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Abstract

We describe RCAT, an architecture designed to scale real-time on-
line environments up to thousands of interacting users in an application-
independent manner. RCAT takes inspiration from the principles that
allow Web applications to scale horizontally, while being aware of the
challenges brought up by real-time multi-user interactions. We present
a performace study that shows where the bottlenecks of RCAT are, and
the thresholds at which additional cores are needed. Our laboratory ex-
periments with a reference application that produces 2.5 updates/second
show that 229 interacting users can be appropriately served with 16 cores.
More generally, our experiments show that to support twice the number
of users, the server side needs four times more cores, independent of the
update frequency of the application. This finding is important in order
to engineer the next generation of cloud-based massive multiuser environ-
ments.

1 Introduction

Massively Multiuser Online games (MMOs) such as World of Warcraft, EVE
Online, and Second Life are virtual 3D environments in which players interact
in real-time with each other inside a virtual world. But interactions in current
MMOs are not truly massive: designers craft the games so that users can only
interact with at most around a hundred other users at the same time. When
more than the expected number of players gather together, the game usually
crashes1.

The demand for high user concurrency is now going well beyond games.
Applications such as Facebook and Twitter distribute massive numbers of events
among massive numbers of users. While these applications are not exactly

1See a virtual flash mob in World of Warcraft at http://www.youtube.com/watch?v=

m7FW0BK2fUo
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real-time, the updates are relatively fast-paced, and therefore present similar
challenges to those seen in online games. As Web technologies become more
capable of supporting rich 2D and 3D media, the line between online games and
(serious) Web applications will become fuzzier. The goal of our work is to be
able to support the next generation of cloud-based massively multiuser online
environments, such as Massive Online Open Courses (MOOCs) [5] and social
environments for medical applications [42].

Looking at how MMOs have approached scalability can provide insights to
scale other types of multiuser applications. MMO players are generally seen as
event producers and consumers: each player generates a stream of events that
other players are interested in. For example, if a player orders her character
to move forward, other players should be notified or the character’s movement,
update their local state of the world, and render the updated state. If all the
players subscribe to all the other players, then the number of event messages
to deliver increases quadratically with the number of players [37]. Quickly, the
system is overwhelmed by the number of events, and the latency (i.e. the time
taken to forward an event) increases. The game becomes much less responsive.
Thus, there is a trade-off between scalability and responsiveness. That is, if the
number of users increases, so does the latency.

To give the illusion that players can interact with thousands of other play-
ers, MMOs use interest management techniques [9]. They assume that players
are only interested in events happening near them in the virtual world. The
world is therefore partitioned in self-contained regions (e.g. a city or a for-
est), and each region is handled by a different process. Systems implementing
space-partitioning assume that players are interested in events generated in
their current region, and maybe also in the adjacent regions, but never in the
entire world. Using this partitioning strategy, MMOs have been able to support
hundreds of users while keeping the latency relatively low.

Space-partitioning works well until too many players decide to meet in the
same region. For example, the maximum number of directly interacting users
ever achieved in a commercial MMO is around 3,000 in the game EVE Online2.
This record was achieved thanks to a very expensive hardware infrastructure,
a tiered software architecture, and a game design solution called time dilation.
Time dilation compensates for the server load by slowing down the region’s
time. Regions may support more players, but some have found time dilation
“absolutely unplayable”3. MMOs that can not afford this kind of infrastructure,
architecture, or game design tricks have much lower player limits: World of
Warcraft supports around 120 users per region4, and Second Life up to 1005.

Research has tried to dynamically adapt the shape and size of regions to
the distribution of players. However, solutions such as dynamic binary space
partitioning suffer from a high overhead due to synchronization and data han-
dover between regions [36]. In fact, the CAP theorem states that a partitioned

2See http://themittani.com/news/asakai-aftermath-all-over-cobalt-moon
3See https://forums.eveonline.com/default.aspx?g=posts&t=108331
4See http://www.wowwiki.com/Wintergrasp#Queuing
5See http://wiki.secondlife.com/wiki/Limits#Land
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system can not be both highly available (i.e. responsive) and strongly con-
sistent [11, 12]. Since a scalable MMO system involves multiple partitioned
processes, the MMO developer inherently has to trade some consistency to stay
responsive.

In the last two decades, the number of MMO players has tremendously
increased, but so as the number of Web users. To scale, Web applications follow
a very constrained architectural style called REpresentational State Transfer
(REST) [22]. One of the pillars supporting REST is the statelessness of the
HTTP protocol: web servers do not remember any client data between two
requests. This way, it is easy to scale a web application by adding more machines
running the exact same application code.

In this work, we explore how REST could be applied to scale MMOs. Even
though some game developers doubt that REST can be applied to MMOs [51],
the suitability of REST for MMOs remains an open question. Moreover, recent
web technologies such as HTML5 WebSockets or WebGL show serious oppor-
tunities for browser-based MMOs.

Although scalability is our main concern, we keep in mind the trade-off with
consistency and responsiveness. Other requirements such as fault-tolerance (if
a machine falls, it is at minimal cost for the system) or resilience (recovering
quickly from peaks or crashes) are desirable, but they are not the main focus of
this paper.

The contributions of this work are as follows:

• We make a first attempt at conceptually harmonizing REST principles
with MMOs

• We develop an architecture (RCAT) and its reference implementation,
that is based on those principles

• We report performance characteristics of a prototypical RCAT application
that allow us to estimate upfront the resources necessary to deploy these
applications on the cloud given specific concurrency targets

In the rest of this paper, we first cover the current techniques used to scale
MMOs to large numbers of users. Then we introduce RCAT, our own archi-
tecture designed to scale to large number of users without being bound to a
particular type of application. We then detail the reference implementation and
an application based on this architecture. Finally, we report our laboratory
experiments, discuss the implications, and conclude.

2 Overview of Techniques for Scaling Up Multi-
user Games

A large body of academic literature, and several practical techniques seen in
the industry, focus on scalability, consistency, and responsiveness for MMOs.
These techniques are scattered in various fields of computer science, and target
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different parts of the scalability problem. This section revisits some of the most
well-known techniques for scaling up these systems.

Probably the most popular current technique for scaling MMOs is space
partitioning. We detail what space partitioning is in the next subsection. We
also describe other game-specific techniques that help scaling while maintaining
consistency and responsiveness. Then we look at scaling techniques applicable
to MMOs from the database community, and finish with approaches from the
network and systems communities.

2.1 Space Partitioning

Space partitioning consists of splitting the game world in multiple regions, and
assigning each region to a process of the MMO system. In client-server architec-
tures, the processes in charge of regions are game servers, while in peer-to-peer
architectures, each peer is in charge of one region. Even though the practical
feasibility of peer-to-peer architectures is subject to debate (e.g. Miller and
Crowcroft say not feasible [41], Hu et al. say feasible [29]), client-server and
peer-to-peer really are two sides of the same coin: they both partition a game
state over multiple machines.

The assumption behind space-partitioning dates back from the seminal vir-
tual world of the early 90s called DIVE [15]. In DIVE, users can transfer from
region to region, but they only need to know what happens in their current
region. DIVE follows a client-server architecture. Each server is in charge of
processing the client requests concerning the virtual objects in its region, as well
as the handover of users from and to other regions. This model works well until
a server has to handle too many users or objects in its region. There has been
a lot of academic work on space-partitioning [30, 53] Most current commercial
MMOs use this static space-partitioning model. To prevent server crashes, game
operators have resolved to instancing: they instantiate replicas of a particularly
popular region, and cap the number of players in the region. The World of
Warcraft dungeon raids are a current example of instancing.

But instancing replicas of a region does not make that region scale. More-
over, in virtual worlds like Second Life, where users can create objects at run
time, the distribution of objects and users is non-uniform, and the behavior
of objects and users hard to predict [31]. Dynamic space-partitioning aims at
solving this problem by adapting the size and shape of regions to the object
and user distribution, so as to balance the computational and bandwidth load
across peers (in peer-to-peer) or servers (in client-server). There are several
approaches to dynamic space partitioning. One approach treats regions as cells
of a Voronoi diagram, whether in peer-to-peer [13] or in client-server [4]. An-
other approach treats regions as a set of adjacent microcells [18, 20, 49]. Yet
recent work suggests that the amount of interactions between two regions can
result in a high load for the two regions, thereby making spatial partitioning
not suitable for all object or player distributions and behaviors [16]. In short,
space-partitioning is an optimization that is only efficient in certain MMO use
cases, but not all.
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2.2 Other Game-Specific Techniques

Interest management consists of notifying users and objects only about the users,
objects, locations, or events they are interested in. For example, an avatar could
be interested in only avatars and objects within 100 meters, or in chat messages
directly addressed to that avatar. In academia, interest management has often
involved publish-subscribe infrastructures [9], whether through spatial queries in
peer-to-peer [7], communication channels maintained by a centralized server [21],
or a cloud-based infrastructure [43]. Commercially, interest management is
central in EVE Online, a futuristic MMO. EVE’s servers conceptually group
nearby spaceships in self-contained and isolated spheres. Each sphere has a
particular channel, to which all players in the sphere subscribe to. This is an
improvement over the traditional space-partitioning, as region servers now only
need to compute spheres and broadcast messages within spheres rather than to
the entire region [10]. Sirikata [28] uses a twist on interest management: rather
than computing it spatially, they compute it based on the avatar’s view of the
world. Thus clients receive more updates concerning objects in their frustum
than updates concerning hidden objects. Once again, not all MMOs may be able
to use interest management, visibility, or publish-subscribe techniques efficiently
due to their design.

Data prioritization is a mechanism frequently used in MMOs to reduce the
bandwidth between peers or from the server(s) to the clients. It assumes that
some messages are critical, while others are not. When bandwidth or compu-
tational resources become scarce, only critical messages need to be forwarded.
This has been abundantly studied in peer-to-peer academic research [6, 45].

Time dilation is a technique commonly used in commercial MMOs. It con-
sists of slowing down the simulation time, mostly because the server’s physics
engine can not keep up with the load. While time dilation is more graceful
than a complete server crash, it remains game-specific and severely reduces the
responsiveness of the game. EVE Online and Second Life are two MMOs using
time dilation6.

And finally, some online games like first-person shooters place a strong em-
phasis on latency. For those games, it is better to be wrong but on time, than
right but late [39]. Commercially, the Source Engine from Valve follows an op-
timistic client-server architecture7: if player A hits player B, A actually only
predicts that B is hit. Client A sends the hit message to the server. If the server
determines that player B was indeed hit when A fired, i.e. several frames ago, it
forwards the hit to B. But B could have reacted faster than the latency between
A and the server. In that case, A’s view would be slightly inconsistent with B’s
and the server’s. Thus the server would determine that A actually missed his
shot. The server notifies A of the missed shot, and A rollbacks its state. This
rollback results in local inconsistencies [17]. In academic research, Gupta et al.
suggest that each client should run the game logic, and the server only act as

6See http://community.eveonline.com/news/dev-blogs/3412 and http://wiki.

secondlife.com/wiki/LlGetRegionTimeDilation
7https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
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a message forwarder and be in charge of persistence [26]. Clients apply their
own actions to an optimistic model, and actions received from the server to a
stable model. If applying the same action to the optimistic and stable models
result in two different models, then the system needs to rollback. The client
asks the server to broadcast a fix it proposes, all other clients execute the fix,
and if they conflict, send their own fix to the fix. This can result in long chains
consuming a lot of bandwidth and CPU. Thus the server rejects fixes past a
certain chain length. Both academic and commercial approaches are examples
of the consistency-responsiveness trade-off mentioned earlier.

2.3 Data Management

The commercial MMO Guild Wars 2 has had trouble scaling the number and
complexity of AI scripts handled by its servers [35]. A research group at Cor-
nell also observed this trade-off between the complexity of AI scripts and their
quantity. They proposed a data-driven declarative language that factors similar
queries together [52], thereby reducing the AI computations from quadratic to
linear with the number of entities in the world. Pikko and BigWorld, two com-
mercial middleware platforms for MMOs, recommend offloading AI scripts out-
side of the server, as if they were normal clients [3, 8]. This way, the server can
dedicate more CPU processing client requests rather than complex AI scripts.
However, there may be a significant bandwidth increase compared to the case
where AI is run within the server.

Persistence-wise, a central database is usually a bottleneck in client-server
architectures. This problem has been solved in commercial MMOs in three ways.
First, they only persist the state of all connected avatars to the database in a
batch every few minutes. While this alleviates the load on the database, avatar
states have to rollback when a server crashes. The second technique addressing
the database bottleneck in commercial MMOs is the use of a query manager:
a machine stands between the database and the game servers as a buffer and
a cache, as in the MMO Tibia [47]. A third approach consists of investing
in expensive hardware for the database, also known as vertical scaling. For
example, as of March 2011, each of the two machines hosting the database of
EVE Online had 512 GB of RAM, 32 logical cores, 18 solid state drives, and
used a 32 Gbps Infiniband link to communicate with the tier of game servers8.

We saw earlier that spatial-partitioning was not always the best data parti-
tioning scheme. In Darkstar (now called RedDwarf9), an entity’s data is stored
on a node independent of the entity’s location in the game world [50]. In this
way, Darkstar resembles the distributed memory caching of memcached10. But
the main feature of Darkstar is its transactional tasks. Server reads can be per-
formed on the local cache, but writes must be sent to a central server to check
for conflicts with other writes. If no conflicts are detected, the transaction is
executed, otherwise, the transaction fails and runs again after a period of time.

8See http://community.eveonline.com/devblog.asp?a=blog&nbid=2292
9See http://sourceforge.net/apps/trac/reddwarf/

10See http://memcached.org
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This approach may add latency to some transactions, and particularly to those
related to popular entities (e.g. thousands of players attacking the same boss).
Darkstar clearly stands on the consistency side of the consistency-responsiveness
spectrum.

2.4 Network and System Approaches

Several system architectures have been proposed for MMOs. A very common
architecture seen in client-server academic prototypes and commercial MMOs
alike is the tiered architecture. Clients connect to a tier of client managers (also
known as proxies). Proxies forward messages between clients and the tier of
game servers, running the game logic. Game servers persist their state in the
database tier. Proxies are useful to externalize the load due to client handling on
the server (e.g. socket management and data prioritization) [24]. Even though
the average MMO packet size is less than 30 bytes [27], the number of messages
to send is between linear and quadratic with the number of players. Tiered
architectures were already mentioned in research in the early 2000’s [23, 40],
and have been used in Intel’s DSG [34] and many commercial MMOs [2, 10, 32].

Figure 1: Tiered architecture

Intel’s DSG does more than just a tiered architecture. It aims at breaking

7

UCI ISR Technical Report # UCI-ISR-13-2. Nov. 2013.



down the monolithic simulator-centric architecture and offloading services to
external processes [34]. While external services provides a nice separation of
concerns, it adds extra latency due to the extra hop in forwarding tasks to
services. Once again, we see the responsiveness-scalability trade-off. Carlini
et al. mixed peer-to-peer and cloud by using virtual nodes as an abstraction
layer for the physical node location. Virtual nodes allow for transparent node
relocation, is cheaper than a pure client-server solution, and more reliable than a
pure peer-to-peer solution [14]. S-VON is a peer-to-peer Voronoi-based overlay
network with super peers. While a pure peer-to-peer Voronoi-based overlay
network only accounts for in-game proximity, the super peers also take into
account the network proximity to reduce the latency [29].

Another system approach consists of using lockless tasks to avoid deadlocks
between cores. This has been tried academically in [46] and comercially in the
MMO called TERA [33]. Compared to offloading services to other machines,
lockless game servers do not suffer from additional latency due to the extra hop.
However, lockless game servers can only scale up to the number of cores in one
machine. We see once again the trade-off between scalability and responsiveness.

3 RCAT

The spectrum of solutions for scaling up MMOs is large, and includes many
application-specific optimizations, some of which were not covered in the previ-
ous section. We seek to develop a middleware that has the following character-
istics:

• It is application independent, and it can support a variety of massive multi-
user applications, from social networks to synchronous online education
to real-time 3D games. That way the knowldege gained in developing one
type of application is not lost when having to develop another type of
application.

• It can scale horizontally, i.e. the demand for larger number of interacting
users can be met simply by adding more servers doing the same functions.

In order to meet these goals, we approach the problem from an architectural
perspective. Architectures, or more precisely architectural styles, are constraints
over all things that can be done [48]. By setting constraints on applications in
specific ways, we establish a set of principles that, on the one hand, disallow
many potentially valid application-specific short-cuts, but that, on the other,
ensure that the goals of knowledge sharing and horizontal scaling are met.

In this section, we first describe some of the foundations of RCAT, and then
describe RCAT itself.

3.1 REST

Before the Web established itself as the main platform for Internet applications
at the global scale, many other platforms had been proposed during the 80s
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and the 90s [25, 44]. The Web has given us two very important advantages
over the competition at the time: (1) it created a common foundation for the
development of a variety of applications; web developers can create many appli-
cations in many different domains using many different frameworks, languages
and tools, but the architectural foundations are all the same; and (2) it allowed
web applications to start small (one web server) and gracefully grow to server
farms if the businesses so demand.

We would like MMOs to have these same properties. As such, RCAT is
inspired by the architecture of Web applications, in particular REST [22]. REST
stipulates five main architectural constraints that we adapt to the context of
MMOs:

• Client-server: The state of the system is stored on the server-side, not on
the client-side. Client-server architectures are commonplace in MMOs.

• Tiers: hardware proxies, load balancers, and software-level intermediaries
are recommended to decouple clients from servers. Tiered architectures
are not a new topic in MMO architecture [1].

• Stateless protocol: No client-specific information (i.e. context) can be
stored on the server between two client requests. Our intuition is that
servers that contain state cannot scale because of the overhead of poten-
tially synchronizing the parts of the state that they need to share. This
is a problem we mentioned in the previous section. REST recommends
persisting the state to a database or the clients. This way, the tier of
application servers can scale by simply adding more hardware running the
application.

• Uniform interface: This involves two parts. First, a RESTful server inter-
face should be able to receive messages with different formats, and answer
client requests in the format they ask for. Thus metadata should accom-
pany the client request to help the server understand how to interpret
and answer the request – timestamps for example. Second, each resource
should have a unique address (a URI). For example, the host machine’s
IP and port, and the GUID of an object suffice to identify and access that
object uniquely.

• Caches: Caches are intermediaries between system components. Their
use is highly recommended, since they can reduce computations and traf-
fic considerably. Caches contain information that changes infrequently. In
MMOs, players’ positions are generally not cacheable, but textures and as-
sets are. We saw earlier that several academic and commercial approaches
replicate/cache game entities in adjacent regions for performance reasons.

We must be cautious when applying REST naively to MMOs: at first sight,
the statelessness of the protocol between clients and application servers seems
to be conflicting with the requirements of MMOs. A stateless protocol implies
that either a) clients have to enclose to their request all the required data for
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the server to process their requests, or b) the server has to retrieve the necessary
data from the database. In MMOs, clients clearly cannot enclose all necessary
data with their request, because this can potentially mean the whole game
state. Enclosing the whole game state is doable for a 2-player game of Tic-
tac-toe or even Chess, but not reasonable for an MMO: bandwidth will quickly
become limiting [51]. Thus servers need to fetch data from the database for
each client request. As we show in the evaluation section, compared to the
current monolithic architecture of commercial MMOs, REST can result in a
higher latency to process client requests, more bandwidth consumed between
server and database, and the database can become a computational bottleneck.

3.2 The RCAT Architecture

RCAT (RESTful Cient-server ArchiTecture) consists of four tiers: proxies, game
servers, caches, and database. We first introduced this architecture in [19].
RCAT is very similar to the architecture shown in Figure 1. Proxies handle
the communication with clients, game servers handle computation of the game
logic or simulation, and the database ensures the persistence. Each tier isolates
a different performance requirement, and therefore a potential bottleneck. This
architecture aims at being game-agnostic, i.e. it does not embed any notion of
a virtual space in it.

Proxies isolate the quadratic broadcast problem from the game servers. As
mentioned before, proxies are common components in MMO architectures and
on the web. Clients and game servers hold permanent connections with the
proxies. Their role is simply to forward messages between clients and game
servers. The game operator or developer can decide how the proxy forwards
client requests to the servers: round-robin, fixed (a given proxy always forwards
messages to the same game server), or per-client/“sticky” (all the messages from
a given client are sent to the same server). Beside message forwarding, proxies
can prioritize, bucket, piggyback, or filter messages based on certain network
heuristics (e.g. upload rate or TCP window size). However, they do not have
any knowledge whatsoever about the game (e.g. areas of interest or friend lists).
Proxies can also help mitigating denial of service attacks against game servers.

Game servers receive and process client requests according to the game logic.
When a server receives a request from a client (through a proxy), it computes
which clients have to be notified, and broadcast to all the proxies the response
to forward as well as the concerned clients. Servers can perform any game logic
treatment, from low-latency state updates (e.g. avatar movement) to more
reliable bulk-transfer content delivery (e.g. textures, or streaming the world
state when a client first logs in). Servers can be added on the fly to the server
tier at no synchronization cost. They only have to notify the proxies when they
join in, and retrieve data from their cache.

Caches live on the same machines as the game servers so as to provide for
the game servers a quick access to the data, and to alleviate the load on the
database. Determining which object lives in which cache, so as to optimize data
accesses, is the concern of the developer. For example, in space partitioning,
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two objects that are near each other in the game world would live in the same
cache. Other types of partitioning include by users, as is currently done by
Zynga [54], or by data types.

Caches are only a temporary storage to improve performance; it is up to the
developer to specify which objects can be cached, the delay for cached objects to
become stale, and whether replicas should be instantiated on other machines for
faster reads. Basically, the cache tier is the place where the developer specifies
the degrees of latency and consistency she needs for which objects.

Finally, the bottom tier is the database. It ensures persistence, and may still
be directly accessed by the game server for transactional operations that must
be ACID (atomic, consistent, isolated, and durable). When a cached object
expires, the cache may retrieve the object’s state from the database. If an object
living in the cache must be strongly consistent, all the writes performed on the
object should also be forwarded to the database. But if latency is important,
the object’s state can be flushed to the database only periodically.

4 RCAT Reference Implementation

To be able to implement several games, and test which strategies would work
best in which cases, we implemented RCAT as a middleware in Python, run-
ning on the Linux operating system. This reference implementation of RCAT
supports clients running as JavaScript applications on regular Web browsers
and interacting with regular Web servers on the backend. The source code
of RCAT, as well as two games built on top of it, are available at https:

//github.com/gentimouton/rcat. The components of the middleware are
shown in Figure 2. The two higher-level components are the proxy and the
game server.

The proxy communication is performed by Tornado, a non-blocking single-
threaded web server supporting WebSockets11. The proxy has two URL access
points: /client and /server. Clients connect to /client, where the client
handler component generates a session user ID. The game handler then for-
wards client messages to a game server. Servers reply to the clients through the
/server URL access point of the proxy. Messages sent to /server are treated by
the game handler component, which determines the clients that should receive
the message.

In the game server, the game logic and mapper components are the game-
specific modules of the game server. The game logic contains the game rules.
The mapper provides data services to the game logic through an API. Both are
plugged into the RCAT’s middleware, and interface with components from the
proxy layer (the proxy connector) and the data layer (the persistence manager
and the object manager).

The proxy connector provides two abstractions to the game logic. First, it
de-multiplexes the WebSocket connections from the game server to the proxies

11Tornado has been used extensively in real-time web applications such as FriendFeed and
Facebook’s timeline. See http://www.tornadoweb.org

11

UCI ISR Technical Report # UCI-ISR-13-2. Nov. 2013.

https://github.com/gentimouton/rcat
https://github.com/gentimouton/rcat
http://www.tornadoweb.org


Figure 2: The RCAT components. The blue components are game-specific and
implemented by the game developer.
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into a single one. Second, it hides from the game logic the location of proxies
and clients. If the game logic component wishes to message users, it simply
sends the message and the set of recipients (i.e. a set of user IDs). The proxy
connector parses the set, checks which proxies those users are connected to, and
forwards the message to the appropriate proxies.

The persistence and object managers abstract away database specific proto-
cols and the handling of objects in local and remote caches. Each provides an
API to the mapper. Both are implemented in Python. Any database supported
by SQL Alchemy can be used, but for our implementation we only tried MySQL.

The persistence manager provides a centralized, available, and consistent
data access through SQL Alchemy12, a database object-relational mapper.

The object manager provides a distributed data access, and the tools for
managing data availability or consistency. The object manager was implemented
by us and provides an API to 1) manipulate data stored in local or remote caches,
and 2) relocate data stored in remote caches to the local cache.
WebSockets

The RCAT reference implementation uses WebSockets in order for the clients
to receive messages from the servers. Here we give a brief description of Web-
Sockets.

A WebSocket is a standard TCP connection initiated over HTTP, and grow-
ing in popularity for real-time web applications. The use of TCP in MMOs is
a controversial debate in both research and industry. Some game developers
would even rather implement a reliable protocol on top of UDP rather than use
TCP13. We opt for TCP for three reasons. First, TCP removes the effort of con-
trolling packet ordering and retransmission. Adequately configuring the TCP
retransmission rate can greatly reduce the latency [24]. Second, MMOs gener-
ally use TCP, probably because clients send only between 1 and 10 messages
per second [16, 24]. Using TCP makes our approach more valid and applicable.
And finally, TCP has many congestion control mechanisms, such as Nagle’s al-
gorithm, that may help on the server-side when broadcasting the same message
to many connections. Such solutions generally trade latency for bandwidth, or
vice-versa. They are yet another illustration of the scalability-responsiveness
trade-off in MMOs.

5 RCAT Reference Application: Jigsaw Puzzle

In order to study the performace characteristics of applications built with the
RCAT architecture we have implemented a multiplayer client-server game using
the reference RCAT implementation described above. Our virtual jigsaw puzzle
does not impose any limit on the number of players. Moreover, a multiplayer
jigsaw puzzle provides an interesting set of requirements:

• Players may scroll from one end of the board to another instantly,

12See http://www.sqlalchemy.org/
13See http://gafferongames.com/networking-for-game-programmers/udp-vs-tcp/
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• Players may grab any piece at any time,

• Players must know immediately the pieces that are grabbed, moved, and
dropped by other players,

• Players may zoom in or out, to see the overall picture, or to check for
small details.

A screenshot of the HTML5 client is shown in Figure 3. Clearly, space parti-
tioning will not be as effective for a multiplayer jigsaw puzzle as for MMOs with
clearly-defined regions like World of Warcraft. However, interactions between
players are minimal, and players may be likely to pick the same piece again.
Thus we configure the proxy to “stick” each client to a server: all the messages
sent by that client are forwarded to the same server. Clients are stuck to game
servers in a round-robin fashion. We also configure the mapper to partition by
players. When a game server receives a message concerning a particular piece
from a particular player, it checks if the piece is cached in another server. If it
is, then the server retrieves the remote piece, and places it in the local cache. If
the piece is not cached anywhere, the server retrieves it from the database, and
places it in the local cache. In short, whenever the server needs a piece, it will
relocate that piece to the local cache.

6 Experiments and Results

In this section, we confirm that the bottlenecks we anticipated on the proxy and
database tiers actually exist in practice. We show how we scaled the number
of players in the jigsaw puzzle with the number of cores and machines by using
the RCAT middleware.

6.1 Experiment 1: Proxy and Database Bottlenecks

To confirm that the bottlenecks we anticipate on the proxy and database tiers
actually exist in practice, earlier on we developed a proof-of-concept of a full-
broadcast multi-player movement game following the RCAT architecture, but
using a much simpler server side. This study is documented in [38] and the
code available at https://github.com/gentimouton/rcat-gs. We include the
main findings of that study here for the purposes of illustrating the basic per-
formace characteristics of RCAT applications.

In this earlier study, both the proxy and the game server are implemented
in C# using the .NET framework. The proxy accepts WebSocket connections
through the multi-threaded Alchemy WebSockets server14. A graphical client
was implemented in JavaScript using the HTML5 canvas for rendering, and the
WebSocket API to connect to the proxy. We used bots, implemented in Java,
to stress test the system. Everything ran in Windows 7.

14See http://alchemyWebSockets.net/
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Figure 3: Multiplayer jigsaw puzzle with 25 pieces.
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We are not trying to show that our architecture scales, but rather whether
the proxy can be a bottleneck. To validate this hypothesis, we only need, and
use, one proxy and one server. The commodity machines we use are Optiplex
980, with eight 2.8-Ghz i7 cores. We launch up to 50 bots, in increments of 5,
to the proxy. Each bot sends 20 position messages per second. The proxy and
database run on one machine, the server on another, and bots run on three other
different machines (five machines total). As shown in Figure 4, the bandwidth
from the proxy to the clients increase quadratically. Thus we can not expect to
be able to scale the number of proxies linearly with the number of clients.

5 10 15 20 25 30 35 40 45 50

0
10

00
20

00
30

00
40

00

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

Number of clients

B
an

dw
id

th
 (

kB
ps

)

P to all C
All C to P

Figure 4: Bandwidth between all clients (all C) and proxy (P).

In this simple game, every time the game server receives a position message
from a client, it updates in the database the position of the client’s avatar, re-
trieves the list of connected clients, and sends to the proxy, in a single message,
1) the message to be forwarded to the clients, containing the avatar’s new po-
sition, and 2) the list of clients to send the message to (i.e. everyone currently
connected). To estimate the magnitude of the database bottleneck, we compare
a scenario where the game server has to retrieve the list of all connected users
for every client message, and another scenario where the game server caches the
list of users, and does not have to ask the database every time.

As shown in Figure 5, the bandwidth from the server to the database in-
creases linearly with the number of users, and decreases slightly when the list
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of current clients is cached (compare the two “S to DB” curves). More strik-
ingly, the bandwidth from the database to the server increases quadratically
with the number of clients. By caching the list of users, we have reduced a
quadratic increase into a linear increase (compare the two “DB to S” curves).
This proves that the database can be a central bottleneck, and that caching can
be an effective strategy.
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6.2 Experiment 2: Scaling Up the Number of Players

The experimental results reported in this subsection are based on our RCAT
reference application, the multiplayer online jigsaw puzzle.

6.2.1 Experimental Setup

Since all players must know about the jigsaw pieces that all other players
are acting on, we let TCP delay and piggyback the transmission of ACKs
(TCP QUICKACK socket flag kept at 0). We keep the default value of 40 ms of
delay before sending an ACK15. We also enable Nagle’s algorithm (TCP NO DELAY

15See http://lwn.net/Articles/502585/
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socket flag kept at 0). The bots, proxies, and servers apply Nagle’s algorithm
and delayed ACKs.

The bots follow a scripted behavior. On both machines, a new bot joins
the game every 10 seconds. Each bot starts by grabbing one piece, and moves
it by several game units X times per second, with X a configurable parameter.
This bot behavior results in no piece having to be relocated between caches.
We acknowledge that with real users, piece relocations will happen. But unless
many users fight for the same piece, these relocations should happen relatively
rarely. We stop the script manually when we observe that the CPU capacity
of the proxies or game servers are completely used. For example, the sum of
the proxies’ CPU may reach 400% if there are 4 proxies. However, Tornado
recommends offloading tasks consuming considerable CPU to a thread pool.
In our case, the game server keeps processing messages through Tornado, but
offloads the game logic tasks to other threads. Consequently, the CPU for a
single game server may reach more than 100% if the game logic threads are
allocated to another core.

Bots measure the round-time-trip latency (latency, for short) using game
messages containing globally unique identifiers. Each proxy and game server
instance measures its (user plus system) CPU consumption, and the frequency
of voluntary and involuntary context switches every five seconds using the Linux
getrusage command16. We want to check how the number of proxies and the
number of game servers scale with the number of bots for different message
frequencies. We define the maximum capacity of the system as the highest
number of connected clients when the 99th percentile of the latency is below
100 ms.

The commodity machines used for the experiments are Dell Core i7 2600,
each with four hyper-threaded 3.4-Ghz processors. Up to two machines run
proxy instances, up to two others server instances, one other the database, and
two others the bots. All machines reside on the same 1-Gbps LAN, and are one
hop from each other. Experiment names follow the format “X/Y/Z”, standing
for X cores running one proxy each, Y cores running one game server each,
and bots sending Z messages per second. For example, in the scenario 2/2/5,
there are two proxy instances running on the same machine, two game servers
sharing one other machine, and bots on two other machines send five messages
per second. In the scenario 4+4/4+4/2.5, there are four proxies running on one
machine, four proxies on another, four game servers on a third machine, and
four game servers on a fourth machine.

6.2.2 Results

Figure 6 shows that the maximum capacity is reached at 229 clients for the
scenario 4+4/4+4/2.5. In this scenario, the proxy is the bottleneck, and the
server reaches slightly past half of its total CPU capacity (400% out of 800%
available). On the one hand, the total CPU consumed by the game servers

16See http://linux.die.net/man/2/getrusage
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increases linearly with the number of clients. On the other hand, the CPU
consumed by the proxies increases quadratically at first, then flattens around
100 clients, and finally seems to increase linearly. We remark this behavior in
most of the scenarios where the proxy is a bottleneck.

Figure 6: Evolution of the proxies CPU, game servers CPU, average latency,
and 99th percentile of the latency with the number of clients when using 4+4
proxies and 4+4 game servers. The last 99th percentile of the latency to be
below 100 ms is the maximum capacity: 229 clients.

Figure 7 shows that the number of voluntary context switches also reaches
a plateau around 100 clients. Voluntary context switches occur when Tornado
polls the client sockets, while involuntary context switches are triggered by the
kernel scheduler17. Thus there may be a bottleneck on the proxy well before
the maximum capacity is reached. On the plus side, this bottleneck does not
seem to impact the latency observed on the client side. It is possible that the
TCP congestion control mechanisms (e.g. piggybacks and ACK delays) buffer
the extra delay taken by the proxy.

However, these mechanisms are not enough to prevent the number of vol-
untary context switches to fall and the latency to spike around 200 clients.
Context switches remain the principal reason: since each core ticks 250 times
per second18, the maximum number of context switches, voluntary or not, for a
system with eight proxies is 8× 250 = 2000 per second. This is the cap reached
around 190 clients. The proxies’ cores are overwhelmed.

17See http://www.lindevdoc.org/wiki/Involuntary_context_switch
18The default value of a jiffy is 250 Hz, see http://man7.org/linux/man-pages/man7/time.

7.html
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Interestingly, the proxies are only using half of their CPU capacity when this
happens. Clearly, the proxies’ CPU is not a sufficient metric by itself to assess
the quality of experience of the players, or even the load on the system.

Figure 7: Evolution of the proxies CPU and context switches with the number
of clients when using 4+4 proxies and 4+4 game servers.

Figure 8 plots the maximum capacities for various scenarios. Simply put, to
be able to handle twice more players, the system needs four times more cores.
And this is independent of the message frequency. It is not because a game is
slower-paced that it scales more linearly. Yet slower-paced games can handle
more players per core.

Finally, Figure 9 illustrates that message frequencies can result in different
bottlenecks. We take the scenario with eight proxies and eight game servers as
an example. At 2.5 messages per second, the maximum capacity (229 clients) is
reached while the game servers only consume around 250% CPU. Meanwhile, the
proxies consume twice as much CPU. In contrast, when clients send 10 messages
per second, the game servers consume more CPU than the proxies when reaching
the overall system’s maximum capacity (125 clients). In this scenario, it is
difficult to know which of the proxies or the game servers is the bottleneck. Yet
it seems, surprisingly, that handling many slow-paced connections is more costly
than handling few active connections.

Thus for slow message rates, the proxy is the bottleneck. But for fast message
rates, the game server may be limiting. In fact, the game logic of our jigsaw
puzzle is very simple (e.g. no collision detection). Therefore the server CPU
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Figure 8: Scaling the number of clients with the number of cores and machines,
when bots send 2.5, 5, and 10 messages per second.

may actually increase faster with the message frequency than shown in Figure 9.
Provisioning how many proxies and game servers are needed for a given game
is not a trivial: 1-to-1 ratios may rarely be optimal.

7 Discussion

Research has paid much of attention to MMOs that are easy to partition spa-
tially. We showed one example of MMO where space-partitioning does not
apply: a multiplayer jigsaw puzzle. We partitioned the data by user, but did
not try other partitioning schemes. Which type of partitioning is best for a
multiplayer jigsaw puzzle remains an open question. In fact, this question is
not specific to MMOs: developers of other multiuser online applications, such
as massive open online courses, are facing the same challenges. We are actively
looking for more examples of massively multiuser online applications, as they
may highlight new scalability challenges and solutions.

But space partitioning may still be appropriate for many MMOs. In fact,
picking the appropriate load-partitioning algorithm is a problem common to any
massively multiuser application. In our jigsaw puzzle, we originally considered
a space partitioning scheme for the jigsaw puzzle MMO: cutting the board into
square regions, and assigning a server per region. We quickly realized that
this approach would be very inefficient, since users would move pieces between
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Figure 9: CPU consumed when maximum capacity is reached with 4+4 proxies
and 4+4 game servers.

regions as often as within regions. This would cause data handovers too often,
and result in poor performance.

Thus we opted for a pair (client, puzzle piece) for load balancing. Whenever
a client attempts to move a piece, the piece is relocated to the server treating
the client’s request. This way, the data for the piece is always located where the
client’s request is being treated. Another successful approach may have been
to move the clients messages to the application server where the jigsaw piece is
cached.

The implementation of RCAT is in active development. While some parts
are application-independent, the game developer needs to write the application-
specific parts. We use Python for the mapper, and therefore also for the game
logic, as the persistence and object managers only provide a Python API. As
the middleware development progresses, different implementations of the object
manager and persistence manager will provide more flexibility and choice for a
wider range of applications.

Currently, each game server instantiates its own object manager. But game
servers running on the same machine could use the same object manager. Im-
plementing this feature may require game servers to be able to tell whether
other game servers are local or remote, or to slightly change our architecture.

We noted throughout our experiments that a bottleneck may hide another.
Context switches on the proxies may be the limiting factor to scale, and not
the proxies CPU. Moreover, the number of voluntary context switches seem to
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spike right before the latency starts spiking. Thus context switches may prove
to be a more adequate indicator than the CPU to gauge whether the current
load on the system actually impacts the players’ experience. It may also prove
to be a useful metric for provisioning.

More generally, our work informs the provisioning of massively multiuser on-
line environments. For an application to support twice more users, the operator
needs to deploy four times more hardware. In the case of the Jigsaw puzzle,
and assuming the test conditions of our experiment (i.e. all users moving pieces
all the time), we estimate that we would be able to support nearly 1,000 users
with 256 cores. Being able to do these upfront estimations is a major engi-
neering feat with business implications. Operators may also need to provision
a sufficient network infrastructure to support the client connections as well as
communication between proxies and application servers. In our experiments, a
single 1-Gbps switch was sufficient. Thus network provisioning may only be a
concern well after the 200-user mark.

8 Conclusion

In this article, we have presented RCAT, a scalable and adaptable three-tiered
architecture for massively multiplayer online games. RCAT aims at delivering
the flexibility of choosing the individual trade-offs found in the extensive variety
of MMOs, while providing a solid infrastructural middleware that abstracts the
complexities of scaling through a distributed system. RCAT also provides a
common platform for developers and researchers to develop applications and
compare results of different partitioning schemes.

We have demonstrated the potential of the architecture by presenting a
multiplayer jigsaw puzzle, featuring full broadcasting of events, data locality,
and massive number of users. Despite the unavoidable and essential quadratic
event distribution, we can support 229 concurrent clients sending 2.5 messages
per second, and 125 clients sending 10 messages per second, using commodity
servers with 16 cores total. Scaling to higher numbers of clients is possible
simply by deploying more proxies and game servers such that a target of twice
the number of users requires 4x the number of cores.

As the Web becomes more supportive of rich interactive applications, we
believe our work can be the foundation for a variety of massive multi-user ap-
plications.
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