
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Justin R. Erenkrantz
University of California, Irvine
jerenkra@ics.uci.edu

Michael M. Gorlick
University of California, Irvine
mgorlick@acm.org

Richard N. Taylor
University of California, Irvine
taylor@ics.uci.edu

CREST: A new model for
Decentralized, Internet-Scale Applications

September 2009

ISR Technical Report # UCI-ISR-09-4

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

CREST: A new model for
Decentralized, Internet-Scale Applications

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
jerenkra@ics.uci.edu, mgorlick@acm.org, taylor@ics.uci.edu

Justin R. Erenkrantz, Michael M. Gorlick, Richard N. Taylor
ABSTRACT
CREST is a new architectural style for highly dynamic distributed
applications. CREST (Computational REST) is a generalization of
the REST architectural style that shaped the scaleable WWW. In
CREST, URLs denote loci of computations and the representations
exchanged are expressions that may be as simple as a string literal
or as rich as full continuations or closures. CREST eliminates the
client-server distinction of the WWW in favor of an economy of
dynamic, individualistic peers. Hence CREST supports a computa-
tional exchange web where delivered content is a “side-effect” of
such exchange. CREST emerged from long-term study of Web
applications, examining the ways in which dynamism has started to
appear, and the ways in which developers have struggled to apply
REST principles in increasingly demanding applications. The
paper presents the five key CREST axioms and discusses the issues
that application designers must address. A framework supporting
implementation of CREST applications is described and illustrated
through discussion of a demo application, a dynamic news feed
processor. The framework is fully backwards compatible with the
existing Web infrastructure.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design

Keywords
Representational State Transfer, mobile code, web services

1. INTRODUCTION
In our prior work [7], we highlighted several example web appli-

cations to illustrate a dramatic shift in emphasis and approach---the
emerging dominance of computation over content. More specifi-
cally, that transition can be parsed with respect to seven distinct and

enduring categories: names, services, time, state, computation,
transparency, and latency. For example, our experiences with
mod_mbox demonstrated that names, here URLs denoting
resources, may represent more both static content and dynamic rep-
resentations generated on-the-fly to suit a particular domain (in this
case, web-based access to very large email archives). Our experi-
ence in constructing web-based access for Subversion illustrated
that decoupling and segmenting state (by strictly separating com-
munication and representation transformations internally within the
architecture of a user-agent) can minimize latency, reduce network
traffic and increase the efficacy of caching (in this case, far fewer
HTTP requests were required for the same operations). Here we
deployed protocol-level optimizations that both respected the stan-
dard behaviors of HTTP and did not frustrate the expectations of
intermediaries (such as caching proxies).

Continuing the examples, fine-grained internet-scale services are
a noble goal as they promote composition and innovation by both
vendors and consumers. However, SOAP-based Web Services,
crippled by well-known implementation deficiencies (such as a reli-
ance on RPC, a lack of idempotency, and the improper intermin-
gling of metadata and data in SOAP messages), are fundamentally
incapable of realizing the promise of fine-grained, composable ser-
vices without egregiously violating the REST axioms [8] that per-
mitted the web to scale. SOAP-based Web Services, if broadly
adopted, would rollback the scalability enabled by HTTP/1.1, itself
designed explicitly with REST in mind. On the other hand, REST-
ful Web Services, for lack of crisp and clear design guidance, have
yet to reach their full potential. In particular, services whose seman-
tics are not closely tied to content delivery (such as shared docu-
ment editing) offer maddeningly inconsistent and incomplete
interfaces.

AJAX and mashups, two comparatively recent web innovations,
illustrate the power of computation in the guise of mobile code-on-
demand, as a mechanism for framing responses as interactive com-
putations (AJAX) or for "synthetic redirection" and service compo-
sition (mashups). No longer must static content be transported from
an origin server to a user-agent---we now transfer incomplete repre-
sentations accompanied by domain-specific computations applied
client-side to reify the content on-the-fly. The modern browser is
now a capable execution environment where XML-based docu-
ments combined with interpreted JavaScript produce sophisticated
client-side applications which are low latency, visually rich, and
highly interactive. Additionally, AJAX-based mashups play the role
of computational intermediary (proxy) in an AJAX-centric environ-
ment.

Drawing from the observations summarized above, we formu-
ISR Technical Report # UCI-ISR-09-4 1 September 2009

lated a small set of principles for Computational REST (CREST),
a computation-centric successor to the REST architectural style,
that characterized our vision of a future computational web. Over
the past two years, we have refined those principles and con-
structed a series of prototypes of a reference infrastructure. We
recently stood up the first complete CREST peers and to better
understand the design and engineering consequences of the
CREST architectural style, implemented a demonstration applica-
tion that illustrates the surprising power, scope and flexibility of a
computational web. In the following sections, we set out the tech-
nical underpinnings of our vision, describe in detail the principles
underlying the design and implementation of the CREST peers,
examine the issues that applications must address to exploit the
CREST infrastructure to good advantage and illustrate these points
with a discussion of our demonstration applications.

We proceed by first reviewing the basic concepts of continua-
tions and closures, then proceed to discuss the broad idea of com-
putational exchange and mobile code. This is followed in Section
4 with a description of how these concepts are specifically used in
CREST. Details of CREST, including its axioms and design con-
siderations, follow in subsequent sections.

2. CONTINUATIONS AND CLOSURES
AJAX and mashups both employ a primitive form of mobile

code (Javascript embedded in HTML resource representations)
that expand the range of REST exchanges. However, far more
powerful forms of computational exchange, based on a combina-
tion of mobile code and continuations, are available. A continua-
tion is a snapshot (representation) of the execution state of a
computation such that the computation may be later resumed at the
execution point immediately following the generation of the con-
tinuation. Continuations are a well-known control mechanism in
programming language semantics: many languages, including
Scheme, JavaScript, Smalltalk, and Standard ML, implement con-
tinuations.

In these programming languages which support continuations,
closures are the typical mechanism by which continuations are
defined. Figure 1 illustrates a closure in JavaScript. The function
closure_example does not directly draw an alert box, but
instead returns a function which draws an alert box. When the clo-
sure is evaluated, the user will see a pop-up box as depicted in Fig-
ure 2. More precisely, a closure is a function with zero or more free
variables such that the extent of those variables is at least as long
as the lifespan of the closure itself. If the scope of the free vari-
ables encompasses only the closure then those variables are private
to the function (they can not be accessed elsewhere from other pro-
gram code) and persist over multiple invocations of the function (a
value established for a variable in one invocation is available in the
next invocation). Consequently, closures retain state (thereby sac-
rificing referential transparency) and may be used to implement
state encapsulation, representation, and manipulation–the neces-
sary properties for computational exchange powered by continua-
tions.

3. COMPUTATIONAL EXCHANGE
We borrow liberally from a rich body of prior work on mobile

code and continuations to articulate our view of computational
exchange. An excellent survey and taxonomy of mobile code sys-
tems may be found in [10] and, in particular, there are several

examples of mobile code implementations based on Scheme.
Halls' Tubes explores the role of “higher-order state saving”' (that
is, continuations) in distributed systems [12]. Using Scheme as the
base language for mobile code, Tubes provides a small set of prim-
itive operations for transmitting and receiving mobile code among
Tubes sites. Tubes automatically rewrites Scheme programs in
continuation-passing style to produce an implementation-indepen-
dent representation of continuations acceptable to any Scheme
interpreter or compiler. Halls demonstrates the utility of continua-
tions in implementing mobile distributed objects, stateless servers,
active web content, event-driven location awareness, and location-
aware multimedia.

Mobile objects are a weaker form of computation mobility.
Scheme has been used to support mobile objects with Dreme in
pursuit of distributed applications with little concern for process or
network boundaries [9]. There, extensions to Scheme include
object mobility, network-addressable objects, object mutability,
network-wide garbage collection, and concurrency.

Continuations have an important role to play in many forms of
web interactions and services. For example, Queinnec demon-
strates that server-side continuations are an elegant mechanism to
capture and transparently restart the state of ongoing evolving web
interactions [21].

Matthews et al. extend this work, offering a set of automated
transformations based on continuation-passing style, lambda lift-
ing, and defunctionalization that serialize the server-side continua-
tion and embed it in the web page returned to the client [16]. When
the client responds to the web page the (serialized) continuation is
returned to the server with the server resuming execution of the
continuation. This is an example of computational exchange (from
server to client and back again) that preserves context-free interac-
tion and allows the server to scale by remaining largely stateless.

4. A COMPUTATIONAL EXCHANGE WEB
Scheme is the language of choice for CREST, in particular,

Scheme is the language of computational exchange and Scheme

function closure_example(n) {
var alert_text = 'Hello ' + n + '!';
var alert_closure =

function() { alert(alert_text); }
return alert_closure;

}
var v = closure_example('John');
v();

Figure 1. An example of a closure in JavaScript

Figure 2. The resulting window produced by
JavaScript closure in Figure 1
ISR Technical Report # UCI-ISR-09-4 2 September 2009

expressions, closures, continuations, and binding environments are
both the requests and responses exchanged over the web. (Subse-
quently, we will also use simpler expressions in CREST
exchanges; this is omitted from discussion here for parsimony.)
Raising mobile code to the level of a primitive among web peers
and embracing continuations as a principal mechanism of state
exchange permits a fresh and novel restatement of all forms of web
services, including serving traditional web content, and suggests
the construction of new services for which no web equivalent now
exists.

In the world of computational exchange, an URL now denotes a
computational resource. There, clients issue requests in the form of
programs (expressions) e, origin servers evaluate those programs
(expressions) e, and the value v of that program (expression) e is
the response returned to the client. That value (response) v may be
a primitive value (1, 3.14, or "silly" for example), a list of
values (1 3.14 "silly"), a program (expression), a closure,
a continuation, or a binding environment (a set of name/value pairs
and whose values may include (recursively) any of those just enu-
merated).

With CREST, there are two fundamental mechanisms of opera-
tion: remote and spawn. A remote computation evaluates the
given program, closure, or continuation and if there is a result
returns the resulting expression (which could be a new program,
closure, or continuation) back to the original requestor. The other
mechanism of operation is spawn, which is intended for installing
longer-running custom computations. This mechanism allows a
peer to install a new service and receive a new URL in response
which permits communication with the newly installed service.
This new URL can then be shared and messages can be delivered
to the new service with the response wholly under the control of
the newly installed computation.

To help illustrate the semantics of remote, we provide an
example program (expression; rendered in the concrete syntax of
Scheme in Figure 3 and JavaScript in Figure 4) issued by a client C
to an URL u of origin server S. This program tests the execution
environment of S for a function word-count (service discovery)
and if the function (service) is available, fetches the HTML repre-
sentation of the home page of www.example.com, counts the
number of words in that representation (service composition), and
returns that value to C. As shown by this example, in a web of
computational exchange, the role of SOAP can be reduced to a
triviality, service discovery is a natural side-effect of execution,
and service composition reduces to program (expression) composi-
tion.

An example of a spawn-centric word-count service is provided
in Figure 5. In this example, the overall computational view
remains the same, but with a crucial distinction–a new resource
(represented by an URL) now exists, where no such resource
existed before, that responds to word-count requests. In other
words, CREST computations synthesize new services out of old by
exposing URLs as computational resources rather than content
resources. An example of the sequence of computations and mes-
sages that are exchanged to install and use this service are pre-
sented in Figure 6.

5. CREST AXIOMS
To provide developers concrete guidance in the implementation

and deployment of computational exchange, we offer Computa-
tional REST (CREST) as a specific architectural style to guide the
construction of computational web elements. There are five core
CREST axioms:

5.1 A resource is a locus of computations,
named by an URL. (CA1)

Any computation that can be named can be a resource: word pro-
cessing or image manipulation, a temporal service (e.g., “the pre-
dicted weather in Cape Town over the next four days”), a

(if (defined? 'word-count)(word-count (GET "http://
www.example.com/")))

Figure 3. Example CREST program (Scheme)

{
if (wordcount) {

return wordcount(GET(
“http://www.example.com/”));

}
}

Figure 4. Example CREST program (JavaScript)

(define (word-count-service)
 (accept
 ((reply message-id ('GET url))
 (where (or (symbol? url) (string? url)))
 (! reply message-id (word-count (GET url)))
 (word-count-service))

 (_ (word-count-service)))) ; Ignore other message forms.

Figure 5. Example CREST spawn service (Scheme)

Figure 6. Messages exchanged in CREST

CA1. A resource is a locus of computations, named by an URL.

CA2. The representation of a computation is an expression plus
metadata to describe the expression.

CA3. All computations are context-free.

CA4. Only a few primitive operations are always available, but
additional per-resource and per-computation operations are
also encouraged.

CA5. The presence of intermediaries is promoted.

CREST
Peer #2

CREST
Peer #1

spawn (define word-count-service ...)

crest://peer.example.com/abcd1234
is created and returned to peer #1

send (GET "http://www.example.com/") to
crest://peer.example.com/abcd1234

42
ISR Technical Report # UCI-ISR-09-4 3 September 2009

generated collection of other resources, a simulation of an object,
and so on. Compared with REST, this axiom is not entirely incon-
sistent with the original REST axioms - many REST resources are
indeed computation-centric (especially those presented under the
guise of “RESTful Web Services”). However, CREST, by explic-
itly emphasizing computation over information, makes it far
clearer that these are active resources intended to be discoverable
and composable.

As discussed earlier, when a computational request arrives at an
URL, two different modes of operation are possible: remote or
spawn. If the closure is a remote, once the closure is received,
the computation is realized within the context and configuration of
the specific URL. In this way, the URL merely denotes “the place”
where the received computation will be evaluated. Until the clo-
sure is received, the specified URL can be viewed as quiescent as
there is no computation running but the URL merely presents the
possibility of computation. If the evaluation of the received closure
is successful, then any value (if there is one) returned by the clo-
sure on its termination will be sent back to the original requestor.
In this way, remote is the equivalent in CREST of HTTP/1.1’s
GET request. With a remote closure, there is no provision for
communicating with the closure after it is exchanged. No outside
party, including the client who originally submitted the remote
request, can communicate in any way with the remote computa-
tion once evaluation begins.

In contrast, if the closure received indicates a spawn, the locus
of computation is revealed in a limited way in that a unique URL is
then created to serve as a mailbox for that spawned computation.
For example, Figure 7 denotes one potential formulation for a
mailbox URL whereby the hex string represents a universally
unique identifier. In response to the spawn request, the requestor
is returned this URL immediately. This particular URL may be
used by the original requestor or provided to another node for its
own use. With that mailbox URL in hand, any client may now send
arbitrary messages to the spawned closure via the mailbox. The
executing closure which was provided with the initial spawn will
read, interpret, and potentially respond to those messages.

5.2 The representation of a computation is an
expression plus metadata to describe the
expression. (CA2)

Since the focus of CREST is computational exchange, it is only
natural that the representations exchanged among nodes are ame-
nable to evaluation. In this axiom, we follow Abelson and Suss-
man’s definition of expression: “primitive expressions, which
represent the simplest entities the [programming] language is con-
cerned with” [1]. While these exchanges may be simplistic in form
(such as a literal representing static content or binary data), we
expect that more complex expressions will be exchanged - such as
closures, continuations, and binding environments. As discussed
earlier, closures and continuations are particularly well-suited for
computational exchange as they are powerful programming lan-
guage constructions for state encapsulation and transfer. The
exchange of binding environments (which associate variable
names with their functional definitions or values) is yet another
mechanism for transferring complex compositional computations.

CREST can also leverage its distinctive view of computation in
order to produce more precise and useful representations. REST is
nominally silent on the forms of exchanged representations but, to

drive the application, implicitly requires the exchanged representa-
tions to be a form of hypermedia. In contrast, CREST relies upon
computational expressions and the exchange of such to drive the
application. To produce the appropriate representation, CREST
employs explicit, active computations where REST relies upon a
repertoire of interpreted declarative forms, such as the declared
MIME types enumerated by a User-Agent. CREST achieves far
greater precision when negotiating a representation, for example,
not only can a particular format be specified (such as JPEG) but
also specific resolutions (thumbnails versus full images). This
model of content negotiation can simply not be achieved in REST
in a straightforward manner. Exploiting computation directly in the
negotiations reduces its complexity and eliminates the complex
parsing and decomposition of representations thereby improving
encapsulation, isolation, and composibility.

5.3 All computations are context-free. (CA3)
Like REST, CREST applications are not without state, but the

style requires that each interaction contains all of the information
necessary to understand the request, independent of any requests
that may have preceded it. Prior representations can be used to
help facilitate the transfer of state between computations; for
example, a continuation (representation) provided earlier by a
resource can be used to resume a computation at a later time
merely by presenting that continuation. Again, REST has a similar
restriction - however, the mechanism for interactions in a context-
free manner was under-specified and offered little guidance for
application developers. By utilizing computational semantics, con-
tinuations provide a straightforward and expansive mechanism for
achieving context-free computations.

5.4 Only a few primitive operations are always
available, but additional per-resource and per-
computation operations are also encouraged.
(CA4)

In HTTP/1.1 - the best known protocol instantation of REST -
the available operations (methods) of the protocol are documented
in the relevant standards documentation (RFC 2616). With HTTP/
1.1, the server may support additional methods that are not
described in the standards, but there is no discovery mechanism
available to interrogate the server about which methods are sup-
ported on a particular resource. In CREST, since the node offers
base programming language semantics, such discovery mecha-
nisms are intrinsic and always available.

CREST nodes may define additional operations at a resource-
level - that is, there may be operations (functions or methods)
defined locally by the server which are pre-installed and are opti-
mized for the server’s specific environment. While these opera-
tions are exposed via CREST’s computational model, these
operations may actually be implemented in languages that are not
directly amenable to CREST’s computational exchange model
(such as C, Java, or even raw machine code). For example, these
locally defined functions may be front-ends to a proprietary data-
base of credit scores, airline routings, or storehouse inventories.
These mechanisms allow a particular provider to expose optimized
or value-added resources to other CREST peers.

A critical feature lacking in the HTTP/1.1 protocol is that of two-
way extensibility at run-time - new methods (such as those sup-
ported by extensions like WebDAV) can only be implemented on
ISR Technical Report # UCI-ISR-09-4 4 September 2009

the server, but, other than implicit agreement or trial and error
(handling the complete absence of a particular method), dynamic
protocol adapation is not feasible with HTTP/1.1. However, with a
CREST-governed protocol - which relies upon providing a compu-
tational platform (in our examples, in the rendered form of
Scheme) - protocol enhancements are merely a form of providing
additional computations (such as new functions) on top of the
existing computation foundation. Therefore, with CREST, if a spe-
cific method is not available, the participant can then submit the
code to the resource which interprets that method exactly as the
participant desires.

In other words, participant A can send a representation p to URL
u hosted by participant B for interpretation. These p are interpreted
in the context of operations defined by u’s specific binding envi-
ronment or by new definitions provided by A. The outcome of the
interpretation will be a new representation—be it a program, a con-
tinuation, or a binding environment (which itself may contain pro-
grams, continuations, or other binding environments). To reiterate,
a common set of primitives (such as the base semantics of the com-
putational substrate, such as the Scheme primitives) are expected
to be exposed for all CREST resources, but each u’s binding envi-
ronment may define additional resource-specific operations and
these environments can be further altered dynamically.

5.5 The presence of intermediaries is pro-
moted. (CA5)

Filtering or redirection intermediaries may exploit both the meta-
data and the computations within requests or responses to aug-
ment, restrict, or modify requests and responses in a manner that is
transparent to both the end user-agent and the origin server. The
clear precursor of the full power of this axiom in a computational
exchange web is in AJAX-based mashups, more fully explained in
our prior work [7]. A derivative of our earlier word count example
is given in Figure 8. In this example, CREST peer #2 has config-
ured itself to use babelfish.example.com to translate all
outgoing requests into Portuguese. CREST peer #1’s code has not
changed, but CREST peer #2’s new configuration alters the com-
putation yielding a different result..

6. THE PRACTICE OF CREST: ISSUES
AND RESOLUTIONS

As the REST experience demonstrates, it is insufficient to
merely enumerate a set of architectural principles; concrete design
guidance is required as well. To this end, we explore some of the
consequences of the CREST axioms, cautioning that the discussion
here is neither exhaustive nor definitive. Nonetheless, it draws
heavily upon both our experiences as implementors of web ser-
vices and web clients and the lessons of the analyses of prior sys-
tems [8].

6.1 Names
CREST names specific computations (CA1) and exchanges their

expressions between nodes (CA2).
To achieve this exchange, one appealing solution is to physically

embed the expressions directly in the URL. Returning to our ear-
lier word count example, the remote request can be constructed
as depicted in Figure 9. By reusing the existing URL specification
and embedding the computation directly in the URL, CREST pro-
vides a mechanism for embedding computations inside HTML
content - allowing an existing user agent (such as Firefox) to inter-
act successfully (and without its direct knowledge) with a CREST
peer. This explicitly permits CREST to be incrementally deployed
on top of the current Web infrastructure without requiring whole-
sale alterations or adoption of new technology. To be more precise
about this reuse of the URL format, if a is the ASCII text of a
expression e sent by client c to URL P://S/u0//um1/ of origin
server S under scheme P then the URL used by c is P://S/u0//
um1/a/.

To be clear, CREST URLs are not intended for human consump-
tion, as they are the base mechanisms of computational exchange
among CREST nodes; human-readable namings may be provided
as needed by higher layers. Among computational nodes, the
length of the URL or its encoding is irrelevant and ample computa-
tional and network resources are readily available among modern
nodes to assemble, transmit, and consume URLs that are tens of
megabytes long. In effect, the URL u=P://S/u0//um1/ is the root
of an infinite virtual namespace of all possible finite expressions
that may be evaluated by the interpreter denoted by u. Finally u', a
moderately compact and host-independent representation of a
computational exchange, may be recorded and archived for reuse
at a later point in time (CA3). One possible compact representa-
tion of our word count example is provided in Figure 10.

6.2 Services
A single service may be exposed through a variety of URLs

which offer multiple perspectives on the same computation (CA1).
Each URL may offer a different binding environment or support
complementary supervisory functionality such as debugging or
management (CA4). Different binding environments (altering
which functions are available) may be offered at different URLs
which represent alternate access mechanisms to the same underly-
ing computation. We envision that a service provider could offer a
tier of interfaces to a single service. For instance, a computation
that performs image processing could be exposed as a service. In
this hypothetical service offering, a free service interface is
exposed which allows scaling up to a fixed dimensions (up to
1024x768) and conversions into only a small set of image formats
(only JPEG and GIF). In addition to this free service, another
interface could be exposed for a fee (protected via suitable access
controls) which places no restrictions on the dimensions of the
resized image and offers a wider range of support for various
image formats (such as adding RAW or TIFF formats).

In addition, alternative URLs can be used to perform supervisory
tasks for a particular service. For long running custom computa-
tions, as is the intention for spawn, an outside party might desire
more insight into the progress and state of the computation. The
outside party may also wish to suspend or cancel the computation.
In this case, a unique “supervisory” URL d can be generated by the
CREST interpreter in addition to the spawned computation’s
mailbox. Clients can then direct specific remote closures to d in
order to access special debugging and introspection functions. For
example, the supervisory environment can provide current stack
traces, reports of memory usage, and functions to monitor commu-

http://www.example.com/mailbox/60d19902-aac4-4840-
aea2-d65ca975e564

Figure 7. Example SPAWN mailbox URL
ISR Technical Report # UCI-ISR-09-4 5 September 2009

nications originating from the computation or messages arriving at
the mailbox. If the environment chooses, it can also expose mecha-
nisms to suspend or kill the computation. A remote closure
delivered to this supervisory URL could then combine these
debugging primatives to produce a snapshot of the spawned com-
putation’s health. Or, if the supervisory environment supports it, a
new spawn closure can be delivered to d which will automatically
kill the computation if the original closure exceeds specific param-
eters.

6.3 Time
The nature and specifics of the locus of computation may also

vary over time. For example, functions may be added to or
removed from the binding environment over time or their seman-
tics may change (CA4). One potential reason for this variation is
that a service provider wishes to optimize the cost of providing the
service depending upon the present computational load. There-
fore, in a service representing a complex mathematical function, a
provider can offer a more precise version of a function that uses
more CPU time during off-peak hours. However, during peak
hours when overall computational cycles are scarce, a less precise
variant of the function can be deployed which uses less CPU time.
Additionally, the interpreter may change as well for the sake of bug
fixes, performance enhancements, or security-specific improve-
ments.

Functions in the binding environment may also return different
values for the same inputs over time. For example, a random num-
ber generator function must vary its output in successive calls in
order to be useful. Yet, there is nothing to prevent a locus from
being stateful if it so desires. A URL representing a page counter
computation that increments on each remote invocation would
be stateful. It is important to understand that the locus, in addition
to everything else, may be stateful and that state, as well as every-
thing else, is permitted to change over time.

6.4 State
It is vital to note that many distinct computations may be under-

way simultaneously within the same resource. A single client may
issue multiple remotes or spawns to the same URL and many
distinct clients may do the same simultaneously. While a computa-
tional locus may choose be stateful (and thus permit indirect inter-
actions between different computations), it is important to also
support stateless computations whereby these parallel computa-
tions do not have any influence or effect on any other instance
within the same computational namespace (CA3). With stateless
computational loci, independent parallelization of the evaluation is
easily available and straightforward.

In order to address scalability concerns with stateful services
(such as a database), specific consistency mechanisms must be
introduced to try to regain parallelization. The coarsest-grained
consistency mechanism would be to only allow one evaluation of
the stateful service at a time as protected by a mutex (akin to the
Java synchronized keyword). However, as discussed in fur-
ther detail in [8], the web as a whole tends to require optimizing
for substantially higher read volumes than write volumes. There-
fore, it is possible to introduce weak consistency models where
writes are delayed or processed independently in order to permit
highly parallelizable read operations [3, 5, 6, 14].

6.5 Computation
REST relies upon an end-user’s navigation of the hypermedia

(through the links between documents) to maintain and drive the
state of the overall application. In contrast, CREST relies upon
potentially autonomous computations to exchange and maintain
state (CA2, CA3). Given the compositional semantics offered with
CREST, we expect that it will be common for one resource to refer
to another either directly or indirectly. As a consequence, there
may be a rich set of stateful relationships among a set of distinct
URLs (CA1). This state will be captured within the continuations
that are exchanged between services. A service provider will be
able to give its consumers a continuation that permits later resump-
tion of the service. In this way, the provider does not have to
remember anything about the consumer as all of the necessary
information is embedded inside of the continuation. As long as the
consumer is interested in persisting the stateful relationship, it
needs to merely retain the continuation (embedded in an URL) to
let the provider resume the state of the service at a later date.

6.6 Transparency
With the computational mechanisms transparently exposed in an

URL, a computation can be inspected, routed, and cached. In this
way, intermediaries and proxies are strongly embraced by CREST
(CA5). This allows a service to scale up as needed by sharing net-
work resources; a single origin server may now be dynamically
reconstituted as a cooperative of origin servers (peers) and inter-
mediaries (CA3, CA4). A proxy can be interjected into a request
path to record all of the computations exchanged between parties.
Additionally, an intermediary can conduct intelligent routing based
on just the URL and status line information and, since the compu-
tations are also transparent, they can be altered by the intermedi-
ary, for example amending computations with wrappers for the
sake of debugging.

More importantly, CREST also permits the caching of computa-
tions by legacy web caching modules. Since all of the computation
is specified directly in the URL, a cache can trivially compare the
URL against all the cached prior interactions that it has cached. If

Figure 8. Word count example with an intermediary

crest://server.example.com/(if(defined?'word-count)(word-
count(GET "http://www.yahoo.com/"))

Figure 9. CREST URL example (expanded)

crest://server.example.com/word-count/www.yahoo.com/

Figure 10. CREST URL example (condensed)

CREST
peer #1

CREST
peer #2

babelfish.example.com

(if (defined? 'word-count)
(word-count (GET "http://www.example.com/")))

50

GET
http://www.example.com/

...Lorem
ipsum...

(Portuguese)

www.example.com

GET /

...Lorem
ipsum...
(English)

(set-proxy
babelfish.example.com)
ISR Technical Report # UCI-ISR-09-4 6 September 2009

the response is cachable (as dictated by site policy or by the origi-
nal service provider) and is still fresh according to the HTTP expi-
ration parameters, then that prior interaction can be returned to the
requestor without contacting the original service provider. This
feature permits the graceful introduction of caching into the
CREST environment.

6.7 Migration and latency
Given the dominance of computation and computational transfer

CREST applications can successfully minimize network and com-
putational latency by migrating computations. Applications may
stitch many computations from multiple service providers into a
comprehensive whole, as no one origin server may be capable of
supplying all of the functional capability that the client requires.

The physical characteristics of the underlying network connec-
tion can have a substantial effect on latency. Recent investigations
into cloud computing services suggest that the performance will be
subject to and dominated by variations caused by network latency
[20]. As a remedy, CREST encourages computation migration, that
is, moving the computation closer to the data store, to reduce
latency (CA2). For many classes of computations, such as filtering
or summation (map/reduce), the reduction is dramatic.

CREST communications are fully asynchronous, though an
exemplary peer respects the request/response ordering constraints
when communicating with an HTTP/1.1-compliant weak peer (see
Section 7). All CREST peers, both exemplary and weak, must
offer mechanisms for reducing or hiding the impact of latency, for
example, by encouraging concurrent computation and event-driven
reactions (such as the nondeterministic arrival of responses). Since
those responses may be continuations, origin servers must be
receptive to previously generated continuations long after they
were first created (on timespans of seconds to months) and restart
them seamlessly. All CREST peers employ timers to bound wait-
ing for a response or the completion of a computation. CREST
nodes may employ timestamps and cryptographic signatures
embedded within a continuation to reliably determine its age and
may refuse to resume a continuation past its “expiration dates.”

7. CREST FRAMEWORK & EXPERIENCE
To both facilitate the adoption of CREST and to explore the

implications and consequences of the style we have constructed a
CREST framework that allows us to build applications in this
style. Our framework has two classes of peers: exemplary peers
and weak peers. As depicted in Figure 12, exemplary peers are
standalone servers that have a rich set of computational services
available. These exemplary peers utilize Scheme as the language in
which the computations are written. In order to assist and expose
third-party libraries, our Scheme implementation is written on top
of Java [18] - so any Java frameworks are accessible from the
exemplary peer. To foster interoperability with the existing Web,
these exemplary peers can act as a HTTP/1.1 server (to expose the
computations running on that peer to browsers) as well as an
HTTP/1.1 client (to permit the local computations on that peer to
fetch resources on a HTTP/1.1 server or another remote peer). On
a modern Intel-class laptop with minimal performance tuning, our
exemplary peers can serve dynamic computations in excess of 200
requests per second. In contrast to exemplary peers, weak peers are
confined to the restrictions of a modern Web browser and rely
upon JavaScript as the fundamental computational foundation. For

ease of development and portability for our weak peers, our exam-
ple applications use the Dojo JavaScript framework. Supported
browsers include Mozilla Firefox, Safari, Google Chrome, and
Internet Explorer. Mobile devices such as an Apple iPhone and
Google Android phone are also supported as weak peers (through
their built-in browser applications.)

7.1 Example Application: Feed Reader
Our example application is a is a highly dynamic, reconfigurable

feed reader that consumes RSS or Atom feeds. For purposes of
comparison, Google Reader or Bloglines may be considered as a
starting reference point - however, our application has a much
stronger computational and compositional aspect than either sys-
tem offers today. In addition to merely displaying a feed, one such
novel functionality present is that a user can dynamically link the
feeds to a tag cloud to display the most popular words in the feed.
A screenshot of the running application is presented in Figure 11.

In our example, there are two separate classes of computations
that are occuring: the widget computations running on the exem-
plary peers, and the artist computations running on the weak peers.
An overview of the run-time architecture is provided in Figure 13.
There are eight different widgets: a manager (which allows a user,
via a weak peer, to create and link widgets), an URL selector, an
RSS reader, tag clouds, sparklines, a calendar, a Google News
reader, and a QR code (a 2D barcode format). Via a manager wid-
get, these widgets can be linked together - such as the URL selec-
tor linking to the RSS reader, indicating that the reader should
fetch its feed from a specific URL. Each one of these widget com-
putations may have an associated artist computation which is
responsible for visually rendering the state of the widget in a weak
peer (such as a browser). In our example, the artists and widgets
communicate via exchanging JSON over HTTP - more sophisti-
cated computational exchanges (such as full closure and continua-
tions) are commonly employed among exemplary peers. There
does not have to be a one-to-one relationship between artist and
widgets - in our example, a manager widget has two separate art-
ists - one which lets the user add new widgets and another artist
(the mirror) which visually depicts the entire state of the applica-
tion using boxes, arrows, and color.

Using our CREST framework, all eight of our widgets total
under 450 lines of Scheme code - the largest widget is the feed
reader widget computation which is approximately 115 lines of
code. All of our artists are written on top of the Dojo JavaScript
framework and comprise approximately 1,000 lines of JavaScript
and HTML.

7.2 Design Considerations: Feed Reader
Using the considerations presented in Section 6 as our guide, we

now discuss their impact and how they manifest themselves in our
demostration example.

Names. Each instantiation of a widget computation has its own
unique per-instance URL. Through this URL, artist computations
running in the confines of a week peer or another widget computa-
tion on the same or different peer can deliver a message to a spe-
cific widget computation. These messages can either fetch the
current state of the computation via a GET request (such as to
retrieve the current tag cloud data) or update the state of the com-
putation via a POST request (in order to deliver a new set of words
to the tag cloud). Within the weak peer, artist computations have
ISR Technical Report # UCI-ISR-09-4 7 September 2009

unique identifiers within the local DOM tree of the browser. How-
ever, these weak peers are restricted to only communicating with
exemplary peers and can not expose any services or directly inter-
act with other weak peers.

Services. Both the widget and artist computations in our example
application are independently managed and run. Each widget com-
putation locally defines what services it provides - such as the
URL widget component permitting the storing and retrieval of the
current value (in this case, a feed URL). In contrast, the widget
manager computation offers the ability to spawn new widgets as
well as maintaining information about already instantiated wid-
gets.

It should also be noted that multiple artist computations may
offer different perspectives on the same service. In our example,
both the mirror and manager artist computations provide alterna-
tive views of the current state of the system (one as a list of exist-
ing widget computations, the other as a graphical representation of
the existing computations).

Time. Over time, the computations offered by the example appli-
cation will vary. The computations are not defined, created, or
even initialized until they are explicitly activated by the manager
widget. Additionally, there is a set of relationships between widget
computations (links) that are created and destroyed over time. In
our example, this set of relationship determines the data flow from
one widget computation to another widget computation.

State. In our example application, the widget computations have
the ability to maintain a local per-instance state. Our feed reader

widget computation will retrieve and parse the designated feed on
a periodic basis as defined by a clock-tick. The feed reader widget
computation will then store the parsed feed as a local stateful
value. By maintaining the state (essentially caching the parsed
feed), the feed reader widget can easily scale since it must only
return the cached representation rather than constantly retrieving
and parsing the feed in response to a given request. In contrast to
the widget computations, our artist computations are all stateless.
The artist computations are configured to periodically poll their
affiliated widget computation for its state and then renders that
state accordingly.

Computation.
The artist computation’s responsibility is to (visually) render the

state of its affiliated widget computation into a specific form. The
widget computations executing on the exemplary peer have no
restrictions on what they can compute modulo security implica-
tions as discussed in Section 8. Through the use of links between
widget computations, dynamic composability of services is sup-
ported. For instance, the Google News widget can be dynamically
linked to the calendar and tag cloud widget computations in order
to search for a given keyword (from the tag cloud) at a given date
in the past (from the calendar).

Transparency. The demonstration supports varying degrees of
computational exchange, namely "shallow" copy versus "deep"
copy. In a shallow copy, all weak peers share among themselves a
single collection of widget computations (perhaps distributed
among multiple exemplary peers) but have independent artist com-
putations. In this case, all weak peers see exactly the same state

Figure 11. Screenshot of CREST-based Feed Reader application
ISR Technical Report # UCI-ISR-09-4 8 September 2009

updates for the same widget computations. Under deep copy, a
new weak peer creates a fresh, forked collection of widget compu-
tations whose computational states are a continuation, captured at
the instant of the join, of the parent collection. This weak peer will
now observe, from that point forward, an independent, evolving
state. In this way, the deep copy creates a new version of the feed
reader application at the time the continuation is created.

Interestingly, due to the accelerated timeframes of our example
application (feeds were updated every three seconds), we had to
introduce cache-busting parameters in our artist computations on

the Google Android phones because of the browser’s aggressive
caching behavior.

Migration and latency. Since all relationships between com-
putations are identified by a URL, these computations may either
be remote or local. In this way, widget computations can be
migrated with abandon as long as they are accessible via an URL.
By adding multiple exemplary peers, dynamic widget migration
and load sharing (computational exchange) allows the sample
application to scale seamlessly.

With regards to latency, the division between artist computations
(which draw the local display) and the widget computation (which
maintains the state) allows for minimal transference of data
between nodes. Upon creation of the widget computation, the rele-
vant artist computation is transferred and instantiated on the weak
peer. Therefore, by providing the artist computation as an output of
the widget computation, the widget computation has complete con-
trol over what formats the artist computation require and can hence
use any optimized format that it desires.

8. ADDITIONAL RELATED WORK
Web Services impose a service perspective on large-scale web

systems however, its flaws are numerous and fundamental includ-
ing inappropriate service granularity [22], an unsuitable invocation
mechanism [24], and intermingling of data and metadata causing
high latency [4]. Google Wave [15] employs a classic client/server
architecture for which the medium of exchange is XML documents
and state deltas encoded as operational transforms. CREST resem-
bles a web-scale actor model [2] and like [11] exploits a functional
language as the implmenentation medium for its actor-like seman-
tics. The demonstration sketched above resembles Yahoo Pipes
[26] or Marmite [25] however, unlike these systems, all significant
computation is distributed outside the browser in CREST peers
and within the browser the only computation is for the sake of ren-
dering.

Security is a significant issue for mobile code systems and sev-
eral distinct mechanisms are relevant for CREST. Strong authenti-
cation is a vital starting point for trust, resource allocation, and
session management and for which we will employ self-certifying
URLs [13]. Mechanisms for resource restriction, such as memory
caps and processor and network throttling, are well-known, how-
ever, environment sculpting [23] may be used to restrict access to
dangerous functions by visiting computations and is the functional
analog of the capability restriction in Caja [17]. In addition, since
an exemplary peer executes atop the Java Virtual Machine all of
the security and safety mechanisms of the JVM may be brought to
bear. Finally, CREST exemplary peers will employ byte code veri-
fiers for remote and spawn computations and various forms of law-
governed interaction [19] to monitor and constrain the behavior of
collections of computations executing internet-wide on multiple
peers.

9. SUMMARY
This paper represents the culmination of a prolonged study of

modern Web applications and how dynamism in applications both
has changed the Web during the past decade and how it can be fur-
ther exploited. Our earlier paper at ESEC/FSE 2007 detailed the
first part of this study: analyzing existing systems and providing an
initial CREST model for rationalizing their behavior. This paper
has tackled the second part, showing how dynamism, in the form

Figure 12. Exemplary CREST Peer

Figure 13. Feed Reader Architecture

Figure 14. Feed Reader Computation List

SISC Scheme
Interpreter

Sham
(HTTP/1.1 server)

Imposter
(HTTP/1.1 client)

Apache HC
(HTTP components)

Java Virtual Machine

(Optional PlugIns)

CREST
computations

C-2 C-3
C-1

Weak (Browser) Peer

Weak (Browser) Peer

Weak (Browser) Peer

Firefox

iPhone
Android

Exemplary Peer
Exemplary Peer

JSON via HTTP

Weak (Browser) Peer

Safari

C C
C

C C CCC C CC

C C CCC C CC

C
C C

C

C

JSON via HTTP

MANAGER

URL
SELECTOR

CALENDAR

QR CODESPARKLINE

TAG CLOUD

Google NEWS

RSS READER

MANAGER
Artist

URL SELECTOR
Artist

CALENDAR
Artist

Google NEWS
Artist

RSS READER
Artist

MIRROR
Artist

QR CODE
Artist

SPARKLINE
Artist

TAG CLOUD
Artist

RSS Source
ISR Technical Report # UCI-ISR-09-4 9 September 2009

of computations, can be made the central aspect of distributed Web
applications. The refined CREST axioms presented here, accom-
panied by design guidance for the application of those principles,
provides the foundation for a dramatic change in the Web. The
demonstration application described in the paper indicates how
these broad yet specific principles can be supported in practice.
The implementation framework upon which the sample applica-
tion was built is generic, is fully backwards compatible with the
existing Web infrastructure, and will be the basis for our next
phase of investigation, in which we anticipate examining how this
computational web can be used to solve problems in other areas,
ranging from the smart energy grid to situational awareness to
high-speed streaming video applications. In addition to these
application-based studies, we anticipate investigations into numer-
ous support areas, including development and testing techniques
and tools, implementation of the security elements, and provision
of services for computation search and composition.

10. ACKNOWLEDGMENTS
This material is based upon work supported by the National Sci-

ence Foundation under Grant Numbers 0438996 and 0820222.
Thanks to Yongjie Zheng and Alegria Baquero for their assistance
in creating the CREST framework.

11. REFERENCES
[1] Abelson, H., Sussman, G.J., and Sussman, J. Structure and

Interpretation of Computer Programs. Second ed. 683 pgs.,
MIT Press, 1996.

[2] Baker, H. and Hewitt, C. Laws for Communicating Parallel
Processes. MIT Artificial Intelligence Laboratory Working
Papers, Report WP-134A, May 10, 1977. <http://hdl.han-
dle.net/1721.1/41962>.

[3] Chang, F., Dean, J., Ghemawat, et al. Bigtable: A Distributed
Storage System for Structured Data. In Proceedings of the
OSDI'06: Seventh Symposium on Operating System Design
and Implementation. Seattle, WA, November, 2006. <http://
labs.google.com/papers/bigtable-osdi06.pdf>.

[4] Davis, D. and Parashar, M. Latency Performance of SOAP
Implementations. In Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid.
p. 407-12, Berlin, Germany, May 21-24, 2002.

[5] DeCandia, G., Hastorun, et al. Dynamo: Amazon's highly
available key-value store. ACM SIGOPS Operating Systems
Review. 41(6), p. 205-220, 2007.

[6] Dubois, M., Scheurich, C., and Briggs, F. Memory access
buffering in multiprocesses. In Proceedings of the 13th
Annual International Symposium on Computer Architecture.
p. 434-442, Tokyo, Japan, 1986.

[7] Erenkrantz, J.R., Gorlick, M., Suryanarayana, G., and Taylor,
R.N. From Representations to Computations: The Evolution
of Web Architectures. In Proceedings of the 6th Joint Meeting
of the European Software Engineering Conference and the
ACM SIGSOFT Int'l Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE). p. 255-264, Dubrovnik, Cro-
atia, Sept 3-7, 2007.

[8] Erenkrantz, J.R. Computational REST: A New Model for
Decentralized, Internet-Scale Applications. PhD Thesis.
Information and Computer Science, University of California,
Irvine, 2009.

[9] Fuchs, M. Dreme: for Life in the Net. PhD Thesis. New York
University, 1995.

[10] Fuggetta, A., Picco, G.P., and Vigna, G. Understanding Code
Mobility. IEEE Transactions on Software Engineering. 24(5),
p. 342-361, May, 1998.

[11] Ghosh, D. and Vinoski, S. Scala and Lift - Functional Recipes
for the Web. IEEE Internet Computing. 13(3), p. 88-92, 2009.

[12] Halls, D.A. Applying Mobile Code to Distributed Systems.
Ph.D. Thesis. University of Cambridge, 1997.

[13] Kaminsky, M. and Banks, E. SFS-HTTP: Securing the Web
with Self-Certifying URLs. MIT Laboratory for Computer
Science, 1999. <http://pdos.csail.mit.edu/~kaminsky/sfs-
http.ps>.

[14] Lamport, L. Time, Clocks and the Ordering of Events in a
Distributed System. Communications of the ACM. 21(7), p.
558-565, July, 1978.

[15] Lassen, S. and Thorogood, S. Google Wave Federation Archi-
tecture. <http://www.waveprotocol.org/whitepapers/google-
wave-architecture>, 2009.

[16] Matthews, J., Findler, R.B., Graunke, P., Krishnamurthi, S.,
and Felleisen, M. Automatically Restructuring Programs for
the Web. Automated Software Engineering. 11(4), p. 337--
364, 2004.

[17] Miller, M.S., Samuel, M., Laurie, B., Awad, I., and Stay, M.
Caja: Safe active content in sanitized JavaScript. <http//
google-caja.googlecode.com/files/caja-spec-2008-06-
07.pdf>, PDF, June 7, 2008.

[18] Miller, S.G. SISC: A complete Scheme interpreter in Java.
Technical Report, 2003. <http://sisc.sourceforge.net/
sisc.pdf>.

[19] Minsky, N.H. and Ungureanu, V. Law-governed Interaction:
A Coordination and Control Mechanism for Heterogeneous
Distributed Systems. ACM Transactions on Software Engi-
neering Methodology. 9(3), p. 273-305, July, 2000.

[20] Palankar, M.R., Iamnitchi, A., Ripeanu, M., and Garfinkel, S.
Amazon S3 for science grids: a viable solution? In Proceed-
ings of the 2008 International Workshop on Data-aware Dis-
tributed Computing. p. 55-64, Boston, MA, 2008.

[21] Queinnec, C. The Influence of Browser on Evaluators or,
Continuations to Program Web Servers. In Proceedings of the
International Conference on Functional Programming. Mon-
treal, Canada, 2000.

[22] Stamos, J.W. and Gifford, D.K. Remote Evaluation. ACM
Transactions on Programming Languages & Systems. 12(4),
p. 537-564, 1990.

[23] Vyzovitis, D. and Lippman, A. MAST: A Dynamic Language
for Programmable Networks. MIT Media Laboratory, Report,
May, 2002.

[24] Waldo, J., Wyant, G., Wollrath, A., and Kendall, S.C. A Note
on Distributed Computing. Sun Microsystems, Report TR-94-
29, November, 1994. <http://research.sun.com/techrep/1994/
abstract-29.html>.

[25] Wong, J. and Hong, J.I. Making Mashups with Marmite:
Towards End-user Programming for the Web. In Proceedings
of the SIGCHI Conference on Human Factors In Computing
Systems. p. 1435-1444, San Jose, California, USA, April 28-
May 3, 2007.

[26] Yahoo Inc. Pipes. <http://pipes.yahoo.com/pipes/>, 2009.
ISR Technical Report # UCI-ISR-09-4 10 September 2009

	Abstract
	1. Introduction
	2. Continuations and Closures
	3. Computational Exchange
	4. A Computational Exchange Web
	5. CREST Axioms
	5.1 A resource is a locus of computations, named by an URL. (CA1)
	5.2 The representation of a computation is an expression plus metadata to describe the expression. (CA2)
	5.3 All computations are context-free. (CA3)
	5.4 Only a few primitive operations are always available, but additional per-resource and per- computation operations are also encouraged. (CA4)
	5.5 The presence of intermediaries is promoted. (CA5)

	6. The Practice of CREST: Issues and Resolutions
	6.1 Names
	6.2 Services
	6.3 Time
	6.4 State
	6.5 Computation
	6.6 Transparency
	6.7 Migration and latency

	7. CREST Framework & Experience
	7.1 Example Application: Feed Reader
	7.2 Design Considerations: Feed Reader

	8. Additional Related Work
	9. Summary
	10. Acknowledgments
	11. References

