us determine whether a piece

of information can be used or not. The fact that a peer may have been compromised does

not mean that it has been but there is some level of likelihood that it has. Depending on the

severity of the analysis to perform, the likelihood of receiving forged data, and the impact

of producing the wrong result will determine what information has to be ignored. A more

formal representation of these concepts is as follows:

Let x be a piece of data that has been acquired, p(x) the probability that x has been

forged or tampered, i(x) the impact of producing an erroneous result if x is used:

R(x) = p(x) ∗ i(x) where R(x) is the risk associated to using x in an analysis.

This work is neither intended to go in depth on risk analysis nor to provide an accurate

model for data selection, however, the previous formula can help us understand the principal

variables involved in choosing the data for a given analysis. For example, when doing security

analysis, the consequences of missing the exploitation of a vulnerability may be disastrous,

thus i(x) will be high, and even if p(x) is low, the analysis may not be worth because of its

associated risk. However, when debugging an error, the impact of inspecting a piece of code

that does not contain a fault is much lower, meaning that a piece of data will be ignored

only if the probability that it is not reliable (p(x)) is very high.

80

8.3 Analyzing domain-specific issues using architectural

accountability

In this discussion, I propose a classification of software issues that does not pretend to be

universally applicable but to guide the creation of scenarios where capability accounting is

employed.

Although all of the issues analyzed in Chapter 7 are framed within the financial trading

domain, many of them could be easily extrapolated to other domains. For example, prevent-

ing computations from opening a backdoor is desirable in electronic trading but also in any

other domain. Furthermore, the assertion created in COMET could be used with no modi-

fications (except for names and IDs) in other contexts. However, the computation deployed

by a trading firm in the broker’s host satisfying a contractual obligation (e.g. placing more

than the minimum expected number of orders) is specific to the domain in which the appli-

cation operates. Following this reasoning, issues can be catalogued as domain-independent

and domain-dependent.

Domain-independent issues are inherently technical, and have generally to do with an

application not behaving as the developers expected (i.e. a failure). Possible reasons for

these effects are defects introduced by developers, the exploitation of security vulnerabilities,

mistreatment of unexpected inputs (e.g. different data formats, erroneous implementations of

software contracts or protocols), and the unexpected response of other systems in which our

application depends on (i.e. the other system does not respond or provides a response that

does not let our application to continue). In the created prototype, the deployed computation

has to be deployed and started, it has to register in the Market Data and Risk Management

servers and enable them to communicate back, place orders, and receive execution reports.

Although the actions are carried out within the financial trading domain, it is clear that

the described scenario could be abstracted and extrapolated to other domains; that is, the

scenario could also be described as a computation x that has to be deployed, started, it has

81

to subscribe to peers A and B, and then establish a request-response communication pattern

with peer C. It can be seen that the nature of the data is ignored because the evaluation

only encompasses action and interaction patterns.

Domain-dependent issues can be also dissected into technical or business-related. A

trading computation that does not place the right orders could be affected by a bug in the

trading algorithm (i.e. technical cause), or by a flawed trading strategy (i.e. business-related

cause). If a trader deploys a computation that behaves in a certain way with the only goal

of misleading other computations and making profit out of it, that is an unfair practice that

goes against trading regulations, thus, it should be prevented or, at least, detected.

My experience developing the prototype and the trading computations, and creating

scenarios in COMET showed me that domain-independent issues are easier to verify using

capability events than domain-dependent issues. The fact that communications between

peers can be abstracted as interactions between components, regardless of their nature fa-

cilitates the analysis based on capability accounting.

Verifying the compliance with business rules requires to figure out a mapping between

the rules and capability events. For example, the created prototype assumes that, in order

to place an order, the trading computation creates a CURL, and transfers it via the Order

Router CURL. Whereas this is true for the current implementation, it could also be different,

depending on the APIs provided (i.e. the binding environments), and the preference of the

software developers. Nevertheless, it is worth noting that it does seem to be the best design

solution in COAST: creating a new CURL for each order enables more fine-grained tracking

and control.

The resulting properties of a COAST-based software design are not part of this work,

and certainly requires further investigation. In particular, two salient research questions are

posed for future investigation:

1. What are the implications of designing a COAST-based software for capability ac-

counting? In the same way testability has been deeply studied in the past [8, 33],

82

designing a piece of software with capability accounting in mind and its effects would

also need to be studied. In particular, what trade-offs are found when considering

accountability as a software property?

2. When building the prototype, some decisions were made in order to provide account-

ability. They seemed, anyways, to be better design decisions. Are best practices in

COAST aligned with producing accountable software?

8.3.1 A domain-dependent case using capability accounting

On June 2012, Igor Oystacher, whom securities traders call “The Russian”, sent thousands

of buy and sell orders on the London Exchange. But he canceled many of those orders

milliseconds after placing them, documentation show, in what the exchange alleges was part

of a trading practice designed to trick other investors into buying and selling at artificially

high or low prices. This bluffing technique is called “spoofing” and has long been used in

trading. Hope [25] explains that a spoofer might deceive other traders into thinking oil prices

are falling, say, by offering to sell futures contracts at $45.03 a barrel when the market price

is $45.05. After other sellers join in with offers at that lower price, the spoofer quickly pivots,

canceling his sell order and instead buying at the $45.03, price he set with the fake bid. The

spoofer, who has now bought at two cents under the true market price, can later sell at

a higher price, perhaps by spoofing again, pretending to place a buy order at $45.04 but

selling instead after tricking rivals to follow. Repeated many times, spoofing can produce

big profits.

Imagine a COAST-based Order Router system implemented as shown in Figure 8.2. The

Order Router has a CURL for a trader to place new orders. Once a new order is placed,

the Order Router creates a brand new CURL, whose lifespan will be the same as the order’s

lifespan, that the trader can use to cancel or replace the order. When the order is filled, the

Order Router revokes the new CURL as it can no longer be exploited. In this system, it is

easy to correlate transactions related to each individual order and, eventually, take preventive

83

or corrective actions such as defining throttles for messaging, or revoking the CURL.

Figure 8.2: Suggested order router to han-
dle spoofing.

The Chicago Stock Exchange1 is offering

SNAPTM 2, an auction order that is hold for less

than a second but gives enough time to all the

players for a fair trading [29]. Regarding fre-

quent batch auctions, Budish [13] says that dis-

crete time reduces the value of tiny speed advan-

tages, and the auction transforms competition on

speed into competition on price. Consequently,

frequent batch auctions eliminate the mechanical

arbitrage rents, enhance liquidity for investors,

and stop the high-frequency trading arms race.

COAST has native support for this type of orders

by using gates to define the frequency in which a

CURL can be exploited. Furthermore, if an ex-

ternal monitoring system such as a real-time ver-

sion of COMET detects suspicious activity car-

ried out by a trader, it could eventually change

the order’s CURL gate to restrict the frequency

in which the order can be cancelled or replaced,

thus, mitigating the effects of a spoofer. Instead, if a spoofing attempt is confirmed, the mon-

itoring system could revoke the CURL associated to specific orders, preventing the trader

from continuing the operation on those orders.
1http://www.chx.com
2 http://www.chx.com/snap/

84

8.3.2 Detecting and preventing spoofing automatically

Assuming that it is technically possible to monitor all the necessary orders in real-time, there

is a major challenge in detecting illegal activities: uncovering the trader’s intention. Because

spoofing and other illegal strategies are based on valid market transactions, the scene has

to be examined as a whole, including its context. The spoofing case explored in this section

is based on quickly canceling orders right after they were placed. However, canceling an

order is an absolutely valid action. In relation to the spoofing case Hopes [25] illustrates,

“A trader might cancel after the market heads in an unexpected direction or when a news

flash suggests a different trade is in order”, and warns, “some traders say it can be difficult

to distinguish between illegal market manipulation and savvy tactics to conceal the size of

an intended trade – a technique used by traders since financial markets’ earliest days.”

85

Figure 8.1: How spoofing works in electronic trading. [25]

86

Chapter 9

Conclusion

Throughout this work, I explored the challenges of designing, developing, operating, and

maintaining secure decentralized systems, and assessed the feasibility of using architectural

accountability to overcome or mitigate some of those difficulties. Chapter 1 explains what

decentralized systems are, their characteristics, and the challenges associated to them. It

also relates the nature of these systems with the COmputAtional State Transfer (COAST)

architectural style, and explains why it is a good fit for such systems. Chapter 2 revisits

COAST, its principles and main elements, and the Motile/Island reference implementation.

Chapter 3 defines what capability accounting is, its purpose, structural elements and suggests

a framework for monitoring including: capture, storage, query, data preparation, evaluation,

reporting, and action, and what can or must be done during each activity. Chapter 5 presents

COast Monitoring Event Tool (COMET), a tool that enables the verification of software

execution by correlating and analyzing capability events captured by an instrumented version

of Motile/Island, and comparing them with expected patterns. This chapter also presents the

design of COMET, and the technology used to build it. Chapter 6 presents the relevance of

financial trading in the global economy, and explains why software systems in that domain

must be considered as decentralized systems. It also presents challenges in the financial

trading industry, and explains how some activities such as debugging and troubleshooting

87

have to be carried out because of security and privacy concerns, and the constraints about

how software systems must be operated. The chapter includes as well impactful cases from

the last five years that still resonate in the trading circles and costed several hundred million

dollars. Chapter 7 presents the evaluation performed for this work to assess whether it is

feasible to use capability accounting to help developers and system operators. It describes

the created prototype and trading computations, the implemented trading strategy, and

a list of issues that were solved using capability accounting and COMET, and details the

way in which the issues were approached. Chapter 8 includes a discussion about various

topics related to capability accounting. In particular, it explores the relationship between

application logging and capability accounting, introduces a risk-based treatment of data for

capability analysis, and describes the difference between domain-independent and domain-

dependent issues, and the challenges associated to the latter. It concludes by exposing

a spoofing case occurred in 2012, and how a COAST-based system could account for the

required information to help solve such case. It illustrates a prototype of a COAST-based

Order Router, whose design was prepared taking capability accounting into consideration,

and embraces mitigation and prevention actions. Finally, a discussion about the challenges

of uncovering actual spoofers’ intentions is included, highlighting the difficulty of detecting

whether an action should be considered as valid or if it is part of a strategy to make profit

illegally.

The contributions and outcomes of this research work are, therefore:

• The assessment of a novel technique for building and operating secure decentralized

systems based on architectural accountability: capability accounting. I demonstrated

that tracking the creation, exploitation, and transfer of Capability URLs, a COAST

fundamental element, several issues present in decentralized systems can be mitigated

or prevented.

• An evaluation of capability accounting within the financial trading domain. A proto-

type of an electronic trading system, where systems presumably developed by different

88

organizations interact to let individuals and companies trade securities. The execution

and operation of various scenarios were verified using COast Monitoring Event Tool

(COMET).

• A number of techniques and operators to represent and analyze capability events:

Sequence, Volume, Match, When, Exists, Unordered, Not, and Or.

• Evidence that strongly suggests that capability accounting can be used for domain-

dependent and domain-independent issues, at technical and business levels.

In particular, interesting findings related to COAST were obtained:

• COAST, as an architectural style, strongly supports architectural accountability.

• COAST is very well-suited for capability accounting.

• Capability accounting can be used to obtain interesting information about COAST

systems.

The main research questions I embarked to answer in this work are:

• Is capability accounting a well-suited form of architectural accountability?

As a result of this study, I demonstrated that capability accounting as a form of

measurement enables architectural accountability. It is possible to obtain insightful

information such as behavior, effects, and properties about software systems.

• How can capability accounting be used to help build, operate and maintain

secure decentralized systems? I proposed a framework that covers the capture,

transfer, storage, query, data preparation, evaluation, reporting, and action of capabil-

ity events. An instrumented version of the Motile/Island implementation captures and

ships out capability events to be stored in a database. These events are then inspected

and correlated by COMET, alerting when the observed event patterns differ from the

expected event patterns. Finally, decisions can be made upon the analysis results.

89

• Is the financial trading domain a suitable domain for capability accounting?

Through the creation of a prototype of an electronic trading system, and trading

computations that operate in that system, running in the instrumented version of

Motile/Island, generating capability events that were later on correlated and analyzed

by COMET, a tool especially created for this research work, I demonstrated that the

financial trading domain is a suitable domain for capability accounting. Furthermore,

the evaluation results strongly suggest that the proposed technique works with domain-

independent issues, and that it can also be applied to issues in other domains, as long

as the mapping between system actions and produced capability events is clear and

well-defined.

90

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under

Grant No. CNS-1449159 and by Bloomberg L.P. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation or Bloomberg L.P.

91

Bibliography

[1] STOMP Protocol Specification, Version 1.1. https://stomp.github.io/
stomp-specification-1.1.html. [Online; accessed 10-August-2015].

[2] Direct Market Access. http://www.londonstockexchange.com/
prices-and-markets/stocks/tools-and-services/direct-market-access/
direct-market-access.htm, 2015. [Online; accessed 01-August-2015].

[3] Exchange. http://www.investopedia.com/terms/e/exchange.asp, 2015. [Online;
accessed 01-August-2015].

[4] Trader. http://www.investopedia.com/terms/t/trader.asp, 2015. [Online; ac-
cessed 01-August-2015].

[5] G. A. Agha. Actors: A model of concurrent computation in distributed systems. Tech-
nical report, DTIC Document, 1985.

[6] P. Bajpai. Strategies And Secrets Of High Frequency Trading (HFT)
Firms. http://www.investopedia.com/articles/active-trading/092114/
strategies-and-secrets-high-frequency-trading-hft-firms.asp, 2015. [Online;
accessed 01-August-2015].

[7] J. T. Behrens. Principles and procedures of exploratory data analysis. Psychological
Methods, 2(2):131, 1997.

[8] R. V. Binder. Design for testability in object-oriented systems. Communications of the
ACM, 37(9):87–101, 1994.

[9] I. Board. Ieee standard classification for software anomalies. IEEE Std, 1044, 1993.

[10] A. C. Bomberger, W. S. Frantz, A. C. Hardy, N. Hardy, C. R. Landau, and J. S. Shapiro.
The keykos nanokernel architecture. In USENIX Workshop on Microkernels and Other
Kernel Architectures, pages 95–112, 1992.

[11] A. Bouteiller, G. Bosilca, and J. Dongarra. Redesigning the message logging model
for high performance. Concurrency and Computation: Practice and Experience,
22(16):2196–2211, 2010.

92

https://stomp.github.io/stomp-specification-1.1.html
https://stomp.github.io/stomp-specification-1.1.html
http://www.londonstockexchange.com/prices-and-markets/stocks/tools-and-services/direct-market-access/direct-market-access.htm
http://www.londonstockexchange.com/prices-and-markets/stocks/tools-and-services/direct-market-access/direct-market-access.htm
http://www.londonstockexchange.com/prices-and-markets/stocks/tools-and-services/direct-market-access/direct-market-access.htm
http://www.investopedia.com/terms/e/exchange.asp
http://www.investopedia.com/terms/t/trader.asp
http://www.investopedia.com/articles/active-trading/092114/strategies-and-secrets-high-frequency-trading-hft-firms.asp
http://www.investopedia.com/articles/active-trading/092114/strategies-and-secrets-high-frequency-trading-hft-firms.asp

[12] S. Brush, T. Schoenberg, and S. Ring. How a Mys-
tery Trader With an Algorithm May Have Caused the Flash
Crash. http://www.bloomberg.com/news/articles/2015-04-22/
mystery-trader-armed-with-algorithms-rewrites-flash-crash-story, 2015.
[Online; accessed 01-August-2015].

[13] E. B. Budish, P. Cramton, and J. J. Shim. The high-frequency trading arms race:
Frequent batch auctions as a market design response. Fama-Miller Working Paper,
pages 14–03, 2013.

[14] F. T. Community. What is FIX? http://www.fixtradingcommunity.org/pg/main/
what-is-fix, 2015. [Online; accessed 01-August-2015].

[15] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[16] J. B. Dennis and E. C. Van Horn. Programming semantics for multiprogrammed com-
putations. Commun. ACM, 9(3):143–155, Mar. 1966.

[17] A. S. Engineering. Argo Messaging System? http://www.argocons.com/rmcast.html,
2015. [Online; accessed 01-August-2015].

[18] R. Finberg. Global FX Average Daily Volumes in 2014 to Reach $5.5
Trillion: Reporte. http://www.financemagnates.com/forex/analysis/
aite-group-expects-global-fx-average-daily-volumes-2014-reach-5-5-trillion/,
2014. [Online; accessed 01-August-2015].

[19] I. M. Found. World Economic Outlook Database. http://www.imf.org/external/
pubs/ft/weo/2015/01/weodata/weorept.aspx?pr.x=33&pr.y=7&sy=2014&ey=2015&
scsm=1&ssd=1&sort=country&ds=.&br=1&c=111&s=NGDPD%2CNGDPDPC%2CPPPGDP%
2CPPPPC&grp=0&a=, 2015. [Online; accessed 01-August-2015].

[20] P. Gillespie. Trading resumes on NYSE after nearly 4-hour outage. http://money.
cnn.com/2015/07/08/investing/nyse-suspends-trading/, 2015. [Online; accessed
01-August-2015].

[21] M. M. Gorlick, K. Strasser, and R. N. Taylor. Coast: An architectural style for decen-
tralized on-demand tailored services. In Software Architecture (WICSA) and European
Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Confer-
ence on, pages 71–80. IEEE, 2012.

[22] M. M. Gorlick and R. N. Taylor. Motile: Reflecting an architectural style in a mobile
code language. 2013.

[23] M. M. Gorlick and R. N. Taylor. Communication and capability urls in coast-based
decentralized services. In REST: Advanced Research Topics and Practical Applications,
pages 9–25. Springer, 2014.

93

http://www.bloomberg.com/news/articles/2015-04-22/mystery-trader-armed-with-algorithms-rewrites-flash-crash-story
http://www.bloomberg.com/news/articles/2015-04-22/mystery-trader-armed-with-algorithms-rewrites-flash-crash-story
http://www.fixtradingcommunity.org/pg/main/what-is-fix
http://www.fixtradingcommunity.org/pg/main/what-is-fix
http://www.argocons.com/rmcast.html
http://www.financemagnates.com/forex/analysis/aite-group-expects-global-fx-average-daily-volumes-2014-reach-5-5-trillion/
http://www.financemagnates.com/forex/analysis/aite-group-expects-global-fx-average-daily-volumes-2014-reach-5-5-trillion/
http://www.imf.org/external/pubs/ft/weo/2015/01/weodata/weorept.aspx?pr.x=33&pr.y=7&sy=2014&ey=2015&scsm=1&ssd=1&sort=country&ds=.&br=1&c=111&s=NGDPD%2CNGDPDPC%2CPPPGDP%2CPPPPC&grp=0&a=
http://www.imf.org/external/pubs/ft/weo/2015/01/weodata/weorept.aspx?pr.x=33&pr.y=7&sy=2014&ey=2015&scsm=1&ssd=1&sort=country&ds=.&br=1&c=111&s=NGDPD%2CNGDPDPC%2CPPPGDP%2CPPPPC&grp=0&a=
http://www.imf.org/external/pubs/ft/weo/2015/01/weodata/weorept.aspx?pr.x=33&pr.y=7&sy=2014&ey=2015&scsm=1&ssd=1&sort=country&ds=.&br=1&c=111&s=NGDPD%2CNGDPDPC%2CPPPGDP%2CPPPPC&grp=0&a=
http://www.imf.org/external/pubs/ft/weo/2015/01/weodata/weorept.aspx?pr.x=33&pr.y=7&sy=2014&ey=2015&scsm=1&ssd=1&sort=country&ds=.&br=1&c=111&s=NGDPD%2CNGDPDPC%2CPPPGDP%2CPPPPC&grp=0&a=
http://money.cnn.com/2015/07/08/investing/nyse-suspends-trading/
http://money.cnn.com/2015/07/08/investing/nyse-suspends-trading/

[24] C. Group. Multi-Protocol Support. http://www.greenlinetech.com/support/
multiprotocol.php, 2014. [Online; accessed 01-August-2015].

[25] B. Hope. As ‘Spoof’ Trading Persists, Regulators Clamp Down. http://www.wsj.
com/articles/how-spoofing-traders-dupe-markets-1424662202, 2015. [Online;
accessed 01-August-2015].

[26] A. Jeffery. Goldman trading glitch could cost more than $100 million. http://www.
cnbc.com/id/100976404, 2013. [Online; accessed 01-August-2015].

[27] M. Kaminsky and E. Banks. Sfs-http: Securing the web with self-certifying urls. Tech-
nical report, Citeseer, 1999.

[28] T. C. Lin. New investor, the. UCLA L. Rev., 60:678, 2012.

[29] L. Marek. The Chicago Stock Exchange’s big idea to slow down trad-
ing. http://www.chicagobusiness.com/article/20150513/NEWS01/150519894/
the-chicago-stock-exchanges-big-idea-to-slow-down-trading, 2015. [Online;
accessed 01-August-2015].

[30] A. Martens, H. Koziolek, S. Becker, and R. Reussner. Automatically improve software
architecture models for performance, reliability, and cost using evolutionary algorithms.
In Proceedings of the First Joint WOSP/SIPEW International Conference on Perfor-
mance Engineering, WOSP/SIPEW ’10, pages 105–116, New York, NY, USA, 2010.
ACM.

[31] R. Martin. Wall Street’s Quest To Process Data At
The Speed Of Light. http://www.informationweek.com/
wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/
1054287?, 2007. [Online; accessed 01-August-2015].

[32] N. Medvidovic and R. Taylor. A classification and comparison framework for soft-
ware architecture description languages. Software Engineering, IEEE Transactions on,
26(1):70–93, Jan 2000.

[33] S. Mouchawrab, L. C. Briand, and Y. Labiche. A measurement framework for object-
oriented software testability. Information and software technology, 47(15):979–997, 2005.

[34] NASDAQ. Ouch. http://www.nasdaqtrader.com/Trader.aspx?id=ouch, 2015. [On-
line; accessed 01-August-2015].

[35] NYSE [nyse], July 2015. (1 of 3) The issue we are experiencing is an internal
technical issue and is not the result of a cyber breach. [Tweet]. Retrieved from
https://twitter.com/nyse/status/618818929906085888.

[36] W. F. of Exchanges. Monthly reports. http://www.world-exchanges.org/
statistics/monthly-reports, 2015. [Online; accessed 01-August-2015].

[37] C. Okasaki. Purely functional data structures. Cambridge University Press, 1999.

94

http://www.greenlinetech.com/support/multiprotocol.php
http://www.greenlinetech.com/support/multiprotocol.php
http://www.wsj.com/articles/how-spoofing-traders-dupe-markets-1424662202
http://www.wsj.com/articles/how-spoofing-traders-dupe-markets-1424662202
http://www.cnbc.com/id/100976404
http://www.cnbc.com/id/100976404
http://www.chicagobusiness.com/article/20150513/NEWS01/150519894/the-chicago-stock-exchanges-big-idea-to-slow-down-trading
http://www.chicagobusiness.com/article/20150513/NEWS01/150519894/the-chicago-stock-exchanges-big-idea-to-slow-down-trading
http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287?
http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287?
http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287?
http://www.nasdaqtrader.com/Trader.aspx?id=ouch
http://www.world-exchanges.org/statistics/monthly-reports
http://www.world-exchanges.org/statistics/monthly-reports

[38] Oxford Dictionaries. Event. http://www.oxforddictionaries.com/us/definition/
american_english/event, 2015. [Online; accessed 16-August-2015].

[39] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture. SIG-
SOFT Softw. Eng. Notes, 17(4):40–52, Oct. 1992.

[40] B. V. Protopopov and A. Skjellum. A multithreaded message passing interface (mpi)
architecture: Performance and program issues. Journal of Parallel and Distributed
Computing, 61(4):449–466, 2001.

[41] J. H. Saltzer. Protection and the control of information sharing in multics. Commun.
ACM, 17(7):388–402, July 1974.

[42] M. Schapiro. Testimony Concerning the Severe Market Disruption on May 6, 2010.
https://www.sec.gov/news/testimony/2010/ts051110mls.htm, 2015. [Online; ac-
cessed 1-August-2015].

[43] S. Seth. Basics of Algorithmic Trading: Concepts and Exam-
ples. http://www.investopedia.com/articles/active-trading/101014/
basics-algorithmic-trading-concepts-and-examples.asp, 2015. [Online; ac-
cessed 01-August-2015].

[44] I. Staff. The Stop-Loss Order - Make Sure You Use It . http://www.investopedia.com/
articles/stocks/09/use-stop-loss.asp, 2015. [Online; accessed 01-August-2015].

[45] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software architecture: foundations,
theory, and practice. Wiley Publishing, 2009.

95

http://www.oxforddictionaries.com/us/definition/american_english/event
http://www.oxforddictionaries.com/us/definition/american_english/event
https://www.sec.gov/news/testimony/2010/ts051110mls.htm
http://www.investopedia.com/articles/active-trading/101014/basics-algorithmic-trading-concepts-and-examples.asp
http://www.investopedia.com/articles/active-trading/101014/basics-algorithmic-trading-concepts-and-examples.asp
http://www.investopedia.com/articles/stocks/09/use-stop-loss.asp
http://www.investopedia.com/articles/stocks/09/use-stop-loss.asp

Appendices

A COMET Configuration

This appendix includes the XML content of the COMET configuration file used in Section

7.3.1. The CURLs are represented using their IDs, they correspond with the following

components:

• b927dace-e6b5-4ca7-9c22-b1d4e3ba4b9f: Service to deploy computations at the

Trading Computations Host.

• 6264c494-b240-43dc-892f-10c7dfbea378: Service to subscribe for events in the

Risk Management Server.

• 0dd4f4f5-72ce-40fe-996f-f80700c322f0: Service to subscribe for events in the Mar-

ket Data Server.

• feb0741f-4b42-4497-9c46-6205a97fe400: Service to place orders in the Order Router.

1 <config>
2 <global>
3 <protocolversion>0.1</protocolversion>
4 <mongo-host>peru.local</mongo-host>
5 <mongo-port>27017</mongo-port>
6 <mongo-db>coast</mongo-db>
7 <mongo-collection>events</mongo-collection>

96

8 <last-component>trader</last-component>
9 <correlation-field>mq-time</correlation-field>

10 </global>
11

12 <assertions>
13 <sequence
14 description="Trading Computation is properly deployed and up & running">
15 <event description="Trader provides a CURL for notifications">
16 <source-island>trader</source-island>
17 <type>curl-new</type>
18 <place>inter</place>
19 <curl-id>$capture:trader-curl</curl-id>
20 </event>
21 <event description="Trader includes its notification CURL">
22 <source-island>trader</source-island>
23 <type>curl-transfer</type>
24 <place>inter</place>
25 <curl-id>$read:trader-curl</curl-id>
26 </event>
27 <event description="Trader ships a trading computation to the robot-server">
28 <source-island>trader</source-island>
29 <type>curl-send</type>
30 <place>inter</place>
31 <curl-id>b927dace-e6b5-4ca7-9c22-b1d4e3ba4b9f</curl-id>
32 </event>
33 <event description="robot-server receives the trading computation">
34 <source-island>robot-server</source-island>
35 <source-islet>server.registration</source-islet>
36 <type>curl-receive</type>
37 <curl-id>b927dace-e6b5-4ca7-9c22-b1d4e3ba4b9f</curl-id>
38 </event>
39

40 <exists mandatory="1"
41 description="Registration @ Market Data and Risk servers">
42 <event
43 description="Trading Computation @ robot-server creates a new CURL to be sent

to Risk and Market Data servers">
44 <source-island>robot-server</source-island>
45 <source-islet>trader</source-islet>
46 <type>curl-new</type>
47 <place>inter</place>
48 <curl-id>$capture:trader-updates</curl-id>
49 </event>
50

51 <unordered description="Registration @ Market Data and Risk servers">
52 <sequence description="Registration @ Market Data Server">
53 <event
54 description="Trading Computation @ robot-server transfers the new CURL (to

Market Data Server)">
55 <source-island>robot-server</source-island>
56 <source-islet>trader</source-islet>
57 <type>curl-transfer</type>
58 <place>inter</place>
59 <curl-id>$read:trader-updates</curl-id>

97

60 </event>
61 <event
62 description="Trading Computation @ robot-server sends the new CURL to the

Market Data server">
63 <source-island>robot-server</source-island>
64 <source-islet>trader</source-islet>
65 <type>curl-send</type>
66 <place>inter</place>
67 <curl-id>0dd4f4f5-72ce-40fe-996f-f80700c322f0</curl-id>
68 </event>
69 <event description="Market Data server receives the new CURL">
70 <source-island>market-server</source-island>
71 <source-islet>server.registration</source-islet>
72 <type>curl-receive</type>
73 <curl-id>0dd4f4f5-72ce-40fe-996f-f80700c322f0</curl-id>
74 </event>
75 <event description="Trader @ Market Data creates a new CURL">
76 <source-island>market-server</source-island>
77 <source-islet>$capture:trader@md-local-id</source-islet>
78 <type>curl-new</type>
79 <place>intra</place>
80 <curl-id>$capture:trader@md-local-updates</curl-id>
81 </event>
82 <event description="Market Data sends local update">
83 <source-island>market-server</source-island>
84 <source-islet>updater</source-islet>
85 <type>curl-send</type>
86 <place>intra</place>
87 <curl-id>$read:trader@md-local-updates</curl-id>
88 </event>
89 <event description="Trader @ Market Data receives update">
90 <source-island>market-server</source-island>
91 <source-islet>$read:trader@md-local-id</source-islet>
92 <type>curl-receive</type>
93 <curl-id>$read:trader@md-local-updates</curl-id>
94 </event>
95 <event description="Trader @ Market Data sends update">
96 <source-island>market-server</source-island>
97 <source-islet>$read:trader@md-local-id</source-islet>
98 <type>curl-send</type>
99 <place>inter</place>

100 <curl-id>$read:trader-updates</curl-id>
101 </event>
102 <event
103 description="Trading Computation @ robot-server receives update from Market

Data Server">
104 <source-island>robot-server</source-island>
105 <source-islet>trader</source-islet>
106 <type>curl-receive</type>
107 <curl-id>$read:trader-updates</curl-id>
108 </event>
109

110 </sequence>
111 <sequence description="Registration @ Risk Server">

98

112 <event
113 description="Trading Computation @ robot-server transfers the new CURL (to

Risk Server)">
114 <source-island>robot-server</source-island>
115 <source-islet>trader</source-islet>
116 <type>curl-transfer</type>
117 <place>inter</place>
118 <curl-id>$read:trader-updates</curl-id>
119 </event>
120

121 <event
122 description="Trading Computation @ robot-server sends the new CURL to the

Risk Management server">
123 <source-island>robot-server</source-island>
124 <source-islet>trader</source-islet>
125 <type>curl-send</type>
126 <place>inter</place>
127 <curl-id>6264c494-b240-43dc-892f-10c7dfbea378</curl-id>
128 </event>
129

130 <event description="Risk Management Server receives the new CURL">
131 <source-island>risk-server</source-island>
132 <source-islet>server.registration</source-islet>
133 <type>curl-receive</type>
134 <curl-id>6264c494-b240-43dc-892f-10c7dfbea378</curl-id>
135 </event>
136

137 <event description="Trader @ Risk Management creates a new CURL">
138 <source-island>risk-server</source-island>
139 <source-islet>$capture:trader@risk-local-id</source-islet>
140 <type>curl-new</type>
141 <place>intra</place>
142 <curl-id>$capture:trader@risk-local-updates</curl-id>
143 </event>
144 <event description="Risk Management sends local update">
145 <source-island>risk-server</source-island>
146 <source-islet>updater</source-islet>
147 <type>curl-send</type>
148 <place>intra</place>
149 <curl-id>$read:trader@risk-local-updates</curl-id>
150 </event>
151 <event description="Trader @ Risk Management receives update">
152 <source-island>risk-server</source-island>
153 <source-islet>$read:trader@risk-local-id</source-islet>
154 <type>curl-receive</type>
155 <curl-id>$read:trader@risk-local-updates</curl-id>
156 </event>
157 <event description="Trader @ Risk Management sends update">
158 <source-island>risk-server</source-island>
159 <source-islet>$read:trader@risk-local-id</source-islet>
160 <type>curl-send</type>
161 <place>inter</place>
162 <curl-id>$read:trader-updates</curl-id>
163 </event>

99

164

165 <event
166 description="Trading Computation @ robot-server receives update from Risk

Server">
167 <source-island>robot-server</source-island>
168 <source-islet>trader</source-islet>
169 <type>curl-receive</type>
170 <curl-id>$read:trader-updates</curl-id>
171 </event>
172 </sequence>
173 </unordered>
174 </exists>
175

176 <event
177 description="Trading Computation @ robot-server creates a CURL for an order">
178 <source-island>robot-server</source-island>
179 <source-islet>$capture:worker-id</source-islet>
180 <type>curl-new</type>
181 <place>inter</place>
182 <curl-id>$capture:new-order</curl-id>
183 </event>
184 <event
185 description="Trading Computation @ robot-server transfers the CURL to the Order

Router">
186 <source-island>robot-server</source-island>
187 <source-islet>$read:worker-id</source-islet>
188 <type>curl-transfer</type>
189 <place>inter</place>
190 <curl-id>$read:new-order</curl-id>
191 </event>
192 <event
193 description="Trading Computation @ robot-server sends a message to the Order

Router">
194 <source-island>robot-server</source-island>
195 <source-islet>trader</source-islet>
196 <type>curl-send</type>
197 <place>inter</place>
198 <curl-id>feb0741f-4b42-4497-9c46-6205a97fe400</curl-id>
199 </event>
200 <event description="Order Router receives the order">
201 <source-island>order-router</source-island>
202 <source-islet>order-receiver</source-islet>
203 <type>curl-receive</type>
204 <curl-id>feb0741f-4b42-4497-9c46-6205a97fe400</curl-id>
205 </event>
206 <event
207 description="Order Router sends an execution report for the placed order to the

Trading Computation @ robot-server">
208 <source-island>order-router</source-island>
209 <source-islet>order-receiver</source-islet>
210 <type>curl-send</type>
211 <place>inter</place>
212 <curl-id>$read:new-order</curl-id>
213 </event>

100

214 <event
215 description="Trading Computation @ robot-server receives the execution report

sent by the Order Router">
216 <source-island>robot-server</source-island>
217 <!-- <source-islet>trader</source-islet> shouldn’t this be $read:worker-id? -->
218 <type>curl-receive</type>
219 <curl-id>$read:new-order</curl-id>
220 </event>
221 <event
222 description="Trading Computation @ robot-server sends notification back to

Trader.">
223 <source-island>robot-server</source-island>
224 <type>curl-send</type>
225 <place>inter</place>
226 <curl-id>$read:trader-curl</curl-id>
227 </event>
228 </sequence>
229

230 <when description="Trading computation does not open a backdoor."
231 conditions="2">
232 <event description="Computation @ Robot Server creates a CURL"
233 capture="potential-backdoor-exploitation">
234 <source-island>robot-server</source-island>
235 <type>curl-new</type>
236 <place>inter</place>
237 <curl-id>$capture:potential-backdoor</curl-id>
238 </event>
239 <event description="Trader sends a message to the created CURL.">
240 <source-island>trader</source-island>
241 <type>curl-send</type>
242 <curl-id>$read:potential-backdoor</curl-id>
243 </event>
244

245 <match description="CURL matches deployer"
captureKey="potential-backdoor-exploitation">

246 <event>
247 <curl-id>b927dace-e6b5-4ca7-9c22-b1d4e3ba4b9f</curl-id>
248 </event>
249 </match>
250

251 </when>
252

253 <volume description="Number of orders is within expected values"
254 minrange="1" maxrange="20" timerange="10" unit="seconds">
255 <event
256 description="Trading Computation @ robot-server sends a message to the Order

Router">
257 <source-island>robot-server</source-island>
258 <type>curl-send</type>
259 <place>inter</place>
260 <curl-id>feb0741f-4b42-4497-9c46-6205a97fe400</curl-id>
261 </event>
262 </volume>
263 </assertions>

101

264 </config>

102

B Base Trading Computation Source Code

1 #lang racket/base
2

3 (require
4 "../../include/base.rkt"
5 "../../baseline.rkt"
6 [only-in "../../curl/base.rkt" curl/origin curl/path curl/metadata]
7 "../../islet-utils.rkt"
8 "../../uuid.rkt"
9 "../examples-base.rkt"

10 "../examples-env.rkt")
11

12 (provide trader)
13

14 (define/curl/inline ROBOT-SERVER/CURL/SPAWN
15 #<<!!
16 SIGNATURE =

#"XbVHE3O5lhPAL-XreJ1z_q9QGftm21w5c9mOg48Fspe_KT0w5xKlVi9xprq8PcmZ7chKJK7yTgZMHW3UL4feBw"
17 CURL
18 id = b927dace-e6b5-4ca7-9c22-b1d4e3ba4b9f
19 origin = #"RaQDnsBmoxoaCe_rkNuPJB1Q7PgSaYm17jzafmYFPSc"
20 path = (service spawn)
21 access/id = access:send.service.spawn
22 created = "2015-05-28T13:49:37Z"
23 metadata = #f
24

25 !!
26)
27

28 ;; This thunk will be executed on the Robot Server.
29 ;; It will register for notifications coming from both the Market Data Server and the

Risk Server
30 ;; For each stock symbol, it keeps track of the current price and risk values.
31 (define THUNK/REGISTER-ROBOT/NEW
32 (island/compile
33 ’(lambda (motile/register/market motile/register/risk trader/notif/curl)
34 (lambda ()
35 (islet/log/info "Executing trader’s computation (market and risk registration) on

the Robot Server")
36

37 (let* ([robot/notif/u (islet/curl/new ’(robot notif) GATE/ALWAYS #f ’INTER)] ; We
create a CURL on the Robot Server to receive notifications from both the MD
Server and Risk Server.

38 [market/curl (robot/get-curl/market-server)] ; Get the Market Data Server
spawn CURL.

39 [risk/curl (robot/get-curl/risk-server)] ; Get the Risk Server spawn
CURL.

40 [order/curl (robot/get-curl/order-router)] ; Get the Order Router request
CURL

41 [market-thunk (motile/call motile/register/market environ/null
(duplet/resolver robot/notif/u))]

103

42 [risk-thunk (motile/call motile/register/risk environ/null
(duplet/resolver robot/notif/u))]

43 [stock/values (make-hash)] ; maps stock symbols to (price,risk) pairs,
price is in cents

44 [first-yhoo-sell (box #f)] ; first sell when yahoo stock first reaches 27
or below

45 [second-yhoo-sell (box #f)] ; second sell when yhoo stock firsst reaches
23 or below

46 [yhoo-sale-amt (box 0)] ; keeps track of cumulative amount of both yahoo
sales, in cents

47 [bought-fb-goog (box #f)]) ; set to true when yahoo sale completes and
goog and fb stocks are purchased

48

49 ;; sends an order request to the order router and aslo notifies trader of
requst

50 (define (place-order order-req order-req-curl order-notif-curl)
51 (islet/log/info "Sending order: ~a" (order-request/pretty order-req))
52 ; send order to order router, adding curl to communicate order exec reports

back
53 (when (not (send order-req-curl (vector-append (struct->vector order-req)

(vector order-notif-curl))))
54 (islet/log/info "Order request could not be sent."))
55 ; notify trader of new order request
56 (when (not (send trader/notif/curl (order-request/pretty order-req)))
57 (islet/log/info "Order request notification could not be sent to

trader.")))
58

59 ;; callback function to handle order execution reports on this order
60 (define (report-callback report)
61 (let ([c trader/notif/curl]
62 [notif-report-pretty (format "Report received: ~a"

(order-exec-report/pretty report))])
63 ;(islet/log/info "Report received ~a: " report)
64 (islet/log/info notif-report-pretty)
65 (when (not (send c notif-report-pretty))
66 (islet/log/info "Could not notify trader of report."))))
67

68 (send market/curl market-thunk) ; Send the registration thunk to the Market
Data Server.

69 (send risk/curl risk-thunk) ; Send the registration thunk to the Risk Server.
70

71 ; We now listen for notifications coming from the Market Data Server and the
Risk Server through robot/notif/u.

72 (let loop ([m (duplet/block robot/notif/u)]) ; Wait for an incoming message.
73 (let ([payload (murmur/payload m)]) ; Extract the message’s payload.
74 (islet/log/info "Update received: ~a" payload) ; Print it into the console.
75 (cond
76 ; handle market data event
77 [(equal? (vector-ref payload 0) ’struct:market-event)
78 (let* ([m-event (vector->market-event payload)]
79 [stock-symbol (market-event/symbol m-event)]
80 [stock-price (market-event/price m-event)]
81 [quantity (market-event/quantity m-event)])
82 (cond

104

83 [(hash-has-key? stock/values stock-symbol) ; is there already a key
for this symbol?

84 ; get the (price,risk,prev-price,prev-risk) vector, change the
price, update hash

85 (let ([v (hash-ref stock/values stock-symbol)])
86 (vector-set! v 2 (vector-ref v 0)) ; remember last price @ index

2
87 (vector-set! v 0 stock-price))] ; set new price @ index 0
88 [else
89 (hash-set! stock/values stock-symbol (vector stock-price -1 -1

-1))])) ; -1 means no value seen
90 ;(islet/log/info stock/values) ; DEBUG show hash
91]
92 ; handle risk event
93 [(equal? (vector-ref payload 0) ’struct:risk-event)
94 (let* ([r-event (vector->risk-event payload)]
95 [stock-symbol (risk-event/symbol r-event)]
96 [stock-risk (risk-event/risk r-event)])
97 (cond
98 [(hash-has-key? stock/values stock-symbol) ; is there already a key

for this symbol?
99 ; get the (price,risk,prev-price,prev-risk) vector, change the

risk, update hash
100 (let ([v (hash-ref stock/values stock-symbol)])
101 (vector-set! v 3 (vector-ref v 1)) ; remember last risk value @

index 3
102 (vector-set! v 1 stock-risk))] ; set new risk value @ index 1
103 [else
104 (hash-set! stock/values stock-symbol (vector -1 stock-risk -1

-1))])) ; -1 means no value seen
105]
106 [else
107 (islet/log/info "UNKNOWN EVENT")])
108

109

110 ; We echo back each market notification for GOOG and FB as a request to the
Order Router

111 (when (equal? (vector-ref payload 0) ’struct:market-event)
112 (let* ([p (subislet/callback/new (uuid/symbol) (environ/merge

EXAMPLES/ENVIRON (unbox (islet/environ (this/islet)))) report-callback)]
; create a new islet to listen for order reports on this order request

113 [order-exec-curl (cdr p)]; curl to communicate order-exec-reports
114 [symbol (vector-ref payload 1)]
115 [price (string->number(vector-ref payload 3))]
116 [quantity (box (string->number(vector-ref payload 4)))]
117 [send-order (box #t)])
118 ; only echo FB and GOOG orders
119 (when (equal? symbol "YHOO")
120 (cond
121 [(and (<= price 2700) (not (unbox first-yhoo-sell)))
122 (set-box! quantity 500) ; fixed amount representing first half of

shares
123 (set-box! first-yhoo-sell #t) ; make sure we only do this once
124 (islet/log/info "TRIGGERING FIRST YAHOO SALE.")

105

125 (set-box! yhoo-sale-amt (* (unbox quantity) price))] ; remember
prices are in cents

126 [(and (<= price 2300) (not (unbox second-yhoo-sell))) ; YAHOO
127 (set-box! quantity 500) ; fixed amount representing second half of

shares
128 (set-box! second-yhoo-sell #t) ; make sure we only do this once
129 (islet/log/info "TRIGGERING SECOND YAHOO SALE.")
130 (set-box! yhoo-sale-amt (+ (unbox yhoo-sale-amt) (* (unbox

quantity) price)))]
131 [else ; ignore all other yahoo events
132 (set-box! send-order #f)]))
133 ;(islet/log/info "IGNORING YAHOO MARKET EVENT.")]))
134 ; Here we are sending one of three orders:
135 ; 1> a goog or facebook order based on goog or fb market notification
136 ; 2> a first yahoo selloff (once) or
137 ; 3> a second yahoo selloff (once)
138 (when (unbox send-order)
139 (let ([new-order-request (order-request "trader" "BUY" symbol price

(unbox quantity) (uuid/symbol))])
140 (place-order new-order-request order/curl order-exec-curl)))
141 ; Here we are making one goog and one fb order using all monies from

yahoo sales, distributed
142 ; proportionately to the current risk values for those stocks.
143 ; This should occur immediately after 2nd yahoo sale, and only once.
144 (when (and (equal? (unbox second-yhoo-sell) #t)
145 (equal? (unbox bought-fb-goog) #f))
146 (let* ([fb-v (hash-ref stock/values "FB")]
147 [goog-v (hash-ref stock/values "GOOG")]
148 [fb-price (vector-ref fb-v 0)] ; get last seen FB price
149 [goog-price (vector-ref goog-v 0)] ; get last seen GOOG price
150 [fb-neg-risk (vector-ref fb-v 1)]
151 [goog-neg-risk (vector-ref goog-v 1)]
152 [fb-pos-risk (- 100 fb-neg-risk)]
153 [goog-pos-risk (- 100 goog-neg-risk)]
154 [fb-percent (/ fb-pos-risk (+ fb-pos-risk goog-pos-risk))]
155 [goog-percent (/ goog-pos-risk (+ fb-pos-risk goog-pos-risk))]
156 [fb-sale-amt (* fb-percent (unbox yhoo-sale-amt))]
157 [goog-sale-amt (* goog-percent (unbox yhoo-sale-amt))]
158 [num-fb-shares (floor (/ fb-sale-amt fb-price))]
159 [num-goog-shares (floor (/ goog-sale-amt goog-price))])
160 (let ([fb-order-request (order-request "trader" "BUY" "FB" fb-price

num-fb-shares (uuid/symbol))])
161 (islet/log/info "Sending FB for YHOO order...")
162 (place-order fb-order-request order/curl order-exec-curl))
163 (let ([goog-order-request (order-request "trader" "BUY" "GOOG"

goog-price num-goog-shares (uuid/symbol))])
164 (islet/log/info "Sending GOOG for YHOO order...")
165 (place-order goog-order-request order/curl order-exec-curl)))
166 (set-box! bought-fb-goog #t))
167)))
168

169 (loop (duplet/block robot/notif/u))))))))
170

171

106

172 ;; Generate the spawn definition that trader sends to market notifications service.
173 (define THUNK/REGISTER-MARKET/NEW
174 (island/compile
175 ; client/notif/u - The Traders’s Notification Service’s CURL.
176 ; Returns a thunk
177 ’(lambda (client/notif/u)
178 ; This thunk will be executing as a spawn on a remote island.
179 (lambda ()
180 ; Creates a new CURL when it is evaluated (it cannot be passed because it has to

be created on the server-side.
181 (let ([d (islet/curl/new ’(comp notif) GATE/ALWAYS #f ’INTRA)])
182 (register (list "GOOG" "YHOO" "FB" "IBM") (duplet/resolver d))
183 (islet/log/info "Registered for market events.")
184

185 (let loop ([m (duplet/block d)])
186 (let ([payload (murmur/payload m)])
187 (send client/notif/u payload)
188 (loop (duplet/block d))))))))) ; Wait again for an echo request.
189

190

191 ;; Generate the spawn definition that trader sends to risk notifications service.
192 (define THUNK/REGISTER-RISK/NEW
193 (island/compile
194 ; client/notif/u - The Traders’s Notification Service’s CURL.
195 ; Returns a thunk
196 ’(lambda (client/notif/u)
197 ; This thunk will be executing as a spawn on a remote island.
198 (lambda ()
199 ; Creates a new CURL when it is evaluated (it cannot be passed because it has to

be created on the server-side.
200 (let ([d (islet/curl/new ’(comp notif) GATE/ALWAYS #f ’INTRA)])
201 (register (list "GOOG" "YHOO" "FB" "IBM") (duplet/resolver d))
202 (islet/log/info "Registered for risk events.")
203

204 (let loop ([m (duplet/block d)])
205 (let ([payload (murmur/payload m)])
206 (send client/notif/u payload)
207 (loop (duplet/block d))))))))) ; Wait again for an echo request.
208

209 ;; Code for a trader island.
210 ;; server/u - CURL for spawn service on Robot Server.
211 (define (trader/boot server/u)
212 (islet/log/info "Trader is booting...")
213

214 (islet/log/info "Waiting for Robot Server...")
215 (island/enter/wait (curl/origin server/u))
216 (islet/log/info "Robot Server has been seen.")
217

218 (let* ([pr (subislet/callback/new ’trader-notif EXAMPLES/ENVIRON ; create a new islet
to listen notifications of order requests made on traders behalf

219 (island/compile ’(lambda (payload) ;callback function
to handle order notifications to the trader

107

220 (islet/log/info "Trader
Notification received: ~a"
payload)

221)))]
222 [trader/notif/curl (cdr pr)]
223 [thunk (motile/call THUNK/REGISTER-ROBOT/NEW environ/null

THUNK/REGISTER-MARKET/NEW THUNK/REGISTER-RISK/NEW trader/notif/curl)])
224 (islet/log/info "Sending registrations thunk to Robot Server...")
225 (send server/u thunk)))
226

227 ; Construct an in-memory CURL instance of the predefined CURL for robot-server.
228 (define robot-server/curl/spawn (curl/zpl/safe-to-curl ROBOT-SERVER/CURL/SPAWN KEYSTORE))
229

230 (define trader (example/island/new ’trader "trader_secret" (lambda () (trader/boot
robot-server/curl/spawn))))

231

232 (island/log/level/set ’warning)

108

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Research
	Research Goals
	Research Questions

	Organization of this work

	The COAST architectural style
	Principles
	Functional and communication capabilities
	Architectural elements
	Execution sites
	Capability URLs (CURLs)
	COAST Computations

	The Motile/Island implementation
	Islands
	Islets
	Compilation and Serialization

	Capability accounting
	Capability events
	Activities
	Capture
	Transfer
	Storage
	Query
	Data preparation
	Evaluation
	Reporting
	Action

	Exploratory and evaluation-based analyses

	Implementation of Capability accounting for evaluation
	Capability events
	Activities
	Tools for capability accounting
	Instrumented Motile/Island implementation
	Racket STOMP module
	Broker-to-DB bridge
	RabbitMQ
	MongoDB
	COast Monitoring Event Tool (COMET)

	COast Monitoring Event Tool (COMET)
	High-level architecture
	Configuration Reader
	Evaluation Implementations
	Evaluations Manager
	Query Handler

	Configuration
	Global properties
	Evaluations
	Output

	Electronic trading and software systems
	Domain relevance
	Global trading volume
	Major incidents in financial trading

	Challenges on electronic trading software systems

	Evaluation
	An electronic trading prototype
	Participants
	Subsystems and components
	Prototype's technical information

	Base trading computation
	Trading strategy
	Interaction with the prototype

	Verifying software execution
	Verification model

	Execution of Base Trading Computation
	Problem-based evaluation
	Trading Computation does not place orders
	Trading Computation does not send notifications to the trader
	Trading Computation opens a backdoor
	Trader uses a different service level
	Trading computation places too many or too few orders

	Summary

	Discussion
	Application-agnostic logging
	Interpretation depends on the nature of available events
	Analyzing domain-specific issues using architectural accountability
	A domain-dependent case using capability accounting
	Detecting and preventing spoofing automatically

	Conclusion
	ACKNOWLEDGMENTS
	Bibliography
	Appendices
	COMET Configuration
	Base Trading Computation Source Code

