Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455
www.isr.uci.edu

Institute for Software Research

University of California, Irvine

Architecture-Driven Modeling of
Adaptive Collaboration Structures in
Large-Scale Social Web Applications

Christoph Dorn
University of California, Irvine
cdorn@uci.edu, c.dorn@infosys.tuwien.ac.at

Richard N. Taylor
University of California, Irvine
taylor@ics.uci.edu

May 2012
ISR Technical Report # UCI-ISR-12-5

www.isr.uci.edu/tech-reports.html

Architecture-Driven Modeling of Adaptive
Collaboration Structures in Large-Scale Social
Web Applications *

Christoph Dorn and Richard N. Taylor

Institute for Software Research, University of California, Irvine, CA 92697-3455
[cdorn|taylor]@uci.edu

Abstract. Internet-based, large-scale systems provide the technical foun-
dation for massive online collaboration forms such as social networks,
crowdsourcing, content sharing, or source code generation. Such systems
are typically designed to adapt at the software level to achieve availability
and scalability. They, however, remain mostly unaware of the changing
requirements of the various ongoing collaborations. As a consequence,
cooperative efforts cannot grow and evolve as easily nor efficiently as
they need to. An adaptation mechanism needs to become aware of a
collaboration’s structure and flexibility to consider changing collabora-
tion requirements during system reconfiguration. To this end, this pa-
per presents the human Architecture Description Language (hADL) for
describing the envisioned collaboration dynamics. Inspired by software
architecture concepts, hADL introduces human components and collab-
oration connectors for describing the underlying human coordination de-
pendencies. We further outline a methodology for designing collaboration
patterns based on a set of fundamental principles that facilitate runtime
adaptation. An exemplary model transformation demonstrates hADL’s
feasibility. It produces the group permission configuration for MediaWiki
in reaction to changing collaboration conditions.

Keywords: Design Tools and Techniques, Collaboration Patterns, Adap-
tation Flexibility

1 Introduction

The last two decades have witnessed the emergence of numerous web-based,
large-scale collaboration tools. Web sites appeared for diverse purposes such as
social networking (e.g., Facebook, LinkedIn), collaborative tagging (e.g., Digg),
content sharing (e.g., YouTube, Flickr), knowledge creation (e.g., Wikipedia),
crowdsourcing (e.g., Amazon Mechanical Turk), or source code production (e.g.,
GitHub, SourceForge).

Users of such social Web applications typically face one major problem: a
rigid, limited set of available collaboration mechanisms in a one-size-fits-all man-
ner. Interaction means such as direct messaging, group chats, discussion boards,

* Technical Report UCI-ISR-12-5, May 2012

task assignments, or shared artifacts remain independent of the collaboration’s
scale and complexity and thus form a constraint on how large a joint effort can
grow, how easily and how efficiently it may evolve. Amazon MTurk, for example,
scales the Master/Worker pattern to thousands of users and tasks. As interac-
tion amongst MTurk participants is not foreseen, the rigid coordination pattern
implementation cannot support more complex collaborations that require com-
munication between individual workers. Modeling collaboration patterns and
their flexibility becomes of uttermost importance for supporting the evolution
of collaborative efforts.

We take inspiration from software architectures to address this problem for
large-scale collaboration systems. A system’s software architecture as described
in terms of components and connectors has a profound effect on its adaptability,
especially scalability [21]. We argue that the same holds true for human collab-
oration (see Sec. 3). Here, connectors in the form of humans (e.g., forum mod-
erators, secretaries) and software services (e.g., mailing lists, task lists) manage
dependencies between collaborators (i.e., components) when direct interaction
amongst all participants is no longer viable. We expect that the explicit modeling
of humans as components and connectors draws the focus to the collaboration
structure’s flexibility and thus facilitates adaptation.

Our contribution in this paper is three-fold. We (i) introduce the human
Architecture Description Language (hADL) in Sec. 4, (ii) provide a methodology
for defining flexible collaboration patterns in Sec. 5, and (iii) demonstrate the
model’s feasibility based on an exemplary model-to-configuration transformation
in Sec. 6. We find that components and connectors are a very suitable abstraction
mechanism for describing collaboration patterns and their adaptation flexibility,
which existing approaches have insufficiently addressed so far (Sec.7).

2 Motivating Scenario

Suppose a research project integrates knowledge from the wider research com-
munity in the form of Wiki-style articles. After the infrastructure for collecting
and managing user contribution goes online, participation remains low but sta-
ble. One regular project staff member quality checks changes to existing articles
and browses through the content list to check new article entries.

Soon, a report in the media about the research project sparks wide-spread
interest with subsequent participation levels soaring. This has significant impli-
cations on the quality assurance procedure which has to deal with vandalized or
spammed articles. Conflicting opinions amongst contributors of the same article
lead to editing wars. A single quality manager is no longer up to the task. Simple
replication of her role is one option, but changing the collaboration pattern is po-
tentially more effective. Multiple options exist to handle articles exhibiting high
revision rates: (i) updates are checked by an expert — possibly crowdsourced
— to decide upon article rollbacks, (ii) contributors vote on changes, or (iii)
experts discuss and negotiate changes. Alternatively, articles subject to update
wars are temporarily protected or receive a limited write quota. New articles

still need no approval to keep participation barriers low but observers now re-
ceive notifications about new entries. Depending on the rate of new articles, such
monitoring itself may require topic-based subscriptions to ensure that observers
receive only notifications relevant to their interests. Planning and subsequently
implementing such restructuring requires modeling collaboration structures and
their adaptation flexibility.

3 The Case for a Human Architecture

The observation that software systems and human collaborations share the same
challenges in managing dependencies inspired our concept of a human architec-
ture. Both domains require coordination of (i) shared resources, (ii) produc-
er/consumer relationships, (iii) simultaneity constraints, and (iv) task/subtask
relations [12]. An architecture describes how a system addresses these challenges.
In the domain of software engineering, following definition of a software architec-
ture fits equally well to collaborative efforts: ” A software system’s architecture
is the set of principal design decisions made about the system.“ [20], p.58.

Components and connectors are the primary building blocks of a software
architecture. At any given level of abstraction, components are the loci of com-
putation and data management whereas connectors facilitate and control the
interactions between components. Roles such as managers, team leaders, secre-
taries are rarely described as connectors but they perform a similar task: the
coordination of other humans (i.e., components). Just as connectors may inter-
nally be made up of smaller components and connectors also managers may rely
on other human coordinators to perform their work. Architectural styles consist
of a set of development context dependent design decisions, constraints, and re-
sulting properties. Similarly, collaboration patterns describe what kind of human
components and coordinators have proven suitable for a given joint effort [5, 4].

In software architectures, connectors are the key element to system adapt-
ability. For example, connectors allow the dynamic replacement of behavior com-
ponents in robotic systems without affecting other components. Web proxies are
connectors on the Internet that decide which server (component) should pro-
cess a particular client (component) request. Overloaded or unavailable servers
thus become transparent to the client. In the scenario, the article contributors
and readers constitute the human components. (Human) quality managers and
(software) change monitors implement connector functionality for managing the
read and write dependencies amongst the human components. The importance
of collaboration connectors grows with the scale and complexity of joint efforts
especially in distributed settings where individual collaborators have little op-
portunity for informal communication.

4 The Human Architecture Description Language

The core human Architecture Description Language (hADL) defines collabora-
tors, their means of interaction through messages, streams, and shared artifacts,

and dependencies amongst collaboration objects (Fig. 1). We explain the indi-
vidual elements based on a hADL model instance (Fig. 2) for the motivating
scenario.

P A =

Human Collaboration Collaboration M ge
Component Connector Object
A Stream
ObjectConn
Artifact
ProxyAction | HumanActlon ObjectAction A
[CRUD] ‘] [CRUD] [CRUD] :
) R : T ;
Link Object T Object ¢ Object
Inheritance Reference Containment
Legend <>—— :Containment -——:Reference ¢------- :Refinement

Fig. 1: hADL model (symbols in ObjectConn subtypes and Actions represent the re-
spective visualization in model instances.)

A human architecture describes the configuration of HumanComponents and
CollaborationConnectors to fulfill a particular purpose, for example: carrying
out a task, creating a shared artifact, or negotiating a leader. The architecture’s
purpose determines a suitable collaboration Pattern. Typical patterns include
Master/Worker, Publish/Subscribe, Shared Artifact, and Peer-to-Peer (e.g., [4]).
A HumanComponent has a particular collaboration role that is essential to the
completion of the collaborative effort (e.g., Contributor, Reader, Observer in
Fig. 2 left and right). A CollaborationConnector provides coordination capabil-
ities to HumanComponents within the pattern’s scope (e.g., QualityManager,
VandalismDetector, ArticleMonitor in Fig. 2 center). A CollaborationConnector
covers the full spectrum from purely human, to software-assisted, to purely soft-
ware implemented. In the scenario, a quality manager manually approving all
edits illustrates a human collaboration connector. In contrast an article monitor
notifying users via email about updates exemplifies a software-based collabora-
tion connector.

HumanComponents and CollaborationConnectors are the active collabora-
tion elements in hADL, but they don’t specify the means of collaboration. When
physically distributed, humans usually communicate through Messages, Streams,
or shared Artifacts. The hADL model considers these three types as Collabora-
tionObject variants. A Message is a onetime, immutable object exchanged be-
tween a set of collaborators (components and connectors), a typical example is
an email. A Stream is a series of messages where sender and receiver maintain

<3 Sen
— & Vot Rec «§ X Rec
R Vot Sen +§ S

—*IRec

VoteRequestReply

Contributor J
New R
t+J Rea Rec Rea
W

Reader QualityManager ArticleMonitor NewArticleStream Observer

c

Che
T Rev.
Rea X sion VandalismDetector

Upd R

UpdateVoteCollector

Fig. 2: Scenario hADL model instance: components as light-green shaded boxes, con-
nectors as dark-green shaded boxes, collaboration objects with rounded corners, and
substructure patterns with shadow (colors online). Icons represent human, respectively
object actions.

a temporary relationship. Two broad types exist: (a) subscriptions character-
ize a set of independent messages (such as news items in RSS feeds or updates
on a user’s facebook wall). Alternatively, (b) multimedia streams consist of de-
pendent messages (i.e., frames) that constantly refresh the receiving end (e.g.,
video chat). A (shared) Artifact is a long-living object that is subject to (si-
multaneous) manipulation by multiple collaborators. In the scenario, respective
examples are (i) emails sent to Experts to vote on article updates (Fig. 3a),
(ii) notifications about new articles (Fig. 3b), and (iii) the articles themselves
(Fig. 2). ObjectConns describe dependencies amongst CollaborationObjects such
as refinement (ObjectInheritance), relation (ObjectReference), and substructure
(ObjectContainment). Note that ObjectConns merely highlight such dependen-
cies to improve pattern comprehension but they don’t replace data modeling.

The choice of communication means has a profound impact on the collab-
oration and thus needs to be made explicit. Hence, hADL requires a Collab-
orationObject between any two or more HumanComponents and/or Collabo-
rationConnectors. This is in contrast to traditional ADLs (e.g., xADL [3] or
ACME [8]) where component interfaces link directly to connector interfaces. A
rough software architecture interface equivalent in hADL is the Action. Human-
Components and CollaborationConnectors exhibit HumanActions that specify
what access rights a collaborator requires to fulfill its role, whereas a Collabo-
rationObject has ObjectActions for defining what rights it grants to particular
collaborator. An Action distinguishes between Create, Read, Update, and Delete
(CRUD) privileges. The article Contributor in Fig. 2, for example, exhibits an
Edit action with Create, Update, and Read rights. Ultimately, CRUD rights
need to match when a Link connects a HumanAction with an ObjectAction.
Multiple Collaborators may connect to the same ObjectAction when they share
the same manipulation rights (e.g., several CollaborationConnectors in Fig. 2
connect to the same Article Read action).

In some cases, we wish to introduce substructures to hide low-level collabo-
ration details that are irrelevant at the higher-level collaboration scope. In the

scenario, a CollaborationConnector monitors new Articles. Whether this con-
nector merely sends an email to all interested Observers or whether observers
subscribe to certain article topics is described at a lower level. In the latter case,
the substructure defines the appropriate subscription mechanism (Fig. 3b). Pat-
tern substructures are equally well suited to hide complex CollaborationObjects
(e.g., tightly coupled request and response messages for voting on article changes,
Fig. 3a). In hADL, such substructures are implemented as recursive embedding
of Patterns with the use of ProxzyActions.

<3

ReceiveReq VoteRequest SendReq

43549 4

SendResp VoteResponse ReceiveResp SendNotification ArticlePubSub
(a) (b)

Fig.3: hADL models for (a) Vote Request Reply substructure and (b) Topic-based
Article Monitoring substructure.

ReadNewArticle ArticleClassificationPublisher

NewClassifiedArticle

5 Designing for Adaptation

Research in software architectures supplies several concepts and tools for de-
signing and analyzing collaboration structures. In our previous work ([5,4]), we
applied the BASE framework [21] for studying the adaptation flexibility of vari-
ous collaboration patterns. Based upon the insights gained in our recent analysis
and our experience in architecture-based software adaptation we propose a set of
principles that facilitate collaboration adaptation. Specifically, these principles
build in part upon an earlier discussion of dynamic software adaptability in the
scope of architectural styles [16].

Identifying Adaptable Elements: Collaborative behavior can be modeled
at multiple levels of abstraction: from an organization, a department, a team,
an individual human, down to a single user’s behavior strategies. The finest ab-
straction level determines the lowest possible level of adaptation. In the presence
of modeled, identifiable user behavior, we are able to execute adaptations in the
form of recommendations. For example we may suggest switching from “locking
an artifact for editing it” to “issuing small but frequent article updates without
locking”. In contrast, we cannot reconfigure a non-performing team internally
but we have to replace it as a whole when the most detailed level merely describes
teams.

Encapsulating Elements: Collaboration adaptability greatly increases when
elements (components, connectors, objects) are easy to replace. Encapsulation

describes how tightly an element is woven into its surrounding environment. A
worker in the Master/Worker pattern only knows about his personal task copy
and about the assignment connector he obtained the task from. This makes him
easily replaceable as the assignment connector merely needs to provide a task
copy to another worker. In contrast, a group of authors that exchange article
drafts directly via email exhibits tight coupling. Removing one author requires
considerable effort: notification of all other authors, synchronizing of progress,
and ensuring orderly handover of unfinished tasks to the remaining co-authors,
etc.

A suitable collaboration pattern in this situation may encourage encapsula-
tion through various mechanisms. For example, replacing direct messages with a
shared artifact relieves an individual author from keeping track of involved con-
tributors. Introducing a collaboration connector for continuous integration of
individual article sections further limits the coordination dependencies amongst
authors. Clearly identified and assigned roles (lead author, data collection, proof
reading, figure design, etc) within the group additionally promotes encapsula-
tion.

Just as software architectures suffer from implementations that don’t follow
the prescribed architectural style at code level, so are informal communication
channels jeopardizing the adaptation characteristics of a collaboration pattern.
The most adaptive pattern will exhibit potentially catastrophic adaptation con-
sequences when the involved users circumvent the foreseen communication and
coordination means and fall back onto multipurpose, pattern external communi-
cation channels such as email. The underlying collaboration infrastructure needs
discouraging the use of external channels. Strategies are pattern specific, for ex-
ample, hiding other collaborators, anonymizing collaborators, or providing in-
centives to communicate within the system.

Controlling Interaction: Fostering encapsulation is one principle that sim-
plifies element replacement. Controlling an element’s interactions with its envi-
ronment is equally important. Coordination dependencies become clear and thus
manageable when collaborators utilize explicit interactions.Take as an example
a worker producing the input for another worker: transferring the output via
precisely specified messages clearly identifies the involved actor roles. Collabora-
tion interdependencies, however, remain largely hidden when such interactions
occur via a shared artifact. Connectors are able to provide dedicated support for
each interaction type only in the former case.

Managing State: When replacing a human, we need to address what needs
to happen with that user’s internal collaboration state. An assignment connector
might be waiting for task responses or has unassigned task requests still in his
inbox. An article author might be currently working on an unfinished section.
Three basic strategies address this challenge: (i) ignore existing state (i.e., work
progress) and provide some form of compensation, (ii) provide mechanisms that
facilitate the externalization of collaboration state such as shared artifacts or
dedicated work progress messages, and (iii) split activities into such fine-grained
parts that adaptation may be postponed until completion.

Making Bindings Malleable: Late binding in collaboration patterns de-
lays addressing of messages until their destination absolutely needs to be de-
termined. In a workflow, for example, the worker carrying out a particular task
remains undetermined until shortly before task assignment. In the scenario, ex-
perts become part of a voting group just shortly before they are actually needed
for deciding on an article update. Shared artifacts yield similar decoupling as
contributors need not be known in advance. Patterns with such built-in flexibility
allow for adaptation decision just in time.

6 Evaluation

In this section, we showcase the feasibility of the human architecture model-
ing approach. Specifically, we show that hADL is suitable for capturing flexible
collaboration patterns by modeling the MediaWiki platform!. Subsequently, we
demonstrate runtime dynamic reconfiguration of MediaWiki’s underlying collab-
oration structure (within the scope of the Shared Artifact pattern). To this end,
we first present modeling tool support and then provide the MediaWiki hADL
model including its mapping onto explicit and implicit group permissions. The
hADL model, introduced model instances, and transformations are available for
download at http://wp.me/P1xPeS-2h.

6.1 Modeling Tool Support

We decided upon the Generic Modeling Environment? (GME) for designing and
manipulating the hADL model and model instances. GME provides an auto-
matic model update mechanism that allows for rapid, iterative refinement of
the hADL model and model instances. The hADL model, therefore, provides
only core elements for describing human collaboration architectures. We outline
below how extensions cover domain-specific requirements that are otherwise in-
sufficiently addressed. For most changes of the hADL model, the GME model
update mechanism is able to successfully upgrade existing model instances to
take advantage of problem-specific extensions.

6.2 Modeling MediaWiki

MediaWiki is the underlying technology platform for Wikipedia (and many other
Wikis). Figure 4 visualizes how the project wiki from the scenario might initially
be set up. The collaboration objects (Page, TalkPage, WikiPage, ImageOrFile,
and Revision) remain the same for all MediaWiki installations as they represent
the core MediaWiki collaboration capabilities. The MediaWiki group permis-
sions® are a good starting point to define the various actions the collaboration

! http://www.mediawiki.org/wiki/MediaWiki
2 http://w3.isis.vanderbilt.edu/Projects/gme/
3 nttp://wuw.mediawiki.org/wiki/Manual:User_rights_management

objects make available to human components and collaboration connectors. The
permissions, however, are insufficient to grasp the complete collaboration pat-
tern as they include only explicitly defined user rights. Any logged-in user, for
example, has access to her WatchList but no corresponding permission exists.
We, therefore, add actions (i.e., implicit permissions) that model the streaming
of article changes to ArticleObservers via the watch list (WatchListStream) or
notification emails (NfyEmailStream). Applying the design methodology from
Section 5, we analyze the adaptation flexibility of MediaWiki in general and of
this specific instance in particular.

Rere ediR
Rwri cre R
cre R "
projectmanager
=
=
o
N
o
N
— [
ediX o
cre R o
mov E
mov X o
mov X X
cre "
g qualitymanager
reu
reu R N
min Cond
imp Rea)
user Change2WatchList WatchListStream
I
mar Reco)
< Sen Conol
5 bot &)
(oup! del) EmailAnnouncer NfyEmailStream ArticleObserver
ImageOrFile Revision

Fig. 4: MediaWiki hADL model for the initial scenario structure.

Identifying Adaptable Elements The smallest, adaptable elements in a
MediaWiki installation are individual user and pages (i.e., articles). Structural
adaptation actions consist of restructuring user types and (re)assigning users
to particular types (i.e., groups). We won’t discuss more fine-grained, build-in
actions such as blocking a user or protecting a page.

Encapsulating Elements The individual Wiki authors (component user)
and readers (component ‘x’) exhibit strong encapsulation as all interactions hap-
pen via Wiki pages. Discussions on content, structure, etc. are equally restricted
to editing of a shared artifact: the respective article TalkPage. ArticleObservers
receive change notifications without having to rely on authors signaling updates.

Controlling Interaction For the purpose of writing articles, MediaWiki
provides sufficiently precise (inter)actions. Our scenario configuration clearly
separates the various components and connectors: authors have edit, move, and

upload permissions while quality managers have patrol, rollback, revert, delete
and protection permissions. There is little to no permission overlap.

Managing State Collaboration state becomes externalized in the form of
the Wiki page. A Wiki encourages publishing of frequent and small updates
which enables rapid changes in author involvement.

Making Bindings Malleable Quality managers check (i.e., patrol) article
changes by inexperienced and new authors. Which particular quality manager
will approve or revert a change, however, is a-priori unknown.

These characteristics and the distinction of human components from collab-
oration connectors facilitates reconfiguration actions to have minimal effect on
active human components. As we will demonstrate next: readers, observers, and
authors maintain (largely) the same rights despite considerable pattern evolu-
tion.

6.3 Dynamic Structural Adaptation

The scenario highlighted how adding, removing, or replacing users becomes in-
sufficient to address fundamental environmental changes. Figure 5 depicts the
evolved MediaWiki structure addressing the needs of the later scenario phase.
The adapted structure exhibits new human components and new, reconfigured,
or replaced collaboration connectors. Specifically, previous users become ezxperts,
new users obtain only a limited permission set. The quality managers trans-
fer user blocking privileges to moderators and a software-based editvotecollector
(collaboration connector) contacts article guardians for voting on user edits.
Instead of receiving emails for all new articles, observers are able to configure
topics of interest: the TopicEmailAnnouncer replaces the EmailAnnouncer.

Planning for reconfigurations is one benefit of modeling MediaWiki with
hADL. Another potential use is describing where and how bots as well as ex-
tensions provide new functionality. Such additional components and connectors
(e.g., TopicEmailAnnouncer) may build upon different collaboration patterns.
The hADL model subsequently facilitates the analysis of adaptation implica-
tions.

In the case of MediaWiki, hADL goes beyond merely describing the col-
laboration structure. We developed a model transformation for demonstration
purposes that takes the hADL model and generates the group permissions con-
figuration for MediaWiki. Specifically, we export the hADL model as an XML
file and then process it with the Java Emitter Templates (JET) framework?. The
transformation interprets every component and connector as a permission group.
Each HumanAction becomes an allowed permission when connected to the corre-
sponding ObjectAction, otherwise the permission is denied. Listing 1.1 provides
the group permissions for the anonymous user group (‘+’) in Figure 5. The re-
sulting configuration should not include implicit rights and neither components
or connectors that require no groupPermission representation (e.g., ArticleOb-
servers, Change2WatchList). To this end, we extend the hADL model with ad-

4 http://www.eclipse.org/modeling/m2t/?project=jet#jet

[R N N

UserAccount

Er

qualitymanager moderator

(& Vot
1.3 sen Ret o}
+=j Ret Sen «H
B Vot
M : —W oqReSP Guardian

editvotecollector

L=

expert

" TopicEmailAnnouncer
ImageOrFile Revision P

Fig. 5: MediaWiki hADL model for the evolved scenario structure.

ditional properties. The transformation mechanism will thus ignore actions with
isImplicitRight=true and components and connectors with is WikiGroup=false.
We also introduce a Requires connection in the hADL model (dashed, red lines
in Fig. 4 and Fig. 5) for highlighting dependencies between user permissions
(e.g., by linking the move action to the edit action.)

$wgGroupPermissions[’*’][’createaccount’] = false;
$wgGroupPermissions[’*’][’read’] = true;
$wgGroupPermissions[’*’]1[’edit’] = false;
$wgGroupPermissions[’*’][’createpage’] = false;
$wgGroupPermissions[’*’][’createtalk’] = false;
$wgGroupPermissions[’*’][’writeapi’] = false;

[

Listing 1.1: GroupPermissions for anonymous MediaWiki users, i.e., ‘x’.

6.4 Discussion

Currently hADL has two main limitations. First, it lacks platform specific mod-
els. The evaluation above demonstrates hADL’s feasibility but we cannot claim
a general purpose tools set for various web platforms. Second, hADL features
no integration with existing web modeling methodologies yet. This shortcoming,
however, highlights hADL’s biggest potential: a recent survey of web modeling

approaches emphasizes insufficient support for sophisticated behavioral mod-
eling [18]. Here, hADL would fit in alongside use cases, activity diagrams, or
sequence diagrams to enhance current approaches such as WebML, Hera, UWE,
or OOWS [18].

Even without such integration, hADL offers considerable benefits at the cur-
rent stage. An explicit human architecture introduces a collaboration perspec-
tive and thus gives stake-holders another means for communicating requirements
during the design process. This also enforces a structured approach to explicitly
defining adaptation capabilities at the collaboration level. Being implementation
independent, hADL provides an opportunity for establishing collaboration pat-
terns tuned to team performance and quality metrics. Thus currently implicit
best practises can be made explicit and subsequently shared. When customized
to a particular platform such as MediaWiki, hADL provides a high-level view of
the collaboration infrastructure. It thereby facilitates planning and documenting
the platform configuration and its extensions.

7 Related Work

Research efforts that specifically focus on social or collaborative aspects in large-
scale systems are still rare. Existing research addresses mainly the general id-
iosyncracies of Web 2.0 but remains unaware of specific interaction structures at
runtime [23]. Model-driven Web engineering approaches so far focus primarily
on software aspects [18] and don’t go beyond (user) context-centric adapta-
tions [1]. Gregg [9] discusses vital aspects to enable collective intelligence but
doesn’t elaborate beyond general design guidelines. Requirements elicitation and
specification approaches consider collaboration (e.g., CSRML [22]) or adaptation
(e.g., [19]) but omit the effects of patterns on adaptation flexibility.

Activity-centric frameworks (e.g., [6,14]) define tasks and their relations for
integrating humans and software components [2]. Human-centric workflow sys-
tems define business artifacts, their transformations, and interdependencies [10].
The Business Entity Definition Language [15], for example, aggregates access
rights, data structure, object state transitions, and events. The human collabo-
ration structure, however, remains implicit.

In the business process modeling domain, languages such as BPMN [24] con-
sist of model elements similar to hADL. No matter whether ad-hoc or rigidly
specified: process-centric models focus only on a subset of possible collabora-
tion patterns (i.e., task execution) and cannot be applied for describing other
patterns such as co-authoring Wiki articles or spreading news on twitter. In
addition, the above process-centric languages and collaboration systems usually
lack scalability. Some recent research efforts begin focusing on large-scale work-
flow deployment. Human-provided Services (HpS) [17], Turkit [11], or Crowd-
Lang [13] differ in their degree of formalizing complex workflows that go beyond
simple task assignment in Amazon Mechanical Turk. All these approaches and
frameworks specify human roles and their associated capabilities but lack an
explicit distinction between human components and collaboration connectors.

Especially crowdsourcing systems typically have collaboration connectors com-
pletely automatized and focus primarily on the optimal selection of workers.

Extensible software architecture description languages (e.g., [8,3]) emerged
from the need to rigorously define the language’s semantics while remaining
flexible enough to address the specific needs of a particular domain. Augmenting
an existing ADL to describe all details of the human collaboration patterns,
however, would be cumbersome as software structure and human interactions
reside on different conceptual levels. Finally, team automata aim to formalize the
interactions amongst multiple participants in groupware systems [7]. However,
it remains unclear how team automata enable dynamic adaptation.

8 Conclusions

We made the case for a human Architecture Description Language for modeling
adaptive collaboration structures. Taking inspiration from software architecture,
we proposed hADL to specify collaboration patterns in terms of human com-
ponents, collaboration connectors, and collaboration objects. A set of principles
guides the design process to achieve collaboration patterns that facilitate runtime
adaptation. Our evaluation successfully demonstrated that hADL supports the
dynamic reconfiguration of human components and collaboration connectors at
runtime. Nevertheless, even MediaWiki’s adaptations capabilities are currently
limited to the configuration of group permissions.

Our future work, therefore, will focus on the mapping between the underlying
IT infrastructure and collaboration patterns. Ultimately, we aim for techniques
that exploit the interdependencies between software elements and collaboration
elements for achieving holistic co-adaptation of socio-technical systems.

9 Acknowledgment

This work is supported in part by the National Science Foundation under grants
CCF-0917129, CCF-0820222, and CCF-0808783 and the Austrian Science Fund
(FWF) under grant number J3068-N23.

References

1. Ceri, S., Daniel, F., Matera, M., Facca, F.M.: Model-driven development of context-
aware web applications. ACM Trans. Internet Technol. 7 (February 2007), http:
//doi.acm.org/10.1145/1189740.1189742

2. Chopra, A.K., Paja, E., Giorgini, P.: Sociotechnical trust: An architectural ap-
proach. In: ER. pp. 104-117 (2011)

3. Dashofy, E.M., Hoek, A.v.d., Taylor, R.N.: A comprehensive approach for the de-
velopment of modular software architecture description languages. ACM Trans.
Softw. Eng. Methodol. 14, 199-245 (April 2005), http://doi.acm.org/10.1145/
1061254.1061258

10.

11.

12.

13.

14.

15.

16.

17.

18.

Dorn, C., Taylor, R.N.: Analyzing runtime adaptability of collaboration patterns.
In: International Conference on Collaboration Technologies and Systems (CTS).
IEEE Computer Society, Los Alamitos, CA, USA (2012)

Dorn, C., Taylor, R.N., Dustdar, S.: Flexible social workflows: Collaborations as
human architecture. IEEE Internet Computing 16, 72-77 (2012)

Dustdar, S.: ”Caramba Process-Aware Collaboration System Supporting Ad hoc
and Collaborative Processes in Virtual Teams”. Distributed Parallel Databases
15(1), 45-66 (2004)

Ellis, C.: Team automata for groupware systems. In: Proceedings of the inter-
national ACM SIGGROUP conference on Supporting group work: the integra-
tion challenge. pp. 415-424. GROUP 97, ACM, New York, NY, USA (1997),
http://doi.acm.org/10.1145/266838.267363

Garlan, D., Monroe, R., Wile, D.: Acme: an architecture description interchange
language. In: Proceedings of the 1997 conference of the Centre for Advanced Studies
on Collaborative research. pp. 7—. CASCON ’97, IBM Press (1997), http://d1.
acm.org/citation.cfm?id=782010.782017

Gregg, D.G.: Designing for collective intelligence. Commun. ACM 53, 134-138
(April 2010), http://doi.acm.org/10.1145/1721654.1721691

Hull, R.: Artifact-centric business process models: Brief survey of research results
and challenges. In: Meersman, R., Tari, Z. (eds.) On the Move to Meaningful In-
ternet Systems: OTM 2008, Lecture Notes in Computer Science, vol. 5332, pp.
1152-1163. Springer Berlin / Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-88873-4_17

Little, G., Chilton, L.B., Miller, R., Goldman, M.: Turkit: Tools for iterative tasks
on mechanical turk. In: In Human Computation Workshop (HComp2009) (2009)
Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Comput. Surv. 26, 87-119 (March 1994), http://doi.acm.org/10.1145/174666.
174668

Minder, P., Bernstein, A.: Crowdlang - first steps towards programmable human
computers for general computation. In: In Proceedings of the 3rd Human Compu-
tation Workshop (HCOMP 2011), AAAI-Press. San Francisco, CA, USA (January
2011

Moozly, P., Gruen, D., Muller, M.J., Tang, J., Moran, T.P.: Business Activity
Patterns: A New Model for Collaborative Business Applications (2006)

Nandi, P., Koenig, D., Moser, S., Hull, R., Klicnik, V., Claussen, S., Kloppman,
M., Vergo, J.: DatadBPM, part 1: Introducing business entities and the business
entity definition language (BEDL). http://public.dhe.ibm.com/software/dw/wes/
1004_nandi/1004_nandi.pdf (April 2010), http://public.dhe.ibm.com/software/
dw/wes/1004_nandi/1004_nandi.pdf

Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,
approaches, and styles. In: Companion of the 30th international conference on
Software engineering. pp. 899-910. ICSE Companion '08, ACM, New York, NY,
USA (2008), http://doi.acm.org/10.1145/1370175.1370181

Schall, D.: A human-centric runtime framework for mixed service-oriented systems.
Distributed and Parallel Databases 29, 333-360 (2011), http://dx.doi.org/10.
1007/s10619-011-7081-z

Schwinger, W., Retschitzegger, W., Schauerhuber, A., Kappel, G., Wimmer, M.,
Prll, B., Castro, C.C., Casteleyn, S., Troyer, O.D., Fraternali, P., et al.: A survey
on web modeling approaches for ubiquitous web applications. International Journal
of Web Information Systems 4(3), 234-305 (2008), http://www.emeraldinsight.
com/10.1108/17440080810901089

19.

20.

21.

22.

23.

24.

Souza, V.E.S., Lapouchnian, A., Mylopoulos, J.: System identification for adaptive
software systems : A requirements engineering perspective. System 6998, 346-361
(2011), http://www.springerlink.com/content/a67g081562412741/

Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Founda-
tions, Theory, and Practice. Wiley (2009), http://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20&path=ASIN/0470167742

Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural styles for runtime software
adaptation. In: WICSA /ECSA. pp. 171-180 (2009)

Teruel, M.A., Navarro, E., Lopez-Jaquero, V., Montero, F., Gonzéilez, P.: Csrml:
A goal-oriented approach to model requirements for collaborative systems. In: ER.
pp. 33-46 (2011)

Wilde, E., Gaedke, M.: Web engineering revisited. In: BCS Int. Acad. Conf. pp.
41-50 (2008)

Wohed, P., van der Aalst, W., Dumas, M., ter Hofstede, A., Russell, N.: On
the suitability of bpmn for business process modelling. In: Dustdar, S., Fi-
adeiro, J., Sheth, A. (eds.) Business Process Management, Lecture Notes in
Computer Science, vol. 4102, pp. 161-176. Springer Berlin / Heidelberg (2006),
http://dx.doi.org/10.1007/11841760_12

