
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Roberto S. Silva Filho
University of California, Irvine
rsilvafi@ics.uci.edu

David F. Redmiles
University of California, Irvine
redmiles@ics.uci.edu

An Analysis of
Publish/Subscribe Middleware Versatility

August 2009

ISR Technical Report # UCI-ISR-09-3

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

An Analysis of Publish/Subscribe Middleware Versatility 

Roberto S. Silva Filho and David F. Redmiles
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
{rsilvafi, redmiles}@ics.uci.edu

ISR Technical Report # UCI-ISR-09-3

August 2009

Versatility is an important quality that enables software to serve multiple purposes in a us-

able and useful way. As such, versatility is central to middleware in general and pub-
lish/subscribe infrastructures specifically. The development of versatile software, however, is dif-
ficult. It must achieve a favorable balance between different software qualities (or non-functional
requirements) including: usability, reusability, flexibility, maintainability and performance, while
supporting problem domain dependencies and constraints. Developers adopt different strategies
in the design of versatile software including: modularization, stabilization, variation, generaliza-
tion and specialization. By combining these strategies, different versatility approaches have been
applied in the construction of infrastructures, for example: minimal core, one-size-fits-all, coor-
dination languages and flexible infrastructures. Each one of have costs and benefits.

In this work, we motivate the need for versatility in the publish/subscribe domain, discuss its
challenges, propose our own solution to the problem: YANCEES, a flexible publish/subscribe
infrastructure, and present the results of a multi-dimensional quantitative and qualitative empiri-
cal study where we compare YANCEES with existing versatility approaches in the pub-
lish/subscribe domain. We summarize the results in the form of guiding principles, which goal is
to better support application developers in choosing the best design approaches in the develop-
ment of middleware; and infrastructure consumers in selecting the most appropriate infrastruc-
ture to support their applications.

UCI-ISR-09-3 - August 2009

2

TABLE OF CONTENTS

Page

CHAPTER 1. INTRODUCTION 12

1.1 APPROACH 13
1.2 SUMMARY OF CONTRIBUTIONS 14

1.2.1 Contributions in software engineering in general 14
1.2.2 Contributions in the software product line engineering 15
1.2.3 Contributions to middleware research 15

1.3 STRUCTURE OF THIS DISSERTATION 16

CHAPTER 2. SOFTWARE VERSATILITY 17
2.1 VERSATILITY STRATEGIES 17

2.1.1 Versatility development strategies 19
2.1.1.1 Modularization 19
2.1.1.2 Specialization 20
2.1.1.3 Generalization 20
2.1.1.4 Variation 21
2.1.1.5 Stabilization 21

2.1.2 Reuse strategies 23
2.1.2.1 Selection 23
2.1.2.2 Extension 23
2.1.2.3 Configuration 23
2.1.2.4 Adaptation 24
2.1.2.5 Composition (or integration) 24
2.1.2.6 Code Evolution 25

2.2 VERSATILITY CHALLENGES 26
2.2.1 Software quality trade-offs 26
2.2.2 Fundamental domain dependencies 27
2.2.3 Configuration-specific dependencies 29
2.2.4 Technological constraints 30

2.3 SUMMARY 30
CHAPTER 3. BUILDING A VERSATILE PUBLISH/SUBSCRIBE
INFRASTRUCTURE 32

3.1 YANCEES MOTIVATION 32
3.2 PUBLISH/SUBSCRIBE COMMUNICATION STYLE CHARACTERISTICS 33
3.3 PUBLISH/SUBSCRIBE INFRASTRUCTURES COMMONALITY AND VARIABILITY 34
3.4 VERSATILITY REQUIREMENTS 35

3.4.1 API usability 35
3.4.2 Flexibility (extensibility & configurability) 36
3.4.3 Maintainability 36
3.4.4 Reusability 36
3.4.5 Performance 36

3.5 YANCEES DESIGN 37
3.5.1 Usability 38

UCI-ISR-09-3 - August 2009

3

3.5.2 Flexibility 39
3.5.3 Reusability 39
3.5.4 Maintainability 39
3.5.5 Performance 40
3.5.6 Additional benefit: interoperability 40
3.5.7 Versatility supporting concerns 40

3.5.7.1 Generalized event representation 41
3.6 YANCEES IMPLEMENTATION 41

3.6.1 Applying stabilization & variation 42
3.6.2 Routing model 42
3.6.3 Publication Model 43
3.6.4 Subscription Model 44
3.6.5 Event Model 45
3.6.6 Notification Model 46
3.6.7 Protocol Model 47
3.6.8 Overall Architecture 48

3.7 APPLICATIONS SUPPORTED BY YANCEES 49
3.8 SUMMARY 49

CHAPTER 4. CASE STUDIES DESIGN 51
4.1 PUBLISH/SUBSCRIBE VERSATILITY APPROACHES 51

4.1.1 Minimal core infrastructures 52
4.1.2 Coordination languages 52
4.1.3 Configurable one-size-fits-all 52
4.1.4 Flexible publish/subscribe infrastructures 53
4.1.5 Comparing the versatility of different strategies 53

4.2 SELECTED PUBLISH/SUBSCRIBE INFRASTRUCTURES 54
4.2.1 Siena 54
4.2.2 CORBA-NS 55
4.2.3 JavaSpaces 56
4.2.4 YANCEES 56
4.2.5 Summary of selected infrastructures design decisions 57

4.3 SELECTED EVENT-DRIVEN APPLICATIONS 58
4.3.1 CASSIUS 58
4.3.2 EDEM 59
4.3.3 IMPROMPTU 61

4.4 METRICS SUITE 62
4.4.1 Development effort 63
4.4.2 Reusability: Cognitive distance 63
4.4.3 Usability: API size and task complexity 64
4.4.4 Modularity and scattering of concerns 64

CHAPTER 5. CASE STUDIES IMPLEMENTATION & DATA COLLECTION
 65

5.1 CASE STUDY DESIGN & IMPLEMENTATION CHALLENGES 65
5.2 EDEM CASE STUDY IMPLEMENTATION 66
5.3 IMPROMPTU CASE STUDY IMPLEMENTATION 67

UCI-ISR-09-3 - August 2009

4

5.4 CASSIUS CASE STUDY IMPLEMENTATION 67
5.5 DATA COLLECTION 68

5.5.1 Concern tagging criteria 69
CHAPTER 6. STUDY RESULTS 74

6.1 INFRASTRUCTURE DEVELOPERS’ PERSPECTIVE 74
6.1.1 Publish/subscribe main development concerns 74
6.1.2 Quantifying publish/subscribe main development concerns 74
6.1.3 Infrastructures Maintainability 76
6.1.4 Flexibility (feature change impact) 78
6.1.5 Discussion: the role of generalization, variation and configuration
management in the reduction of change impacts 79

6.2 APPLICATION DEVELOPERS’ PERSPECTIVE 81
6.2.1 API Usability 81

6.2.1.1 Task-based analysis 81
6.2.1.2 API Usability: Size 82
6.2.1.3 API Usability: separation of concerns 83
6.2.1.4 API Usability: common task analysis 84

6.2.2 Domain-specific concerns and their development effort 86
6.2.3 Case studies development effort 87

6.2.3.1 CASSIUS Case Study 88
6.2.3.2 EDEM Case Study 90
6.2.3.3 IMPROMPTU Case Study 92

6.2.4 Total development effort 93
6.2.4.1 Breaking down the development effort costs 94

6.2.5 Client code maintainability 95
6.2.6 Performance 97

6.2.6.1 EDEM 97
6.2.6.2 CASSIUS 98
6.2.6.3 IMPROMPTU 98

6.3 SUMMARY OF RESULTS 99
6.3.1 Quantitative results 99
6.3.2 Versatility approaches trade-offs 101
6.3.3 Summary of findings 102

CHAPTER 7. ANALYSIS OF VERSATILITY TRADE-OFFS 104

7.1 INFRASTRUCTURE MODULARITY AND FLEXIBILITY TRADE-OFFS 104
7.2 INFRASTRUCTURES API USABILITY TRADE-OFFS 105

7.2.1 Impact of API size on the total development effort 105
7.2.2 Textual versus object representation of subscriptions 108
7.2.3 Impact of API size on client code maintainability 109

7.3 INFRASTRUCTURE REUSABILITY & CLIENT CODE MAINTAINABILITY TRADE-
OFFS 110
7.4 PERFORMANCE TRADE-OFFS 111

7.4.1 Relation between development effort and performance 111
7.4.2 Relation between client code modularity and performance 113
7.4.3 Impact of API size on case studies performance 114

UCI-ISR-09-3 - August 2009

5

7.4.4 Performance trade-offs conclusion 115
7.5 TRADE-OFFS SUMMARY 115

CHAPTER 8. PRINCIPLES AND GUIDELINES 117
8.1 REQUIREMENTS RECOMMENDATIONS 117

8.1.1 Consider the problem domain through multiple perspectives 117
8.1.2 Perform an analysis of domain-specific dependencies 117

8.2 DESIGN AND IMPLEMENTATION PRINCIPLES AND GUIDELINES 118
8.2.1 General design principles 118

8.2.1.1 Abstraction 118
8.2.1.2 Modularity 118
8.2.1.3 (De) Composition. 119
8.2.1.4 Simplicity 119

8.2.2 General versatility design principles 119
8.2.2.1 Ockham’s Razor 120
8.2.2.2 Satisficing designs 120

8.2.3 Publish/subscribe versatility common strategies 121
8.2.3.1 Composition of subscription commands 121
8.2.3.2 Switchable routing strategies 122
8.2.3.3 Generalization of event representation 122

8.2.4 Flexibility design principles 122
8.2.4.1 Support separation between mechanisms and policies 122
8.2.4.2 Design for change, supporting extensibility and configurability 122
8.2.4.3 Support late binding of features 123
8.2.4.4 Provide architectural reflection 123
8.2.4.5 Adopt customizable and modular abstractions 123
8.2.4.6 Employ automation to improve usability 123

8.2.5 API usability design guidelines 124
8.2.5.1 Strive for minimalism and completeness 124
8.2.5.2 Support multiple user roles by separating API concerns 124
8.2.5.3 Support API customizability 124
8.2.5.4 Minimize user choices 124
8.2.5.5 Minimize adaptation 125
8.2.5.6 Give preference to object-based subscription formats 125

8.2.6 Maintainability principles 125
8.2.6.1 Design for change 125

8.3 REUSE RECOMMENDATIONS 125
8.3.1 Selection 126

8.3.1.1 Avoid semantic mismatches 126
8.3.1.2 On the absence of semantic mismatches, select based on problem
domain fitness 126
8.3.1.3 Consider flexible approaches when supporting software product lines
 126

8.3.2 Adaptation 126
8.3.2.1 Consider the predominant event and subscription representations 127
8.3.2.2 Consider layered adaptation 127

8.3.3 Configuration 127

UCI-ISR-09-3 - August 2009

6

8.3.3.1 Consider configuration management costs 127
8.3.3.2 Prefer infrastructures that implement the open implementation design
guidelines 127

8.3.4 Extension 128
8.3.4.1 Consider the costs of extension, preferring approaches that support
automation, documentation and enforcement of dependencies 128

8.4 CONCLUSIONS 128
CHAPTER 9. STUDY LIMITATIONS 129

CHAPTER 10. RELATED WORK 130
10.1 MIDDLEWARE VERSATILITY 130
10.2 SOFTWARE PRODUCT LINE ENGINEERING 130

10.2.1 Analysis of dependencies in software product lines 131
10.2.2 Software product lines economic models 132

10.3 SOFTWARE DESIGN AND ANALYSIS METHODOLOGIES 132
10.4 EMPIRICAL SOFTWARE ENGINEERING 132
10.5 DESIGN PRINCIPLES LITERATURE 133

CHAPTER 11. CONCLUSIONS 134
11.1 SUMMARY OF CONTRIBUTIONS 134

11.1.1 Contributions in software engineering in general 134
11.1.2 Contributions in the software product line engineering 135
11.1.3 Contributions to middleware research 135

11.2 FUTURE WORK 135
11.2.1 Tool support for software comprehension and evolution 135
11.2.2 API usability metrics, guidelines and tool support 136
11.2.3 Study of the impact of programming paradigm in software versatility
 136

REFERENCES 138
APPENDIX A. APIS OF THE SELECTED INFRASTRUCTURES 147

A.1 SIENA API 147
A.2 CORBA-NS API 148
A.3 JAVASPACES API 151
A.4 YANCEES CLIENT-SIDE API 153

APPENDIX B. EXTENDING YANCEES 154
B.1 CASE STUDY: IMPLEMENTING CASSIUS SERVICES WITH YANCEES 154

B.1.1 Implementing a sequence detection subscription command 154
B.1.2 Implementing a pull delivery mechanism 156
B.1.3 Implementing CASSIUS features 157 

UCI-ISR-09-3 - August 2009

7

LIST OF FIGURES
 Page

Figure 1 Worldwide vendor revenue estimates for total aim software, 2006-2007 (Millions of
U.S. Dollars) source: Gartner Group 2008 ...12 

Figure 2 Development and reuse operators ..18 

Figure 3 Correspondence between development and reusability strategies18 

Figure 4 Specialization (left) versus Generalization (right) ...21 

Figure 5 Stabilization and Variation in support of different routing strategies22 

Figure 6 Expressing EDEM required functionality in terms of existing infrastructures through
Adaptation and Composition ..25 

Figure 7 Different stakeholders requirements, quality dependencies and trade-offs27 

Figure 8 Publish/subscribe feature model showing design dimensions and their variability (source
(Silva Filho and Redmiles 2006))...28 

Figure 9 Publish/subscribe domain fundamental and derivative dependencies28 

Figure 10 Configuration-specific dependencies between features ...29 

Figure 11 YANCEES high-level architecture ..37 

Figure 12 YANCEES approach summary ..38 

Figure 13 Publish/subscribe pattern..41 

Figure 14 YANCEES main components (façades) ..42 

Figure 15 Support for multiple routing strategies and interoperability with different routers43 

Figure 16 YANCEES Publication Model...44 

Figure 17 YANCEES Subscription Model...45 

Figure 18 YANCEES Event Model..46 

Figure 19 YANCEES Notification Model..47 

Figure 20 YANCEES Protocol Model ...48 

Figure 21 YANCEES general approach ...49 

Figure 22 Comparative analysis of different versatility design considering their generality,
specificity and flexibility ..53 

Figure 23 Siena architecture ...54 

Figure 24 CORBA-NS main components ..55 

Figure 25 JavaSpaces architecture (with client-side adaptation)..56 

Figure 26 EDEM approach summary ...60 

Figure 27 IMPROPTU high-level architecture...61 

Figure 28 Cognitive distance as the total development effort to reuse a provided middleware API
in the development of an (ideal) required application-specific API...63 

Figure 29 EDEM case study main components..66 

UCI-ISR-09-3 - August 2009

8

Figure 30 IMPROMPTU case study main components ...67 

Figure 31 CASSIUS case study main components...68 

Figure 32 Metrics gathering and analysis process ..69 

Figure 33 Infrastructures size by concerns ...75 

Figure 34 Proportional size of major infrastructure concerns ..76 

Figure 35 Average infrastructures modularity..77 

Figure 36 Change impact analysis per publish/subscribe concern (measured in terms of concern
diffusion over components) for each infrastructure..79 

Figure 37 Task-based analysis of the API sizes of the infrastructures ...82 

Figure 38 Comparative development effort of most common publish/subscribe tasks (based on
EDEM benchmark code) ..85 

Figure 39 Comparative development effort of most common publish/subscribe tasks (based on
CASSIUS benchmark code) ...86 

Figure 40 Comparing concern sizes of build-for-single-use (or BFS) implementations of each
reference API used in our study..87 

Figure 41 CASSIUS case study development effort ..89 

Figure 42 CASSIUS benchmark: domain-specific development effort. ..89 

Figure 43 EDEM case study development effort ...91 

Figure 44 EDEM case study: domain-specific development effort..91 

Figure 45 IMPROMPTU case study development effort ...92 

Figure 46 IMPROMPTU case study: domain-specific development effort93 

Figure 47 Total development effort for the tree case studies ...94 

Figure 48 Total lines of code per case study and infrastructure ...95 

Figure 49 Average cycloramic complexity per case study and infrastructure................................95 

Figure 50 Comparing CDC for the tree case studies ..96 

Figure 51 Comparative DOSC for the three case studies ...96 

Figure 52 EDEM common tasks performance analysis ...97 

Figure 53 CASSIUS common tasks performance analysis ..98 

Figure 54 IMPROMPTU common task performance analysis...99 

Figure 55 Total change impact (adding the change impact of each variability dimension) versus
Average modularity of the analyzed infrastructures...104 

Figure 56 API size versus total development effort (considering IMPROMPTU, CASSIUS and
EDEM case studies)..106 

Figure 57 API size versus total client code length (considering IMPROMPTU, CASSIUS and
EDEM case studies)..107 

Figure 58 API size versus average client-side code complexity (considering IMPROMPTU,
CASSIUS and EDEM case studies) ...107 

UCI-ISR-09-3 - August 2009

9

Figure 59 The relation between API size and the total task complexity for EDEM case study...108 

Figure 60 The relation between API size and the total task complexity for CASSIUS case study
..109 

Figure 61 Average client code modularity versus total API Size for the three case studies
(IMPROMPTU, CASSIUS & EDEM) ...110 

Figure 62 Relation between development effort, when reusing the infrastructures, and client-side
code modularity ..110 

Figure 63 Development effort versus performance for the IMPROPTU case study....................111 

Figure 64 Development effort versus performance for the EDEM case study.............................112 

Figure 65 Development effort versus performance for the CASSIUS case study112 

Figure 66 Total development effort versus total performance delay for the three case studies:
CASSIUS, EDEM and IMPROMPTU ...113 

Figure 67 Average client code modularity versus total performance of the three case studies:
EDEM, CASSIUS and IMPROMPTU ...114 

Figure 68 API size versus total performance (response delays) for the IMEDEM, CASSIUS and
IPROMPTU case study...115 

Figure 69 Scoping down YANCEES variability to improve its versatility..................................121 

Figure 70 CORBA-NS Architectural overview (source (OMG 2004))..148 

UCI-ISR-09-3 - August 2009

10

LIST OF TABLES
Page

Table I Publish/subscribe domain variability ...34 

Table II Comparison of the characteristics of the selected infrastructures.....................................57 

Table III CASSIUS reference API ...58 

Table IV EDEM publish/subscribe core reference API ...60 

Table V IMPROMPTU publish/subscribe infrastructure reference API..62 

Table VI Summary of features required by the three application domains used in our case studies
..62 

Table VII List of major publish/subscribe concerns used as tagging criteria.................................70 

Table VIII Concern tagging criteria and some of their examples ..70 

Table IX Infrastructure Modularity per concerns (Degree of Scattering of Concerns).................77 

Table X Infrastructure’s API modularity (DOSC) ...84 

Table XI Quantitative ranking of the versatility from developers and users perspectives (smaller
is better) ..100 

Table XII Qualitative summary of the versatility strategies...101 

Table XIII Qualitative evaluation of the infrastructures in terms of high/medium/low qualifiers
..102 

Table 14 Producing and consuming events with Siena ..147 

Table XV and consuming events with CORBA-NS (exception handling is omitted)149 

Table XVI CORBA-NS event filter language examples ..151 

Table XVII Producing and consuming events with JavaSpaces (exception handling is omitted)152 

Table XVIII Producing and consuming events with YANCEES (exception handling is omitted)
..153 

UCI-ISR-09-3 - August 2009

11

ACKNOWLEDGEMENTS
First and foremost, I want to thank God, revealed to us in Jesus Christ, the real author and con-
summator of all things, for His love and guidance, which make my life meaningful and my work
possible.

I thank my advisor, Dr. David F. Redmiles, for his guidance, patience, support, friendship, for
having always believed in my work and for providing insightful feedback during all the stages of
the research described (and not) in this dissertation. David’s encouragement made this research
happen.

Cristina Lopes and André van der Hoek, both of whom served on my dissertation and candidacy
committees, provided invaluable insights on this work. Their keen observations and questions
have also guided me in this work.

I want to thank all current and previous members of the research group for innumerous discus-
sions on this research and for the encouraging and supportive environment including Ban Al-Ani,
Anita Sarma, Ben Pillet, Jie Ren, Erik Trainer, and Stephen Quirk, Norman Su, Steve Abrams,
Patrick Shih. I owe thanks to many other professors and students in the School of Information and
Computer Sciences for many invaluable discussions that contributed to this research.

Other researchers with whom I had a chance to interact along these years also deserve thanks,
especially Werner Geyer for being my mentor during a wonderful summer at IBM, Cambridge.
Others who deserve mentioning include Li-Te Cheng, David Millen, and John Patterson in the
Collaborative User Experience Group at IBM Research.

Special thanks to Cleidson de Souza, Leila Naslavsky, and Márcio Dias, Marlon Vieira, André
Nácul, Mirella Moro, Leonardo Murta, Rogério de Paula, Isabella Almeida, and Marcelo Alvim
that were my colleagues at UCI, and provided invaluable insights in several occasions including
practice talks, presentations, papers, and many others.

I also owe thanks to several other students in the School of Information and Computer Science for
many invaluable discussions that contributed directly or indirectly to this research. I cannot list all
students, so I will limit myself to just a few names: Arvind Krishna, Sundi, Adrita Bohr, Michael
Kantor, and many other colleagues in the first, and difficult, years of graduate school.

I also want to thank all the brothers and Sisters from the Church in Irvine, in particular Wayne
Kusumo, James Quiroga, Scott Young, Andrew Cho, Amy and Lazarus Sun, Song and Claire
Chou, and Rob Egelink who nourished and cherished me during all these years.

Last, but not least, I cannot thank enough Grace, my wife, for her love, support, encouragement,
understanding and patience during these years, and to my son Daniel. I also owe many thanks to
my parents, Ana and Roberto for their encouragement and for always being close to me, even
though living overseas.

I also acknowledge the financial support provided by the U.S. National Science Foundation under
grant numbers 0534775, 0205724 and 0326105, an IBM Eclipse Technology Exchange Grant,
and by the Intel Corporation.

UCI-ISR-09-3 - August 2009

12

Chapter 1. Introduction

Middleware provides a software layer between the application and the underlying network
and operating systems, which goal is to relieve application software engineers from the burden of
dealing with low-level distribution, communication and coordination concerns, such as network-
level protocols, concurrency, transaction management, distributed object location, among others
(Emmerich 2000). As such, middleware leverages on reuse (Barns and Bollinger 1991) by encap-
sulating network interaction and application domain expertise into APIs (Application Program-
ming Interfaces) that facilitate the development of distributed applications.

According to a recent Gartner study (Biscotti, Jones et al. 2008), the world-wide market for
middleware and application integration products has grown in 2007 to 14 billion US Dollars in
annual license revenue. Figure 1 shows an overview of the market share that various middleware
vendors had in 2006-2007 period. Note that these numbers are arguable higher since they do not
include the use of open source software, an increasingly important class of middleware systems,
which revenue comes mainly from support.

Figure 1 Worldwide vendor revenue estimates for total aim software, 2006-2007

(Millions of U.S. Dollars) source: Gartner Group 2008

The popularization of middleware has also originated different application-specific imple-
mentations, that not only frees developers from dealing with general low-level networking con-
cerns, but also provides domain-specific support for different types of applications such as: real-
time (Gore, Pyarali et al. 2004), mobility (Cugola, Nitto et al. 2001; Murphy, Picco et al. 2006)
and context-aware applications (Boyer and Griswold 2004), to cite a few.

Publish/subscribe (or pub/sub) infrastructures are an important class of middleware that sup-
port the development of event-driven applications (Baldoni, Contenti et al. 2003). They are used
as the basic communication and integration infrastructure on an increasing number of application
domains such as: usability monitoring (Hilbert and Redmiles 1998), groupware (DePaula, Ding et
al. 2005), awareness (Kantor and Redmiles 2001), residual testing (Naslavsky, Silva Filho et al.

UCI-ISR-09-3 - August 2009

13

2004), contextual collaboration (Geyer, Silva Filho et al. 2008) and many others (Gore, Pyarali et
al. 2004) (Cugola, Nitto et al. 2001) (Boyer and Griswold 2004). This wide range of applications
has demanded an increasingly diverse set of features such as: advanced event processing (event
sequence detection, abstraction, and summarization), novel federation policies (for example:
peer-to-peer), mobility support (pull notification, roaming protocols, event persistence), etc.

Thus, in order to fulfill its purpose in supporting the development of different distributed ap-
plications, middleware must be versatile. We define Versatility, in general terms, as: the ability of
software to serve different proposes in a usable and useful way.

The development of versatile software is non-trivial. It requires a proper balance between
different software qualities (or non-functional requirements) including: efficiency, flexibility, us-
ability, reusability and maintainability. These qualities that many times conflict with one another.
Moreover, application domain core requirements and their inter-dependencies limit the variabil-
ity, configurability and extensibility of software. Finally, the technology and techniques sup-
ported in the development of software, such as programming languages, compilers and environ-
ments, also pose restrictions to the development and evolution of software. As a consequence, the
development of versatile software requires a considerable amount of skill and expertise (Jingyue,
Conradi et al. 2009). Hence, the understanding and documentation of these difficulties, and the
derivation of principles and guidelines that support the development of these infrastructures are
important for both the development and reuse of versatile software (Bosch 2004).

This brings us to our second definition of versatility, now in more specific software engi-
neering terms. A versatile infrastructure is one that: achieves a favorable balance between: reus-
ability, usability, performance, flexibility and maintainability within the constraints imposed by
an application domain.

In the publish/subscribe infrastructures domain, different approaches have been developed
and applied in of support versatility. In particular, in our survey of existing publish/subscribe in-
frastructures (Silva Filho and Redmiles 2005) we identified four major versatility approaches em-
ployed in the construction of existing industrial and research systems. They fall into a versatility
spectrum that ranges from monolithic minimal core infrastructures such as Siena (Carzaniga,
Rosenblum et al. 2001), to coordination languages such as JavaSpaces (Freeman, Hupfer et al.
1999), to software infrastructure that support variation in fixed points such as CORBA-NS (OMG
2004), to flexible (configurable and extensible) compositional infrastructures, such as YANCEES
(Silva Filho and Redmiles 2005).

As a result, when selecting an infrastructure for their needs, application developers must
choose among these existing strategies; many times, without fully understanding the conse-
quences of their choices to important software qualities. Instead, middleware users can be mislead
by common misconceptions, such as: “more features or more flexibility are always better”
(Schwartz 2004), or “keep it simple and general” mottos (Raymond 2004). They are also not
well aware of the trade-offs inherent to these versatility approaches. For example, the capability-
usability trade-offs defined by problem domain dependencies, the complexity and lower perform-
ance of one-size-fits-all solutions, and the inflexibility and potential semantic mismatches of
minimal-core infrastructures and coordination languages.

1.1 Approach
Whereas existing work discusses the benefits of each individual versatility approach

(Harrison, Levine et al. 1997; Freeman, Hupfer et al. 1999; Carzaniga, Rosenblum et al. 2000;
Silva Filho and Redmiles 2005), empirical studies that investigate and compare these approaches,
considering both their benefits and limitations are rare in the literature (Glass 1994). In particular,

UCI-ISR-09-3 - August 2009

14

to the best of our knowledge, no comparative analysis of versatility trade-offs, involving these
different approaches exist. In this paper, we present a multi-dimensional quantitative and qualita-
tive study of the benefits and costs of different publish/subscribe infrastructures versatility ap-
proaches. For such, we analyze individual open source publish/subscribe infrastructures, built
according to these approaches. Our analysis is multi-dimensional, it measures different software
qualities in terms of code-level software attributes including: source code length, complexity, API
size, change impact, modularity, separation of concerns, and execution delays. These measures
are collected in the context of three heterogeneous and realistic case studies.

By measuring, analyzing and documenting the versatility design trade-offs of these infra-
structures, our goal is to better support software infrastructure developers in applying the most
adequate versatility strategy for their requirements, and infrastructure users in selecting the most
appropriate strategy for the development of their applications. In other words, in this paper, we
provide answers for the following questions:

• RQ1: Why building versatile infrastructures is so difficult? What factors impact their devel-
opment and reuse? And what can be done to address these issues?

This research question can be expressed in more specific research questions as follows:

• RQ2: From application developers’ perspective, what major versatility approaches are avail-
able, and what’s their costs and benefits with respect to API usability, reusability and per-
formance?

• RQ3: From infrastructure developers’ perspective, what factors should be considered in the
construction of versatile infrastructures, and how do they affect important software qualities
such as maintainability and flexibility?

• RQ4: Can we identify trade-offs between these versatility approaches, and derive principles
and guidelines to support developers in building better versatile software, and users in se-
lecting the best versatility approach implementation to their needs?

These questions are answered by means of our own experience in the development of
YANCEES, a flexible publish/subscribe infrastructure, and through an analysis of versatility
trade-offs, where we quantitatively and qualitatively compare YANCEES with existing industrial
and research infrastructures, by means of different case studies. We summarize the results of this
work in the form of a list of trade-offs and guiding principles.

1.2 Summary of contributions
The contributions of this work crosscut different research areas as follows:

1.2.1 Contributions in software engineering in general
This works contributes to software engineering research in the following manner:

• We propose the concept of versatility, together with an analytical framework that describes
major operators employed in the development and reuse of versatile software (discussed in
section Chapter 2), describing their main benefits and costs;

• We also perform a non-exhaustive survey of major architectural approaches adopted in the
development of versatile software in general, and pub/sub infrastructures specifically (dis-
cussed at (Silva Filho and Redmiles 2005) and in section 4.1), evaluating infrastructures de-
veloped according to these approaches in our case studies;

UCI-ISR-09-3 - August 2009

15

• In order to analyze different versatility approaches, we designed comprehensive evaluation
framework to compare the versatility of heterogeneous software infrastructures (Chapter 4).

• In doing so, we designed and applied a metrics suite, which quantifies software qualities as:
usability, reusability, performance, flexibility, and maintainability in terms of lower-level at-
tributes (section 4.4). In particular, we propose a new metric called development effort,
which is the product of the total lines of code and cyclomatic complexity. This metric is the
basis for our measurement of usability and reusability.

• The collected data was analyzed for correlations between these different software qualities,
thus identifying trade-offs (Chapter 7). In particular, we provide empirical data showing that
flexibility is more a consequence of design for change rather than the mere application of
good software practices.

• Based on our case study, we also contribute with a set of principles and guidelines for re-
quirements analysis, development and reuse of versatile publish/subscribe infrastructures
(Chapter 8).

• Finally, we show the impossibility of the construction of an ideally versatile pub-
lish/subscribe infrastructure, one that can have its characteristics evolved independently from
each other, pointing out the role of dependencies in limiting variability (as discussed in
Chapter 2).

1.2.2 Contributions in the software product line
engineering
In the software product line research, we contribute with:

• A deeper understanding of the impact of dependencies in limiting software flexibility, and an
analysis of different feature interference problems in YANCEES (as discussed at (Silva
Filho and Redmiles 2007) and in Chapter 2 of this document)

• An analysis of the role of dependencies in limiting variability, and a notation to express de-
pendencies (as discussed at (Silva Filho and Redmiles 2006) and in Chapter 2 of this docu-
ment).

• A comparative study of the versatility trade-offs in publish/subscribe infrastructures which
compares flexible software product line approach (as YANCEES) with more traditional al-
ternatives as: coordination languages (JavaSpaces), one-size-fits-all (CORBA-NS), and mi-
nimal core (Siena), as discussed in Chapter 7.

1.2.3 Contributions to middleware research
With respect to middleware research, we contribute with:

• YANCEES, a flexible pub/sub infrastructure (Silva Filho, de Souza et al. 2003; Silva Filho
and Redmiles 2005), and a set of design principles supporting its development, showing how
to achieve a favorable balance between different versatility software qualities in this domain;

• The extended Rosenblum and Wolf (Rosenblum and Wolf 1997) design model for pub-
lish/subscribe infrastructures, showing the importance to support protocols (discussed at
(Silva Filho, de Souza et al. 2003) and in section Chapter 3 of this document);

• We also contribute with a quantitative and qualitative study of publish/subscribe middle-
ware, where we show the complexity of using, extending and reusing different infrastruc-
tures.

UCI-ISR-09-3 - August 2009

16

1.3 Structure of this Dissertation
This paper is organized in the following manner.

Chapter 2 – Software Versatility. This chapter discusses the main challenges involved in
the development of versatile software, in particular the role of problem domain, configuration-
specific dependencies. It also presents a theoretical framework, based on fundamental set of op-
erators captures the main development and reuse approaches to address these issues. We present
these operators discussing their costs and benefits.

Chapter 3 – Building a Versatile Publish/subscribe Infrastructure. This chapter de-
scribes the main characteristics and versatility requirements of publish/subscribe infrastructures.
It also shows how YANCEES, our solution to the problem, addresses these requirements through
the application of different versatility operators.

Chapter 4 – Case Study Design. This chapter describes the design of a case study, that
compares YANCEES with existing versatility approaches. As such, it describes the study setting,
with its selected publish/subscribe infrastructures, applications domains, and the metrics suite
used to evaluate and compare the case studies.

Chapter 5 – Case Study Implementation. This chapter describes, in more detail, the dif-
ferent implementations resulting from the application of existing versatility approaches in support
of three application domains used in our study.

Chapter 6 – Study Results. This chapter analyzes the versatility of representative pub-
lish/subscribe infrastructures, in terms of their maintainability, flexibility, reusability, usability,
and performance, when supporting our case studies. We analyze the results in a qualitative and
quantitative way.

Chapter 7 – Versatility Trade-offs. In this chapter, we analyze the correlations (or their
lack thereof) between the different software qualities that we analyzed in Chapter 6. The results
of this chapter are used to support the design principles and guidelines for Chapter 8.

Chapter 8 – Principles and Guidelines. Through the lessons learned in our case studies and
experience with YANCEES, this chapter discusses a set of design principles and guidelines to be
used in the development of versatile software in general and publish/subscribe infrastructures
specifically.

Chapter 9 – Study Limitations. This section discusses the limitations of the results we ob-
tained through our case studies.

Chapter 10 – Related work. This section discusses related research contributions in the ar-
eas of software engineering, software product lines and middleware.

Chapter 11 – Conclusions. We conclude by summarizing our contributions and discussing
potential implications of this work.

UCI-ISR-09-3 - August 2009

17

Chapter 2. Software Versatility

Software development is an iterative process that searches for satisficing solutions: i.e. the
best solution given the available options and problem constraints (Simon 1996). In this search, it
relies on the application of verified design and implementation principles and heuristics, with the
help of appropriate software tools, processes and measurements. This process is, therefore, com-
plex, and needs to deal with issues such as: software essential difficulties (Brooks 1987), problem
domain and configuration-specific dependencies (Silva Filho and Redmiles 2006), the complexity
of implementation approaches (Svahnberg, Gurp et al. 2005), the trade-offs that exist between
different software qualities, as well as different needs from infrastructure developers and users.
Moreover, it is usually the case that no single solution to a software development problem exist.
Instead, a set of possible solutions can be produced, each one having specific benefits, as well as
costs. As a consequence, during the process of design and implementation of software, different
decisions are many times made in an ad-hoc manner, relying on expertise few developers and
software designers (Larman and Basili 2003). The result is a set of implicit assumptions and
trade-offs between different software qualities that usually become hidden (or implicit) in the sys-
tem architecture and implementation (Roeller, Lago et al. 2006). These assumptions and trade-
offs may lead to problems such as architecture mismatch (Garlan, Allen et al. 1995), inadequate
performance, and poor reusability, flexibility and maintainability.

In this section we express development process of versatile software in terms of basic versa-
tility strategies (or operations) that, when applied together, produce software with different de-
grees of versatility. We also discuss the problems and difficulties the development of versatile
software must overcome in the domain of publish/subscribe infrastructures.

2.1 Versatility strategies
The design of a versatile infrastructure can be described as an interactive process in which

different strategies are successively, and alternatively, applied in the construction of infrastruc-
tures that can fulfill different purposes. They represent “things” that designers can do in order to
produce satisficing versatile infrastructures. These strategies (or operations) are: specialization,
generalization, stabilization, variation, and modularization.

Likewise, when reusing existing infrastructures, users (application developers) successively,
and alternatively, apply a set of different strategies (or operations) such as: selection, adaptation,
extension, configuration, composition and source code evolution. Figure 2 summarizes the proc-
ess of developing and reusing versatile infrastructures.

UCI-ISR-09-3 - August 2009

18

Figure 2 Development and reuse operators

As seen in Figure 2, different versatility approaches, such as minimal core infrastructure, co-
ordination languages, one-size-fits-all and flexible approaches are a consequence of the succes-
sive application of the versatility operations. These versatility approaches fall into the spectrum of
architectural patterns described in Figure 3, i.e. they originate infrastructures implemented as
component-based systems, frameworks and a set of hybrid systems in between. Note that in
Figure 3, grey areas imply fixed of code, whereas white areas represent variable or user-defined
points in the software.

Figure 3 Correspondence between development and

reusability strategies

Also note that the reuse operations of Figure 2, more or less, match the strategies adopted in
the development of versatile software. Figure 3 shows the relation between development opera-

UCI-ISR-09-3 - August 2009

19

tors, the types of software infrastructures they produce, and the reuse operators utilized in the de-
velopment of applications.

Modularization is the overall strategy that minimizes the impact of direct source code evolu-
tion, allowing the decomposition of software into different highly independent parts. Configura-
tion and extension are usually applied in the reuse of software predominantly developed accord-
ing to the stabilization and variation operators; whereas adaptation and composition are more
suitable for the reuse of infrastructures predominantly implemented according to specialization
and generalization. Hybrid approaches (shown at the center of Figure 3), come as a consequence
of the joint application of different design operators. They are reused through a combination of
adaptation & composition and configuration & extension. Example of hybrid approaches include
software that can be extended through plug-ins (Birsan 2005), and component frameworks that
provide a basic set of configurable services in support of the development of component-based
software (Szyperski 2002).

The versatile software development and reuse strategies are discussed in more detail in the
next sections.

2.1.1 Versatility development strategies
As shown in Figure 2, software engineers can apply the following operators in the develop-

ment of versatile software.

2.1.1.1 Modularization

Modularization’s goal is to decompose software into highly independent and inter-
changeable parts. This decomposition must be guided by the separation of concerns principle
(Parnas 1972). As a result of modularization, different software parts can be replaced and
evolved, with minimum impact to the software as a whole. Hence, modularity is key to software
versatility as a way to simplify and add flexibility to a design (Parnas, Clements et al. 1984). As
described by Baldwin and Clark (Baldwin and Clark 2000), modularization is achieved by the
successive application of set of operations (splitting, substituting, augmenting, excluding, invert-
ing and porting), as well as reversion, a new operation proposed by (Lopes and Bajracharya
2006), that captures the modularization achieved by “aspectizing” a piece of software.

The adequate modularization of software results in sets of stable public interfaces (or APIs)
that work as implementation and reuse contracts. When combined with variation, modularization
can support change in the form of alternative implementations or extensions to existing behavior.
Examples of modularization techniques include decomposition based on objects, aspects
(Kiczales, Lamping et al. 1997), features (Batory, Sarvela et al. 2003), and components
(Szyperski 2002). For example, in Figure 5, each routing strategy is a module, implementing a
standard interface. This allows the routing algorithm to change, while keeping a static interface.

The benefits of modularization, however, come at some costs. A side effect of modulariza-
tion is the increase of the number of software parts that need to be integrated in the production of
software. Moreover, this integration must obey configuration rules that are specific to the applica-
tion domain. For example, in a publish/subscribe domain, different subscription, routing and
event algorithms must be composed in a way that is coherent with the process of publication,
routing and notification of events based on subscriptions. Hence, modularization not only results
in more components, but also extra costs of composition and configuration management, as will
be further discusses in this work.

UCI-ISR-09-3 - August 2009

20

2.1.1.2 Specialization

A piece of software is specialized if it perfectly fits the problem domain requirements. Spe-
cialization results in efficient and simpler implementations. In fact, it is a very common approach
adopted in both research and industrial infrastructures. In our survey of versatility in pub-
lish/subscribe infrastructures (Silva Filho and Redmiles 2005), we identified many systems that
were developed from scratch, providing novel specialized features. For example: CASSIUS
(Kantor and Redmiles 2001), and JEDI (Cugola, Nitto et al. 2001). The application of specializa-
tion as the main development strategy have the benefits of performance simplicity. Moreover,
when combined with other versatility approaches, for example variation, specialization can help
in the design of software that balances different software qualities as performance, and reusabil-
ity.

Specialization, however, has its cots. The excess of specialization usually results in infra-
structures that are very low in versatility, i.e. that are difficult to evolve, configure, and reuse in
different contexts. For example, in Figure 4, the specialized event abstractions in the left are per-
fect matches to the specific application requirements of IMPROMPTU (DePaula, Ding et al.
2005), a peer-to-peer file sharing tool; whereas the GenericEvent abstraction on the right-hand-
side represents events in a generalized form: attribute/value pairs. This general representation can
represent the specific events in the left, as well as novel event formats to come, at the cost of ad-
aptation. The same cannot be said for the specialized events, which applicability (or scope) is re-
stricted to IMPROMPTU application.

2.1.1.3 Generalization

A software is general if it can be used without change for different purposes (Parnas 1978).
Generalization is a strategy which goal is to support a broad set of requirements through the use
of generic data and control abstractions (for example, the GenericEvent in Figure 4). These ab-
stractions provide a common vocabulary with which specialized features can be implemented.
Generalization results in fixed design characteristics that fit different application requirements at
the price of adaptation. As such, generalization avoids the ripple effect of changes in software,
preventing unnecessary software evolution triggered by dependencies (Lehman and Parr 1976).
Examples of generalization include virtual machines, and generalized data structures such as pa-
rameterized classes, templates (Czarnecki, Helsen et al. 2005) and the attribute/value event repre-
sentation of Figure 4.

UCI-ISR-09-3 - August 2009

21

Figure 4 Specialization (left) versus Generalization (right)

The benefits of generalization, however, come at a cost. It requires the expression of existing
control and data structures in terms of the generalized abstraction, which may lead to perform-
ance and software complexity penalties. Generalizations also have limitations in their expressive-
ness: many times they cannot represent all the variability in a domain. For example, attrib-
ute/value generalizations as the one shown in Figure 4 cannot represent objects in a programming
language sense, a feature required, for example, by the mobile agents paradigm (Rus, Gray et al.
1997), or by the EDEM usability monitoring application (Hilbert and Redmiles 1998), that di-
rectly listens to GUI events form Java.

2.1.1.4 Variation

Variation allows software to support different application requirements by providing a pool
of optional features. Variability allows the customization of software, based on the selection
among existing optional features, installed in different variation points (van Gurp, Bosch et al.
2001) of the software. For example, by using conditional compilation (#ifdefs in C); by providing
optional parameters in APIs; or by relying on design patterns such as Strategy (Gamma, Helm et
al. 1995) and open implementation guidelines (Kiczales, Lamping et al. 1997), a system can be
designed in a way that allow its users to select individual software characteristics to better match
their needs. An illustration of variation is provided in Figure 5, where the Strategy design pattern
is used to support different routing algorithms in a publish/subscribe infrastructure (i.e. topic-,
content- and channel-based routing).

The costs of variation include the need for configuration management since some optional
features may be incompatible with existing feature in other variation points. Usability costs of
selecting among different approaches (Schwartz 2004) must also be considered when adopting
this approach.

2.1.1.5 Stabilization

Stabilization represents the act of fixing certain parts of software, usually those that are less
likely to change over time (Mahdy and Fayad 2002). That’s the case, for example, with the sepa-
ration between commonality and variability in software product lines (Coplien, Hoffman et al.
1998), or the separation between policy and mechanisms proposed by Wulf (Wulf, Cohen et al.

UCI-ISR-09-3 - August 2009

22

1974) where, certain core software mechanisms are fixed; while policies are variable. As seen by
these two examples, stabilization is usually not applied alone, but it is combined with other strat-
egies. An example of stabilization is the PubSubFaçade of Figure 5, which implements common
basic publish/subscribe workflow, while supports variability in the router implementation strate-
gy.

Stabilization has many benefits. It supports reuse by capturing the commonality in a domain,
thus saving developers from the repetitive development of common software behavior. It can also
be applied, together with generalization, to scope down software variability, thus simplifying the
software design and reducing the costs of configuration and change impact management. For ex-
ample, in the early design of YANCEES, features such as the event representation were variable.
An analysis of dependencies in the publish/subscribe domain soon revealed the impact that
changes in the event format would have in other parts of the system such as routing algorithms
and subscription language. In order to prevent this problem, we opted to stabilize and generalize
the event format, by representing events as attribute/value pairs, similar to that as shown in Figure
4.

Figure 5 Stabilization and Variation in support of different routing strategies

When designing versatile software, stabilization must be applied to parts of software that are
less likely to change (Mahdy and Fayad 2002), whereas variation should be used in support of
variability in the domain. The stabilization of parts of software that are likely to change may ex-
cessively constraint its versatility. For example, in many publish/subscribe infrastructures, the
subscription language and the routing mechanisms are stable. They define a common filtering
vocabulary that cannot be easily evolved or configured. Consequences of excessive stabilization
include mismatches between the provided features of the infrastructure and the required problem
domain capabilities.

The combined application of these operators, i.e.: modularization, specialization, generaliza-
tion, stabilization and variation results in implementations with different characteristics and de-
grees of versatility (as illustrated in Figure 3 and further discussed in section 4.1). These infra-
structures must be reused according to different strategies discussed as follows.

UCI-ISR-09-3 - August 2009

23

2.1.2 Reuse strategies
When reusing versatile infrastructures, built according to different versatility strategies, ap-

plication developers must apply a set of different operators as: selection, extension, configuration,
adaptation and composition (or integration) (Krueger 1992). In this section, we discuss these op-
erations in more detail.

2.1.2.1 Selection

It is usually the case that not one, but many solutions to a given problem exist. This is also
true for publish/subscribe infrastructures. Hence, developers must first select the most appropriate
infrastructure for their needs before extending, configuring, adapting or integrating it in support
of their application domains. Selection must be supported by the proper understanding of differ-
ent software infrastructure qualities, which vary according to the development strategies adopted
in the software. Selection may also be impacted by organizational rules and constraints. For ex-
ample, the whole organization may adhere to a standardized implementation, such as OMG
CORBA-NS or Sun JMS, in spite of its lack of flexibility or usability.

2.1.2.2 Extension

Extension allows software to accommodate novel requirements, not initially foreseen in its
design by supporting new features. The extensibility of an infrastructure must be planned before-
hand, being supported as part of software architecture (Eden and Mens 2006). Examples of archi-
tecture-based extensibility strategies include the implementation of plug-ins (Birsan 2005), and
specific components for existing component frameworks (Szyperski 2002). APIs can also be ex-
tended with new commands through the use of wrappers and façades (Gamma, Helm et al. 1995).
Extension is also supported by lower-level programming language mechanisms such as the “ex-
tends” clause in Java. Aspect-oriented programming (Kiczales, Lamping et al. 1997) can also be
used as an extension mechanism.

In spite of existing mechanisms to support extensibility, as listed above, the process of ex-
tension can be costly and time consuming. It requires the learning of the system API, either
through documentation or existing examples, and the understanding of underlying system as-
sumptions and dependencies (Bosch, Florijn et al. 2002).

2.1.2.3 Configuration

Configuration is the process of tuning a piece of software to a certain purpose by selecting
sub-sets of features among a set of options it supports. Configuration presumes a design that sup-
ports variability and/or extensibility, and mechanisms that allow the easy selection of these op-
tions. Examples of configuration implementation strategies include: optional parameters in APIs,
configuration files, configuration interfaces in open implementation (Kiczales, Lamping et al.
1997) or mechanisms such as Builder and Factory design patterns (Gamma, Helm et al. 1995). In
a framework, configuration may involve the selection among different classes, components or
aspects in the construction of a customized infrastructures.

The examples of Figure 16, Figure 17, Figure 19, and Figure 20 show the application of the
extensibility and configurability strategies in the implementation of YANCEES.

Configurability also has costs. In particular, the need for selection mechanisms can introduce
extra complexity in the software. For example, it is common to use optional methods and parame-
ters in APIs. These extra methods may raise extra exceptions, or may require default parameters
(or “don’t care” values) when the options are not necessary. As a consequence, the process of

UCI-ISR-09-3 - August 2009

24

configuration may result in higher software complexity and length, which may lead to errors or
performance penalties in the program. In order to address this problem, some guidelines such as
separation of control and regular use interfaces must be adopted (Kiczales, Lamping et al. 1997).

2.1.2.4 Adaptation

Adaption allows software to be reused, without change, in slightly different situations. In
other words, it supports the building of new functionality around existing sets of features. Adapta-
tion also implies data and control transformations in order to fit or express existing required fea-
tures in terms of to slightly different provided functionality.

Adaptation can be used in combination with generalization in support of application domain
variability, allowing users to express specialized features in terms of provided generalizations.
Examples of adaptation approaches include the Adapter design pattern (Gamma, Helm et al.
1995), wrappers and composition filters (Bergmans and Aksit 2001). For example, Figure 6 illus-
trates the case where an ideal publish/subscribe interface, required by a software monitoring tool,
is expressed in terms of an existing publish/subscribe infrastructure. Extra feature, not supported
by the infrastructure, as event persistency, is provided by a tuple space component. These com-
ponents (the router and the tuple space) are integrated through adaptation and composition.

The process of adaptation can be costly both in terms of performance and development ef-
fort. In particular, adaptation costs are high when there are semantic mismatches between the ap-
plication requirements and the provided features, requiring the implementation of extra function-
ality. For example, the implementation of pull notification on push notification servers requires
the development of extra polling protocols and the temporary storage of events for later retrieval.
As a consequence, in the worst case scenarios, adaptation costs can become prohibitive.

2.1.2.5 Composition (or integration)

The decomposition of software into modules (or modularization), presumes the recombina-
tion of these modules into the construction of useful pieces of software (Parnas, Clements et al.
1984). Composition, therefore, supports reuse by allowing the construction of application-specific
software out of existing parts. Composition usually requires some degree of adaptation. Examples
of composition mechanisms supported by programming languages include the weaving mecha-
nisms supported by mixings (Cardone, Brown et al. 2002) and aspect-oriented languages
(Kiczales, Lamping et al. 1997); provided and required interfaces used in component frameworks
(Szyperski 2002); associations, aggregations and composition relations in object-oriented pro-
gramming; and the use of simple method calls in structured programming languages. In the ex-
ample of Figure 6, a complex interface is implemented by combining (or composing) the features
of a tuple component and a publish/subscribe core and different adapters.

UCI-ISR-09-3 - August 2009

25

Figure 6 Expressing EDEM required functionality in terms of existing infrastruc-

tures through Adaptation and Composition

Composition mechanisms have their own costs. For example, the separation between base
code and aspect code may lead to problems of over- and under- matching of aspects when base or
aspect codes are evolved (Ruengmee, Silva Filho et al. 2008), which may lead to errors and costly
development cycles. In the publish/subscribe domain, one-size-fits-all approaches as CORBA-NS
require users (application developers) to define different configurations by composing existing
proxy components, which increases the API size and the complexity of activities as posting a sub-
scription. Dynamic architectures as YANCEES publish/subscribe infrastructure (discussed in sec-
tion Chapter 3) use runtime parsers to compose subscriptions, on demand, according to the com-
position rules of valid subscriptions. This process increases the core infrastructure complexity,
which needs to combine plug-ins into event processing hierarchies after checking for possible
inconsistencies in the provided subscriptions.

2.1.2.6 Code Evolution

If the source code of software is available, developers can customize the software to their
needs by direct code evolution. However, due to the high costs of software comprehension, evo-
lution, and management of forked branches, changes in the source code are usually avoided
(Parnas 1994) (Lehman and Parr 1976) (Lehman, Ramil et al. 1997). In fact, the different versatil-
ity strategies we just discussed have the goal of minimizing the need for direct changes in soft-
ware code. Code evolution is therefore a least resource option that must be used only when the
versatility strategies we just mentioned are not applicable.

As previously mentioned, both versatility and reuse strategies are usually not applied in iso-
lation. Instead, infrastructure producers must apply these strategies in different forms and degrees
in the production and reuse of versatile software. Moreover, these strategies not only have bene-
fits, but also costs. For example: The decomposition of software into modules requires extra costs

UCI-ISR-09-3 - August 2009

26

of composition and coordination (De Souza 2005). Specialized features, while efficient, cannot be
easily ported to different application domains. The use of general data structures requires the ex-
tra costs of adaptation, and can result in inefficient implementations. Whereas the use of variation
and extension requires additional care for configuration management. These costs and benefits,
therefore, must be managed in order to achieve a favorable balance between versatility and other
important software qualities. In the next section, we discuss, in more detail, the main factors that
hinder the development of versatile software.

2.2 Versatility challenges
As made evident in the previous section, software versatility is easy to idealize but difficult

to achieve. Contrary to common wisdom, versatility is not a mere consequence of the application
of good software engineering techniques. Instead, it depends on a complex set of factors, requir-
ing developers to overcome a set of difficulties. For example, the development of versatile soft-
ware must respect a set of factors such as: the fundamental characteristic of the application do-
main (Silva Filho and Redmiles 2006), the selected architecture style constraints (Sangwan, Li-
Ping et al. 2008), the specific configuration, adaptation, composition and extension rules from the
adopted implementation strategies (Mens and Eden 2005), and the conflicting needs of different
stakeholders.

In this section, we discuss the fundamental software problems that make the development of
versatile software difficult. These factors come from our experience in the development of YAN-
CEES, a flexible publish/subscribe infrastructure, and from our survey of the literature (Silva
Filho and Redmiles 2005). These problems are: software quality trade-offs, fundamental and
configuration-specific dependencies, and technological constraints.

2.2.1 Software quality trade-offs
At the source code level, software qualities such as flexibility, maintainability, reusability,

and usability are consequence of a common set of software attributes such as: code size, modular-
ity and complexity (IEEE 1993; Bandi, Vaishnavi et al. 2003). Due to the inter-dependency be-
tween these factors, these software qualities are not orthogonal.

At the organizational level, different stakeholders are interested in distinct software qualities.
For example, as illustrated in Figure 7, infrastructure producers are concerned with building soft-
ware that is easy to maintain, extend and configure, thus, minimizing the work of evolving the
infrastructure to support shifting requirements in a domain. Infrastructure consumers, on the other
hand, are more concerned with the usability, efficiency and reliability of software.

The different stakeholders’ needs, together with the inter-dependencies between different
software attributes, define different trade-offs between important software qualities. For example,
as shown in Figure 7, the development of flexible software requires the careful application of the
design for change principle (Parnas 1978) through the use of modularization, separation of con-
cerns and different variability implementation approaches (van Gurp, Bosch et al. 2001). These
approaches can potentially increase code size and complexity, leading to a higher density of pro-
gram defects (Eaddy, Zimmermann et al. 2008), thus reducing software reliability. Moreover,
variability implementation approaches (for example, the factory design pattern) can negatively
affect the infrastructure API usability (Ellis, Stylos et al. 2007), increasing the application devel-
opers development effort.

As a consequence, in order to balance both users’ and developers’ needs, the design of versa-
tile software need to achieve a favorable balance between different and possibly conflicting soft-
ware qualities. This balance is achieved through the judicious application of a combination of

UCI-ISR-09-3 - August 2009

27

versatility and reuse strategies discussed in 2.1, according to a set of principles, guidelines and
ultimately, the designer’s own expertise.

Figure 7 Different stakeholders requirements, quality dependencies and trade-offs

2.2.2 Fundamental domain dependencies
Fundamental problem domain dependencies integrate the main concerns of a problem do-

main through control and data dependencies. These dependencies restrict variability.

As discussed in section 2.1.1, the development of versatile software, is many times sup-
ported by the analysis of commonality and variability, which allows the separation between es-
sential and optional concerns in a domain (Coplien, Hoffman et al. 1998). This separation sup-
ports the development of versatile software through stabilization & variation, or through speciali-
zation & generalization. In particular, modular software units can represent both common and
specialized behavior that are composed in the production of domain-specific infrastructures.

For example, in the publish/subscribe domain, the main concerns of a publish/subscribe in-
frastructure have their variability centered on the design dimensions discussed in section 3.3, and
illustrated in Figure 8, i.e. event, publication, routing, subscription, notification and protocol
variability dimensions.

UCI-ISR-09-3 - August 2009

28

Figure 8 Publish/subscribe feature model showing design dimensions and

their variability (source (Silva Filho and Redmiles 2006))

Note that the diagram Figure 8, of uses a UML notation. Stereotypes (inside << and >>) ex-
press optionally (OR relation) and exclusivity (XOR relation). An optional feature can be selected
together with other optional features in the same level, for the same super feature. Abstract fea-
tures appear as the first level under the pub/sub infrastructure concept, and are not marked with
stereotypes. Aggregation indicates containment and composition implies a part-role relation of
the pub/sub concept. When no stereotype is used, the features or concepts are mandatory.

These main publish/subscribe concerns sown in Figure 8 are not orthogonal. Instead, a closer
analysis reveals a series of data and control dependencies that interconnect these fundamental
concerns. These dependencies limit the set of valid combinations of features a publish/subscribe
infrastructure must support at any given time. These are called fundamental problem domain
dependencies. Figure 9 illustrates the problem domain dependencies for publish/subscribe infra-
structures.

Figure 9 Publish/subscribe domain fundamental and derivative dependencies

Generally speaking, fundamental problem domain dependencies (represented as arrows in
Figure 9) can either define data or control coupling between the different concerns of the system.

UCI-ISR-09-3 - August 2009

29

Control coupling usually limits the activation order of the different pieces of software, whereas
data coupling can limit the variability and reuse of those components (Parnas 1978; Stevens,
Myers et al. 1999). For example, as shown in Figure 9, the coupling that exists between event
representation and different publish/subscribe concerns makes possible to changes in the event
representation to impact concerns such as: routing, subscription, and publication; whereas other
concerns, such as higher-level event processing operators (for example, event sequence detection)
can more or less evolve independently from the event representation.

Note that, in the diagram of Figure 9, we also introduce new dimensions (written in italic) to
represent emerging concerns as: timing and resource, that are consequence of control dependen-
cies between different variation points. For example, the timing guarantees provided by the infra-
structure are dependent on the resource model (the way the different components of the infra-
structure are distributed) and the routing algorithms supported. Modifications in these parameters
may affect the outcome of existing subscription operators, such as pattern detection, as well as
publication filters that may combine or remove repeated events coming within a certain time in-
terval.

In short, the fundamental problem domain dependencies define the main pillars of a problem
domain. Changes in these concerns, especially those with high fan-in, will affect the problem
domain in a fundamental way, preventing the independent evolution of these dependent concerns.
As a consequence, designers need to adopt different strategies in the balance of versatility with
the constraints posed by these dependencies, for example: generalization.

2.2.3 Configuration-specific dependencies
The variability of features in the domain also defines configuration-specific dependencies

between compatible features that must be installed, together, in the production of valid software
configurations. They also define implicit incompatibilities with features that cannot co-exist.

Figure 10 Configuration-specific dependencies between features

UCI-ISR-09-3 - August 2009

30

It is also the case that features in different design dimensions cannot exist in isolation; in-
stead, they must co-exist in the context of valid configurations. For example, as shown in Figure
10, in the publish/subscribe domain, event persistency usually requires pull notification capabil-
ity, allowing users to retrieve saved events at a later time, whereas content-based routing requires
a combination of event representation (usually attribute/value pairs), and subscription commands
that allow users to express content-based queries. Hence, configuration-specific dependencies
must be supported and enforced in the construction of versatile infrastructures, in particular in
versatility approaches that provide configurability and/or extensibility such as one-size-fits all
and flexible approaches.

2.2.4 Technological constraints
Different implementation strategies can be applied in support of generality, variability, con-

figurability and extensibility requirements of versatile software. Examples of such approaches
include: design patterns, parameterized classes, aspects, mixings and others discussed at
(Svahnberg, Gurp et al. 2005). These techniques, however, not only have versatility benefits, but
also have implicit costs. They define technological constraints in the form of extension, configu-
ration, adaptation and composition rules. For example, the use of software patterns such as Strat-
egy (Gamma, Helm et al. 1995), require developers to interact with the selection capabilities pro-
vided by its interface. And the composition of systems into modules, either through the use of
objects, aspects or more complex components, require their later integration in the construction of
complex systems through the use of composition strategies and protocols (Parnas, Clements et al.
1984). In particular, the use of aspect-oriented programming, for example, requires the proper
management of point cut descriptors, that must be consistent with the base code evolution. This
management can result in high usability costs (Ruengmee, Silva Filho et al. 2008).

These dependencies may also affect other software qualities such as complexity, usability,
and understandability. For example, when applied in combination, design patterns many times
introduce indirections in the code that may hinder its legibility and extension ((Czarnecki and
Eisenecker 2000) pp. 295). Moreover, the composition of design patterns have shown to increase
the diffusion of concerns and complexity of software (Cacho, Sant'Anna et al. 2006).

Finally, the mechanisms of composition can lead to feature interaction (Bowen, Dworack et
al. 1989). Feature interaction occurs when the combination of apparently unrelated features mod-
ify each other’s behavior in an unforeseen way. For example, the use of patterns such as Chain of
Responsibility (Gamma, Helm et al. 1995) as an extensibility mechanism , can lead to feature in-
teraction if the proper order of components, that belong to different features, is not respected
(Silva Filho and Redmiles 2007).

2.3 Summary
Factors such as software attributes and quality dependencies, fundamental, configuration-

specific dependencies, and technological constraints can hinder the development of versatile
software. Different versatility strategies can be applied in the construction of versatile software,
subject to these constraints. The proper application of these operators, however, require the ob-
servation of different trade-offs. In many cases, infrastructure developers manage these trade-offs
in ad-hoc ways, based on their own expertise; whereas infrastructure consumers (application de-
velopers) face the dilemma: to build new infrastructures from scratch or to reuse existing infra-
structures, build according to undocumented characteristics and different assumptions (Garlan,
Allen et al. 1995). Whereas some of these trade-offs are general to software engineering, others
are specific of the application domain at hand.

UCI-ISR-09-3 - August 2009

31

Hence, an analysis of these trade-offs, and the derivation of guiding principles to achieve a
favorable balance between conflicting software qualities becomes necessary. In this work, we
analyze these trade-offs in the publish/subscribe domain by first discussing our experience in the
development of YANCEES, a versatile publish/subscribe infrastructure, and then by comparing
YANCEES with different versatility strategies with the help of a three case studies.

UCI-ISR-09-3 - August 2009

32

Chapter 3. Building a Versatile
Publish/Subscribe
Infrastructure

In this chapter, we describe the design and implementation of YANCEES, a versatile pub-
lish/subscribe infrastructure. We first discuss YANCEES’ motivation, its versatility requirements,
and the principles adopted in its design. We follow by discussing how YANCEES design ad-
dresses the problems induced by problem domain, configuration-specific and technological de-
pendencies, through the application of the different development strategies, including those dis-
cussed in section 2.1.

3.1 YANCEES motivation
The development of YANCEES (Yet ANother Configurable and Extensible Event Service)

(Silva Filho, de Souza et al. 2003; Silva Filho and Redmiles 2005) was first motivated by the
need of a single infrastructure that could support the development of event-driven applications in
different problem domains. In other words, the goal in the development of YANCEES was to
leverage on reuse, configurability and extensibility in order to reduce the costs of building appli-
cation-specific publish/subscribe infrastructures, thus preventing the development of different
infrastructures, from scratch, each time a new event-driven application was developed. In particu-
lar, our target application domains included: software monitoring (Hilbert and Redmiles 1998),
awareness (Kantor and Redmiles 2001), groupware (Silva Filho, Geyer et al. 2005), usable secu-
rity (DePaula, Ding et al. 2005), as well as new event-driven software engineering applications to
come.

By the time we started the development of YANCEES, on the school year of 2002-2003, we
surveyed both industrial and research infrastructures for a single publish/subscribe infrastructure
that could support the heterogeneous requirements of these application domains (Silva Filho and
Redmiles 2005). To the best of our knowledge, no single approach existed that could be easily
extended and configured to our needs. Instead, existing infrastructures were developed according
to different strategies, having different degrees of versatility. These were:

• Build for a single use, to support individual application domain needs, as JEDI (Cugola,
Nitto et al. 2001), and CASSIUS (Kantor and Redmiles 2001);

• Generalized minimal core systems as Siena (Carzaniga, Rosenblum et al. 2001), Scribe
(Castro, Druschel et al. 2002), JMS (Sun Microsystems 2003) or Elvin (Fitzpatrick,
Mansfield et al. 1999);

• Coordination languages as Linda (Gelernter 1985), IBM TSpaces (Wyckoff 1998) or SUN
JavaSpaces (Freeman, Hupfer et al. 1999);

• One-size-fits-all monolithic servers as CORBA-NS (OMG 2004) and READY (Gruber,
Krishnamurthy et al. 1999).

UCI-ISR-09-3 - August 2009

33

Even though these approaches are many times able to support the development of event-
driven software, they have fundamental limitations: none of them supports the exact set of appli-
cation-specific features required by our target application domains; and they do not provide any
extensibility mechanism other than the direct modification of their source code. More specifi-
cally, both ‘built for single use’ and ‘minimal core’ infrastructures are not designed for change,
being costly to evolve; one-size-fits-all approaches while support configurability, are not extensi-
ble; whereas coordination languages do not provide the necessary expressiveness to support, for
example, protocols and advanced event processing required by these application domains.

In fact, as a consequence of these deficiencies, and despite the existence of standardized so-
lutions such as CORBA-NS and generalized approaches such as Siena and JavaSpaces, new pub-
lish/subscribe infrastructures continued to be built every time novel sets of features are required.
This is made evident by the large number of application-specific infrastructures discussed at
(Silva Filho and Redmiles 2005).

In order to address these limitations, we designed and implemented YANCEES. YANCEES
main goal was to combine the simplicity and efficiency of minimal core approaches, with the
configurability of one-size-fits-all approaches in the construction of a flexible (extensible and
configurable) infrastructure that can be easily customized to support the needs of different appli-
cation domains.

Before discussing the implementation of YANCEES, in the next sections we first introduce
the publish/subscribe communication style and its requirements; in section 3.3 we present a de-
sign framework that captures the main commonality and variability of the publish/subscribe do-
main; and in section 3.4 we discuss the versatility requirements of publish/subscribe infrastruc-
tures.

3.2 Publish/subscribe communication style char-
acteristics

Events represent temporal facts in the world or state transitions in computational systems.
Event-driven applications are those that operate in response to events. They are usually built ac-
cording to the publish/subscribe communication style, a distributed version of the Observer de-
sign pattern (Gamma, Helm et al. 1995). Publish/subscribe infrastructures implement this style in
support of event-driven applications development. The publish/subscribe infrastructures (or serv-
ices) must support different requirements that make their design particularly challenging. These
are:

Interactivity. Publishers and subscribers interact with the service by publishing events and
submitting and removing subscriptions at different rates, times and formats.

Expressiveness. Subscriptions are usually expressed in the form of query languages (textual
expressions in the content or order of evens), or by a combination of programming-level objects
that represent commands and filters in the language. The expressiveness of the subscription lan-
guage must match the routing and filtering capability of the infrastructure. In other words, there
must be a correspondence between language and infrastructure functionality.

Dynamism. A publish/subscribe infrastructure must support the runtime arrival and depar-
ture of publishers and subscribers of events. Each subscriber provides an event processing and
filtering expression that exercises different capabilities of the infrastructure. Subscriptions are
posted and removed dynamically, requiring the routing mechanism to adapt to these changes, thus
servicing multiple publishers and subscribers at the same time.

UCI-ISR-09-3 - August 2009

34

Data and control coupling. Publish/subscribe infrastructures operate over a common data
flow of information (events) from publishers to subscribers. For such, they define strong data and
control coupling between the different phases of the publish/subscribe process. This makes the
process of publication, routing and notification of events based on subscription to be strongly de-
pendent on the event format, and timing constrains, creating a sequential dependency among
these steps, as previously illustrated in Figure 9. This coupling many times leads to designs based
on dataflow-oriented decomposition, that go against the separation of concerns principle (Parnas
1972). It also makes changes in different parts of software affect other parts of the infrastructure
leading to feature interference as discussed in section 2.2.

For such characteristics, pub/sub infrastructures represent an application domain where dif-
ferent factors must coexist, and where the different versatility strategies discussed in section 2.1
can be put to test in their fullness.

3.3 Publish/subscribe infrastructures commonal-
ity and variability

A versatile software must be able to support not only the common characteristics of a do-
main but also its variability (Coplien, Hoffman et al. 1998). In this section, we analyze the diver-
sity of features that the publish/subscribe infrastructures must support, and the dimensions on
which these features exist.

All publish/subscribe infrastructures share the common process of: publication, routing and
notification of events based on subscriptions. This process, however, can be supported in ways
that are specific to each application. In particular, the publish/subscribe domain variability can be
modeled along the design dimensions discussed in Table I.

Table I Publish/subscribe domain variability

MODEL DESCRIPTION EXAMPLE

Event
model

Specifies how events are represented Tuple-based; Object-based; Record-
based, others.

Publication
model

Permits the interception and filtering of
events as soon as they are published, sup-
porting the implementation of different
features and global infrastructure policies.

Elimination of repeated events, per-
sistency, publication to peers
(through protocol plug-ins).

Routing
model

Defines the mechanism that matches
events to subscriptions, resulting in the
delivery of events to the appropriate sub-
scribers.

Topic-based, Content-based, channel-
based

Subscription
model

Allow end-users to express their interest
on sub-sets of events and the way they are
combined and processed.

Filtering: content-based, topic-based,
channel-based; Advanced event cor-
relation capabilities

Notification
model

Specifies how subscribers are notified
when subscriptions match published
events.

Push; pull; both, others

UCI-ISR-09-3 - August 2009

35

Protocol
 model

Deals with other necessary infrastructure
interactions other than publish/subscribe.
They are subdivided in interaction pro-
tocols (that mediate end-user interaction),
and infrastructure protocols (that medi-
ate the communication between infra-
structure components)

Interaction protocols: Mobility; Se-
curity; Authentication; Advanced no-
tification policies.

Infrastructure protocols: federation,
replication, Peer-to-peer integration.

These variability dimensions represent an extended version of the Rosenblum and Wolf’s
publish/subscribe dimensions (Rosenblum and Wolf 1997). In particular, we extended this model
to include an extra protocol dimension, that captures the different kinds of interaction supported
by the infrastructure other than the publication and notification of events. Note that the variants in
each variability dimension, shown in Table I, came from a variety of application domains such as:
awareness (CASSIUS (Kantor and Redmiles 2001)), groupware (IMPROMPTU (DePaula, Ding
et al. 2005)), and software usability monitoring (EDEM (Hilbert and Redmiles 1998)).

In the design of YANCEES, we use the dimensions of Table I as the basic variation points,
whereas the features in each dimension are mapped into components that extend these dimen-
sions.

3.4 Versatility requirements
Besides supporting the essential middleware requirements of performance, scalability,

interoperability, heterogeneity, network communication and coordination (Emmerich 2000), ver-
satile infrastructures must: first support application-specific features discussed in section 3.2; and
second, achieve a favorable balance between maintainability, flexibility, usability, reusability and
performance. In this section, we further describe requirements.

3.4.1 API usability
From the point of view of application developers, middleware provides an API (Application

Programming Interface) that supports the construction of distributed applications. A usable API is
one that is easy to understand and operate, and which abstraction matches the users’ application
needs and usage scenarios. According to (Henning 2009), an API should be efficient, minimal,
designed according to the perspective of the users. It should also hide unnecessary implementa-
tion details and be well documented.

Hence, in the publish/subscribe domain, a usable API must consider the individual needs of
different types of users. For example, the publish/subscribe domain distinguishes between infor-
mation producers (publishers) and information consumers (subscribers). While publishers are
concerned with how to represent and publish events; subscribers are concerned with the way noti-
fications are delivered and subscriptions are made. Details about the underlying communication
protocols, how events are routed or how to extend and configure the infrastructure, are not rele-
vant to these types of users, instead, these are concerns of infrastructure developers’ interest. The
infrastructure must, therefore, support these types of users with minimal impact on the API us-
ability.

Hence, another important characteristic of usable APIs is separation of concerns. A well
modularized API presents only the necessary information for each type of user, thus shielding
them from concerns that are not relevant to their tasks.

UCI-ISR-09-3 - August 2009

36

In sum, APIs must reflect the tasks of different developers will perform with the infrastruc-
ture, matching the abstraction level with that demanded by the tasks and user roles it supports
(Clarke 2004).

3.4.2 Flexibility (extensibility & configurability)
Parnas (Parnas 1978) defines flexibility as the ability of software to expand and contract in

responses to changes in the application domain. Thus, flexibility implies both extensibility and
configurability. While configurability allows an infrastructure to be tailored to the exact set of
features demanded by an application domain, extensibility supports the addition of new features.

An ideal publish/subscribe infrastructure is one that can be extended and configured to
match the shifting requirements different application domains, thus producing slim and efficient
implementations, at a fraction of the cost of developing a new infrastructure from scratch.

3.4.3 Maintainability
The maintainability of an infrastructure is a function of its modularity, architecture, docu-

mentation, as well as any extra mechanisms (such as configuration management) that support the
process of evolution, correction and configuration of its features (Li and Henry 1993; Kim and
Bae 2006).

Hence, highly maintainable software infrastructures are those that support developers in the
tasks of correcting, improving, customizing and extending these infrastructures to support shifting
application requirements.

3.4.4 Reusability
Reusability is a software quality which goal is to minimize the development effort required

to apply the provided features of an infrastructure in support of the required features of the appli-
cation domain (Krueger 1992). In other words, a piece of software is easy to reuse if its character-
istics can minimize the costs of selection, extension, configuration, adaptation and integration, as
discussed in section 2.1.2, while supporting the requirements of the application domain.

3.4.5 Performance
Finally, an infrastructure must not only be usable, flexible, maintainable and reusable. It

must also support these software qualities without penalizing the performance of the system. It is
usually the case that the number of choices and features provided by the infrastructure can jeop-
ardize the performance of the whole system. A typical example of this trade-off is the one ob-
served in hardware industry, between RISC and CISC computer architectures (Jamil 1995). The
large amount of features provided by CISC chips penalize simple operations such as addition and
subtraction. It originates different design restrictions such as those involved in registers usage
rules (certain registers are used for memory access, others for simple arithmetic operations, and
others for more advanced operations such as division). RISC design, on the other hand, strives for
simplicity, orthogonality and minimalism in its instruction set, making it possible to optimize
simple operations, thus achieving better performance (even though more complex operations need
to be expressed in terms of primitive operations). The same problem happens in software. A
software design must balance the complexity and feature set of the infrastructure in order to im-
prove the performance of the system.

UCI-ISR-09-3 - August 2009

37

3.5 YANCEES design
In this section, we describe the strategies applied in the design of YANCEES to support of

the software qualities we just discussed. YANCEES supports maintainability, flexibility, reusabil-
ity, usability, and performance by through the modeling of dependencies as first class entities and
the application of different design decisions in the management of dependencies. In doing so, it
can reap the benefits of existing approaches to versatility without inheriting their costs. As such,
YANCEES applies the following design principles.

First, it supports different interfaces, around the major publish/subscribe concerns, together
with a configuration API. Second, it supports variability along the main publish/subscribe dimen-
sions as discussed in Table I, in the form of a micro kernel architecture. This variability is imple-
mented through the use of dynamic and static plug-ins, and extensible languages (Birsan 2005).
Third, it manages fundamental and configuration-specific dependencies through the use of dy-
namic parsers, that handle subscription and notification commands, and through a configuration
manager that handles static plug-ins installation and their inter-dependencies. Additional services
as reflection are also supported, allowing plug-ins to find each other at runtime. A summary of
these design decisions is shown in Figure 11.

Figure 11 YANCEES high-level architecture

Through the combination of reusable plug-ins and extensible languages, YANCEES sup-
ports the development of publish/subscribe infrastructures software product lines (or SPLs)
(Clements and L. Northrop 2002). The goal of SPL engineering is “to capitalize on commonality
and manage variability in order to reduce the time, effort, cost and complexity of creating and
maintaining a product line of similar software systems” (Krueger 2006). In SPLs, reuse of com-
monality allows the reduction of the costs of producing similar software systems, while variabil-
ity permits the customization of software assets to fit different requirements of the problem do-
main (Coplien, Hoffman et al. 1998).

UCI-ISR-09-3 - August 2009

38

As illustrated in Figure 12, YANCEES allows the combination of exiting assets (YANCEE
core, existing or custom-made plug-ins, filters, adapters, and application-specific subscription
languages) in to the production of domain-specific publish/subscribe infrastructures.

Figure 12 YANCEES approach summary

In the following sections we describe, in more detail, how these different design strategies
support usability, flexibility, reusability, maintainability and performance.

3.5.1 Usability
YANCEES usability is achieved by a combination of different design decisions as follows.

Separation of API concerns. YANCEES separates publication and subscription from the
extensibility and configuration APIs (also illustrated in Figure 11). This separation of concerns
reduce the development effort of publishers, subscribers and developers by hiding configuration
& extension concerns from the regular publish/subscribe users, at the same time that it still sup-
ports developers in their extension & configuration tasks.

Simplicity & Specificity. From application developers’ perspective, YANCEES provides a
very simple publish/subscribe API, similar to that available in minimal core infrastructures as
Siena. In these infrastructures, the only available commands are those concerned with publication
and subscription of events. Moreover, YANCEES relies on extensible text-based subscriptions,
supporting the development of application-specific subscription languages. This customizability
allows the infrastructure to provide the exact amount of features required by each application,
thus decreasing the signal-to-noise ratio of the subscription language with respect to the applica-
tion domain.

Automatic subscription parsing & composition. The dynamism and interactivity of pub-
lish/subscribe infrastructures requires special attention to subscription language usability.
YANCEES performs the automatic and dynamic allocation of subscription and notification plug-
ins, relieving application developers from the tasks of programmatically creating and composing
subscription filters (as is the case of Siena, for example), every time a new subscription is created.
Moreover, the use of textual subscription also provide automatic syntactic checking, better sup-
porting users in the detection of common subscription errors.

UCI-ISR-09-3 - August 2009

39

3.5.2 Flexibility
YANCEES supports flexibility through the use of a plug-in oriented architecture (Birsan

2005) supporting extensible subscription and notification languages. In this approach, modulari-
zation, stabilization and variation strategies are applied in the production of a common pub-
lish/subscribe core that can be extended and configured with user-defined plug-ins.

In YANCEES, plug-ins, implement specific commands in the subscription and notification
languages, as well as different publish/subscribe features along the main variation points (repre-
sented as rectangles inside the infrastructure shown in Figure 11). The correct composition of
plug-ins into valid configurations is supported by the Architecture Manager component, at load
time; and by the Subscription Parsers at runtime.

3.5.3 Reusability

YANCEES achieves a high degree of reusability by adopting a compositional approach that
combines feature-specific components with an extensible publish/subscribe framework in the
production of application-specific infrastructures. This modularization is performed along the
dimensions of Table I. This approach reduces the abstraction distance between required applica-
tion and provided infrastructure features, and supports the reusability of plug-ins in the construc-
tion of different infrastructures.

Reducing abstraction distance. By abstraction distance, we mean the effort necessary to
express domain concerns in terms of the provided API as described by (Krueger 1992).
YANCEES’ ability to produce application-specific infrastructures allows subscription language
and infrastructure features to closely match the different application domain requirements. As a
result, the abstraction distance between the provided infrastructure and required domain features
are reduced, relieving application developers from additional adaptation and mismatch costs.

Reuse of plug-ins. From the point of view of the developers, plug-ins are not only units of
extension but also important units of reuse. They modularize individual concerns into reusable
components that operate over generalized event representations. Plug-ins can also be reused in the
implementation of more complex features. For example, pull notification feature can be imple-
mented by composing pull notification plug-in with a persistence service and a polling protocol
plug-in into the same configuration; whereas advanced event processing commands such as se-
quence detectors and rules can be expressed in terms of lower-level filter plug-ins.

Automation. Finally, the process of runtime composition of subscription and notification
commands is automated. Subscription and notification plug-ins are composed based on the syntax
of the subscription language. The parsing of subscriptions also support syntactic checking, thus
preventing simple subscription errors.

Combined, these characteristics relieve developers from the task of re-implementing existing
features from scratch and from enforcing dependencies between different plug-ins, thus improv-
ing the development process of application-specific infrastructures.

3.5.4 Maintainability
YANCEES design supports maintainability by modularizing the main publish/subscribe

concerns and features in the form of reusable and extensible plug-ins, and by providing automatic
configuration management mechanisms. Through the modularization of the different pub-
lish/subscribe concerns in the form of plug-ins, existing features can be more easily corrected,
updated and extended with little impact to the core system components. Configuration manage-

UCI-ISR-09-3 - August 2009

40

ment automation allows dependencies between different plug-ins to be automatically enforced,
thus relieving developers from manually checking for dependencies and compatibility.

3.5.5 Performance

YANCEES can achieve high levels of performance by supporting specialized features that
match specific commands of the subscription language. For example, YANCEES allows the co-
existence of different routing cores and specialized subscription commands. By posting special-
ized commands, users can implicitly choose the best routing algorithm for their needs. For exam-
ple, topic-based subscriptions are routed through a specialized topic-based core; while more com-
plex content-based queries are handled by a more capable content-based filtering core.

Moreover, by supporting static and dynamic configuration of plug-ins, only the necessary
features for the application at hand are loaded at a given time. This approach reduces the runtime
footprint and the total size of the server, supporting the development of applications on more re-
stricted devices.

3.5.6 Additional benefit: interoperability
YANCEES ability to support multiple cores also supports the interoperability of the infra-

structure with existing publish/subscribe networks, for example: Siena, Elvin or CORBA-NS.
Events can be published to or subscribed from these different infrastructures, allowing
YANCEES to be used as an advanced event processing layer on top of these systems in an ap-
proach similar to that described at (Heimbigner 2003), but with the additional configurability and
extensibility provided by the infrastructure.

3.5.7 Versatility supporting concerns
As briefly discussed in the previous sections, the usability, flexibility, reusability and per-

formance benefits of YANCEES come at some costs that must be adequately managed in order to
reap the benefits previously discussed. This section makes these costs evident, discussing their
role in the support of YANCEES versatility.

First, there is a need for configuration management. As previously discussed, fundamental
and configuration-specific dependencies limit the reusability of existing plug-ins, creating incom-
patibilities and invalid configurations. In YANCEES, an architecture manager component is de-
fined in order to enforce these dependencies, preventing the creation of invalid configurations.
YANCEES configuration manager assures the proper installation of plug-ins based on informa-
tion provided in configuration files. Upon start, the architecture manager builds a valid YAN-
CEES instance, enforcing dependencies between plug-ins. In case of broken dependencies or
invalid configurations, error messages are generated and the server startup is interrupted.

Second, there is a need for mechanisms that support the dynamic composition of plug-ins.
Subscription and notification plug-ins must be composed, at runtime, in response to different sub-
scription and notification commands. Each subscription specifies an expression on the content or
order of events that may rely on different commands, for example: content-based filtering, se-
quence detection or rules. It also specifies notification policies such as push or pull. In YAN-
CEES, this process is supported by Notification and Subscription managers (shown in Figure 14),
that first validate the subscription commands, based on grammar rules; and then build dynamic
event processing hierarchies using the installed plug-ins.

Third, there is a need for mechanisms that support static plug-ins. While subscription and
notification plug-ins are allocated per-subscription basis, certain features need to be constantly
available in the infrastructure, for example, protocol plug-ins that must listen to certain ports in

UCI-ISR-09-3 - August 2009

41

the network, or persistency services that stores events for later retrieval. Therefore, YANCEES
supports both static and dynamic plug-ins. Static plug-ins are also know as services. They are
loaded at startup.

Fourth, it is usually the case that complex features are implemented not by a single plug-in
but by a combination of plug-ins. For example, pull notification requires a plug-in to implement
the event notification queue, and another plug-in to implement the polling protocol. Hence, plug-
ins require architectural reflection mechanisms that support the communication and location of
plug-ins in the system. In YANCEES, this service is provided by a plug-in registry that supports
plug-in registration and location by name.

3.5.7.1 Generalized event representation

Due to fundamental problem dependencies, the event format representation has an important
role in the overall software reusability and maintainability.

In YANCEES original design, events were initially designed as XML messages. Whereas
the ability to represent events in this format supported custom-made messages, an analysis of de-
pendencies (shown in Figure 9) revealed the high change impact that this design decision would
have. Hence, we simplified YANCEES original design to support fixed, but generalized, event
representations. As a result, YANCEES events are represented as attribute/value pairs, that
through adaptation, can be used to represent different event formats without impacting other
components of the infrastructure such as the routing algorithm and the existing filter subscription
plug-ins. This simplification improved software maintainability, through reduced change impact,
as well as the overall reusability of plug-ins, that do not need to change every time a new event
format needs to be supported.

3.6 YANCEES implementation
In this section, we describe the detailed design and implementation of YANCEES, highlight-

ing the use of the versatility strategies we discussed in section 3.3.

The original publish/subscribe pattern, shown in Figure 13, is relatively simple. It defines a
common interface that allows the publication and subscription of events. The infrastructure routes
and delivers events based on the supported notification policy. In spite of this simplicity, this
original design is inflexible. Due to fundamental and configuration-specific dependencies,
changes in different design characteristics are usually difficult, and require the co-evolution of
different parts of the software. The challenge in the development of YANCEES is to redesign this
simple pattern in a way that supports extensibility and configurability along the main pub-
lish/subscribe variability dimensions.

Figure 13 Publish/subscribe pattern

UCI-ISR-09-3 - August 2009

42

Through the application of different versatility strategies, YANCEES augment this initial
design introducing different variation and extension points in the software as follows.

3.6.1 Applying stabilization & variation

We first applied stabilization and variation strategies in the separation between the common
publish/subscribe process (that was stabilized into YANCEES core) and the different publish-
subscribe concerns around the common publish/subscribe process, i.e, its publication, subscrip-
tion, routing, notification and protocol models (implemented as plug-ins). As shown in Figure 14,
in YANCEES these concerns are implemented with the help of individual components (or fa-
çades). Note that, in Figure 14, we only show the main classes, suppressing the methods and at-
tributes of these classes for simplicity. Each one of these façades define extensibility interfaces
and configuration rules that support the implementation of features in these variation points (or
models). In the following paragraphs, we discuss each one of these models in more detail.

Figure 14 YANCEES main components (façades)

3.6.2 Routing model
The RoutingFaçade can support different routing strategies simultaneously, for example:

content-based, topic-based or channel-based. Adapters intermediate the communication between
the RoutingFaçade and different routing strategies implementations. The routing model also sup-
ports the interoperability of YANCEES with existing publish/subscribe infrastructures (such as
Elvin (Fitzpatrick, Mansfield et al. 1999) and Siena (Carzaniga, Rosenblum et al. 2001)) through
adapters that implement the DispatcherAdapterInterface as shown in Figure 15. Moreover, exist-
ing infrastructures and custom routers can co-exist, in the same infrastructure, allowing the selec-
tion of the best routing strategy for each subscription command. This approach also copes with
performance, supporting the use of specialized routers for different commands.

UCI-ISR-09-3 - August 2009

43

Figure 15 Support for multiple routing strategies and interoperability with differ-

ent routers

3.6.3 Publication Model
The publication model is supported by the PublicationFaçade, which is implemented by the

composition of different filters that extend this model using the Chain of Responsibility design
pattern (Gamma, Helm et al. 1995), as illustrated in Figure 16. These filters can be extended and
configured to implement global policies such as repeated events filtering, or work together in the
implementation of more complex features, for example, the creation of peer-to-peer pub-
lish/subscribe networks. In this last example, further discussed in 5.3, publication plug-ins inter-
cept and route selected events to all peers in the network with the help of a protocol plug-in.

The use of publication filters, however, creates the need for the enforcement of proper order
of these filters. Changes in their order, for example, can lead to undesirable conditions or feature
interference (Silva Filho and Redmiles 2007). For example, a publish-to-peers filter redirector
should be installed after a repeated events filter. The change of this order will result in duplicate
events being published to all routers in a peer-to-peer network, instead of only a subset of these
events. In order to remedy this situation, YANCEES allows the definition publication filters pri-
orities, described in its configuration file.

UCI-ISR-09-3 - August 2009

44

Figure 16 YANCEES Publication Model

3.6.4 Subscription Model
As illustrated in Figure 17, the SubscriptionFaçade is responsible for parsing the subscrip-

tions posted by the users, and for assembling individual event processing trees based on these
subscriptions. The subscription language is expressed in XML, having their grammars specified
in XMLSchema1, an IETF standard that supports XML extensibility.

Whenever a new subscription is posted in the system, plug-ins are automatically allocated
and composed. This automatic allocation of plug-ins is facilitated by the plug-in registry, that
does the translation between plug-in names (that can be commands in the subscription language)
to the appropriate plug-in implementation. Plug-ins are implemented by extending the ISubscrip-
tionPlugin interface, being installed in the subscription model at load-time, based on the informa-
tion provided in a configuration file. A simple configuration file defines a set of unique plug-in
tags and the main Java class that implements it. It can also include dependencies with other plug-
ins, allowing the load-time checking for broken dependencies.

1 http://www.w3.org/XML/Schema

UCI-ISR-09-3 - August 2009

45

Note that, in the subscription model, plug-ins can depend on one another to implement more
sophisticated features. In Figure 17, the Abstraction, PatternMatching and Sequence plug-ins de-
pend on the Filter plug-in to implement their features; whereas the Filter plug-in directly interacts
with the existing routing capability of the infrastructure. Besides supporting the runtime alloca-
tion of plug-ins, the PluginRegistry provides a central point of access that allow plug-ins to locate
each other at runtime. It works as a look-up table, translating plug-in names into runtime refer-
ences. As previously mentioned, these dependencies are also declared in the configuration file of
the infrastructure, where they are used for configuration management.

Figure 17 YANCEES Subscription Model

3.6.5 Event Model
Differently from the other models, YANCEES event model is fixed, being implemented by

the YanceesEvent class depicted in Figure 18. Its design is a consequence of the application of the
generalization operator in the representation of events as user-defined typed attribute/value pairs.
These typed attribute/value pairs support the basic language types (boolean, float, double, int,
long), Strings, and byte array (or byte[]). Byte arrays can be used to hold serialized objects or
different data types. The YanceesEvent class also provides convenience set/get methods support-
ing the Object Java type. These methods can automatically serialize/de-serialize objects for
transmission between publishers and subscribers.

UCI-ISR-09-3 - August 2009

46

Figure 18 YANCEES Event Model

3.6.6 Notification Model
Similar to the Subscription Model, the Notification model supports the dynamic parsing and

allocation of notification plug-ins, implementing different notification policies such as pull or
push.

In the example of Figure 19, we present the notification model. We also show the interaction
between notification, protocol and service (or static) plug-ins. In this example, the pull notifica-
tion stores notifications for further retrieval with the help of a Persistence Plug-in. These events
are later collected by the users through the polling service provided by the Poll protocol plug-in.
Similarly to subscription plug-ins, notification policies are allocated, at runtime, by command
name, with the help of PluginRegistry, which also supports the runtime location of other compo-
nents in more complex features such as persistency.

UCI-ISR-09-3 - August 2009

47

Figure 19 YANCEES Notification Model

3.6.7 Protocol Model
The protocol model, illustrated in Figure 20, supports both the interaction with end-uses and

with other infrastructures. The protocol model is very general. Protocol plug-ins must only im-
plement a simple interface that allows its location in the infrastructure. Protocol plug-ins can be
either static or dynamic. Static plug-ins work in the same way as services. They are allocated at
load time. The communication between clients and server through the protocol plug-ins is, by
default, supported by Java Remote Method Invocation (or RMI). However, developers are free to
use other communication protocols as needed. In the example of Figure 20, two protocol plug-ins
are available: PeerLocator and PublishToPeers, that together support the Peer-to-peer federation
of routers in YANCEES.

UCI-ISR-09-3 - August 2009

48

Figure 20 YANCEES Protocol Model

3.6.8 Overall Architecture
A summary of YANCEES main components is shown in Figure 21. As summarized in this

figure, YANCEES employs stabilization and variation in support of different publish/subscribe
concerns. These concerns are extended by different types of plug-ins, composed both statically
and at runtime, according to different strategies. The process of subscription and notification
composition is automated by runtime parsers; while the architecture manager handles static com-
position, guaranteeing the overall compatibility of plug-ins installed in the system. The plug-in
registry supports the location and activation of plug-ins at runtime. Finally, YANCEES design
employs generalization in the definition of its event representation.

UCI-ISR-09-3 - August 2009

49

Figure 21 YANCEES general approach

3.7 Applications supported by YANCEES
YANCEES has been used as the basic publish/subscribe infrastructure in different applica-

tions including peer-to-peer file sharing (DePaula, Ding et al. 2005), contextual collaboration ser-
vices (Geyer, Silva Filho et al. 2008), pocket-size devices (Silva Filho and Redmiles 2006) and
collaborative software engineering (Redmiles, van der Hoek et al. 2007), besides of being evalu-
ated in the case study described in this paper. The details on how YANCEES was customized and
extended to support some of these applications are discussed in section 4.3, when we discuss the
implementation of our case studies.

3.8 Summary
In this section, we discussed YANCEES design, showing how it achieves a favorable bal-

ance between usability, reusability, performance, flexibility and maintainability requirements of
versatile publish/subscribe infrastructures. We also showed how the versatility operators dis-
cussed in section 2.1.1 were used in its design and implementation.

UCI-ISR-09-3 - August 2009

50

As such, YANCEES provides as an architectural style that addresses the problem of configu-
ration management and reflection induced by the need of flexibility. By modeling software de-
pendencies as first class entities, it provides solutions to the problems of static and dynamic con-
figuration management induced by problem domain and configuration-specific dependencies, at
the same time that reduces these costs by supporting generalized event representations in the form
of attribute/value pairs. Finally, YANCEES support for automation and separation of API con-
cerns improves application developers usability, allowing them to reap the benefits of flexibility
without its costs.

In the next sections, we discuss the design and implementation of a set of case studies where
we quantitatively and qualitatively evaluate YANCEES, comparing it with existing versatility
approaches.

UCI-ISR-09-3 - August 2009

51

Chapter 4. Case Studies Design

YANCEES flexible approach is not the only way to support the variability and evolution of
application domain requirements. In fact, different academic and research infrastructures have
been developed that support event-driven application domain variability. As will be later ana-
lyzed, they employ different versatility strategies, which have their own benefits and costs.

This chapter describes the design of three case studies with which we compared major versa-
tility approaches in the publish/subscribe domain. These case studies were designed according the
following steps.

• First, we conducted a survey of publish/subscribe versatility approaches (Silva Filho and
Redmiles 2005). In this survey, we identified four major approaches employed in the con-
struction of versatile publish/subscribe infrastructures. These were: minimal core, coordina-
tion languages, one-size-fits-all and flexible compositional approaches.

• Second, we selected a set of open source infrastructures, one for each versatility approach
above, to be compared and analyzed. These infrastructures were: Siena (Carzaniga,
Rosenblum et al. 2001) representing minimal core infrastructures; Sun JavaSpaces (Freeman,
Hupfer et al. 1999) representing coordination languages; CORBA Notification Service (or
CORBA-NS) (OMG 2004) representing one-size-fits-all infrastructures, and YANCEES
(Silva Filho and Redmiles 2005) representing flexible compositional infrastructures.

• Third, we selected three feature-rich event-driven application domains as sources of require-
ments for our case studies. These were: usability monitoring represented by EDEM (Hilbert
and Redmiles 1998), awareness represented by CASSIUS (Kantor and Redmiles 2001) and
groupware represented by IMPROMTU (DePaula, Ding et al. 2005). These infrastructures
were selected first for their diversity of requirements, and second, for the previous experience
of the authors in their development, which provides us with both access to the source code,
and expertise in their set of requirements and algorithms.

• Forth, the requirements of each application domain were abstracted into individual reference
APIs, representing ideal sets of features that publish/subscribe infrastructure must support for
each domain. These APIs provide a common ground for comparing the different metrics of
our study.

• Fifth, we implemented each one of these tree reference APIs using the four selected infra-
structures. We also implemented each API from scratch, as base line comparisons.

• Sixth, we performed a quantitative and qualitative analysis of the resulting implementations,
measuring different software qualities.

• Seventh, we identified trade-offs and derived a set of guiding principles to inform both devel-
opers and users.

4.1 Publish/subscribe versatility approaches
In a previous survey of versatility strategies (Silva Filho and Redmiles 2005), we identified

four major versatility approaches employed in the construction of both industrial and research
publish/subscribe infrastructures. We describe them in more detail in the following sections.

UCI-ISR-09-3 - August 2009

52

4.1.1 Minimal core infrastructures
Minimal core infrastructures such as Siena (Carzaniga, Rosenblum et al. 2001), Herald

(Cabrera, Jones et al. 2001), Scribe (Castro, Druschel et al. 2002), and to a certain extend, Sun
JMS (Sun Microsystems 2003) provide simple but optimized services that support the efficient
routing of events in distributed publish/subscribe networks. As such, they support the most com-
mon and essential publish/subscribe features, provided in the form of simple and generalized
APIs. In this approach, application-specific requirements such as advanced event processing, al-
terative notification policies and protocols are not directly supported. Instead, they must be im-
plemented by the application developers themselves, based on the sets of primitive features pro-
vided by the core functionality of each infrastructure.

Moreover, generalization is widely adopted: event representations, such as attribute/value
pairs, and content-based filtering capabilities are applied in the implementation of the most com-
mon publish/subscribe features. These infrastructures are therefore designed to be reused as black
box routing components on top of which different event-driven applications and their application-
specific features are built.

4.1.2 Coordination languages
Coordination languages such as SUN JavaSpaces (Freeman, Hupfer et al. 1999), IBM

TSpaces (Wyckoff 1998) and LIME (Murphy, Picco et al. 2006) are based on the Linda
(Gelernter 1985) coordination model. As such they implement a “virtual machine” approach as
proposed by (Parnas, Clements et al. 1984), in the form of a persistent space of entities (or tuple
space), that can be accessed through a minimal and fixed set of operations. These operations are:
read(), take(), write() and notify(). Which respectively support the reading, removal, addition and
notification of shared persistent objects known as tuples. These operations also support the con-
cept of anti-tuples (or templates), that work as content-based filters, allowing these commands to
be applied to a range of tuples in the space. In this approach, application-specific features can be
built by composing and successively applying these primitive commands. For example, allowing
tuple spaces to act as a full-fledged content/based publish/subscribe routers, as described by
(Zavattaro and Busi 2001).

In commercial systems, tuple spaces are usually augmented with additional (optional) fea-
tures such as transactions, leasing and authentication that are easily available as parameters of
these space basic operations. Infrastructures such as LIME support additional commands for mo-
bility.

4.1.3 Configurable one-size-fits-all
Configurable one-size-fits-all infrastructures such as CORBA Notification Server (or COR-

BA-NS in short) (OMG 2004) and READY (Gruber, Krishnamurthy et al. 1999) support a broad
set of application domain requirements by integrating different features and qualities of service
(or QoS) into a single, configurable infrastructure. They are built on the premise that the way to
support domain variability is to provide variation, maximizing the number of options and features
supported by the infrastructure. In this approach, users can select among different combinations
of event representations, notification policies, routing strategies and qualities of service, out of an
existing (and specialized) pool of options along most publish/subscribe variability dimensions
discussed in section 3.3. These options can then be combined into valid configurations in support
of specific application domain requirements.

UCI-ISR-09-3 - August 2009

53

4.1.4 Flexible publish/subscribe infrastructures
Flexible (configurable and extensible) publish/subscribe infrastructures such as YANCEES

(Silva Filho and Redmiles 2005), FACET (Pratap, Hunleth et al. 2004) and DREAM (Leclercq,
Quema et al. 2005) strive to combine the simplicity, generality and efficiency of minimal core
infrastructures with the configurability and variability of one-size-fits-all systems. They do so by
separating policy and mechanism (Wulf, Cohen et al. 1974) in the development of infrastructures
that can be expanded or contracted to address the specific requirements of different applications
(Parnas 1978).

For example, FACET separates common publish/subscribe behavior and variable features
into a fixed base code and variable aspects (in AOP sense), that implement the different pub-
lish/subscribe features. YANCEES separates the common publish/subscribe process into a com-
ponent framework extensible through plug-ins and extensible languages, whereas DREAM pro-
vides a component framework with different feature-specific components that are programmati-
cally combined in the implementation of application-specific infrastructures. Since not all possi-
ble combinations of features are feasible, flexible infrastructures rely on different mechanisms to
automate the process of (re-)combining common publish/subscribe code with feature-specific
components in the production of different, and coherent, application-specific publish/subscribe
infrastructures (as previously discussed in Chapter 3).

4.1.5 Comparing the versatility of different strategies
Each one of these approaches employ a specific set of design strategies. In Figure 22, we lay

these infrastructures with respect to their degrees of generalization and flexibility. Note that a so-
lution to a problem is general if it can be applied, without change, in as many situations as possi-
ble; whereas it is flexible if it can be tailored (configured and extended) to better match the prob-
lem at hand (Parnas 1978).

Figure 22 Comparative analysis of different versatility design considering their

generality, specificity and flexibility

As illustrated in Figure 22, minimal core infrastructures adopt generalization in their event
and subscription representations, supporting general but fixed APIs. Coordination Languages also
employ generalization in tuple representation and filtering, in the construction of a simple tuple
manipulation API. Most tuple space systems support optional features, which increases their
ranking in terms of configurability. One-size-fits-all systems support configurability and different

UCI-ISR-09-3 - August 2009

54

qualities of services around a fixed set of specialized features; whereas flexible infrastructures
support extensibility and configurability (with footprint management) of major pub/sub concerns.
In doing so, they adopt design strategies that end up compromising important software qualities
such as usability, reusability, performance, flexibility and maintainability.

In order to practically analyze and compare these approaches, we selected individual infra-
structures to use in our case studies. These infrastructures are described in more detail in the next
section.

4.2 Selected publish/subscribe infrastructures
The set of infrastructures used in our case studies were chosen to represent each one of the

publish/subscribe versatility approaches discussed in section 4.1. We sought to analyze a set of
infrastructures that were implemented using the same programming language (Java in this case),
that were mature enough for our case study, and that provided free source code access. We further
discuss the selected infrastructures, and their characteristics as follows.

4.2.1 Siena
Siena (Carzaniga, Rosenblum et al. 2001) is an Internet-scale publish/subscribe router.

Siena’s subscription model supports content-based filtering and event sequence detection (con-
junction-style pattern matching). The event model is tuple-based and the notification model is
push. Siena’s protocol model applies advanced subscription advertisement and event routing al-
gorithms to adequately route events published in one side of the network to subscribers in nodes
that are routers away from the event source. The version utilized in our benchmark (version 1.5.5)
guarantees partial event ordering with best-effort routing, implying no event delivery or order
guarantee. Siena’s basic features and components are depicted in Figure 23 as follows.

Figure 23 Siena architecture

Figure 23 shows a single router representing the logically centralized architecture of Siena.
In Siena, the content-based router responds to different subscriptions (represented as either a con-
tent filter or pattern – a set of filters). Events produced by publishers are routed to selected sub-
scribers whenever the event content matches their respective filter expressions. Routers can be
federated in the construction of arbitrarily complex routing networks.

UCI-ISR-09-3 - August 2009

55

4.2.2 CORBA-NS
The CORBA Notification Service (CORBA-NS in short) (OMG 2004) is an Object Man-

agement Group (OMG) standard specification. It extends the existing CORBA Event Service (or
CORBA-ES) (OMG 2001) to support a broader set of qualities of service (or QoS) such as: event
notification reliability, priority, ordering, and timeliness. CORBA-NS is backward compatible
with CORBA-ES. Both the original Event Service interfaces, and the new CORBA-NS interfaces,
are available. In our study, we used version 1.4.0 of an open-source implementation of CORBA-
NS called Community OpenORB2.

Figure 24 CORBA-NS main components

The CORBA-NS routing model supports both topic and channel-based routing, as well as
content-based filtering of events. Events can be typed, un-typed (CORBA::Any) or structured (a
mix of both). The interaction with the server is mediated by a hierarchy of proxies, administrative
interfaces and filters. Administrative interfaces allow the specification of different channel QoS
such as: event guaranteed delivery, persistency and time to live. Secure channels can also be es-
tablished between publishers and subscribers. Subscriptions are supported through the use of fil-
ters, attached to proxy suppliers or consumers. Filters are programmed using the ETCL constraint
language, an extension to the TCL (Trader Control Language). The event delivery can be per-
formed using either pull or push notification policies.

An architectural representation of CORBA-NS basic components is shown in Figure 24. In
this diagram, different consumer proxies are used for different consumer configurations (either
pull or push); whereas the equivalent variety of proxies are supported in the event supplier side.
Admin objects (shown in Figure 24) are used to create instances of proxies and to select among
existing notification channels, configured according to different QoS.

2 http://openorb.sourceforge.net/

UCI-ISR-09-3 - August 2009

56

4.2.3 JavaSpaces
The tuple space model, as implemented by Sun JavaSpaces (Freeman, Hupfer et al. 1999),

extends the traditional Linda API with Database Management Systems (or DBMS) features such
as transactional semantics, supporting, for example roll-back of operations. It also supports event
notification (through the notify() command), allowing applications to be notified when new tuples
matching the provided anti-tuple are posted to the space. The basic primitive operations supported
by Sun JavaSpaces are: notify(), read(), readifExist(), take(), takeIfExist() and write(). All of them
have different parameters including anti-tuples, that work as simple content filters for the tuple in
the space.

Figure 25 JavaSpaces architecture (with client-side adaptation)

Differently from the subscribe() command commonly found in existing publish/subscribe in-
frastructures, the JavaSpaces notify() command does not include a copy of the entries (tuples) that
triggered the notification. It also does not automatically remove the entries from the space in re-
sponse to a notification. Hence, as illustrated in Figure 25, in order to implement a push notifica-
tion policy compatible with existing publish/subscribe infrastructures semantics, a set of extra
steps are necessary. First, one should subscribe to selected types of tuples using the notify() com-
mand, passing an anti-tuple as a parameter; then, whenever new tuples are written in the space
matching the provided template, the new tuples notification should be handled (1). After that, a
take() command, matching tuples out of the space should be performed (2), followed by the noti-
fication of the subscribers with the new tuple (3).

4.2.4 YANCEES
YANCEES (Silva Filho and Redmiles 2005) is a flexible publish/subscribe infrastructure

that supports extension and configuration of features along the main publish/subscribe design di-
mensions shown in Table I. YANCEES design and implementation were extensively discussed in
Chapter 3.

UCI-ISR-09-3 - August 2009

57

4.2.5 Summary of selected infrastructures design deci-
sions

In this section, we summarize the differences between the selected infrastructures, compar-
ing their main characteristics. We chose to classify these infrastructures with respect to: 1) the
amount of features they support; 2) the way they represent features; 3) the way they support fea-
ture selection; 4) the way feature extension is supported, and the underlying communication tech-
nology adopted. These characteristics will be useful in our case study evaluation. These results
are summarized in Table II.

Table II Comparison of the characteristics of the selected infrastructures

 Siena Java Spaces CORBA-NS YANCEES

Feature set Fixed, mini-
mal

Fixed, with op-
tional

Configurable, specific
and optional

Configurable, ex-
tensible

Decomposition
 approach

Monolithic Monolithic Methods and proxies Plug-ins

Configuration
 approach

None Manual:
method parame-
ters

Manual: factories,
proxies

Automatic

Reusability
approach

Black box Black box Black box Grey box

Underlying
communica-
tion

Sockets RMI ORB RMI

As shown in Table II, with respect to the variability of features supported, both Siena and
JavaSpaces are fixed. JavaSpaces, however, supports different optional features that can be se-
lected through the use of valid parameters in its API. CORBA-NS supports configurability, al-
lowing existing features to be selected and combined in support of different application domains.
Finally, YANCEES is flexible, supporting configurability and extensibility.

With respect to the configuration mechanism adopted, CORBA-NS relies on proxies, facto-
ries and configuration methods; whereas YANCEES configurability is supported both statically
and dynamically through automatic configuration managers. YANCEES also supports extensibil-
ity, allowing new plug-ins to be implemented.

With respect to the reusability approach, YANCEES is different from the other approaches.
While the other infrastructures are reused as black boxes, supporting a layered extension mecha-
nism, YANCEES supports extensions in the form of plug-ins, installed in predetermined variation
points of the infrastructure itself.

Finally, with respect to underlying communication protocol, JavaSpaces, CORBA-NS and
YANCEES rely on remote method invocation mechanisms, whereas Siena is implemented using
Sockets.

In the next section, we discuss the selected event-driven applications used in our evaluation.

UCI-ISR-09-3 - August 2009

58

4.3 Selected event-driven applications
Our case studies were based on existing event-driven applications i.e. CASSIUS, EDEM and

IMPROMPTU. In this section, we describe the publish/subscribe requirements of these applica-
tions, abstracting them in the form of ideal APIs.

4.3.1 CASSIUS
CASSIUS (Kantor and Redmiles 2001) is a notification server designed to support the de-

velopment of awareness-based applications. A distinctive feature of CASSIUS is its protocol
model. It supports the ability to manage information source hierarchies, allowing end-users to
advertise, browse, and subscribe to events from different sources using those hierarchies. CAS-
SIUS uses a fixed record-based event model, with its own set of fields. CASSIUS subscription
model is content-based, i.e. it supports logical expressions on the entire content of the event at-
tributes (with the exception of some binary fields). Valid subscription operators include: ‘and’,
‘or’ and ‘not’, ‘<’, ‘>’, ‘<=’, ‘>=’,’==’, and the wild card ‘*’. Subscriptions are expressed in a
textual way. The notification model is pull, supporting the retrieval of events received before or
after a certain time stamp.

CASSIUS reference API is shown in Table III. Note that it supports the concept of accounts
that manage sets of event sources (objects) and lists of typed events they produce.

Table III CASSIUS reference API

public interface ICassiusNotificationServerAPI {

// Account management
 public void createAccount(String accountName,
 String description) throws CassiusNSException;
 public void deleteAccount(String accountName)
 throws CassiusNSException;
 public ICassiusAccount[] listAllAccounts()
 throws CassiusNSException;
 public String addObjectToAccount(String accountName,
 String objName, String objType,
 String parentID, String description)
 throws CassiusNSException;
 public void removeObjectFromAccount(String accountName,
 String objectID) throws CassiusNSException;
 public ICassiusObject[] listAccountObjects
 (String accountName, String parentId)
 throws CassiusNSException;
 public void addObjectType(String accountName,
 String typeName, String[] eventNames,
 String description) throws CassiusNSException;
 public ICassiusObjectType getObjectType(String accountName,
 String typeName) throws CassiusNSException;
 public void deleteObjectType(String accountName,
 String typeName) throws CassiusNSException;
 public String[] listObjectTypeEvents(String accountName,
 String typeName) throws CassiusNSException;

// Account listener management
 public void addAccountEventsListener(ICassiusAccountListener

UCI-ISR-09-3 - August 2009

59

al, String account) throws CassiusNSException;
 public void removeAccountEventsListener (
 ICassiusAccountListener al, String account)
 throws CassiusNSException;
 public void addModelEventsListener(ICassiusModelListener ml)
 throws CassiusNSException;
 public void removeModelEventsListener (
 ICassiusModelListener ml) throws CassiusNSException;

// Publish/subscribe API
 public void publish(ICassiusEvent event, String accountName)
 throws CassiusNSException;
 public void subscribe(ICassiusSubscriberInterface si,
 ICassiusSubscription subscription)
 throws CassiusNSException;
 public void unsubscribe (ICassiusSubscriberInterface si,
 ICassiusSubscription subscription)
 throws CassiusNSException;
 public void unsubscribe (ICassiusSubscriberInterface si)
 throws CassiusNSException;

// Pull notification
 public void pullNotifications (
 ICassiusSubscriberInterface si,
 ICassiusSubscription subscription, boolean delete)
 throws CassiusNSException;
 public void pullNotifications (
 ICassiusSubscriberInterface si,
 ICassiusSubscription subscription,
 long since, boolean delete)
 throws CassiusNSException;
 public void clearNotifications(String accountName,
 long olderThan) throws CassiusNSException;
}

4.3.2 EDEM
Expectation Driven Event Monitoring (or EDEM) (Hilbert and Redmiles 1998) is an ap-

proach to software usability testing based on the concept of expectations (common sequences of
steps that represent user interface interactions). Through the direct monitoring of applications de-
ployed to end-users computers, EDEM detects, summarizes and logs invalid or unexpected se-
quences of user interface events. This information is periodically sent to software developers and
interface designers, thus helping in the resolution of common usability problems. The EDEM ap-
proach is illustrated in Figure 26.

UCI-ISR-09-3 - August 2009

60

Figure 26 EDEM approach summary

EDEM relies on a core publish/subscribe component that is responsible for detecting and re-
cording sequences of events according to a set of rules (subscriptions defined in terms of Event-
Condition-Actions (or ECA rules)). From the point of view of the publish/subscribe infrastruc-
ture, EDEM requires the following features: event content-based filtering; event pattern detection
supporting disjunction, conjunction and exact sequence match, and ECA rules. It also requires a
way to store temporary results in the form of system properties, expressed as attribute/value tu-
ples. Rules are special abstract data types that combine patterns, actions (e.g. event recording or
counting) and a set of begin and end triggers. Triggers (or Guards) are pattern detectors based on
state changes or event occurrences. They are used to control the activation and deactivation of
actions within a ECA rule. EDEM event model is object-based (events are actual Java AWT
events). The notification model is implemented by individual rules that can either push, summa-
rize and/or save events for further analysis in the system state space. The routing is content-based,
directed by subscription filters. Finally, the protocol model supports tuple manipulation that al-
lows the storage, and further retrieval of event logs.

EDEM reference API is shown in Table IV. It supports both tuple manipulation for persis-
tency and publish/subscribe based on filters, patterns and rules. Note that subscriptions are ex-
pressed as objects in the target programming language, in a way similar to that used by Siena, for
example.

Table IV EDEM publish/subscribe core reference API

public interface IEDEMNotificationServerAPI {

 // State manipulation operations
 void setState(String key, String value);
 void setState(String key, int value);
 String getState(String key);
 String getIntState(String key);
 void removeState(String key);

 // publication and subscription primitives
 void publish(IEDEMEvent event);
 void subscribe(ISubscriberInterface si, IEventFilter filter);

UCI-ISR-09-3 - August 2009

61

 void subscribe(ISubscriberInterface si, IStateFilter filter);
 void subscribe(ISubscriberInterface si, IPattern condition);
 void subscribe(ISubscriberInterface si, IRule rule);
 void unsubscribe(ISubscriberInterface si);
 void unsubscribe(ISubscriberInterface si, IEventFilter filter);
 void unsubscribe(ISubscriberInterface si, IStateFilter filter);
 void unsubscribe(ISubscriberInterface si, IPattern condition);
 void unsubscribe(ISubscriberInterface si, IRule rule);
}

4.3.3 IMPROMPTU
IMPROMTU (DePaula, Ding et al. 2005) is an ad-hoc peer-to-peer file sharing desktop ap-

plication. IMPTOMPTU allows users to share files in an ad-hoc way. It supports different types
of visibility (see, read, write and persistent), and notify users of events such as file read, open,
write, move and others. It is built on top of a topic-based publish/subscribe bus that connects all
the peers in the network. This event bus is self configurable, i.e. it automatically locates and con-
nects to other peers in the network, forming a virtual event bus. IMPROMPTU uses events to
synchronize the user interfaces of each peer and to represent timely file manipulation notifica-
tions of changes in visibility or different read/write accesses. IMPRMPTU’s architecture is shown
in Figure 27.

Figure 27 IMPROPTU high-level architecture

Impromptu publish/subscribe bus is topic-based. Events are record-based, representing either
as File or GUI events. The protocol model supports peer location via IETF Zeroconf3 multicast-

3 http://www.zeroconf.org/

UCI-ISR-09-3 - August 2009

62

DNS (or mDNS), and handles the dissemination of events among all peers in the network. The
publication model supports special filters that remove repeated events, within a short time inter-
val, before they are propagated to other IMPROMPTU peers. This feature is important to reduce
the traffic of events in the network. The IMPROMPTU publish/subscribe core reference API, as
shown in Table V, is very simple, it supports the basic topic-based routing of events between
peers.

Table V IMPROMPTU publish/subscribe infrastructure reference API

public interface IImpromptuNotificationServerAPI {

 public void publish (IImpromptuEvent event,
 boolean publishToPeers) throws ImpromptuNSException;
 public void subscribe (IImpromptuSubscriberInterface si,
 IImpromptuTopicSubscription subscription)
 throws ImpromptuNSException;
 public void unsubscribe (IImpromptuSubscriberInterface si,
 IImpromptuTopicSubscription subscription)
 throws ImpromptuNSException;
 public void unsubscribe (IImpromptuSubscriberInterface si)
 throws ImpromptuNSException;
}

Together, these three application domains and their reference APIs pose a diverse set of fea-
tures that exercise every publish/subscribe design dimension of Table I. A summary of the three
scenarios and their publish/subscribe infrastructure requirements are presented in Table VI.

Table VI Summary of features required by the three application domains
used in our case studies

 CASSIUS EDEM IMPROMPTU

Event Record-based Objects: AWT events Record-based

Publica-
tion

Publish to user account none Repeated events filter

Routing Content-based Content-based Topic-based

Subscrip-
tion

Content-based sub-
scription language

Content filters, pattern
matching, and rule objects

Topic filter represented as an
object

Notifica-
tion

Pull push, recording, summariza-
tion

Push

Protocol User: Account man-
agement
Event source browsing

User: tuple manipulation Infrastructure: P2P location
and publishing

4.4 Metrics suite
In our study, we are interested in analyzing and comparing the versatility of different pub-

lish/subscribe infrastructures. The versatility of an infrastructure is thus defined as a combined set

UCI-ISR-09-3 - August 2009

63

of qualities including: infrastructure maintainability and flexibility, as well as the overall system
usability, reusability, and performance. These software qualities are expressed in terms of source
code attributes such as number of lines of code, McCabe’s cyclomatic complexity (or CC), API
size, and scattering of concerns. In our measures, we many times adopt a concern-based ap-
proach, where we analyze different aspects of the infrastructure, groping code fragments into
crosscutting categories such as features, and role-based APIs.

In the following sections, we discuss the primitive metrics we adopted in the measurement of
higher-level software qualities.

4.4.1 Development effort
In our study, we quantify different software qualities such as cognitive distance (4.4.2), and

API usability (4.4.3) in terms of a common metric called development effort.

The development effort is measured as the product of two well known metrics: the number
of lines of code (or LOC), and McCabe’s cyclomatic complexity (or CC) (McCabe 1976). This
product is used to balance code complexity and its length, working as an indirect indication of the
developer’s effort.

4.4.2 Reusability: Cognitive distance
According to Krueger (Krueger 1992), the reusability of an infrastructure can be measured

by the concept of cognitive distance. Krueger defines cognitive distance as the work necessary to
reuse the infrastructure in a different context. This work requires the successive application of the
operations described in 2.1.2.

As illustrated in Figure 28, the cognitive distance represents the effort of adapting, extend-
ing, configuring and composing the features provided by each infrastructure in the implementa-
tion of the reference APIs. In our case studies, we measure the cognitive distance of each infra-
structure by calculating the development effort of each reference API when reusing each infra-
structure.

Figure 28 Cognitive distance as the total development effort to reuse a provided

middleware API in the development of an (ideal) required application-specific API

UCI-ISR-09-3 - August 2009

64

4.4.3 Usability: API size and task complexity
In order to analyze and compare the usability of the selected infrastructures, we employ

quantitative metrics such as API size and the development effort of performing common tasks
such as publishing or subscribing to events.

We define API size as the sum of the total number of public methods (M), fields (F), pa-
rameters (P), classes (C) and interfaces(I) of each infrastructure; whereas the API usability is
measured as the development effort (LOC*CC) of the most common API use cases such as publi-
cation of event, notification and subscription.

4.4.4 Modularity and scattering of concerns
Modularity and scattering of concerns are two important software attributes that correlate

with software maintainability and flexibility (Li and Henry 1993; Sullivan, Griswold et al. 2001).
In our analysis, we use two different metrics: CDC (Concern Diffusion over Components) origi-
nally proposed by (Garcia, Sant'Anna et al. 2005); and DOSC (Degree of Scattering over Com-
ponents) originally discussed at (M. Eaddy and Murphy 2007), DOSC is a measure between 0
and 1. High DOSC (close to 1) indicates that the implementation of a concern is highly scattered
(less modular); whereas low DOSC (close to 0) indicates that the concern is localized in one class
(more modular).

UCI-ISR-09-3 - August 2009

65

Chapter 5. Case Studies
Implementation &
Data Collection

This chapter describes the implementation of the three reference APIs described in section
4.3, highlighting their main components and architecture. In doing so, this chapter’s goal is to
make explicit the major commonalities and differences between each publish/subscribe approach
when supporting different application domain requirements. We also discuss the measures
adopted in order to obtain a fair comparison between the case studies, including the data collec-
tion procedure, discussing some examples of measurements we performed.

5.1 Case study design & implementation chal-
lenges

When comparing heterogeneous software infrastructures, developed according to different
original goals, it is important to strive for a fair evaluation process. Different measures were
adopted in the design & implementation of our case studies to increase equitable comparison be-
tween the different approaches.

• First, we chose to implement the case studies ourselves to eliminate the variance that may
come by the use of different developers, at different levels of expertise.

• Second, we adopted best of breed design practices in all implementations (Gamma, Helm et
al. 1995), applying them consistently throughout the case studies.

• Third, we modularized common features into components that were reused throughout the
different implementations, this approach minimizes the variance between implementations.
We also adopted the same algorithms used by the original applications we supported.

• Fourth, we aligned the different implementations to follow the same task structure. This fa-
cilitates our data collection and analysis, and guarantees equality in the implementations of
each case study.

• Fifth, we strived, as much as possible, to base our implementations on the features already
provided by each infrastructure, thus avoiding the unnecessary implementation of features
that are natively supported by each system.

• Sixth, we compared the infrastructures based on the same set of concerns, originated from the
middleware (Emmerich 2000) and software engineering literature (Table I)

• Seventh, we conducted our performance benchmarks in the same set of machines (one client
and one server), connected via a 100 Mbps Local Area Network, thus providing a constant
environment.

These strategies collectively increase the likelihood that code style, application-specific al-
gorithms and overall implementation approaches were similar throughout our experiments, at the
same time that allows the strengths of each infrastructure to be reused as much as possible.

UCI-ISR-09-3 - August 2009

66

In the next sections, we describe, in more detail, the steps undertaken in our evaluation.

5.2 EDEM case study implementation
As discussed in section 4.3, an ideal publish/subscribe infrastructure, supporting EDEM re-

quirements need to provide the following features: event content-based filtering; event pattern
detection supporting disjunction, conjunction and exact sequence match; state change filters; and
rules supporting guards and actions. EDEM also requires the ability to store state properties and
variable values.

As shown in Figure 29, in our case study, we produced four distinct implementations for the
EDEM reference API. Note that while JavaSpaces, CORBA-NS and Siena are reused as black
boxes, YANCEES is reused as a grey box, i.e. it is extended from the inside, on its different
variation points. As a consequence, when reusing black box infrastructures, developers need to
provide extra threading and distribution capability to the infrastructure before wrapping the inte-
grated components beneath a common server API. This is not the case with YANCEES that, for
being extended in the server side, supports the reuse of its threading and distribution features.

Figure 29 EDEM case study main components

In Figure 29, boxes represent components; dashed vertical boxes represent individual im-
plementations used in our tests, for example: EDEM API implemented on top of JavaSpaces,
CORBA-NS, Siena, etc. Solid rounded boxes represent major components integrated in the pro-
duction of each implementation. For example, EDEM on Siena combines: the tuple space com-
ponent, the Siena notification server, server-specific event and tuple space adapters (that handle
the conversion between Siena and EDEM events, notifications, triggers and subscriptions), and a
common set of Pattern, Rule, Action and Guard implementations. Components that are shared
between two or more different implementations crosscut different dashed boxes.

UCI-ISR-09-3 - August 2009

67

5.3 IMPROMPTU case study implementation
As discussed in section 4.3.3, an ideal publish/subscribe infrastructure supporting IM-

PROMPTU requirements must provide a very fast publish/subscribe core that is able to automati-
cally find other peers in the network, thus creating a topic-based routing bus. This peer-to-peer
feature requires each router in the network to interact with the multicast DNS protocol, and to
multicast events to each other. The peer-to-peer event bus from IMPROMPTU operates over re-
cord-based messages representing repository and GUI events. It is also responsible for removing
repeated events, during publication, thus reducing the traffic in the network.

Figure 30 IMPROMPTU case study main components

These features are very unique to IMPROMTU. as a consequence, in the IMPROMPTU case
study implementation relied on different components as shown in Figure 30. The RepeatedE-
ventsFilter component removes repeated events as they are published; the Publish-to-Peers com-
ponent intercepts events as they are published, routing them to all known peers in the network.
The propagation of events between peer routers is mediated by the PeerPublisher component that
provides a back door in each router, allowing them to receive events from other peers; the
JmDNS component interacts with the mDNS protocol creating a model of all known peers in the
network.

5.4 CASSIUS case study implementation
CASSIUS reference API supports event source browsing protocol, event persistence with

pull notification, and a subscription language that allows sequence detection and content-based
filtering. In particular, as opposed to IMPROMPTU and EDEM, CASSIUS subscriptions are not
expressed as objects in the target programming language, but as text-based expressions. This re-
quires extra parsing, represented as CASSIUS Subscription Parser components in Figure 31.
Since YANCEES supports automatic subscription parsing, this feature comes “for free” in the
infrastructure.

UCI-ISR-09-3 - August 2009

68

Figure 31 CASSIUS case study main components

The pull notification feature of CASSIUS is similar to that provide by an e-mail server. Noti-
fications are stored in individual accounts defined by the different subscriptions that originated
them. As shown in Figure 31, this feature is implemented by queue components (notification
queues over push model) that store these notifications for further retrieval. This component is
shared by CORBA-NS and Siena subscriptions. Note that CORBA-NS pull notification model
was incompatible with the one used by CASSIUS. It does not provide persistency of events based
on individual subscriptions.

Since JavaSpaces already supports persistency, this feature is implemented using the read(),
notify() and take() commands of the tuple space in the JavaSpaces adapter. YANCEES supports
CASSIUS features through a set of protocol plug-ins and the pull notification plug-in that imple-
ments the queue of notifications for each subscription.

Finally, it is worth noting that, for our case studies, YANCEES was extended with a set of
domain-specific plug-ins. These plug-ins implement content-based and topic-based filtering, sup-
porting a subscription language that is feature-compatible to Siena.

5.5 Data collection
After the case studies implementation, we collected different measurements as discussed in

section 4.4. The data collection was performed in a semi-automatic fashion, as shown in Figure
32. Metrics such as Lines of Code (or LOC), and McCabe cyclomatic complexity (or CC) were
collected with the help of Eclipse Metrics plug-in4. Whereas metrics such a CDC and DOSC were

4 Eclipse Metrics Plugin: http://metrics.sourceforge.net/

UCI-ISR-09-3 - August 2009

69

collected using ConcrenTagger5, a tool, based on ConcernMapper (Robillard and Weigand-Warr
2005), that allows the grouping of code fragments (methods, interfaces, and classes) into con-
cerns. These results were combined and analyzed with the help of spreadsheets and charts.

Figure 32 Metrics gathering and analysis process

The source code of the case studies ,the ConcernTagger and ConcernMapper databases, and
the spreadsheets used in our analysis are available in the website:
http://www.isr.uci.edu/projects/yancees/tradeoffs

5.5.1 Concern tagging criteria
When comparing different infrastructures through different metrics, the devil resides in the

details. Divergences in the measurements criteria may favor one infrastructure or case study over
another, invalidating the results. In order to achieve a fair comparison between the different infra-
structures, the concern tagging procedure needs to follow a common criteria. In our evaluation,
concerns are either functional requirements, as publish/subscribe domain and middleware specific
features; and non-functional requirements, such as versatility software qualities discussed in
Chapter 2. Table VII summarizes the sets of concerns we measured in the selected infrastructures
and their implementations.

5 http://sourceforge.net/projects/concerntagger/

UCI-ISR-09-3 - August 2009

70

Table VII List of major publish/subscribe concerns used as tagging criteria

Functional requirements Non-functional
requirements

Domain-specific
concerns

Middleware
 concerns

Optional
concerns

Versatility
concerns

• Event representation
• Subscription
representation
• Publication
• Routing
(order and content)
• Notification policies
• Protocols
• Parsing
(subsc. languages)

• Multi-Threading
• Distribution
• Logging
• Connection

• Transactions
(JavaSpaces)
• Leasing
(JavaSpaces)
• Access control
(JavaSpaces)
• Session
 persistence
(CORBA-NS)
• Management
(CORBA-NS)

• Usability
• Maintainability
• Reusability
• Extensibility
• Configurability
• Performance

Whereas domain and middleware concerns are functional requirements, being easily identi-
fiable in the code; versatility concerns are non-functional requirements, that indirectly depend on
different software characteristics. As such, they are usually measured indirectly, through case
studies and benchmarks. For example, usability is measured in terms of the API size and specific
tasks development effort; flexibility is measured as the change impact of domain-specific features
evolution; and reusability is given by the total development effort of each case study. The full set
of concerns and the measures we adopted in our case studies are further described in Table VIII.

Table VIII Concern tagging criteria and some of their examples

 CONCERN DESCRIPTION EXAMPLES

Event Classes and inter-
faces that are used
to represent events

• Notification class in Siena;
• YanceesEvent class in YANCEES
• Entry interface in JavaSpaces
• StructuredEvent, Property and Any classes in

CORBA-NS

Subscription Classes interfaces
and API calls used
to represent sub-
scription expres-
sions, as well as
subscribe API
calls

• Filter, Pattern, Op, AttributeConstraint
classes plus subscribe() commands in Siena;

• GenericSubscription class, that wraps XML
subscriptions, plus subscribe() commands,
and internal subscription parsing classes in
YANCEES.

• Entry interface plus read() and notify() com-
mands in JavaSpaces

• Classes representing subscription commands,
and filter manipulation method calls in
CORBA-NS proxies.

Fu
nc

tio
na

l r
eq

ui
re

m
en

ts

D
om

ai
n

sp
ec

ifi
c

Publication Classes, interfaces • publish() command in Siena;
• publish() command with GenericFilter, Fil-

UCI-ISR-09-3 - August 2009

71

and API calls that
support the publi-
cation process.
Includes publica-
tion filters

terInterface and other filter management
classes.

• write() command in JavaSpaces
• CORBA-NS allows the definition of publica-

tion filters. push() and filter manipulation
commands in CORBA-NS proxies.

Routing Classes, interfaces
and APIs that im-
plement the
matching of sub-
scriptions to
events

• Patternmatcher and Posets in Siena;
• EventDispatcher and auxiliary interfaces in

YANCEES.
• EntryHandle and internal queues in JavaS-

paces
• EventQueueFilter and auxiliary interfaces in

CORBA-NS.

Notification Classes, Interfaces
and APIs that
handle the post-
processing of
events that were
matching, includ-
ing filtering and
delivery of events
to listeners

• notify() command in the PatternMatcher
class and Notifiable interface in Siena.

• NotificationPlugin, NotificationManager
classes and SubscriberInterface in YAN-
CEES.

• Watcher and Notifier classes in JavaSpaces
• Puller, Pusher, Orderer and Queue Dis-

patcher and Receiver classes in CORBA-NS.

Protocol Classes interfaces
and API calls that
handle user and
infrastructure pro-
tocols

• advertise() commands in Siena.
• ProtocolManager, ProtocolFaçade and other

protocol implementation classes in YAN-
CEES.

• contents() command and its auxiliary classes
in JavaSpaces

• Management and monitoring commands in
CORBA-NS API.

Distribution Classes and inter-
faces that support
communication

• Java RMI Remote interfaces and classes in
JavaSpaces (OutriggerServerImpl) and
YANCEES (YanceesRMIClient) and auxil-
iary classes

• SEMP and auxiliary classes that interact with
Sockets API on Siena

• ORB IDL descriptions of its interface (not
counting the automatically generated code)

M
id

dl
ew

ar
e

Threading Classes and meth-
ods that support
multi-threading
and concurrency

• Threads inside HierarchicalDispatcher
threading methods in Siena

• Threads inside RemoteYanceesImplementa-
tion class in YANCEES

• OutriggerServerImpl, Wrrapper and Opera-
tionJournal in JavaSpaces

• Puller, Pusher and EventQueue classes in
CORBA-NS

UCI-ISR-09-3 - August 2009

72

 Logging Classes and meth-
ods that imple-
ment logging

• Logging and Monitor classes in Siena
• YANCEES does not provide logging in its

core. Instead, it logs few events to the stan-
dard output and delegates logging to plugin
developers.

• JavaSpaces’ logging is provided by the JINI
platform in which it is based

• Logger class and log methods in different
classes from CORBA-NS

O
pt

io
na

l

Transaction,
Leasing,
Access Con-
trol, Man-
agement,
Session per-
sistence, etc

Classes and inter-
faces that imple-
ment these fea-
tures

These concerns are specific to each infrastruc-
ture, and are tagged accordingly as shown in
Table VII.

Usability Public API size
and analysis of
complexity of the
most common
pub/sub tasks

Individual task analysis of common pub-
lish/subscribe commands plus
• API size of HierarchicalDispather, Filter,

Pattern, Op, AttributeConstraint, and Notifi-
cation classes in Siena

• API size of YanceesClient, SubscriberInter-
face and YanceesEvent classes in YANCEES

• JavaSpaces’ logging is provided by the JINI
platform

• Logger class and log methods in different
classes in CORBA-NS

Maintain-
ability

The average
modularity of ba-
sic pub-
lish/subscribe con-
cerns

Calculated as the average modularity of each
infrastructure based on the individual modular-
ity of domain-specific concerns (measured in
DOSC).

Reusability Total development
effort to reuse an
infrastructure for
each case study

Total development effort (LOC*CC), for each
infrastructure, for the three case studies we pro-
pose.

Reusability
(adaptation)

Costs of convert-
ing from and ap-
plication-specific
to infrastructure-
specific data struc-
tures

The costs of converting EDEM, CASSIUS and
IMPROPTU event and subscription formats into
the native formats of CORBA-NS, Siena, Ja-
vaSpaces and YANCEES

N
on

-f
un

ct
io

na
l r

eq
ui

re
m

en
ts

Extensibility Number of lines of
code that explic-
itly support exten-
sion towards the
domain-specific
features

YANCEES is the only infrastructure that
matches this criteria. It provides extensibility
towards pub/sub design dimensions, in the form
of variation points such as: PluginInterface,
EventDispatcherInterface, FilterInterface and
others.

UCI-ISR-09-3 - August 2009

73

Configura-
bility

Classes, methods,
libraries and files
that allow the se-
lection between
different domain-
specific features

• Siena supports the configuration of the to-
pology of its network of routers, but provides
no configuration of its provided features.

• In YANCEES, domain-specific configurabil-
ity is provided by its ArchitectureManager,
SubscriptionManager, PluginRegistry and
additional configuration and yan-
cees.property files

• JavaSpaces supports the configuration of its
entry repository but there is no domain-
specific configurability.

• Factory methods, QoS properties, and build-
ers support the creation of application-
specific event channels in CORBA-NS

Flexibility Change impact of
modifying classes
and interfaces that
implement do-
main-specific con-
cerns

For example, for the event representation best
case scenario:
• Notification, AttributeValue, AttributeCon-

straint and internal classes that perform event
matching classes in Siena

• GenericEvent and YanceesEvent classes in
YANCEES (plug-ins may need to change)

• Different internal classes that, through reflec-
tion, manipulate Entry classes in JavaSpaces

• Different event manipulation classes and me-
thods in different CORBA-NS proxies

UCI-ISR-09-3 - August 2009

74

Chapter 6. Study Results

After representing each application domain requirement in terms of three reference APIs
discussed in section 4.3, we implemented these APIs reusing the selected publish/subscribe infra-
structures of section 4.2, and collected different measures as described in section 4.4 and 5.5. We
also implemented each API from scratch, in order to better understand the implicit development
costs of each case study.

In this chapter, we present the measurements of our case studies according to two perspec-
tives: infrastructure developers’ and infrastructure users’. Whenever possible, we also discuss the
root causes of the measurements we obtained in order to better explain some of the results we
present.

6.1 Infrastructure developers’ perspective
From the point of view of the infrastructure developers, the different design decisions

adopted in the construction of the publish/subscribe systems have positive as well as negative
impacts to important software qualities such as maintainability and flexibility. They also intro-
duce additional types of concerns (or features) to the infrastructure design. In this section, we dis-
cuss the details of the analysis of these main concerns, analyzing their maintainability and flexi-
bility.

6.1.1 Publish/subscribe main development concerns
Even though apparently simple, publish/subscribe infrastructures can become very complex

pieces of software, supporting an increasing number of features driven by the need to support ap-
plication-specific requirements, network protocols, as well as the very generality or flexibility
characteristics of each infrastructure. In order to understand the impact of these concerns in the
software complexity, we first performed a concern-based analysis (Robillard and Murphy 2007)
of each one of the selected infrastructures. This analysis was performed by the direction inspec-
tion of the infrastructures code. In this inspection, we categorized the infrastructure’s code ac-
cording to the concerns described in Table VIII of section 5.5.

6.1.2 Quantifying publish/subscribe main development
concerns

The different versatility approaches analyzed in our case studies support heterogeneous sets
of the concerns summarized in Table VIII. By measuring the distribution of concerns in the se-
lected infrastructures, we obtained the chart shown in Figure 33, which shows the total size of
each infrastructure based on the concerns of Table VIII. Likewise, Figure 34 shows the propor-
tion of these concerns with respect to the total infrastructures sizes.

Note that, from all the available versatility concerns of Table VIII, Figure 33 and Figure 34
only represent extensibility and configurability. These two versatility concerns can be measured
by the number of variation points and code devoted to configuration management in the code,
allowing them to be quantified in terms of infrastructure’ lines of code. The other versatility con-

UCI-ISR-09-3 - August 2009

75

cerns as: reusability, usability, maintainability and performance, are not directly correlated to
LOC alone. They require specific measurements, and will be analyzed separately.

Figure 33 Infrastructures size by concerns

As shown in Figure 33, the amount of domain-specific, middleware, configuration & exten-
sion, and optional features supported by each infrastructure vary considerably. Both JavaSpaces
and CORBA-NS support a considerable amount of optional features. These features can be se-
lected by setting specific parameters on JavaSpaces API commands, or by using specialized
commands in the CORBA-NS API. Both Siena and YANCEES support no optional features:
while Siena strives for minimalism and generality, YANCEES supports the exact set of features
required by each application domain.

Configuration and Extension concerns are only supported by YANCEES and CORBA-NS
(configurability, in the case of CORBA-NS, and both extensibility and configurability in the case
of YANCEES).

UCI-ISR-09-3 - August 2009

76

Figure 34 Proportional size of major infrastructure concerns

As seen on Figure 34, configuration and extension concerns represent more than 45% of the
total size of YANCEES infrastructure, a consequence of its design for flexibility.

The amount of middleware concerns vary according to each approach. Compared to other in-
frastructures, Siena has a relatively large amount of code devoted to distribution (about 2/3 of its
total size). This is a consequence of the native implementation of its communication and adver-
tisement protocols using Sockets. This design decision, while improves the overall performance
of Siena (as will be discussed in 6.2.6), results in more lengthy and less modular code (the modu-
larity is shown in Table IX). All other infrastructures rely on remote method invocation (or RMI)
mechanisms. Both YANCEES and JavaSpaces are built on top of Java RMI; whereas CORBA-
NS relies on the distribution facilities of CORBA ORB (Siegel 1998), that implements RMI ac-
cording to the OMG-OMA specification (Group 2003). This design decision explains their
smaller amount of middleware concerns if compared to Siena.

Overall, the more features an infrastructure provides, the higher is its likelihood to support
different application domain requirements. However, as will be further analyzed, this can result in
larger code size, lower maintainability and poorer performance (see 6.2.6). For example, in terms
of code size, both Siena and YANCEES are relatively small implementations, requiring less than
1500LOC, as seen in Figure 33. Both CORBA-NS and JavaSpaces have larger implementations,
a consequence of the support for optional features.

6.1.3 Infrastructures Maintainability
The different development concerns discussed in the previous sections are not easily to

modularize. Instead, they usually become scattered over many infrastructure components (Tarr,
Ossher et al. 1999). The more scattered these concerns become, the more difficult it usually is to
extend and maintain the infrastructure (Kim and Bae 2006).

In our use cases, we estimate the maintainability of each infrastructure, in terms of the
modularity of their major concerns, as previously shown in Table VIII. We measure modularity
using the DOSC metric. The results of this concern-based measure are shown in Table IX.

UCI-ISR-09-3 - August 2009

77

Table IX Infrastructure Modularity per concerns
 (Degree of Scattering of Concerns)

Infrastructure
Domain-
specific Middleware

Configuration
& Ext. Optional

CORBA-NS 0.93 0.95 0.87 0.94

JavaSpaces 0.66 0.59 N/A 0.71

Siena 0.66 0.84 N/A N/A

YANCEES 0.68 0.75 0.76 N/A

As seen on Table IX, JavaSpaces and Siena present the highest modularity (lowest DOSC)
with respect to publish/subscribe domain-specific concerns, being closely followed by
YANCEES. Overall, YANCEES core modularity is jeopardized by the complexity of its configu-
ration and extension concerns; whereas Siena’s modular design is jeopardized by its middleware
concern implementation. For example, in YANCEES, different extension points exist, one for
each design dimension, which scatters the domain-specific concerns throughout individual inter-
faces and abstract classes; whereas in Siena, the different subscription commands need to be
mapped to protocol primitives in the communication protocol layer, which scatters this concern
throughout different abstraction layers and classes.

When considering the average modularity of each infrastructure, including the core plug-ins
used to configure YANCEES with a Siena-compatible set of features, we obtain the chart of
Figure 35 as follows.

Figure 35 Average infrastructures modularity

UCI-ISR-09-3 - August 2009

78

As shown in Figure 35, among the analyzed infrastructures, CORBA-NS presents the high-
est average DOSC, being the least modular. This is a consequence of its large set of features, the
need for configuration mechanisms, and the way features are decomposed i.e., CORBA-NS is
implemented in the form of proxies and methods that provide different implementations, for each
variant feature in the system. In particular, different methods and proxies are defined for each
event variant (Structured, Property and Any), notification policy and role (publisher or sub-
scriber). For example, the support for Structured Events is scattered throughout producer and
consumer proxies, pushers and pullers, as well as different event queues in its CORBA-NS core.
The result is increased maintenance costs of particular features.

Even though YANCEES was not the most modular infrastructure (loosing for JavaSpaces),
the extensions developed using YANCEES are relatively modular (see YANCEES Core Plugins
in Figure 35). This comes as a consequence of the design for extensibility of YANCEES, which
supports extensions along the main publish/subscribe dimensions.

Even though the separation between publish/subscribe main concerns is a good indicator of
maintainability, it does not guarantee that the infrastructure is flexible (extensible and configur-
able). The reason for that, are the fundamental, configuration-specific and technological depend-
encies discussed in section 2.2, which defines both data and control dependencies. Hence, we also
analyzed the flexibility of each infrastructure, using a more direct change impact analysis as fol-
lows.

6.1.4 Flexibility (feature change impact)
Parnas defines flexibility as the ability of software to be extended and contracted to fulfill

different purposes (Parnas 1994). As noted by, Eden & Mens (Eden and Mens 2006), flexibility is
not an absolute software quality. Instead, software is more or less robust toward particular (usu-
ally planned) classes of changes. In particular, Eden & Mens define flexibility as the complexity
of the task required to adapt or evolve a system from an initial stage (or implementation), to a
new implementation stage, that satisfies a set of new requirements triggered by shifts in the prob-
lem domain. For such, an evolution step, or adjustment, needs to be applied to software. The
flexibility of software with respect to that evolution step is defined as the computational complex-
ity of the meta-program that adjusts the original code to meet a new requirement. In other words,
it is a direct function of the impact of an evolution step in the software main components.

In this section, we investigate the ability of each infrastructure to support changes along the
main variability dimensions of publish/subscribe infrastructures (described in Table I). For such,
we measure the change impact of modifying or adding concerns to each infrastructure using the
CDC metric. For this particular case, this metric represents the number of classes potentially af-
fected (changed, added, removed) by the implementation of a feature in that particular pub-
lish/subscribe design dimension.

When measuring a particular CDC for a feature, we first represent these concerns as possibly
overlapping sets of classes and interfaces, using ConcernTagger. The identification of each con-
cern was performed manually, by inspecting the code and tagging the methods that belong to each
concern. We also utilized references to important objects, for example event representations, to
identify classes and interfaces that would be potentially impacted by changes in key data repre-
sentations such as event format and subscriptions.

The result of our analysis is shown in Figure 36, which calculates the impact, in terms of
number of classes and interfaces affected, in the worst case scenarios, when a new feature is
added, removed or modified in each major publish/subscribe variability dimension. In particular,
for the subscription and event models, we also calculate the average scenarios, which are less se-
vere classes of changes, made possible by the adoption of generalized data representations.

UCI-ISR-09-3 - August 2009

79

In Figure 36, the subscription change impact worst case scenario is calculated by counting
all the classes and references that depend on the standard event or subscription representations;
whereas the best case scenario assumes changes in the event and subscription representation
keeping existing generalized interfaces fixed.

Figure 36 Change impact analysis per publish/subscribe concern (measured in
terms of concern diffusion over components) for each infrastructure

One of the most prominent features of Figure 36 is the impact of event change in the infra-
structures, followed by changes in the subscription format and in the routing strategies. These
measures reveal the impact of fundamental dependencies in the publish/subscribe domain, which
makes the development of flexible infrastructures challenging. In particular, the dependencies
between event representation, routing strategies and subscription filters are the most important
ones in the publish/subscribe domain. They define the routing algorithm supported by the infra-
structure and restrict the independent evolution of each one of these dimensions as discussed in
section 2.2.2).

6.1.5 Discussion: the role of generalization, variation
and configuration management in the reduction of
change impacts

In order to improve the infrastructure flexibility, preventing changes driven by fundamental
problem dependencies, different strategies have been adopted in the development of the versatile

UCI-ISR-09-3 - August 2009

80

infrastructures we analyzed. These are: generalization (Siena, JavaSpaces, YANCEES), variation
(CORBA-NS) and configuration management (YANCEES).

For example, even though JavaSpaces event model has a high change impact, it uses gener-
alized tuples as both event and subscription representation. It then relies on reflection to match
tuples to templates (anti-tuples). This generalization permits variations in the event representation
(in terms of its set of attributes), without impacting the existing routing and subscription algo-
rithms, thus reducing the change impact in the average case (see Figure 36).

In another example, both Siena and YANCEES events are represented as attribute/value
pairs that support both object and record-based events. Hence, instead of modifying the event
format to represent specific Objects or Records, users can convert and encode these external rep-
resentations as attribute/value pairs, rebuilding the original representations once notifications are
routed, thus preventing changes in the implementation of these infrastructures.

Finally, CORBA-NS supports multiple events through variation: by simultaneously provid-
ing different event representations. However, in order to prevent the proliferation of routers, sup-
porting same algorithms for different event formats, CORBA-NS adopts a common internal event
representation. Events of different types are automatically converted into StructuredEvents before
being routed by the infrastructure. This approach, while effective, adds more complexity to the
infrastructure implementation.

As shown in Figure 36, YANCEES presents very low change impact for the main variability
dimensions. This comes from the use of generalized algorithms and interfaces, and the fact that
YANCEES is a component framework, a partial implementation which functionality is provided
by plug-ins.

This approach, however, has some disadvantages: it implicitly delegates the management of
fundamental and configuration-specific dependencies to plug-in developers. For example, plug-
ins in different dimensions must be developed to be compatible with certain kinds of events and
timing constraints. Hence, unannounced changes in the event representation will result in incom-
patibilities on existing plug-ins. Moreover, it is usually the case that plug-ins depend on other
plug-ins through configuration-specific dependencies, for example, a pattern detection is depend-
ent on filters and routing algorithms guarantees. Chances in these parameters may result in differ-
ent timing or order of events, invalidating the pattern detection algorithm (see Figure 10).

Hence, in order to address these issues, and improve the usability of the infrastructure, a
great amount of effort is spent in configuration management (see Config&Extension concerns in
Figure 33), that enforces compatibility relations based on user-provided information in the plug-
ins manifest. Moreover, as previously discussed, the event representation was fixed, and a general
attribute/value pair representation was adopted (see Figure 4).

Finally, when comparing the routing strategy change impact, both YANCEES and CORBA-
NS have relatively lower change impacts than JavaSpaces and Siena. This comes from the fact
that both infrastructures support the simultaneous use of different routing strategies. These strate-
gies are modularized into components that are selected at runtime. For example, CORBA-NS
provide different event queues, supporting QoS such as LIFO, FIFO; as well as event formats as
Any and StructuredEvent. YANCEES supports the installation of different routers, that can be
developed to support different event formats. In particular, the ability to support different routing
strategies support fast routing algorithms that match specific event representations and subscrip-
tion commands. Hence, variation represents another strategy to tame the effects of change, while
improving performance.

UCI-ISR-09-3 - August 2009

81

6.2 Application developers’ perspective
In the previous section, we discussed the software qualities that are important from the per-

spective of infrastructure developers. In this section, we turn our attention to application develop-
ers.

From the application developers’ perspective (infrastructure users), it is important to under-
stand the usability, reusability and performance characteristics of each versatility approach.
These software qualities are analyzed in the following sections.

6.2.1 API Usability
The usability of an infrastructure is a direct function of its Application Programming Inter-

face (or API). The development of good APIs is not a trivial task and faces fundamental chal-
lenges. The first challenge is the problem discussed by Kiczales (Kiczales 1995), the trade-off
between abstraction level and fitness to the problem. The higher level and closer to the applica-
tion domain concerns an API becomes, the easier it is the development of software. However, in
the design of specialized APIs, different decisions, simplifications and assumptions are made,
which usually lead to the next problem: abstraction mismatch. Abstraction mismatch (Garlan,
Allen et al. 1995) occurs when APIs, supporting features that apparently fit the problem, have
subtle semantic differences that hinder their direct use by the application. The result is the need
for extra adaptation, and extension, which leads to performance and development costs. In worst
case scenarios, these differences can represent complete mismatches (Kiczales 1995).

In our studies, we collected three major measures: API Size, API separation of concerns, and
the complexity of common application tasks when using the API. For such, we collect the data
based on different use cases (or tasks).

6.2.1.1 Task-based analysis

Publish/subscribe infrastructures support different users fulfilling different roles, and per-
forming different tasks. As a consequence, a publish/subscribe infrastructure API can be analyzed
in terms of the most common use case scenarios it supports. For example, Siena’s API is com-
posed of different classes such as: HierarchialDispatchrer, which implements the main pub-
lish/subscribe commands, and the objects that represent events (Notification), subscriptions (Fil-
ter, Pattern, Constraint, Op, etc.) and listeners (Notifiable). Every publish/subscribe API must
support two major tasks: the publication and subscription/notification of events. The publication
API size can be measured by counting the number of methods and parameters that deal with the
publication of events. In the Siena example, it includes the publish() command and the Notifica-
tion, AttValue interfaces, that are used to represent the events being published. Likewise, sub-
scriptions tasks are supported by a set of subscribe() and unsubscribe() commands, together with
the Filter, Pattern, Constraint and Op parameters they require, and the Notifiable interface, that
also must be implemented by subscribers in order to receive notifications.

Hence, in a task-based analysis, the API concerns vary according to each typical use case
scenario, and must be calculated based on the methods/objects used during these typical interac-
tions with the infrastructure. In the following section, we analyze the selected infrastructures
APIs with respect to their size, separation of concerns, and development effort according to
common use cases (or tasks).

UCI-ISR-09-3 - August 2009

82

6.2.1.2 API Usability: Size

The programming effort necessary to perform the most common operations of an API, as
well as the total API size are good indicators of how easy it is to learn and reuse an infrastructure.
The lengthier an API is, the more difficult to learn it becomes. Likewise, the higher the effort to
perform common API operations, the higher the overall application development effort (see sec-
tion 7.2).

In Figure 37, we present a task-based analysis of the client API sizes. For completeness, in
the case of YANCEES, we also include the server side API, YANCEES(Server), which supports
extension and reflection. We also present, in a separate bar, YANCEES (Client) and YAN-
CEES(Server) APIs tougher as YANCEES(Client &Server).

Different factors such as subscription format, the support for optional features, and the use of
generalization can impact theAPI size. We further discuss the impact of different design decisions
in the API sizes shown in Figure 37 as follows.

Figure 37 Task-based analysis of the API sizes of the infrastructures

The impact of subscription format. The way subscriptions are represented can signifi-
cantly impact the size of an API. For example, from the point of view of API size and semantics,
both YANCEES and Siena APIs are very similar. They both provide a simple set of publish() and
subscribe() commands; and both support the same publication and subscription tasks. They, how-
ever, differ in the way subscriptions are represented. While Siena relies on objects such as Filter
and Pattern to express subscription constraints, YANCEES uses subscription languages ex-
pressed in XML. As a consequence, YANCEES API does not have objects such as filters, pat-
terns and operators. The result, as seen on Figure 37, is that YANCEES (client) has a smaller
publish/subscribe API size than Siena.

UCI-ISR-09-3 - August 2009

83

The impact of optional features. Other factors also impact the API size, such as the number
of optional features (either through methods or parameters). For example, CORBA-NS API size
is the largest of all the analyzed infrastructures. This is a consequence of the large number of op-
tional features it supports, and the way these options are distributed over different proxies, event
representations and administration interfaces. For example, CORBA-NS publisher API has dif-
ferent publication methods, replicated over different proxies, one for each kind of event. A unique
feature of CORBA-NS is its configuration API, that allows users to control how the proxies are
connected to form customized event channels. Additionally, CORBA-NS protocol API provides
management interfaces that allow the monitoring of the different components in the system. To-
gether, these individual APIs contribute for the overall API size of CORBA-NS.

Note that differently from YANCEES, that separates client and server-side APIs, automating
the configuration management, CORBA-NS requires users (application developers) to program-
matically configure the infrastructure before utilizing it to their needs. This lack of automation
and separation of concerns, contributes to the large size of CORBA-NS API.

The impact of generalization. JavaSpaces provides the smallest API of all infrastructures
evaluated, a consequence of generalization and simplicity of design. Instead of supporting differ-
ent features by means of different proxies, as in CORBA-NS, JavaSpaces API provides com-
mands with optional parameters. In these commands, features such as leasing and transactions
can be selected, by means of valid operation parameters, or ignored, by means of “don’t care”
values. For example, a positive leasing parameter turns on this feature, whereas negative values
indicate no lease; a valid transaction ID indicates a begin or end of a transaction, whereas 0 indi-
cates no transaction use.

Likewise, JavaSpaces does not prescribe any proprietary event or subscription format. Both
subscriptions (anti-tuples) and events (tuples) are represented as regular objects, that implement a
standard marker interface. As a consequence, the API size is significantly reduced.

This combined set of design decisions results in an API that supports the variability of appli-
cation domains, and different optional features through a single small API. The cost to be paid for
this approach, however, is the increase of the client-side code complexity, that needs to handle
exceptions produced by features that are not necessarily in use. For example, in JavaSpaces,
transaction and leasing exceptions must be handled for every write(), read(), take() and notify()
command, even though they may not be used in a method call. This increases code cyclomatic
complexity (as shown in Figure 38), which may lead to errors.

6.2.1.3 API Usability: separation of concerns

Another factor to be considered is API separation of concerns. The modularization of an API
according to different user roles and tasks (for example: publishers, subscribers, user protocols,
and configuration & extension) can improve the usability of an infrastructure by exposing only
the necessary concerns to each task. This prevents, for example, the unnecessary handling of ex-
ceptions that are not related to the task/user role at hand, and increases the signal-to-noise ratio
(Lidwell, Holden et al. 2003) of the system. The results are simpler, easier to learn, and more
concise APIs.

We measured the modularity of the selected infrastructures APIs, according to these tasks as
shown in Table X, using the DOSC metric. The smaller the DOSC, the more modular an API is.

UCI-ISR-09-3 - August 2009

84

Table X Infrastructure’s API modularity (DOSC)

CONCERN CORBA-NS Siena YANCEES Java Spaces

Configuration 0.67 N/A N/A N/A

Extension N/A N/A 0.90 N/A

Reflection N/A N/A 0.58 N/A

Initialization 0.53 0 0 0.31

Protocol 0.90 0 0 N/A

Publication 0.85 0.24 0.11 0.64

Subscription 0.87 0.74 0.14 0.77

As seen in Table X, the lack of separation of between configuration and regular usage con-
cerns in CORBA-NS, and the support for optional features in JavaSpaces, decrease their publica-
tion and subscription API modularity. This is not the case with YANCEES, which provides con-
figuration management automation, and application-specific features. The low DOSC values for
both publication and subscription tasks, achieved by Siena are a consequence of its simple API,
and the non-existence of extension and configuration concerns built into the software (these con-
cerns are delegated to the application developers).

From the point of view of the extensibility interface, YANCEES presents a high DOSC. This
comes from the fact that the extensibility interface of YANCEES is a combination of individual
interfaces, one for each variation point. When considered together, as a single extensibility con-
cern, the DOSC increases.

6.2.1.4 API Usability: common task analysis

Every API subsumes different use case scenarios that prescribe the order its methods should
be called in support of more complex features. The more complex these steps are, the lower the
usability of the infrastructure becomes. Poor designed APIs usually leads to lengthier, more com-
plex and difficult to understand code, leading to less efficient and bulkier programs (Henning
2009). A good API design is one that minimizes the development effort of its users, for the tasks
it was designed to support, resulting in code that is simple, efficient and easy to understand.

We analyzed the selected infrastructures, measuring their ability to support the most com-
mon publish/subscribe operations as shown in Figure 38 as follows.

UCI-ISR-09-3 - August 2009

85

Figure 38 Comparative development effort of most common publish/subscribe
tasks (based on EDEM benchmark code)

Figure 38 and Figure 39 present the development efforts (measured in LOC*CC) of the most
common publish/subscribe operations. We use both EDEM and CASSIUS case studies as the
sources for our measures since they represent two different subscription approaches, i.e. text-
based (CASSIUS) and object-based (EDEM) subscription representations. We examined the fol-
lowing tasks:

• connectToServer(): represents the programming effort required to obtain a reference to the
notification service;

• createEvent(): represents the effort required to convert EDEM or CASSIUS event represen-
tations into the formats supported by each publish/subscribe infrastructure;

• createSubscription(): represents the development effort required to translate the application
domain subscription representation into (Objects in the case of EDEM and textual expres-
sions in the case of CASSIUS) into the format supported by each publish/subscribe infra-
structure;

• publish(): represents the task of publishing an event in the target infrastructure. It implicitly
calls creteEvent() method to perform the adequate data translation.

• subscribe(): represents the programmatic effort of subscribing to posting a subscription in the
target infrastructure. It implicitly invokes createSubscription() to convert the subscription be-
fore interacting with the target infrastructure.

With respect to the connection effort (connectToServer() task in Figure 38), CORBA-NS re-
quires users to utilize different factory objects to create event channels and filters, besides of in-
terconnecting different proxies in the process of subscription. This additional work reflects
CORBA-NS design decision of supporting fine-grained configurability, and to delegating these
concerns to the end-users. This design decision also results in high connectToServer() and sub-
scribe() efforts if compared to the other infrastructures.

JavaSpaces’s additional subscribe() effort is a result of its extra exception handling complex-
ity associated to the notify() command, which comes from the need to handle exceptions raised by
optional features such as transactions, access control and leasing.

UCI-ISR-09-3 - August 2009

86

The costs of parsing textual and object-based subscriptions. With respect to createSub-
scription() task of Figure 38, both CORBA-NS and YANCEES present high task complexity;
whereas Siena and JavaSpaces present similar complexity. This comes from the fact that both
YANCEES and CORBA-NS represent their subscription in the form of textual expressions;
whereas Siena and JavaSpaces use objects to represent filters and anti-tuples respectively.

In Figure 39 we see a more dramatic effect of the differences between object-based and text-
based subscription representations. The parsing of text-based subscriptions into either object-
based or other text-based approach can be costly. This comes from the fact that text-based sub-
scriptions are difficult to parse programmatically. The only case where text-based representations
of subscriptions provided an advantage was on YANCEES case. The use of XML subscriptions
required by CASSIUS application was a perfect fit for YANCEES, allowing the reuse of its inter-
nal parsing mechanism, freeing users from having to parse the subscription themselves.

By comparing the CASSIUS case study with EDEM, we observed that application domains
that require textual subscription representations must provide mechanisms for automatic parsing
of these subscriptions into programmatic representations. The lack of automation result in higher
adaptation costs. YANCEES was able to minimize these costs by supporting the automatic pars-
ing of XML subscriptions, a format that matched CASSIUS subscription format.

Figure 39 Comparative development effort of most common publish/subscribe

tasks (based on CASSIUS benchmark code)

Note that, overall, the development efforts of CASSIUS case study tend to be higher that the
ones in EDEM case study. This is not a consequence of the user of textual or object-based sub-
scriptions, but of the number of attributes in CASSIUS event and the differences in the subscrip-
tion languages of these two infrastructures.

6.2.2 Domain-specific concerns and their development
effort

Before analyzing the reusability of the different infrastructures in support of the selected ap-
plication domains, we turned our attention to the study of their requirements. Our goal is to un-
derstand the characteristics of each application domain, and the development effort their features

UCI-ISR-09-3 - August 2009

87

require. For such, we implemented the three reference APIs from scratch (on top of Java RMI),
and measured the development effort of the major publish/subscribe concerns. The results are
presented in Figure 40.

Figure 40 Comparing concern sizes of build-for-single-use (or BFS) implementa-

tions of each reference API used in our study

The development efforts represented in Figure 40 are a direct consequence of the complexity
of each domain-specific requirements. Both EDEM and CASSIUS are subscription-intensive ap-
plication domains, requiring expressive filtering capability. In particular, CASSIUS subscriptions
are expressed in XML, which requires extra code devoted to parsing. CASSIUS also requires
more complex content-based subscription routing, whereas EDEM routing algorithm is simplified
due to the use of fixed object-based events. EDEM support for rules, with different notification
policies, requires a higher amount of notification code. All application domains are also protocol-
intensive, requiring extra code to handle event source advertisement and browsing (CASSIUS),
tuple manipulation (EDEM), and peer-to-peer communication (IMPROMPTU). IMPROMPTU
also exercises the publication model with the need for repeated event filters and a publish-to-
peers component that work with protocol components to multicasts published events to all the
peers in the network.

In our case studies, we use these baseline development efforts to compare the impact of each
versatility approach in the development effort of each one of these concerns.

6.2.3 Case studies development effort
After analyzing the selected publish/subscribe infrastructures (section 6.1) and the domain

requirements of the selected case studies (section Error! Reference source not found.), we turn
our attention to the costs of reusing these systems in the implementation of the three reference
APIs we derived in section 4.3. In this section, we present the development effort (measured in
LOC*CC), for each case study, and discuss the main factors that contribute to this effort.

Different factors contribute to the development effort (or reusability) of the selected infra-
structures. In particular, we identified the following major factors:

The role of reuse strategy. While Siena, CORBA-NS and JavaSpaces are reused as black
boxes on top of which each reference API is implemented, YANCEES is reused as a grey-box,

UCI-ISR-09-3 - August 2009

88

i.e. the YANCEES server is customized with plug-ins and language extensions to best fit the each
API requirements. Then, a thinner layer of code, described as YANCEES (Client) in our evalua-
tion, is written on top of the tailored YANCEES (Server), to implement a façade that matches the
reference APIs. For comparative purposes, the combination of both client and server side devel-
opment efforts is presented as YANCEES (Client+Server) results in our evaluation results.

Middleware costs. In the three case studies, since CORBA-NS, JavaSpaces and Siena are
reused as black box event processing components, there is a need to provide additional threading
and distribution. In other words, a new infrastructure must be built by combining the routing core
with additional features in the implementation of each reference API. This cost is reflected in the
higher middleware development effort when these three infrastructures are reused (see the Mid-
dleware concern in Figure 41, Figure 43 and Figure 45). YANCEES server is an exception to this
rule. Since it already supports multithreading and is customized and extended “from the inside”,
these features are inherently reused. This explains the reduced middleware development effort
observed in YANCEES. On the server side, YANCEES middleware concerns represent the im-
plementation of remote interfaces by protocol plug-ins; whereas on the client side, it represents
the effort to connect to the server.

Adaptation costs. Adaptation costs are those spent on converting data representations (sub-
scriptions and events) from and to the application domain representation and the infrastructures.
These costs vary according to the subscription format adopted. For example, in both EDEM
(Figure 43) and IMPROMPTU (Figure 45) case studies, subscriptions are expressed as objects,
whereas CASSIUS uses a XML-based subscription language (Figure 41). Since CORBA-NS and
YANCEES rely on text-based subscriptions, IMPROMPTU and EDEM constraint objects need to
be parsed into the languages of these infrastructures. This results in higher costs of adaptation,
when these infrastructures are reused to implement object-based APIs, and explains why Siena
adaptation costs were relatively small for IMPROMPTU and EDEM, but high for CASSIUS.

In another example, comparing CORBA-NS and Siena, both infrastructures provide com-
patible set of features (content-based filtering and routing), which makes the implementation of
domain-specific features in these two infrastructures compatible, in terms of domain-specific ef-
fort. Their adaptation costs, however, differ, due to the use of subscription languages in CORBA-
NS and subscription objects in Siena, and due to the CORBA-NS API complexity.

Domain-specific costs. As discussed in section 5.5, domain-specific development costs are
those devoted to complement the features provided by each infrastructure in the implementation
of each API. It includes, for example, the development of protocol features and advanced event
processing capability not provided by the infrastructures, as well as the main commands of each
case study API. In the particular case of YANCEES, it includes the effort to develop server-side
plug-ins.

6.2.3.1 CASSIUS Case Study

In this first case study, we analyze the reusability of the infrastructures in support of CAS-
SIUS requirements. The results are summarized in Figure 41; whereas the development effort for
domain-specific concerns are broken down into individual publish/subscribe concerns as show in
Figure 42.

Note that in Figure 42 we compare the results with the build-for-single use (or BFS) base-
line, identifying the cases where the reuse of the infrastructures improve (reduce) or worsen (in-
crease) the development effort for a given concern. In doing so, we are able to identify extra costs
associated to specific versatility approaches.

UCI-ISR-09-3 - August 2009

89

Figure 41 CASSIUS case study development effort

As shown in Figure 41, in the CASSIUS case study, YANCEES requires the lowest overall
reusability effort, being followed by Siena, JavaSpaces and CORBA-NS. Since CASSIUS sub-
scription language is represented in XML, it was fully compatible with YANCEES subscription
model, significantly reducing the adaptation costs in that case. However, considering only the
domain-specific requirements effort (see Figure 41) the situation is different. Siena and CORBA-
NS have the lowest domain-specific development efforts, followed by JavaSpaces and
YANCEES. The reason for this is explained by analyzing the individual domain-specific costs
shown in Figure 42.

Figure 42 CASSIUS benchmark: domain-specific development effort.

The costs of generality and separation between protocol and publication interfaces. By
analyzing Figure 42, we see that YANCEES’ protocol development effort was relatively high.
This is a consequence of the generality of the protocol model. Differently from the subscription
and notification models that automatically parse XML-based subscriptions and dynamically allo-

UCI-ISR-09-3 - August 2009

90

cate plug-ins built accord to standard interfaces, YANCEES protocol model is very general, it
provides no standard templates or automation aids to the developers. Moreover, its interface is
independent from the main YANCEES publication façade. While this strategy allows the support
of different types of protocols, and separation of interface concerns, the lack of automation can
result in higher costs for infrastructure developers. For example, protocol plug-ins developers
must provide their own distribution and multithreading. Moreover, in the specific case of CAS-
SIUS benchmark, developers must handle the translation of client-side subscriber references into
server-side references. This is important, since in CASSIUS, protocol users are uniquely identi-
fied by their subscriber interfaces. Client-side interfaces need to match their correspondent
server-side references, and must be the same as the ones used in the publication/subscription API.
Since YANCEES separates between subscription and protocol APIs, there is a need to keep track
of these references by accessing YANCEES internal subscriber interface registry, which requires
extra development effort.

The subscription development effort also presented variations. As observed in Figure 42, the
CASSIUS case study subscription costs for all reused infrastructures are lower than the BFS ref-
erence implementation. This comes from the fact that CASSIUS subscription parsing costs are
counted as part of adaptation costs of the reused infrastructures, while in the BFS, it is counted as
part of the subscription development effort.

The costs of semantic mismatches. JavaSpaces subscription costs are higher than the other
infrastructures. This is a consequence of a mismatch between the filtering capability of
JavaSpaces and the subscription language of CASSIUS. JavaSpaces does not support content op-
erators such as: >,<,>=,<=, and == over numerical values. This forced us to implement our own
numerical matching schema, which increased the domain-specific complexity for this infrastruc-
ture.

Flexibility and generality implementation costs. Finally, YANCEES’ subscription costs in
Figure 42 are slightly higher than the other infrastructures. This is a consequence of two major
factors. First, in YANCEES, plug-ins need to extract parameters from DOM representations of
subscription language commands, a cost that comes from the reuse of YANCEES’ internal XML
parser. Second, YANCEES subscription and notification plug-ins operate over generalized attrib-
ute/value pair events. This generalized data structure requires the handling of exceptions such as:
AttributeNotFoundException and AttributeTypeMismatch, which increases the cyclomatic com-
plexity of the implementation, and consequently its development effort (measured as LOC*CC).
The equivalent components in the other infrastructures execute in the client side and operate over
application-specific event formats, resulting in simpler implementations.

6.2.3.2 EDEM Case Study

In the EDEM case study, which results are shown in Figure 43, Siena presented the lowest
total development effort, being followed by YANCEES, CORBA-NS and JavaSpaces.

The costs of supporting method-based variability. Even though JavaSpaces requires less
or equivalent amount of lines of code to support EDEM applications, it presented the highest de-
velopment efforts in the EDEM case study. In particular, these costs are associated to the domain-
specific concern implementation. The reason for that is the high complexity of the code that inter-
acts with JavaSpaces. Due to the optional transaction, authentication and leasing features, excep-
tions need to be handled for every JavaSpaces API call. The handling of exceptions increases the
cyclomatic complexity of the code, consequently its development effort, even though the optional
feature that raises the exception is not used. In short, the extra options supported by JavaSpaces
ends up increasing the client side development effort for all case studies.

UCI-ISR-09-3 - August 2009

91

Figure 43 EDEM case study development effort

As shown in Figure 44, the domain-specific costs of reusing the selected infrastructures
closely follows the costs of developing the system from scratch. Some few deviations, however,
are observed. YANCEES subscription costs are slightly higher than the other infrastructures. As
observed in the CASSIUS case study, this comes from the need of subscription plug-ins to extract
parameters from DOM objects, from the handling of generalized event representations, and the
modularization of YANCEES model, that originates more classes.

In particular, we measured the EDEM case study difference between the equivalent compo-
nents used to implement advanced event processing in YANCEES server side (based on general-
ized events, with extra framework interaction overhead) and the equivalent components imple-
mented in the client size (based on object-based application-specific events, with no extra over-
head). YANCEES components were in average 20% (or 12 lines of code) larger, and 60% more
complex (1.7 versus 2.81 in average) than the ones build to support application-specific events.

Figure 44 EDEM case study: domain-specific development effort

UCI-ISR-09-3 - August 2009

92

6.2.3.3 IMPROMPTU Case Study

The results of IMPROMPTU case study are shown in Figure 45. IMPROMPTU case study
requires a simple topic-based routing and record-based event model that relies on push notifica-
tion mechanisms. In this benchmark, Siena presents the lowest development effort, being fol-
lowed by JavaSpaces, YANCEES and CORBA-NS.

Figure 45 IMPROMPTU case study development effort

Flexibility and generality overhead. As shown in Figure 46, the publication model of
YANCEES requires extra client side development effort, when compared to the domain-specific
implementation using the other infrastructures. Again, this is a consequence of the publication
plug-in model of YANCEES, which requires the implementation of a few extra interfaces, used
more classes (one for each filtering concern) and relies on generalized event formats, which re-
quire extra exception handling.

For example, In the other infrastructures, IMPROMPTU’s duplicate events filter and the
publish-to-peers algorithm are implemented as part of the publish() command, being designed to
operate over two fixed event formats. In YANCEES, on the other hand, these concerns are im-
plemented by separate filter components installed in the publication variability dimension. These
filters operate over YanceesEvent objects, generalized attribute/value pairs that represent both File
and GUI events from IMPROMPTU.

As a consequence, the components developed for YANCEES are in average 10% larger (an
average of 10 LOC more), and 79% more complex (2.61 versus 3.32 in average) than these de-
veloped for a single use. Moreover, due to the need for exception handling, the cyclomatic com-
plexity of the RepeatedEventsFilter in YANCEES is twice as that of the other implementations
(i.e. it increases from 2 to 4).

UCI-ISR-09-3 - August 2009

93

Figure 46 IMPROMPTU case study: domain-specific development effort

Notification model mismatch. As shown in Figure 46, JavaSpaces’ notification model pre-
sents a relatively high development effort. This comes from the mismatch between IM-
PROMPTU push notification and JavaSpaces pull notification models (previously discussed in
section 4.2.3). This mismatch also creates an overhead that jeopardizes its performance, as will be
discussed in section 6.2.6.

6.2.4 Total development effort
When considering the total development effort, i.e. by combining the results of the three case

studies (as shown in Figure 47), YANCEES emerges as the infrastructure that requires the small-
est total development effort, being closely followed by Siena.

YANCEES fitness. YANCEES fitness to these combined problem domains is a conse-
quence of its lower Middleware and Adaptation development efforts, together with the reusability
of some of its components such as the content-based filtering, the ability of YANCEES to
natively handle XML subscriptions (in the CASSUS case study), and the lower client-side devel-
opment costs, resulting from the ability of YANCEES to closely meet the application domain re-
quirements. In sum, the highest costs of developing YANCEES components start to pay-off, on
the course of successive reuses.

Overall, YANCEES component model requires a higher development effort (LOC*CC) for
implementing domain-specific features, with potential higher development complexity in the
server side (see Figure 49). However, these higher costs come with lower maintainability costs
(Figure 50), discussed in 6.2.5.

UCI-ISR-09-3 - August 2009

94

Figure 47 Total development effort for the tree case studies

JavaSpaces functionality mismatches. JavaSpaces’ higher costs in two of the case studies
are mainly due to three reasons: (1) the mismatches between the notify() command semantics, that
does not automatically deliver the matched tuples in its notification; (2) the lack of numeric filter
operators (critical to EDEM case study), and (3) the lack of push notification model (required for
IMPROMPTU and EDEM).

CORBA-NS configurability costs. CORBA-NS extra adaptation costs are a consequence of
its extensive API size and the externalization of configuration management concerns to the end
users, as previously discussed in section 6.2.1.4.

Siena balanced development costs. Siena reuse costs are balanced between middleware,
adaptation and domain-specific. Its lack of explicit extensibility and configurability requires extra
middleware costs to wrap-up the resulting implementation under a distributed, multi-threaded
API. Its domain-specific costs are associated to the additional features required by the application
domains, that can be implemented through the layering and reuse of Siena’s minimal core func-
tionality. Its adaptation costs are a result of the use of generalized event representation and con-
tent-based filtering, which requires adequate translation from the application domain specific
formats.

6.2.4.1 Breaking down the development effort costs

When separating the number of lines of code from code complexity for the three case stud-
ies, we obtain the graphics in Figure 48 and Figure 49.

UCI-ISR-09-3 - August 2009

95

Figure 48 Total lines of code per case study and infrastructure

As shown in Figure 48, in terms of LOC, YANCEES required the same or less lines of code
in order to support the three case studies requirements, however, as seen in Figure 49, YANCEES
internal framework overhead, increasing number of modules, and the use of generalized event
representations, increase the complexity of the server-side YANCEES extensions.

Figure 49 Average cycloramic complexity per case study and infrastructure

6.2.5 Client code maintainability
We also analyzed the resulting modularity of the code produced for the three different case

studies. We correlate the maintainability of the infrastructure with its modularity.

UCI-ISR-09-3 - August 2009

96

Even though we strived to keep the same implementation style for all infrastructures, small
differences were observed due to the extensibility interfaces (in the case of YANCEES), and the
differences in the infrastructures programming models (in particular JavaSpaces). In these cases,
we adapted the features implementation as necessary. We measured both the diffusion of con-
cerns over components (DOC) (Figure 50), and the degree of scattering over components (DOSC)
(Figure 51).

Even though YANCEES code is more extensive in terms of number of classes used, the
plug-in code tends to be more modular than the code developed around existing infrastructures.
This comes as a consequence of the design for change principle applied in its design, which sup-
ports extensibility and configurability along the main publish/subscribe domain variability dimen-
sions, as discussed in section 6.1.4.

Figure 50 Comparing CDC for the tree case studies

In particular, YANCEES presented a better modularity for the CASSIUS and IMPROMPTU
case studies, APIs that require specialized features in variability dimensions other than the sub-
scription language alone.

Figure 51 Comparative DOSC for the three case studies

UCI-ISR-09-3 - August 2009

97

The higher modularity of YANCEES has also consequences for reusability in a long run, al-
lowing an ecosystem of components to be developed. In our case study, the push plug-in, the con-
tent-based router, and the standard filters were successively reused.

6.2.6 Performance
A critical feature in middleware infrastructures is the ability to match the performance re-

quirements of the application domain. In this section, we compare the responsiveness of our three
case studies we analyzed.

For each reference API implementation, we developed a simple benchmark that exercises
their main API commands in support of common tasks. The goal of the benchmark is to measure
the fitness and responsiveness of the underlying publish/subscribe infrastructures to the require-
ments posed by ach API.

The benchmarks were run on two Win32 Pentium 4 workstations, with 1GB of RAM, inter-
connected by a 100 Mbps Ethernet connection on a Local Area Network.

6.2.6.1 EDEM

In the first case study (Figure 52) we measured the performance of EDEM API when im-
plemented on top of the selected infrastructures. In particular, we calculated the average respon-
siveness (in milliseconds), of four use cases that exercises: the tuple space manipulation API,
simple content-based filtering, pattern matching and rules.

While YANCEES and Siena’s performance were comparable, JavaSpaces and CORBA-NS
experienced additional overhead. This overhead is explained by the extra communication costs
between the server code and these infrastructures, that execute in different processes, and respec-
tively rely on Java RMI and CORBA IIOP communication protocols. The JavaSpaces implemen-
tation also experienced higher delays due to a semantic mismatch between its notification model
(pull) and EDEM push model, which was compensated with extra code.

Figure 52 EDEM common tasks performance analysis

UCI-ISR-09-3 - August 2009

98

6.2.6.2 CASSIUS

In the CASSIUS benchmark, we calculate the average responsiveness (in milliseconds) of
two use cases, one that builds and browses through a simple event source hierarchy, and another
that performs a simple content-based subscription using pull notification style.

In the CASSIUS benchmark (see Figure 53), most infrastructures presented similar response
times, with Siena being slightly faster. An exception was JavaSpaces, which native pull notifica-
tion model was better fit to the application requirement. The result was a faster response of the
API implemented on top of JavaSpaces.

Figure 53 CASSIUS common tasks performance analysis

Note that in the CASSIUS benchmark, the browsing task is similar to all implementations
since it is provided by an independent component in JavaSpaces, Siena and CORBA-NS, and a
dedicated server-side plug-in in YANCEES.

6.2.6.3 IMPROMPTU

In the IMPROMPTU benchmark, we measured the average time from the publication of an
event in one host, to the receiving of this event in another host.

In this benchmark, (presented in Figure 54), CORBA-NS and JavaSpaces delays are attrib-
uted to: API mismatches (the implementation of push notifications using JavaSpaces) and the fact
that both JavaSpaces and CORBA-NS execute in separate processes, requiring RMI and ORB
inter-process communication, respectively.

UCI-ISR-09-3 - August 2009

99

Figure 54 IMPROMPTU common task performance analysis

YANCEES ability to support multiple cores was also important in the IMPROMPTU case
study, making YANCEES perform better than CORBA-NS. In this case study, a topic-based core
was used in YANCEES to speed up the matching between IMPROMPTU events and topic-based
subscriptions.

6.3 Summary of results
In this section, we summarize our findings presenting both a quantitative and qualitative as-

sessment of the results.

6.3.1 Quantitative results
We quantified the selected versatility approaches, according to the different measures we

collected. For such, we ranked these features from 1 (lowest) to N (highest), where N is the total
number of infrastructures (4 in our case), with lowest values being best. We then derived an over-
all versatility approach score as the sum of all the scores that correspond to its features as shown
in Table XI. In this calculation, we consider all the software qualities as having equal importance
to the versatility of the approach.

UCI-ISR-09-3 - August 2009

100

Table XI Quantitative ranking of the versatility from developers and users
perspectives (smaller is better)

 Minimal
Core (Siena)

Coordination
Languages

(Java Spaces)

One-size-fits-all
(CORBA-NS)

Flexible
(YANCEES)

Infrastructure
Code Size

2 3 4 1

Flexibility 2 4 3 1

Infrastructure
 Modularity

3 1 4 2

Reusability 2 3 4 1

Performance 1 3 4 2

Client API Task
Analysis

2 3 4 1

Client Code
Modularity

2 3 4 1

TOTAL 14 20 27 9

Overall, YANCEES achieves a more favorable balance among the different measures we
collected. It is followed by Siena, JavaSpaces and CORBA-NS. We summarize the reason for
these differences in Table XII, where we list the main costs and benefits of each approach.

UCI-ISR-09-3 - August 2009

101

6.3.2 Versatility approaches trade-offs
The results of our analysis are qualitatively summarized in Table XII.

Table XII Qualitative summary of the versatility strategies

INFRASTRUCTURE BENEFIT COSTS

Minimal Core (Siena) - Efficiency
- API simplicity
- Small code size
- Layered reusability

- Inflexibility
- High abstraction distance
- low maintainability

Coordination Lan-
guages
(Java Spaces)

- API simplicity
- Additional features
- Layered reusability

- Moderate performance
- notify() semantic mismatch
- Inflexibility
- Low maintainability
- High abstraction distance

One-size-fits-all
(CORBA-NS)

- Configurability: Variety of op-
tions and features
- Compatibility with existing pro-
tocols
- Layered reusability

- Moderate performance
- API usage complexity
- Low maintainability
- High abstraction distance

Flexible
(YANCEES)

- Efficiency
- API simplicity
- Small size
- Higher flexibility
- Reuse of existing components,
distribution and threading

- Improved maintainability
- Reduced abstraction distance

- More complex plug-in code due
to generality
- Need for configuration man-
agement (handled by configura-
tion files)
- Framework reusability issues

We also present the results in terms of high/medium/low qualifiers as shown in Table XIII as
follows.

UCI-ISR-09-3 - August 2009

102

Table XIII Qualitative evaluation of the infrastructures in terms of
high/medium/low qualifiers

INFRA-
STRUCTUE

Flexi-
bility

Infra Main-
tainability

Reusability Client Code
Maintainab.

Usability Performance

Minimal Core
(Siena)

Low High High Low Medium High

Coordination
Languages
(Java Spaces)

Low Low Low Low Medium Low

One-size-fits-all
(CORBA-NS)

Medium High Low Low High Medium

Flexible
(YANCEES)

High Medium High High Low High

6.3.3 Summary of findings
Minimal core approaches as Siena are efficient, have simple APIs and are easier to build

than one-size-fits-all infrastructures. These infrastructures are reused by laying functionality on
top of them. Through the use of generalized subscription and event representations, they can sup-
port a large set of application domains. In spite of these benefits, their core functionality is in-
flexible (not easily configurable or extensible), being limited by the generalized (but fixed) event,
subscription and notification capabilities they provide. This approach supports black-box reuse,
which results in higher middleware and adaptation costs if compared to YANCEES.

Coordination languages as JavaSpaces have the similar generalization benefits of minimal
core infrastructures. In the particular case of JavaSpaces, we found problems with semantic mis-
matches and performance, a consequence of the inflexibility of the tuple space model with respect
to filtering capability and the supported pull notification model.

One-size-fits-all infrastructures as CORBA-NS support a large set of features through
specialized variability and configurability. In this approach, configurability is delegated to appli-
cation developers, through programmatic interfaces (for example: factories, configuration meth-
ods, and composition). This manual configurability decreases the system usability. They are also
slower than minimal core and flexible approaches, as shown in our performance benchmarks
(Figure 52, Figure 53 and Figure 54). This poor performance is a consequence of the one-size-
fits-all syndrome (Long 2001), where most common features end up paying the price for the extra
features supported.

Flexible approaches as YANCEES may require, in some cases, more complex, lengthy and
componentized code (Figure 49 and Figure 50). This is a consequence of the generalization and
separation of concerns they support. However, the resulting code is more modular and reusable.
The ability to customize the infrastructure to the application domain requirements reduces the
abstraction distance between the required and provided functionality, reducing the client side de-
velopment effort to build applications based on this infrastructure (Figure 47).

Whereas flexible and minimal core approaches have shown to be more versatile than one-
size-fits-all, minimal core and coordination language approaches, the selection of each strategy
depends on different factors related to the fitness of each infrastructure to the application domain

UCI-ISR-09-3 - August 2009

103

requirements. For example, minimal core infrastructures are fast and can have relatively low ad-
aptation costs in many application domains; whereas flexible approaches are more indicated to
support the development of software product lines (Clements and L. Northrop 2002), where the
initial costs of adaptation and development are paid over successive reuses of the infrastructure in
the development of slightly different publish/subscribe infrastructures.

In the next chapter, we compare the individual software qualities measured in our case stud-
ies, identifying possible correlations and trade-offs between these qualities. These correlations
will be further used in support of the guiding principles discussed in Chapter 8.

UCI-ISR-09-3 - August 2009

104

Chapter 7. Analysis of Versatil-
ity Trade-offs

In this chapter, we analyze the trade-offs defined by the different software qualities meas-
ured in Chapter 6. Our goal is first to identify correlations (or lack thereof) between these soft-
ware qualities; and second, to provide quantitative and qualitative data to support the principles
and guidelines that we will discuss in Chapter 8.

7.1 Infrastructure modularity and flexibility
trade-offs

First, we analyze the impact of modularity on software flexibility. Modularity is known for
improving software maintainability and is generally accepted as a way to isolate software con-
cerns improving the locality of change (Sullivan, Griswold et al. 2001). In order to analyze the
correlation of these two software qualities in the selected infrastructures, we plot these two meas-
ures in the chart of Figure 55.

Figure 55 Total change impact (adding the change impact of each variability di-

mension) versus Average modularity of the analyzed infrastructures

As seen on Figure 55, YANCEES has the lowest total change impact (the sum of the change
impacts presented in Figure 36), followed by Siena, CORBA-NS and JavaSpaces. Even though
JavaSpaces is more modular (lowest DOSC), its lack of design for change and extensibility along
the main publish/subscribe dimensions, places it as the infrastructure with the highest change im-
pact (lowest flexibility).

R2=0.95 (without JavaSpaces)

UCI-ISR-09-3 - August 2009

105

CORBA-NS was designed to be configurable and to support a large set of features. Its de-
composition of features based on proxies and methods, however, resulted in low modularity (high
DOSC), and low flexibility (high change impact). Siena’s use of generalization and its simple
simplified implementation resulted in lower change impact, and average modularity (between
JavaSpaces and CORBA-NS). Finally, YANCEES design for flexibility resulted in average
modularity but low change impact (high flexibility).

JavaSpaces is an outlier, it has the most modular implementation, but is the least flexible of
all infrastructure (towards the publish/subscribe design concerns). The coefficient of correlation
with JavaSpaces is 0.23, without JavaSpaces, it is 0.95

Conclusions. By comparing the impact of modularity on flexibility, as shown in Figure 55,
we conclude that even though modularity may improve the overall maintainability of the system,
it does not automatically support flexibility. Flexibility is more a function of design for change,
toward planned variability dimensions, than of the intrinsic modularity (or even configurability)
of the infrastructure.

7.2 Infrastructures API usability trade-offs
The infrastructure API defines the major interface of a software infrastructure, it directly

supports its reuse, configuration and extension.

In this section, we look for correlations between the infrastructures API characteristics as:
the API size, and supported subscription format, with important software qualities such as: reus-
ability (development effort, complexity, length of code), client code maintainability (modularity),
and infrastructure performance (response delays of common operations).

7.2.1 Impact of API size on the total development effort
In order to analyze the impact of the infrastructure API size on the total development effort,

we plotted these two measures together, obtaining the chart of Figure 56. If we set JavaSpaces
apart for a while, we see a linear correlation (R2 = 0.86) between the API size of the remaining
infrastructures and the total development effort of the case studies using these systems.

API size indicates more features in terms of generalization, variability, and extensibility.
This usually results in extra costs of adaptation (generalization), selection (variability), and exten-
sion (extensibility), which correlates with a higher application development effort.

UCI-ISR-09-3 - August 2009

106

Figure 56 API size versus total development effort (considering IMPROMPTU,

CASSIUS and EDEM case studies)

JavaSpaces has the lowest API size of all infrastructures analyzed. In spite of that, its devel-
opment effort was one of the highest. This exception to the rule is a consequence of subscription
and notification models semantic mismatches. Factors such as: the lack of push notification, the
fact it does not include tuples in notifications, and the lack of numeric comparators in the tuple
space filtering model increase the client side development effort. This shows that semantic mis-
matches can have a deeper impact on the development effort, than the infrastructure API size by
itself.

If mismatches can significantly increase the development effort, closer matches to the appli-
cation domain requirements can significantly decrease this effort. Case studies developed on top
of YANCEES (Client) had the lowest development effort due to better match between required
(application domain) and provided (infrastructure) functionality. Moreover, in the particular case
study involving CASSIUS, YANCEES (Client) provides a much simpler API, since it does not
use object-based subscriptions, which dispenses the need for manually building subscriptions.

In order to further analyze the impact of the API size on the development effort, we sepa-
rated the total development effort components: code length (LOC) and complexity (measured
inMcCabe’s cyclomatic complexity), as shown in Figure 57 and Figure 58. The goal was to ana-
lyze any possible divergences or convergences between these two metrics.

R2=0.86 (without JavaSpaces)

UCI-ISR-09-3 - August 2009

107

Figure 57 API size versus total client code length (considering IMPROMPTU,

CASSIUS and EDEM case studies)

When comparing the overall “shape” of both charts, we see that complexity and LOC follow a
similar trend for the systems analyzed (R2=0.75, R2=0.82 respectively). This confirms our previ-
ous observations (from Figure 56) that development effort grows with the API size. Not only
YANCEES (Client) has the lowest LOC, but also the lowest average code complexity. This
comes again from its ability to match the required application domain features, in particular, the
subscription language commands, increasing the signal-to-noise ratio of the API.

CORBA-NS-based case studies had both the highest complexity and LOC due to its high
API size, and lack of configuration management automation.

Figure 58 API size versus average client-side code complexity (considering IM-

PROMPTU, CASSIUS and EDEM case studies)

Conclusions. The API size and semantic mismatches are two important factors that impact
the software development effort. In the absence of semantic mismatches, smaller APIs usually

R2=0.75 (without JavaSpaces)

R2=0.82 (without JavaSpaces)

UCI-ISR-09-3 - August 2009

108

result in lower development efforts. In particular, a small API size, that closely matches the appli-
cation domain requirements, can significantly decrease the application development effort. If se-
mantic mismatches exist, the development effort tends to increase disproportionally to the size of
the API. In other words, semantic mismatches have a larger impact on development complexity
than API size.

7.2.2 Textual versus object representation of subscrip-
tions

One important part of a publish/subscribe infrastructure is its subscription language. The
process of posting and removing subscriptions represents one of the most common tasks users
perform with the infrastructure. In this section, we compare the impact of object versus textual
subscription representations in the total application development effort when reusing the selected
infrastructures.

In our case studies, both EDEM and IMPROMTPU reference APIs utilize object-based sub-
scriptions, whereas CASSIUS API relies on text-based subscriptions.

In Figure 59, we plot the total tasks development effort of EDEM case study (the sum of the
values presented in Figure 38), with the total API size of the infrastructures we analyzed. We do a
similar comparison at Figure 60, where we plot the total tasks development effort for CASSIUS
case study (the sum of the values presented in Figure 39). In considering these two case studies,
our goal is to compare the overall impact of textual versus object representations in the total de-
velopment effort of most common publish/subscribe operations.

Figure 59 The relation between API size and the total task complexity for EDEM

case study

When comparing Figure 59 and Figure 60, and the createSubscription() costs of Figure 38
and Figure 39, we verified that application domains that relied on object-based subscriptions
(EDEM and IMPROMPTU) required lower adaptation costs (convert from application domain to
infrastructure-specific infrastructures subscription) than application domains that rely on textual-
based subscriptions (as the case with CASSIUS). This is caused by adaptation costs: the need for
parsing these subscriptions into the native formats supported by each infrastructure. Note that
these parsing costs exist regardless of the subscription format supported by the publish/subscribe
infrastructures.

R2=0.90

UCI-ISR-09-3 - August 2009

109

The only exception to this fact was YANCEES. Its native support for XML processing al-
lows it to take advantage of the XML-based subscription format required by CASSIUS. When
using YANCEES in support of CASSIUS, plug-ins were developed to match CASSIUS subscrip-
tion commands, delegating the task of automatically allocating subscription commands to the in-
frastructure. The results are large savings in adaptation costs.

Figure 60 The relation between API size and the total task complexity for CAS-

SIUS case study

Conclusions. Textual representations are only advantageous when adequate automation is
provided. In particular, they work better if the application domain is text-based and the infrastruc-
ture supports extensibility in its subscription language, as the case with YANCEES. For other
application domains, the use of object-based representations, while require manual (program-
matic) assembly of subscriptions, result in lower adaptation costs (the costs of converting applica-
tion domain object- or text-based expressions into the native subscription format of the infrastruc-
ture).

7.2.3 Impact of API size on client code maintainability
We also investigated the impact of the API size on the maintainability of the code developed

when reusing the infrastructure. The results are shown in the chart of Figure 61. As seen in this
chart, systems with heterogeneous API sizes, result in client code with similar modularity.

R2=0.74

UCI-ISR-09-3 - August 2009

110

Figure 61 Average client code modularity versus total API Size for the three case

studies (IMPROMPTU, CASSIUS & EDEM)

Conclusions. Based on Figure 61, we conclude that there is no linear correlation between
the client code modularity and the API size. Maintainability is a function of the separation of
concerns (and therefore the modularity) of the code. It is not directly dependent on the size or
expressiveness of the API reused in the production of the application. Large APIs may mean a
large set of features, but they do not imply high or low maintainability.

7.3 Infrastructure reusability & client code
maintainability trade-offs

We further analyze the relation between client code maintainability (as a function of the av-
erage client code modularity) and the total infrastructure reusability (as a function of the total de-
velopment effort) of our case studies. The results are shown in Figure 62.

Figure 62 Relation between development effort, when reusing the infrastructures,

and client-side code modularity

R2=-0.04

R2= 0.63

UCI-ISR-09-3 - August 2009

111

As seen on Figure 62, there is a clear separation between infrastructures reused as black
boxes (CORBA-NS, JavaSpaces and Siena) and YANCEES, that is reused as a grey-box. Since
YANCEES was designed to be extensible around the main publish/subscribe concerns, the exten-
sions implemented on YANCEES server side are very modular. Moreover YANCEES configura-
bility and extensibility, allows it to better fit the application domain requirements, resulting in
more simple and modular client code.

Conclusions. Flexible approaches not only can reduce the development effort over succes-
sive reuses, but also results in more maintainable (modular) code than existing black box ap-
proaches. Moreover, if considered only the client code development effort, this advantage be-
comes more expressive, with larger gains of development effort.

7.4 Performance trade-offs
Performance is an emerging software quality that depends on different factors such as: pro-

gramming language, architectural decisions (use of multithreading and infrastructure protocols,
for example), and the adoption of specialized algorithms. In this section, we study the impact of
different factors on the performance of the infrastructures we analyzed.

7.4.1 Relation between development effort and perform-
ance

As seen in our case studies, the abstraction distances between provided (infrastructure) and
required (application domain) functionality is proportional to the development effort required to
extend, configure and adapt an infrastructure to a new context.

Figure 63 Development effort versus performance for the IMPROPTU case study

Other factors, however, may have a higher impact on performance than adaptation costs. In
the IMPROMPTU case study, shown in Figure 63, the determinant performance factors were the
delays associated to communication protocols of CORBA-NS (ORB marshaling/un-marshaling
costs) and the algorithms and strategies devise to bridge the semantic mismatches of JavaSpaces.
Hence, even though JavaSpaces has the lowest development effort, it did not perform as well as
the other infrastructures.

R2= 0.98 (without JavaSpaces)

UCI-ISR-09-3 - August 2009

112

Figure 64 Development effort versus performance for the EDEM case study

The same is true for the EDEM case study shown in Figure 64, JavaSpaces mismatches and
communication protocols make it the slowest of the infrastructures, while CORBA-NS perform-
ance gets jeopardized by its internal algorithms and communication protocols.

Figure 65 Development effort versus performance for the CASSIUS case study

In Figure 65 we see JavaSpaces outperforming existing infrastructures. This confirms the
role of semantic mismatches in the performance of the infrastructure that was observed for IM-
PROMPTU and EDEM.

In Figure 66, we compare the total performance delays of our three benchmarks with the
case studies total development effort.

R2= 0.97 (without JavaSpaces)
R2= 0.66 (including JavaSpaces)

R2= 0.59 (without JavaSpaces)
R2= -0.31 (including JavaSpaces)

UCI-ISR-09-3 - August 2009

113

Figure 66 Total development effort versus total performance delay for the

three case studies: CASSIUS, EDEM and IMPROMPTU

As shown in Figure 66, from all the case studies, those built on top of YANCEES and Siena
were very close to each other in terms of performance and development effort. However, case
studies built on top of Siena had better performance. This difference comes from factors such as
YANCEES internal adaptation costs due to event generalization, the use of RMI, and the over-
head of the framework itself. Siena’s protocol implementation based on Sockets, and its lack of
design for change, significantly improve its performance.

Conclusions. Overall, based on the chart of Figure 66, we see that the performance delays
are generally proportional to the total development effort employed in the reuse of existing infra-
structures. We also observed that factors such as semantic mismatches, protocols, and algorithms
can have more significant impact on the performance than simple adaptation costs alone.

7.4.2 Relation between client code modularity and
performance

Another interesting question to ask is if there are any important correlation between the
modularity of the code (which is related to maintainability) and its performance. By plotting the
total case studies performance with the average code modularity, we obtained Figure 67.

As seen on Figure 67, case studies with similar low modularity such as the code built on top
of: Siena, JavaSpaces and CORBA-NS have different performance delays; whereas case studies
built on YANCEES presents low performance and high modularity.

R2= 0.93 (without JavaSpaces)
R2= 0.89 (including JavaSpaces)

UCI-ISR-09-3 - August 2009

114

Figure 67 Average client code modularity versus total performance of the three

case studies: EDEM, CASSIUS and IMPROMPTU

Conclusions. Based on the result of Figure 67 (R2= 0.33), we see no particular correlation
between client code modularity and performance.

7.4.3 Impact of API size on case studies performance
Another question that we seek to answer is if there were any correlation between the API

size of the infrastructures and their performance (responsiveness) in our benchmarks. As shown
in Figure 68, JavaSpaces, which has the lowest API size, did not perform well in these two case
studies.

If we set JavaSpaces apart, for a while, we see that as the API size increases, there is a slight
decrease in the responsiveness of the infrastructure (with R2= 0.98). A larger API may indicate
many options (as in CORBA-NS) or more complex features (extensibility interface of
YANCEES), which usually results in performance penalties to the system.

R2= 0.33

UCI-ISR-09-3 - August 2009

115

Figure 68 API size versus total performance (response delays) for the IMEDEM,

CASSIUS and IPROMPTU case study

Conclusions. Similar to what was observed in Figure 60, the size of the API is proportional
to the total performance delay experienced by the infrastructures under regular conditions. How-
ever, semantic mismatches have higher impact on performance than API size alone, making pos-
sible for systems with larger APIs to outperform more simple but incompatible infrastructures.

7.4.4 Performance trade-offs conclusion
With respect to performance, semantic mismatches and architectural decisions such as com-

munication protocols and algorithms are more important than modularity, development effort or
the size of the API. As such, developers must prioritize their selection criteria in terms of these
factors; whereas infrastructure developers must pay extra attention to the application domain fun-
damental requirements as a way to prevent mismatches.

7.5 Trade-offs summary
In this chapter we analyzed the correlation (and lack thereof) between different software

qualities. In particular, we found direct correlations between:

• API size and dev. effort (LOC*CC), including LOC and CC alone

• API size and performance

• Infrastructure flexibility and client code modularity

• Abstraction distance and development effort

• Development effort and performance

We found no direct correlation between the following software qualities, for the infrastruc-
tures analyzed, and the case studies we performed:

• Infrastructure modularity and its flexibility

• Public API size and client code modularity

• Case study performance and client code modularity

R2= 0.98 (without JavaSpaces)

UCI-ISR-09-3 - August 2009

116

Overall, semantic mismatches have high impact on performance and development effort. In
the particular case of subscription representation, we found that textual representations are only
advantageous when adequate automation is provided. In all other situations, programmatic sub-
scription representations are easier to adapt.

UCI-ISR-09-3 - August 2009

117

Chapter 8. Principles and
Guidelines

Based on the software engineering literature, the lessons learned in the analysis of versatility
trade-offs, on our case studies, and on our own experience in the development of YANCEES, we
present in this chapter a set of guiding principles for the basic activities involved in the develop-
ment (requirements analysis, design and implementation), and reuse (selection, adaptation, exten-
sion) of versatile software. In doing so, our goal is to help infrastructure developers in choosing
the most appropriate versatility strategies for the infrastructures they develop; and infrastructure
users in selecting the most appropriate infrastructure for their needs.

8.1 Requirements recommendations
As discussed in section 2.2, factors such as problem domain and configuration-specific de-

pendencies, as well as the implicit trade-offs between different software qualities are important
factors that limit software versatility. These earlier these factors are detected, documented and
analyzed, in the software engineering process, the cheaper it is to correct the design and adopt
measures to minimize their impact in the overall versatility of the infrastructure. Hence, in the
analysis of requirements, we propose the following recommendations:

8.1.1 Consider the problem domain through multiple
perspectives

There is a need to consider different factors in the design of a versatile system. In middle-
ware analysis and design, performance tends to be the prime factor that guides the design deci-
sions of the infrastructure. As shown in this dissertation, the price paid for good performance is
many times poor APIs usability and reusability.

As discussed in Chapter 8, both API size and the complexity of common infrastructure API
use cases can significantly impact the performance and the development effort of the application.
Moreover, if semantic mismatches are not detected early in the design and reuse of an infrastruc-
ture, these costs may scale.

By understanding both the application domain requirements and the different trade-offs these
design decisions define, developers can minimize the costs of development and reuse of the soft-
ware.

Before these factors can be addressed, however, they must be made explicit. Throughout this
paper, we showed how these factors are many times inter-related and how the combination of
design decisions can lead to a favorable balance between different software qualities.

8.1.2 Perform an analysis of domain-specific dependen-
cies

As previously discussed, the different publish/subscribe infrastructures concerns are many
times non-orthogonal. They have implicit control and data dependencies that limit set of possible

UCI-ISR-09-3 - August 2009

118

variants the domain can support. As a consequence, the earlier these dependencies are detected,
the better designers can choose between existing approaches to limit the effect of change in soft-
ware.

In the software product line engineering domain, the analysis of commonality and variability
in the design of versatile infrastructures is a common practice (Coplien, Hoffman et al. 1998).
This analysis, however, is many times incomplete. It does not make explicit the different data and
control dependencies that exist between features and variability dimensions.

In particular, we propose an approach to document these dependencies described at (Silva
Filho and Redmiles 2006), where a UML notation shown in Figure 9, is used to make these de-
pendencies explicit. With a good understanding of these dependencies, designers can opt, for ex-
ample, to stabilize and generalize some design dimensions, thus preventing the costs of change
associated to core system characteristics.

8.2 Design and implementation principles and
guidelines

The design of versatile software requires the proper management of the trade-offs discussed
in previous sections. In this section, we present a set of design principles that can be used to
achieve a favorable balance between different software qualities that characterize a versatile in-
frastructure.

8.2.1 General design principles
General design principles are those that must be applied in the development of versatile

software in general. In other words, they are not restricted to publish/subscribe infrastructures
alone. These are: abstraction, modularity, (de)composition, and simplicity.

8.2.1.1 Abstraction

Abstraction is the design strategy used to hide unnecessary implementation details from
software users, exposing only the necessary functionality, required for software reuse. The com-
bination of abstraction (Liskov and Zilles 1974) and modularity (Parnas, Shore et al. 1976) is the
way proposed by Parnas to support the development of large systems (Parnas, Clements et al.
1984), and to support software flexibility (Parnas 1978).

In the particular case of versatility, abstractions can be flexibilized to better match applica-
tion domain requirements (as in YANCEES), and can be used in the definition of generalizations
that capture the variability of a domain. For example, generalized even and subscription represen-
tations as adopted by the infrastructures we analyzed.

8.2.1.2 Modularity

Modularity is a general principle that must be applied in the construction of any kind of ver-
satile software. Modularity implies in separation of concerns in the implementation of software as
the composition of simpler parts (or modules) that are connected by clean interfaces. Separation
of concerns as the criteria for modularization (Parnas 1972) supports design for change, whereas
clean interfaces imply minimal modules, which tames complexity.

The decomposition of complex systems into modules is supported by different principles
such as: The Single Responsibility Principle: “A class should have only one reason to change”
(Martin 2003); The Open-Closed Principle: “Modules should be open for extension but closed for

UCI-ISR-09-3 - August 2009

119

direct code change” (Meyer 1997); the Liskov Substitution Principle: “Subclasses should be sub-
stitutable for their base classes.” (Liskov 1987); and Design by Contract “...when redefining a
routine [in a derivative class], you may only replace its precondition by a weaker one, and its
post-condition by a stronger one.” (Meyer 1992);

In the publish/subscribe domain, one can modularize concerns around the common process
of publication and subscription of events. In particular, subscription commands can also be modu-
larized, allowing their composition into more complex expressions according to the process trellis
architectural style (Factor 1990).

8.2.1.3 (De) Composition

The power of modularity and abstraction can only be leveraged through the decomposition
of complex systems into modular concerns, followed by their re-composition into working sys-
tems. In other words, complex systems are built as a composition of modules, implementing well
defined abstractions (Parnas, Clements et al. 1984).

The composition of modules in the construction of systems is supported by different princi-
ples such as: the Dependency Inversion principle (a.k.a. Inversion of Control): “(a) High-level
modules should not depend on low-level models. Both should depend on abstractions and (b) Ab-
stractions should not depend on details. Details should depend upon abstractions.” (Martin 2003;
Fowler 2004); the Interface Segregation Principle: “Clients should not be forced to depend on
methods that they do not use” (Martin 2003); and the Law of Demeter: “Talk only to your
friends” (Lieberherr and Holland 1989).

Flexible infrastructures as YANCEES adopt decomposition around major publish/subscribe
concerns, better supporting the development of application-specific infrastructures.

8.2.1.4 Simplicity

A design must be as simple as possible. Complexity must be added only when strictly neces-
sary. A practical implication of this principle is to avoid one-size-fits-all or bloated implementa-
tions, ones with features that are rarely or never used.

For every new feature that an infrastructure must support, there is an increment in its com-
plexity. As shown in our studies, and based on our own experience, the dependencies between
features that must be supported together, negatively impact the quality of individual features of
the set. Quantitatively speaking, and based on the literature, for each 25% increase in problem
complexity, there is a 100% increase in the solution complexity (Woodfield 1979).

In the particular case of publish/subscribe infrastructures, the more variability or configura-
bility one provides, the more complex the implementation becomes, requiring measures such as
automation, generalization, and configuration management to support developers in dealing with
the complexity of the infrastructure.

After presenting the most basic set of software engineering principles, we proceed to discuss
principles that more specific to the design of versatile software.

8.2.2 General versatility design principles
The design of versatile software infrastructure must balance two major forces: unpredictabil-

ity, the need to support unforeseen requirements, and fitness: the need to support the exact sets of
features of an application domain. These two requirements are usually conflicting. Fitness re-
quires specialization and simplicity, which usually requires the elimination of irrelevant features
to the problem domain. Unpredictability leads designers to adopt versatility approaches as gener-

UCI-ISR-09-3 - August 2009

120

alization, variation and flexibility, which performance, and development effort costs we discussed
throughout this paper.

As a consequence, developers must choose among a large pool of design options, for exam-
ple: should one support unpredictability through variability (with configurability), extensibility or
generality? Should one adopt a hybrid approach? The following principles helps in the choice
process considering these options.

8.2.2.1 Ockham’s Razor

This principle states that given a choice between functionality equivalent designs, one must
select the simplest design. This principle builds upon the simplicity design principle, and comes
from the fact that unnecessary elements in a design, decrease its efficiency, usability, perform-
ance, and may lead to unanticipated consequences, for example, feature interaction (Silva Filho
and Redmiles 2007).

As seen in our study, infrastructures that support optional features such as JavaSpaces and
CORBA-NS suffer from costs associated to features that are not necessary for the task at hand. In
the case of JavaSpaces, the handling of exceptions produced by features such as leasing, transac-
tions and access control increase the complexity of software, even though they are not used in our
studies. Likewise, the costs of configuration of CORBA-NS, results in complex and lengthy code,
which usually increases the development effort of the whole infrastructure.

Hence, according to this principle, one should adopt either minimal core approaches as
Siena, or flexible approaches as YANCEES. In particular, we found that flexible approaches
should be applied in situations where one can afford two software teams: one that customizes the
infrastructure, and other that reuses customized infrastructures in the development of different
applications. The application-specific infrastructures produced through the reuse of flexible ap-
proaches can significantly reduce the application development effort, addressing the application
performance requirements. However, the development effort and learning curve involved in the
adaptation and extension of flexible infrastructures can be high. This costs can be amortized
through the use of software development teams that knows the internals of the infrastructure and
take advantage of the reusability of its components in the production of slightly similar systems
out of a common set of reusable assets (Bockle, Clements et al. 2004).

Minimal core generalized infrastructures such as Siena should be used in situations where
there are no semantic mismatches and the abstraction distance between the provided infrastruc-
ture and required application features is not high. If these conditions are match application devel-
opers can implement any additional feature required, resulting in development efforts that are
better or comparable to extend and reuse flexible infrastructures.

8.2.2.2 Satisficing designs

It is often preferable to choose a satisficing solution (good enough given the problem con-
straints), rather than an optimal one. This comes from the fact that the costs of optimality are
usually excessive complexity. Hence, from the point of view of application users, the choice of
the simplest solution is preferable, whereas from the point of view of the infrastructure develop-
ers, one must opt for satisficing infrastructure designs (Simon 1996). In other words, in many cir-
cumstances it is better to produce a design that roughly satisfy the requirements, but produce sim-
pler but good solutions to a problem, than to produce a design that optimally satisfies all the re-
quirements, at the expense of excessive complexity.

For example, YANCEES’ initial design strived to support event format variability. This
choice, whereas increased the infrastructure scope, resulted in an increase in configuration man-

UCI-ISR-09-3 - August 2009

121

agement complexity. Moreover, the support for event format variability resulted in incompatibili-
ties with existing plug-ins, decreasing their reusability. By opting for a generalized, but fixed,
event format, YANCEES achieved a satisficing trade-off between event variability and infrastruc-
ture complexity as illustrated in Figure 69.

Figure 69 Scoping down YANCEES variability to improve its versatility

This approach is coherent with what Richard Gabriel calls “New Jersey” approach to design
(Gabriel 1991), where a worse (or satisficing solution) is better than an optional, but complex
one.

8.2.3 Publish/subscribe versatility common strategies
In spite of the differenced in the versatility approaches discussed throughout this work, we

found a common set of versatility strategies adopted by the different infrastructures we analyzed.
More specifically, we found a convergence towards the use of generalized event representations,
independent and compositional subscription commands (or plug-ins), switchable routing strate-
gies (CORBA-NS and YANCEES), and compositional approaches to handle configurability and
extensibility. Convergence usually indicates optimality of solutions to common problems in a
domain (Lidwell, Holden et al. 2003). In our case, they represent good design principles that can
be observed in the development of versatile infrastructures, addressing issues related to the lack
of orthogonality of the different publish/subscribe design concerns, and the inter-dependencies
between different software qualities. We further explain these design decisions as a set of princi-
ples as follows.

8.2.3.1 Composition of subscription commands

Event processing languages are usually expressed in terms of filters, sequence detectors, and
rules. These commands represent increasing levels of abstraction, expressed in terms of lower-
level filters. In other words, higher-level commands such as rules depend on features provided by
lower-level features as filters. This characteristic allows subscription commands to be both modu-
lar and compostable, thus improving their reusability. All infrastructures analyzed rely on this
characteristic. Siena supports pattern detection based on the composition of lower-level Filters;
JavaSpaces provide primitive tuple manipulation commands that are composed in the implemen-
tation of more complex features. Infrastructures such as CORBA-NS and YANCEES support
text-based subscriptions. They implement commands as independent components that are auto-
matically combined in the execution of complex subscription expressions.

UCI-ISR-09-3 - August 2009

122

This application domain characteristics supports the reusability of subscription commands
and the incremental development and reuse of infrastructures, and the dynamic allocation of plug-
ins in YANCEES.

8.2.3.2 Switchable routing strategies

Both CORBA-NS and YANCEES support the ability to select between different routing
strategies. This ability, which is according to the strategy selection open implementation guide-
line (Kiczales, Lamping et al. 1997), allows the use of the most appropriate algorithm to the roug-
ing requirements at hand, improving the system performance.

8.2.3.3 Generalization of event representation

Generalization, instead of variation, should be applied on design dimensions which changes
can impact core design concerns. In the publish/subscribe domain, the most expressive example is
the event format. All infrastructures analyzed adopt, in different degree, generalized event repre-
sentations.

For example, CORBA-NS supports event representation variability by adopting a common
internal event representation: the StructuredEvent, which is general enough to encapsulate all
other event representations it supports. Both Siena, and YANCEES adopt attribute/value pair
formats, whereas JavaSpaces supports general programming language objects, considering their
attributes as tuples.

8.2.4 Flexibility design principles

As shown in our work, flexible approaches as YANCEES can achieve a favorable balance
between the different versatility qualities we measured. In order to reap these benefits, however,
the design of flexible infrastructures must adequately tame the complexity that comes from exten-
sibility and configurability. In particular, we propose the following recommendations in the de-
sign of flexible software.

8.2.4.1 Support separation between mechanisms and policies

Flexible approaches are usually supported by designs that separate commonality and vari-
ability. A good way to reuse commonality and support variability is to separate and modularize
these concerns into policies and mechanisms (Wulf, Cohen et al. 1974). As such, policies are
used to represent variable features, whereas mechanisms are used to capture the commonality of
the domain.

For example, in YANCEES, plug-ins implement application-specific features (policies),
whereas the core infrastructure supports the common publish/subscribe process. This separation
allows the construction of application-specific infrastructures through the combination of a com-
mon publish/subscribe process with application-specific plug-ins.

8.2.4.2 Design for change, supporting extensibility and con-
figurability

Flexibility implies both extensibility and configurability. Any flexible approach must pro-
vide mechanisms that support these two characteristics. As seen in our case studies, flexibility can
only be achieved on planned variability dimensions. This therefore requires the design for change
along planned variability dimensions, and extra support for configuration management.

UCI-ISR-09-3 - August 2009

123

For example, CORBA-NS supports configurability through the use of factories and configu-
ration interfaces. YANCEES supports configurability through runtime parsers and static configu-
ration managers, whereas provides extensibility through plug-ins and extensible languages.

JavaSpaces represents a counter-example. It is not designed to support publish/subscribe in-
teraction specifically. As a consequence, it is not modular toward common publish/subscribe va-
riability dimensions such as notification model and subscription language. This lack of design for
change according to these dimensions, resulted in high costs of adaptation and performance pe-
nalties.

8.2.4.3 Support late binding of features

A common way to support unpredictability is to defer design decisions to as late as possible
in the design process. Late binding supports runtime activation and composition of features, in
response to immediate changes in the application requirements.

Both CORBA-NS and YANCEES support the concept of late binding. While CORBA-NS
allows users to select among existing features and to create new event channels, and producers
and consumers proxies; YANCEES allocates plug-ins according to subscription language expres-
sions posted at runtime. Late binding allows the allocation of resources only when necessary, be-
sides supporting the runtime configuration of different policies.

8.2.4.4 Provide architectural reflection

It is usually the case that complex features are not implemented by a single component. In-
stead, they are built as a composition of extensions that need to communicate with one another.
Reflection allows features to find each other at runtime. It also supports automatic configuration
management, allowing the infrastructure to detect incompatible configurations.

Both CORBA-NS and YANCEES provide architectural reflection. CORBA-NS allows the
location of active proxies through the use of architecture managers; while YANCEES supports
reflection through the use of a plug-in register.

8.2.4.5 Adopt customizable and modular abstractions

Changes in the features provided by the infrastructure must be reflected in its public API.
Customizable and modular abstractions allow the infrastructure to change its public API to better
match the application domain requirements. In doing so, it relieves users from unnecessary im-
plementation details, and avoid their exposure to options and commands that are not required by
the target application domain. As a results, there is an increase in the signal to noise ratio of the
system, reducing the client-side development effort.

While CORBA-NS supports different abstractions for the policies it supports (for example:
pull and push producers and consumer policies), it does not isolate users from configuration de-
tails. YANCEES is the only infrastructure that supports the development of application-specific
subscription languages, isolating configuration and extension concerns from end-users, achieving
lower client-side development effort costs.

8.2.4.6 Employ automation to improve usability

Customizable and modular abstractions are supported by extensibility, configurability and
automation. While extensibility and configurability allows the representation of domain-specific
concerns that closely match the application needs, automation hides from end-users the process of
expressing these higher-level abstractions in terms of more primate ones.

UCI-ISR-09-3 - August 2009

124

When comparing YANCEES and CORBA-NS, the automation and abstraction provided by
YANCEES can significantly reduce the client-side application development effort, while still
keeping the configurability of the infrastructure.

8.2.5 API usability design guidelines
As shown by our case studies and analysis of trade-offs, the design of a usable API can sig-

nificantly reduce both the development effort while increases the performance of the infrastruc-
ture. This section discusses some API design principles derived from our case studies and experi-
ence in the design of YANCEES.

8.2.5.1 Strive for minimalism and completeness

An API should provide an essential set of features that support the common requirements of
the majority of applications. Large APIs with lots of convenience functions are rarely used and
have the potential for increasing the infrastructure complexity. Incomplete APIs result in mis-
matches and extra development effort for the infrastructure clients. Hence, the bottom limit of
minimalism is completeness. Completeness assures that the API supports all the common re-
quirements of a domain. For example, in JavaSpaces, the lack of numeric comparators in the anti-
tuple model shows the incompleteness of the tuple-space model to the set of application domain
requirements we supported.

8.2.5.2 Support multiple user roles by separating API concerns

An infrastructure should support different APIs according to the needs of different
stakeholders, thus, reducing the API complexity, and increasing its “signal-to-noise ratio”. In
other words, an API should hide from different types of users, concerns that do not belong to their
common tasks. This strategy goes in line with the open implementation design guidelines
(Kiczales, Lamping et al. 1997), and the minimalism of APIs (Henning 2009). Moreover, it rec-
ognizes the needs of different stakeholders (infrastructure developers and consumers), besides of
reducing both API size and individual task efforts. For example, the separation between configu-
ration, extension and regular publish/subscribe APIs in YANCEES had a positive impact in the
reduction of the client-side development effort.

Separation of API concerns, however, should be balance with possible integration costs. For
example, in the case of YANCEES, that separates protocol and publication APIs, further commu-
nication between protocol, publication and subscription plug-ins was required in order to unique-
ly identify the subscriber. These extra costs were not needed in the other case studies, since there
were no such separation.

8.2.5.3 Support API customizability

As previously discussed in the flexibility design guidelines, the ability to tailor an API to the
end-users’ needs can have a dramatic impact on the reusability and usability of an infrastructure.
From the analyzed infrastructures, YANCEES is the only one to explicitly support the complete
redefinition of its subscription and notification languages. This ability has shown to significantly
reduce the adaptation costs (more dramatically in CASSIUS case study), and prevent semantic
mismatches.

8.2.5.4 Minimize user choices

While choices support configurability, and the ability to support different application do-
mains; they reduce the usability of the system when supporting individual application domains.

UCI-ISR-09-3 - August 2009

125

Users do not want to pay the price for extra API complexity coming from features that they do
not require. An ideal API provides only the necessary functionality. No more, no less.

8.2.5.5 Minimize adaptation

From our case studies, a large amount of code is devoted to the adaptation of data and con-
trol formats to and from different application domains. These costs only contribute to the de-
crease of system usability and reusability.

A good approach to reduce adaptation costs is the use of application-specific languages and
APIs as demonstrated by YANCEES.

8.2.5.6 Give preference to object-based subscription formats

As described in 7.2.2, textual representations are only advantageous when adequate automa-
tion is provided. In particular, they work better if the application domain is text-based and the
infrastructure supports extensibility in its subscription language, as the case of CASSIUS over
YANCEES. For other application domains, the use of object-based representations, while require
manual (programmatic) assembly of subscriptions, result in lower adaptation costs (the costs of
converting application domain object- or text-based expressions into the native subscription for-
mat of the infrastructure).

8.2.6 Maintainability principles
In our case studies, we correlate maintainability with software modularity. By analyzing the

selected infrastructures, we observed an improvement in maintainability when design for change
along main publish/subscribe variability dimensions was adopted.

8.2.6.1 Design for change

As seen on section 7.3, the design for change along the main variability dimensions of the
application domain, applied in the construction of flexible software, results in more maintainable
(modular) client code. Since changes along these dimensions are more likely to occur, a design
for maintainability should follow the same design of flexible software, modularizing and compos-
ing concerns along these dimensions.

8.3 Reuse recommendations
From a reuse perspective, “the defining characteristic of good reuse is not the reuse of soft-

ware per se, but the reuse of human problem solving. (…) Reuse multiplies the effectiveness of
human problem solving by ensuring that the extensive work or special knowledge used to solve
specific development problems will be transferred to as many similar problems as possible.”
(Barns and Bollinger 1991).

As made evident in our case study, the value of an infrastructure rests not only in its ability
to support middleware distribution, communication and coordination concerns, but also on its
ability to support application-specific requirements. Any extra features that are not necessary for
the application represent additional development costs that, in addition of being an unnecessary
investment for that particular application, can actually demeanor the value of an infrastructure by
adding extra complexity, performance, usability and development costs.

As discussed in section 2.1.2, the process of reusing versatile infrastructures, built according
to different versatility strategies, involves different steps comprising: selection, extension, con-

UCI-ISR-09-3 - August 2009

126

figuration, adaptation and composition (or integration) (Krueger 1992). In this section, we dis-
cuss guidelines to support these operations.

8.3.1 Selection

Selection is one of the most important activities in software reuse. The selection of a good
infrastructure will reduce the costs of extension, configuration, adaptation and composition. Two
factors are key to the selection of an infrastructure: its fitness to the problem domain require-
ments, and the absence of semantic mismatches. As such, one must observe these factors as fol-
lows:

8.3.1.1 Avoid semantic mismatches

Semantic mismatches are those that represent deficiencies in the fundamental features pro-
vided by an infrastructure. It is easier to reuse infrastructures that require extra adaptation effort
on the client side, but have no semantic mismatches in its core, than to reuse infrastructures that
are close fits to the application domain, but provide slightly different features that do not com-
pletely match the fundamental requirements of the problem domain.

For example, even though CORBA-NS supports pull notification, its semantic was not com-
patible to that required by CASSIUS (which adopts a message box approach). As a result, a pro-
prietary pull notification module was required to reuse CORBA-NS in CASSIUS case study.

8.3.1.2 On the absence of semantic mismatches, select based on
problem domain fitness

When inflexible infrastructures are reused, and no semantic mismatches are found, choose
infrastructures which features are closer to the application domain at hand, or which mapping and
transformation between required and provided features is trivial. For example, Siena can support
a large set of application domains by providing a generalized but adaptable subscription and event
representation. Its filter capability and event representation are generic enough to support a large
set of application domains.

8.3.1.3 Consider flexible approaches when supporting software
product lines

Flexible approaches, even though present higher domain-specific implementation costs, pro-
vide lower middleware and adaptation costs. The initial higher component development complex-
ity can pay-off over successive reuses. For example, over three consecutive reuses, YANCEES
case study total development effort was lower than the case studies reusing the other infrastruc-
tures.

8.3.2 Adaptation
As shown in our case studies, adaptation costs, if not well managed, can significantly impact

the performance and reusability of the infrastructure. Two major factors are important in the
choice of a publish/subscribe infrastructure, its subscription and event formats, and the fundamen-
tal set of features it supports.

UCI-ISR-09-3 - August 2009

127

8.3.2.1 Consider the predominant event and subscription repre-
sentations

Adaptation costs are higher when there is a mismatch between these formats. For example,
Siena and JavaSpaces had fewer adaptation costs when supporting domains using object-based
subscription, while YANCESS and CORBA-NS better supported text-based subscription do-
mains.

8.3.2.2 Consider layered adaptation

The filtering capability of publish/subscribe infrastructures not only supports the modulari-
zation of server-side features (as discussed in 8.3.3.1), but also affords the reuse of existing infra-
structures through the laying out of code that incrementally refine and reuse existing core func-
tionality. Through this approach, more complex event filtering capabilities can be implemented as
a function of more simple filtering mechanisms. This is observed in all infrastructures analyzed.

This layering reuse process also allows the bi-directional translation of existing event for-
mats between application domain and infrastructure-specific formats. It also supports the devel-
opment of different notification policies, and the independent implementation of user and infra-
structure protocols. Due to this domain-specific characteristics, it was possible to reuse all the
selected infrastructures, under some complexity and performance penalties as described in section
Chapter 5.

8.3.3 Configuration
Configuration is the act of selecting specific sub-sets of features in support of application-

specific requirements. Different recommendations can be observed in the process of configura-
tion.

8.3.3.1 Consider configuration management costs

 As seen in our case studies, configuration costs are very important. In infrastructures as
CORBA-NS can be as high as 20% of the total cost of development; whereas configuration and
extension represent 45% of the costs of reuse of YANCEES (most of its value, however, repre-
sent extension costs).

Hence, application developers must understand the impact of configuration in the costs of
their applications, selecting infrastructures that balance these costs with other benefits.

8.3.3.2 Prefer infrastructures that implement the open imple-
mentation design guidelines

The open implementation design guidelines (Kiczales, Lamping et al. 1997) prescribes sepa-
ration between configuration and normal use APIs, while provide mechanisms to allow users to
choose between different strategy implementations. Open implementation allows the selection of
application-specific strategies that can improve the performance of the infrastructure as a whole.

From the analyzed infrastructures, only YANCEES supports the separation of API concerns
and the automation of the selection process based on subscription commands, making it easier to
select valid sub-sets of features. CORBA-NS partially implements the open implementation de-
sign guidelines, by allowing users to select among different routing strategies through its configu-
ration API.

UCI-ISR-09-3 - August 2009

128

8.3.4 Extension
Generally speaking, extension is a costly operation that requires certain amount of compre-

hension of the inner mechanisms of an infrastructure. In the best case scenario, it involves the use
of extension APIs provided by the infrastructure, in the worst case scenario, it involves the under-
standing and direct modification of the source code of the infrastructure.

8.3.4.1 Consider the costs of extension, preferring approaches
that support automation, documentation and enforcement of de-
pendencies

The process of extension is usually costly. It requires a deeper knowledge of the infrastruc-
ture, its capabilities and extension rules. As discussed in section 2.2, different fundamental and
configuration-specific dependencies may exist. The lack of documentation and enforcement of
these dependencies may result frequent programming errors and incompatibilities, increasing the
development costs. Hence, as a general guideline, prefer flexible infrastructures as YANCEES
that provide mechanisms to document and enforce dependencies between different features (Silva
Filho and Redmiles 2007).

8.4 Conclusions
In this chapter, we presented a set of requirements analysis, design, implementation, selec-

tion and reuse principles and guidelines that can better support infrastructure developers and us-
ers. These principles allow infrastructure developers and users to better understand the concerns
and challenges involved in the design and reuse of versatile infrastructures. With this basic
knowledge, infrastructure developers can make better decisions when developing and evolving
publish/subscribe infrastructures; whereas application developers can make better choices when
reusing existing infrastructures in the development of their applications.

UCI-ISR-09-3 - August 2009

129

Chapter 9. Study Limitations

Like most empirical studies, the validity of our results is subject to several threats. In par-
ticular, the results discussed in this work are based on a selected set of metrics and a small num-
ber of infrastructures and case studies. There are a number of other existing metrics and other
versatility dimensions that we could be exploited in our study. Nevertheless, there is no practical
way in a single study to explore all the possible dimensions. For every possible measure there
will be some dimensions that will remain uncovered, for example, in our study we did not con-
sider software qualities such as testability, nor interoperability concerns. In the particular case of
YANCEES, we did not consider the program comprehension costs involved in learning its exten-
sibility and configurability APIs.

The evaluation of infrastructures based on metrics such as LOC and McCabe cyclomatic
complexity, or more recent modularity metrics, used in our study are usually subject to criticism
(Fenton and Neil 1999). As such, we considered not only the quantitative results they provide, but
also our qualitative assessment of the infrastructure, discussing as much as possible our impres-
sions and experiences in the use of the selected infrastructures.

The limited size and complexity of the examples used in the implementations may restrict
the extrapolation of our results to other classes of middleware. In addition, our assessment is re-
stricted to the specific publish/subscribe infrastructures and their implementation details. Moreo-
ver, the applications domains we selected in our studies may benefit certain types of infrastruc-
tures. For example, CORBA-NS has been widely adopted in support of real-time avionics appli-
cations, relying on different architectural and compilation optimizations (Harrison, Levine et al.
1997). The ORB we used in our studies, the community OpenORB does not provide any of these
optimizations, which surely impacted its performance. JavaSpaces has been used in support of
asynchronous collaborative applications and mobility (Murphy, Picco et al. 2006), two applica-
tion domains not tested in our case studies.

Our benchmark (and its winners) is based purely on the objective test data and does not eva-
luate or consider other factors that may be of important to specific users' needs, for example
interoperability, support for industry standards (that would benefit, for example, CORBA-NS),
and specific application needs not tested in the benchmark.

An ideal assessment would require the analysis of different and independent applications,
reusing the selected infrastructures. Since some of the infrastructures are research prototypes
(Siena and YANCEES), this was not possible. Even industry standards such as CORBA-NS and
JavaSpaces are not being used in large and diverse enough sets of open source applications, to
support the complete (and automatic) assessment of their versatility approaches. As a result, we
see our approach to build controlled implementations using these infrastructures, as the only fea-
sible approach given the resources, man power, and time constraints we had.

UCI-ISR-09-3 - August 2009

130

Chapter 10. Related Work

In this chapter, we describe related work in the areas of middleware, software engineering,
software product lines and design. Whereas there is an overwhelming volume of literature giving
advice on software design, highlighting the benefits of novel software engineering approaches;
there is equally an overwhelming need for research to validate the effectiveness of this advice
(Kelly 2006). Our work contributes to these different areas by providing quantitative and qualita-
tive data supporting the development and reuse of versatile software.

We further describe the related work in different research fields as follows.

10.1 Middleware versatility
In the middleware literature, existing research in flexible publish/subscribe infrastructures

have reported the benefits of flexible approaches in support of application domain variability.
Examples include GREEN (Sivaharan, Blair et al. 2005), FACET (Pratap, Hunleth et al. 2004)
and YANCEES (Silva Filho and Redmiles 2005). Recent studies of the benefits of AOP in the
modularity and maintainability of middleware have also been published (Hunleth and Cytron
2002; Zhang and Jacobsen 2004).

In the particular case of Database Management Systems (or DBMSs) research, the limita-
tions of one-size-fits-all design, adopted by many infrastructures, have been discussed (Seltzer
2008). As a result, current research in flexible DBMs has emerged as one important research ve-
nue.

In spite of this variety of approaches, few studies discuss the factors that may hinder mid-
dleware adoption and success (Henning 2008). Moreover, most of these studies are restricted to
one specific approach, and do not provide extensive comparative data comparing it with alterna-
tive approaches, nor perform a multi-dimensional analysis of trade-offs with a broad set of soft-
ware qualities. Our work contributes with a broader and more comprehensive evaluation of dif-
ferent software versatility approaches, comparing their benefits and weaknesses with respect to a
broad set of software qualities.

10.2 Software product line engineering
Software product line (SPL) engineering (Bockle, Pohl et al. 2005) is a relatively new ap-

proach to software development. It builds upon research in the areas of software reuse, evolution
and flexibility, and strives to achieve the benefits of such approaches, while manages the trade-
offs involved in the construction of similar software systems.

In SPL, while flexibility copes with software extensibility and configurability; reuse permits
the reduction of the costs of producing similar software systems (over repetitive reuse cycles)
(Bockle, Clements et al. 2004), decreasing time-to-market and defects faced in the development
of software. SPL engineering goes one step ahead of previous software reuse approaches by sys-
tematizing reuse through the adoption of adequate design, implementation strategies and tools
that automate the process of configuration management and derivation of software instances
(Sinnema and Deelstra 2007). It takes advantage of scope, by focusing on a particular application
domain, thus achieving a balance between generality and specificity. It also leverages on domain

UCI-ISR-09-3 - August 2009

131

knowledge gained through the repetitive development of software, supporting the reduction of the
cognitive distance and the improvement of infrastructure usability.

Our work contributes to software product line engineering with quantitative and qualitative
data that studies the effect of different design decisions in the versatility of software. It quantita-
tively and qualitatively analyzes the benefits and costs of flexible software (YANCEES), thus
providing insights to the development of software product lines.

It also contributes with YANCEES, an infrastructure and architectural style that provides in-
sights on the role of dependencies in SPL design and implementation, providing common solu-
tions to the problems originated by these dependencies.

10.2.1 Analysis of dependencies in software product
lines

The study of the role of dependencies in software product lines has gained recent attention
from the research community. The focus, however, has been more on the use of those dependen-
cies to prevent architecture configuration mismatch, and less on the study of the impact of those
dependencies on the system design complexity and their impact on the variability of software. For
example, in the FODA (Kang, Cohen et al. 1990), FORM (Kang 1998), RSEB (Griss, Favaro et
al. 1998) methods and in the generative approach in (Czarnecki and Eisenecker 2000), dependen-
cies are used to model usage interactions (alternative, multiple, optional and mandatory) as well
as incompatibility relations (exclusive or excludes), with the focus on configuration management
and conflict resolution. Recently, (Ferber, Haag et al. 2002) stresses the importance of depend-
ency analysis in feature diagrams, and proposes a separate feature-dependency model that com-
plements the existing feature tress. Additionally, it characterizes different interactions between
features such as intentional, environmental, and usage dependencies. Finally, in a more recent
work, (Lee and Kang 2004) studied the role of dependencies on modeling runtime feature interac-
tions, introducing the notion of activation and modification dependencies in feature diagrams.

In the implementation domain, feature dependencies usually manifest themselves in the form
of coupling between the components that implement those features, in special data and control
coupling occur as a consequence of activation and usage dependencies. Those dependencies have
different impacts in the variability of the final solution. Whereas control coupling usually limits
the activation order of the different pieces of software, data coupling can limit the variability and
reuse of those components. (Parnas 1978; Stevens, Myers et al. 1999)

On the light of those problems, different variability realization approaches have been used.
For example, (Lee and Kang 2004) propose a set of object-oriented realization strategies to ad-
dress activation dependencies. Those strategies are presented in the form of design patterns de-
rived from existing Factory, Proxy and Builder patterns (Gamma, Helm et al. 1995). In essence,
those patterns focus on managing and enforcing activation dependencies by promoting the late-
binding of the components that implement the many software features. Whereas useful in many
contexts, this modular (object-oriented) decomposition is not always sufficient to address other
kinds of dependencies, especially crosscutting variability dimensions or aspects, originated from
more fundamental problem dependencies. This motivated recent work such as (Garcia, Sant'Anna
et al. 2005), where Aspects are used to modularize design patterns.

In our work, we argue towards a more deep understanding of the role in dependencies in
software product lines. Not only as important information for configuration management support,
but as main factors to be considering in the design, bounding and variability realization selection
phases, as discussed in section 2.2.

UCI-ISR-09-3 - August 2009

132

10.2.2 Software product lines economic models
From an economic perspective, SPL yields an economy of scope through the reuse of exist-

ing assets. Reuse is planned, enabled and enforced. Hence, the gains in productivity through the
use of SPL engineering are directly proportional to the variability in the domain and the number
of different software instances that one needs to support in a program family (Bockle, Clements et
al. 2004).

Existing software product line economic models allows the comparison between software
product line approaches as YANCEES with more traditional approaches. For example, the work
of (Bockle, Clements et al. 2004) and (Frakes and Terry 1996). These high-level economic mod-
els, however, do not provide insights on the difficulties and challenges involved in the develop-
ment and reuse of SPLs. For example, they do not account for domain-specific factors that can
hinder reusability, such as adaptation costs, performance and subscription and notification models
mismatches.

Our work contributes to software product line economic models by discussing in detail the
main challenges and factors that may hinder the development of versatile software (discussed in
Chapter 2), while provides insights that can guide the engineering of such systems, thus achieving
a favorable balance between the main versatility software qualities (as discussed in Chapter 3and
Chapter 8).

10.3 Software design and analysis methodologies
Existing methods such as the Software Engineering Institute’s ATAM (Architecture Trade-

off Analysis Method) (Kazman, Klein et al. 2000), SAAM (Software Architecture Analysis Me-
thod) (Paul Clements 2001), and ADD (Attribute-Driven Design) (Wood 2007) can be used to
assess the consequences of architectural decisions at the light of quality attribute requirements.
These methodologies, however, are design-time methodologies, being limited to the estimation,
instead of the analysis of actual trade-offs defined by existing design and implementation deci-
sions of actual components. Our work fills these gaps by analyzing existing infrastructures design
and implementations in realistic scenarios.

10.4 Empirical software engineering
From an empirical software engineering perspective, multi-dimensional analysis of different

versatility approaches are rare. Nevertheless, some quantitative research has been done on the
analysis and validation of design principles and their impact in different software qualities.

For example, the study of the impact of middleware stability on supporting changes in non-
functional requirements (Bahsoon, Emmerich et al. 2005); on the benefits of reuse on large soft-
ware projects (Mohagheghi and Conradi 2008) and software product lines (van Ommering 2005);
on the role of software architecture stability in software evolution (Jazayeri 2002); on the issues
in the modularization of software using aspects (Garcia, Sant'Anna et al. 2005; Lopes and
Bajracharya 2006; Greenwood, Bartolomei et al. 2007); on the usability of design patterns such as
Factory (Ellis, Stylos et al. 2007); on the flexibility (and inflexibility) of design patterns (Mens
and Eden 2005); and the impact of different middleware on performance (Tselikis, Mitropoulos et
al. 2007).

These quantitative studies, however, focus on a punctual software qualities such as reusabil-
ity, stability, modularity, usability, flexibility and performance respectively. To the best of our
knowledge, no in-depth analysis exist that evaluates and compares the different trade-offs be-
tween important software qualities such as: infrastructures complexity, reusability, maintainabil-

UCI-ISR-09-3 - August 2009

133

ity, flexibility, and performance. Moreover, most studies are performed from the points-of-view
infrastructure developers, with little or no focus on API usability analysis.

10.5 Design principles literature
Different general design principles have been advocated by Parnas (Parnas 1978), Raymond

(Raymond 2004), Gabriel (Gabriel 1991) and Kiczales (Kiczales, Lamping et al. 1997); different
API Guidelines have been proposed by (McConnell 2004), (McLellan, Roesler et al. 1998),
(Bloch 2006) and (Henning 2009); whereas lower-level implementation guidelines are popular in
the object-oriented literature (Gamma, Helm et al. 1995; Martin 2003). Very few studies, how-
ever, have investigated and quantitatively analyzed the effects of the application of these princi-
ples on realistic systems, thus providing hard evidence of their benefits and possible costs. Our
work confirms some of these principles and provides hard evidence of the impact of their applica-
tion on important software qualities.

UCI-ISR-09-3 - August 2009

134

Chapter 11. Conclusions

The development and reuse of versatile software infrastructures faces different and not so
well understood trade-offs, a consequence of different domain-specific requirements, and archi-
tectural and implementation decisions. By analyzing and elucidating these trade-offs in the pub-
lish/subscribe domain, and deriving principles and guidelines, we seek to better support pub-
lish/subscribe infrastructure developers in the design of better middleware, and infrastructure
consumers in selecting among the existing options available.

In particular, in this work, we presented a quantitative and qualitative study that analyzed the
costs and benefits of existing publish/subscribe infrastructures representing different versatility
approaches. The results are summarized in the form of data presented throughout this document,
in the design and implementation of YANCEES (Chapter 3), and a set of design principles and
guidelines presented in Chapter 8.

11.1 Summary of contributions
The contributions of this work crosscut different research areas as follows:

11.1.1 Contributions in software engineering in general
This works contributes to software engineering research in the following manner:

• We propose the concept of versatility, together with an analytical framework that describes
major operators employed in the development and reuse of versatile software (discussed in
section Chapter 2), describing their main benefits and costs;

• We also perform a non-exhaustive survey of major architectural approaches adopted in the
development of versatile software in general, and pub/sub infrastructures specifically (dis-
cussed at (Silva Filho and Redmiles 2005) and in section 4.1), evaluating infrastructures de-
veloped according to these approaches in our case studies;

• In order to analyze different versatility approaches, we designed comprehensive evaluation
framework to compare the versatility of heterogeneous software infrastructures (Chapter 4).

• In doing so, we designed and applied a metrics suite, which quantifies software qualities as:
usability, reusability, performance, flexibility, and maintainability in terms of lower-level at-
tributes (section 4.4). In particular, we propose a new metric called development effort,
which is the product of the total lines of code and cyclomatic complexity. This metric is the
basis for our measurement of usability and reusability.

• The collected data was analyzed for correlations between these different software qualities,
thus identifying trade-offs (Chapter 7). In particular, we provide empirical data showing that
flexibility is more a consequence of design for change rather than the mere application of
good software practices.

• Based on our case study, we also contribute with a set of principles and guidelines for re-
quirements analysis, development and reuse of versatile publish/subscribe infrastructures
(Chapter 8).

UCI-ISR-09-3 - August 2009

135

• Finally, we show the impossibility of the construction of an ideally versatile pub-
lish/subscribe infrastructure, one that can have its characteristics evolved independently from
each other, pointing out the role of dependencies in limiting variability (as discussed in
Chapter 2).

11.1.2 Contributions in the software product line
engineering
In the software product line research, we contribute with:

• A deeper understanding of the impact of dependencies in limiting software flexibility, and an
analysis of different feature interference problems in YANCEES (as discussed at (Silva
Filho and Redmiles 2007) and in Chapter 2 of this document)

• An analysis of the role of dependencies in limiting variability, and a notation to express de-
pendencies (as discussed at (Silva Filho and Redmiles 2006) and in Chapter 2 of this docu-
ment).

• A comparative study of the versatility trade-offs in publish/subscribe infrastructures which
compares flexible software product line approach (as YANCEES) with more traditional al-
ternatives as: coordination languages (JavaSpaces), one-size-fits-all (CORBA-NS), and mi-
nimal core (Siena), as discussed in Chapter 7.

11.1.3 Contributions to middleware research
With respect to middleware research, we contribute with:

• YANCEES, a flexible pub/sub infrastructure (Silva Filho, de Souza et al. 2003; Silva Filho
and Redmiles 2005), and a set of design principles supporting its development, showing how
to achieve a favorable balance between different software qualities in this domain;

• The extended Rosenblum and Wolf (Rosenblum and Wolf 1997) design model for pub-
lish/subscribe infrastructures, showing the importance to support protocols (discussed at
(Silva Filho, de Souza et al. 2003) and in section Chapter 3 of this document);

• We also contribute with a quantitative and qualitative study of publish/subscribe middle-
ware, where we show the complexity of using, extending and reusing different infrastruc-
tures.

11.2 Future work
The work discussed in this dissertation, including the analysis of versatility trade-offs, the

principles we derived, and the design and implementation of YANCEES, only represents the be-
ginnings of new and promising approach to the creation of versatile software in general and pub-
lish/subscribe infrastructures specifically. The development of versatile software still faces many
challenges that can benefit from further research in areas such as: program comprehension, API
usability and programming language design.

11.2.1 Tool support for software comprehension and evo-
lution

Even though different design and implementation approaches exist to support the develop-
ment of versatile software (for example, software product line engineering (Kang, Lee et al. 2003;
Lee and Kang 2004), component models, plug-ins, frameworks, and many others (Svahnberg,

UCI-ISR-09-3 - August 2009

136

Gurp et al. 2005)), the process of design, evolution and reuse of software developed according to
these approaches is still not fully supported.

For example, a common problem faced by users of versatile software is the understanding of
the original intention, assumptions and rationale of software (Bosch, Florijn et al. 2002). Whereas
some approaches have already been proposed to document and automate the process of under-
standing and reusing software product line assets (Sinnema, Deelstra et al. 2004; Sinnema,
Deelstra et al. 2006), much work still needs to be done. In particular, there is a lack of good ap-
proaches to capture, represent and enforce versatility context. By versatility context I mean: the
information necessary to correctly understand, extend, adapt, configure and ultimately reuse a
piece of software to a particular need. Context requires the timely gathering of otherwise hidden,
scattered information, their enforcement and presentation in meaningful ways to software devel-
opers thus supporting their activity at hand. Moreover, many times, this information is tacit, not
written in any documentation form, but is part of the expertise of few developers, which makes it
event difficult to locate, combine and present this information.

As a future research in this area, I plan on answering the following questions: What kind of
context information do developers need? How can this information be gathered, presented and
enforced? Can we derive usable and useful ways to capture, document, present and enforce this
information? How can we support tacit knowledge capturing, representing and sharing?

An initial attempt to answer some of these questions is in our early work on the documenta-
tion and enforcement of dependencies in YANCEES (Silva Filho and Redmiles 2007). Thus, we
plan to generalize this work to include other types of systems, and extensible APIs in general.

11.2.2 API usability metrics, guidelines and tool sup-
port

Application Programming Interfaces (or APIs) define reusable abstractions applied in the
construction of complex software systems. They not only support the management of software
complexity, but also work as boundaries between relatively independent software development
teams (De Souza 2005). In spite of their importance, very little research has been done on the de-
sign and evaluation of APIs (Henning 2009). In this dissertation work, the size of the APIs and
the number of concerns API users need to master have shown to be important factors in the total
effort of adapting, extending and configuring an infrastructure.

As a future work, I plan on broadening the scope of the initial API usability research done in
this work, by answering the following questions: What is a good API? How can we adequately
measure API usability? What’s the impact of sound software engineering approaches in the re-
sulting API usability? Can we develop better principles, guidelines and tools to better support the
development of APIs?

The answering of these questions will not only benefit the development of versatile software,
but all sorts of software systems in general. Moreover, by better understanding the process of de-
sign and development of APIs, we can better support the development of automated tools to guide
developers in their development process.

11.2.3 Study of the impact of programming paradigm in
software versatility

Different programming paradigms are able to impact important software qualities such as
flexibility, usability and reusability. In fact, many of the problems found in our versatility analy-
sis were influenced by the programming paradigm adopted (Object-Oriented), its dominant de-

UCI-ISR-09-3 - August 2009

137

composition (Objects) and integration mechanism (method invocation). For example, some inci-
dental dependencies, and the scattering of functionality throughout different components of
YANCEES are a consequence of the Object-Oriented decomposition model adopted, that many
times cannot modularize concerns into single classes.

Approaches such as Aspect-Oriented Programming, for example, can improve the modular-
ity of software (Lopes and Bajracharya 2006), supporting better locality of change. This ap-
proach, however, has also implicit cots, some of them related to the scalability and usability of
program comprehension (Ruengmee, Silva Filho et al. 2008). These sets of benefits as well as
costs must be better understood in order to inform tools and techniques to better support develop-
ers in applying these paradigms.

In particular, we are interested in better understanding the role of programming paradigm in
software versatility. For such, I plan to further analyze and compare the impact of different pro-
gramming paradigms, such as Object-Oriented, Aspect-Oriented and Implicit Invocation lan-
guages in the resulting versatility of existing Middleware. While some initial evidence was col-
lected by (Leung 2006), on implicit invocaiton languages, and (Lopes and Bajracharya 2006) on
AOP, a comparative approach between these paradigms are still missing.

In particular, I plan to investigate the following research questions: What benefits different
programming paradigms afford to software versatility? At what costs? Can we derive principles
and tools to help developers leverage on these paradigms benefits, while managing their inciden-
tal issues? By answering these questions, our goal is to better support versatile software develop-
ment and reuse, informing the design of novel tools for versatile software engineering.

UCI-ISR-09-3 - August 2009

138

References

Bahsoon, R., W. Emmerich, et al. (2005). "Using real options to select stable middleware-induced
software architectures." IEE Proceedings - Software Engineering 152(4): :167 - 186.

Baldoni, R., M. Contenti, et al. (2003). The Evolution of Publish/Subscribe Communication
Systems. Future Directions of Distributed Computing. Springer-Verlag. 2584.

Baldwin, C. Y. and K. B. Clark (2000). Design Rules, Vol. 1: The Power of Modularity.
Cambridge, MA, MIT Press.

Bandi, R. K., V. K. Vaishnavi, et al. (2003). "Predicting Maintenance Performance Using Object-
Oriented Design Complexity Metrics." IEEE Transactions on Software Engineering 29(1).

Barns, B. H. and T. B. Bollinger (1991). "Making reuse cost-effective." IEEE Software 8(1): 13-
24.

Batory, D., J. N. Sarvela, et al. (2003). Scaling step-wise refinement. Proceedings of the 25th
International Conference on Software Engineering. Portland, Oregon, IEEE Computer
Society: 187 - 197.

Bergmans, L. and M. Aksit (2001). "Composing Crosscutting Concerns Using Composition
Filters." Communications of the ACM 44(10): 51-58.

Birsan, D. (2005). On Plug-ins and Extensible Architectures. ACM Queue. 3: 40-46.

Biscotti, F., T. Jones, et al. (2008). Market Share: Application Infrastructure and Middleware
Software, Worldwide, 2007. Stamford, CT, Gartner Group: 31.

Bloch, J. J. (2006). How to design a good API and why it matters. OOPSLA Companion.

Bockle, G., P. Clements, et al. (2004). "Calculating ROI for software product lines." IEEE
Software 21(3): 23- 31.

Bockle, G., K. Pohl, et al. (2005). Software Product Line Engineering. Heidelberg, Berlin, New
York, Springer.

Bosch, J. (2004). Software Architecture: The Next Step. Lecture Notes in Computer Science.
Berlin / Heidelberg, Springer 3047: 194-199.

Bosch, J., G. Florijn, et al. (2002). "Variability Issues in Software Product Lines." Lecture Notes
in Computer Science - 4th International Workshop on Software Product Family Engineering
- PFE'2002 2290/2002: 303-338.

Bowen, T. F., F. S. Dworack, et al. (1989). The feature interaction problem in
telecommunications systems. Software Engineering for Telecommunication Switching
Systems.

Boyer, R. T. and W. G. Griswold (2004). Fulcrum – An Open-Implementation Approach to
Context-Aware Publish/Subscribe. San Diego, UCSD.

Brooks, F. P. (1987). No Silver Bullet: Essence and Accident in Software Engineering. IEEE
Computer 20. 10: 10-19.

UCI-ISR-09-3 - August 2009

139

Cabrera, L. F., M. B. Jones, et al. (2001). Herald: Achieving a Global Event Notification Service.
Eighth Workshop on Hot Topics in Operating Systems (HotOS-VIII), Elmau, Germany,
IEEE Computer Society.

Cacho, N., C. Sant'Anna, et al. (2006). Composing design patterns: a scalability study of aspect-
oriented programming. 5th international conference on Aspect-oriented software
development, Bonn, Germany.

Cardone, R., A. Brown, et al. (2002). Using Mixins to Build Flexible Widgets. 1st International
Conference on Aspect-Oriented Software Development, Enschede, The Netherlands.

Carzaniga, A., D. S. Rosenblum, et al. (2000). Achieving Scalability and Expressiveness in an
Internet-Scale Event Notification Service. Nineteenth ACM Symposium on Principles of
Distributed Computing, Portland, OR, ACM Press.

Carzaniga, A., D. S. Rosenblum, et al. (2001). "Design and Evaluation of a Wide-Area Event
Notification Service." ACM Transactions on Computer Systems 19(3): 332-383.

Castro, M., P. Druschel, et al. (2002). "SCRIBE: A Large-Scale and Decentralized Application-
Level Multicast Infrastructure." IEEE Journal on Selected Areas in Communications 20(8):
1489-1499.

Clarke, S. (2004). Measuring API Usability. Dr. Dobb's Journal Windows/.NET Supplement: S6-
S9.

Clements, P. and L. Northrop (2002). Software Product Lines: Practices and Patterns, Addison-
Wesley.

Coplien, J., D. Hoffman, et al. (1998). Commonality and Variability in Software Engineering.
IEEE Software. 15: 37-45.

Cugola, G., E. D. Nitto, et al. (2001). "The Jedi Event-Based Infrastructure and Its Application on
the Development of the OPSS WFMS." IEEE Transactions on Software Engineering 27(9):
827-849.

Czarnecki, K. and U. W. Eisenecker (2000). Generative Programming - Methods, Tools, and
Applications, Addison-Wesley.

Czarnecki, K., S. Helsen, et al. (2005). "Formalizing Cardinality-based Feature Models and their
Specialization." Software Process Improvement and Practice, special issue of best papers
from SPLC04, 10(1): 7 - 29.

De Souza, C. R. B. (2005). On the Relationship between Software Dependencies and
Coordination: Field Studies and Tool Support. Ph.D. dissertation, Donald Bren School of
Information and Computer Sciences, University of California, Irvine,. Irvine, CA, USA.

DePaula, R., X. Ding, et al. (2005). "In the Eye of the Beholder: A Visualization-based Approach
to Information System Security." International Journal of Human-Computer Studies -
Special Issue on HCI Research in Privacy and Security 63(1-2): 5-24.

DePaula, R., X. Ding, et al. (2005). Two Experiences Designing for Effective Security.
Symposium on Usable Privacy and Security, Pittsburgh, PA.

Eaddy, M., T. Zimmermann, et al. (2008). "Do Crosscutting Concerns Cause Defects?" Software
Engineering, IEEE Transactions on 34(4): 497-515.

Eden, A. H. and T. Mens (2006). "Measuring Software Flexibility." IEEE Software 153(3): 113-
126.

UCI-ISR-09-3 - August 2009

140

Ellis, B., J. Stylos, et al. (2007). The Factory Pattern in API Design: A Usability Evaluation. 29th
International Conference on Software Engineering ICSE '07, Minneapolis, MI, IEEE
Computer Society.

Emmerich, W. (2000). Software Engineering and Middleware: A Roadmap. The Future of
Software Engineering. A. Finkelstein, ACM Press.

Factor, M. (1990). The process trellis architecture for real-time monitors. 2nd ACM SIGPLAN
symposium on Principles & practice of parallel programming, Seattle, Washington, United
States.

Fenton, N. E. and M. Neil (1999). "Software Metrics: Successes, Failures and New Directions."
Journal of Systems and Software 47(2-3): 149-157.

Ferber, S., J. Haag, et al. (2002). "Feature Interaction and Dependencies: Modeling Features for
Reengineering a Legacy Product Line." Lecture Notes in Computer Science. Second
International Conference on Software Product Lines, SPLC'02 2379: 235-256.

Fitzpatrick, G., T. Mansfield, et al. (1999). Instrumenting and Augmenting the Workaday World
with a Generic Notification Service called Elvin. European Conference on Computer
Supported Cooperative Work (ECSCW '99), Copenhagen, Denmark, Kluwer.

Fowler, M. (2004). Inversion of Control Containers and the Dependency Injection Pattern,
http://www.martinfowler.com/articles/injection.html.

Frakes, W. and C. Terry (1996). "Software reuse: metrics and models." ACM Computing Surveys
28(2): 415-435.

Freeman, E., S. Hupfer, et al. (1999). JavaSpaces Principles, Patterns, and Practice, Book News,
Inc.

Gabriel, R. P. (1991). Lisp: Good News, Bad News, How to Win Big (Keynote). EuroPAL
(European Conference on the Practical Applications of Lisp) Cambridge, UK,
http://www.dreamsongs.com/WIB.html.

Gamma, E., R. Helm, et al. (1995). Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley Publishing Company.

Garcia, A., C. Sant'Anna, et al. (2005). Modularizing design patterns with aspects: a quantitative
study. Aspect-oriented software development, Chicago, Illinois, ACM Press.

Garlan, D., R. Allen, et al. (1995). "Architectural Mismatch: Why Reuse Is So Hard." IEEE
Software 12(6): 17-26.

Gelernter, D. (1985). "Generative communication in Linda." ACM Transactions on Programming
Languages and Systems (TOPLAS 7(1).

Geyer, W., R. S. Silva Filho, et al. (2008). "The Trade-Offs of Blending Synchronous and
Asynchronous Communication Services to Support Contextual Collaboration." Journal of
Universal Computer Science (special issue on Groupware) 14(1): 4-26.

Glass, R. L. (1994). "The Software-Research Crisis." IEEE Software 11(6): 42-47.

Gore, P., I. Pyarali, et al. (2004). The Design and Performance of a Real-Time Notification
Service. 10th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS'04).

Greenwood, P., T. Bartolomei, et al. (2007). On the Impact of Aspectual Decompositions on
Design Stability: An Empirical Study. LNCS - Proceedings of the ECOOP 2007 – Object-
Oriented Programming. Berlin Heidelberg, Springer-Verlag. 4609/2007: 176-200.

UCI-ISR-09-3 - August 2009

141

Griss, M. L., J. Favaro, et al. (1998). Integrating Feature Modeling with RSEB. Fifth International
Conference on Software Reuse.

Group, O. M. (2003). Deployment and Configuration of Component-based Distributed
Applications Specification. Adopted Submission. OMG Document ptc/03-07-08, OMG.

Gruber, R. E., B. Krishnamurthy, et al. (1999). The Architecture of the READY Event
Notification Service. ICDCS Workshop on Electronic Commerce and Web-Based
Applications, Austin, TX, USA.

Harrison, T. H., D. L. Levine, et al. (1997). The Design and Performance of a Real-time CORBA
Object Event Service. OOPSLA'97, Atlanta, GA, ACM.

Heimbigner, D. (2003). Extending the Siena Publish/Subscribe System. Technical Report: CU-
CS-946-03. Boulder, Colorado, CU, Bolder.

Henning, M. (2008). "The rise and fall of CORBA." Commun. ACM 51(8): 52-57.

Henning, M. (2009). "API design matters." Commununications of ACM 52(5): 46-56.

Hilbert, D. and D. Redmiles (1998). An Approach to Large-scale Collection of Application Usage
Data over the Internet. 20th International Conference on Software Engineering (ICSE '98),
Kyoto, Japan, IEEE Computer Society Press.

Hunleth, F. and R. K. Cytron (2002). Footprint and feature management using aspect-oriented
programming techniques. Joint conference on Languages, Compilers and Tools for
Embedded Systems, Berlin, Germany, ACM Press.

IEEE (1993). IEEE standard for a software quality metrics methodology (IEEE Std 1061-1992).

Jamil, T. (1995). "RISC versus CISC." Potentials, IEEE 14(3): 13-16.

Jazayeri, M. (2002). "On Architectural Stability and Evolution." Lecture Notes In Computer
Science. Proceedings of the 7th Ada-Europe International Conference on Reliable Software
Technologies 2361: 13 - 23.

Jingyue, L., R. Conradi, et al. (2009). "Development with Off-the-Shelf Components: 10 Facts."
Software, IEEE 26(2): 80-87.

Kang, K., K. Lee, et al. (2003). Feature Oriented Product Line Software Engineering: Principles
and Guidelnes. Domain Oriented Systems Development: Practices and Perspectives. UK. 1:
29-46.

Kang, K. C. (1998). "FORM: A Feature-Oriented Reuse Method with Domain Specific
Architectures." Annals of Software Engineering 5: 345-355.

Kang, K. C., S. G. Cohen, et al. (1990). Feature-Oriented Domain Analysis (FODA) Feasibility
Study - CMU/SEI-90-TR-021. Pittsburgh, PA, Carnegie Mellon Software Engineering
Institute.

Kantor, M. and D. Redmiles (2001). Creating an Infrastructure for Ubiquitous Awareness. Eighth
IFIP TC 13 Conference on Human-Computer Interaction (INTERACT 2001), Tokyo, Japan.

Kazman, R., M. Klein, et al. (2000). ATAM: Method for Architecture Evaluation CMU/SEI-
2000-TR-004. Pittsburgh, PA, CMU: 83.

Kelly, D. (2006). "A Study of Design Characteristics in Evolving Software Using Stability as a
Criterion." IEEE Transactions on Software Engineering 32(5): 315-329.

UCI-ISR-09-3 - August 2009

142

Kiczales, G. (1995). Towards a New Model of Abstraction in the Engineering of Software (Why
Are Black Boxes So Hard To Reuse?). Invited Talk, 17th International Conference on
Software Engineering, Seattle, WA.

Kiczales, G., J. Lamping, et al. (1997). Open Implementation Design Guidelines. International
Conference of Software Engineering (ICSE'97), Boston, MA, ACM Press.

Kiczales, G., J. Lamping, et al. (1997). Aspect-Oriented Programming. European Conference on
Object-Oriented Programming, Jyväskylä, Finland, Springer-Verlag.

Kim, J. and D. H. Bae (2006). "An approach to feature-based software construction for enhancing
maintainability." Software Practice and Experience 36(9): 923-948.

Krueger, C. (2006). Software Product Line Concepts:
www.softwareproductlines.com/introduction/concepts.html, The Software Product Lines
site.

Krueger, C. W. (1992). "Software Reuse." ACM Computing Surveys 24(3): 131-184.

Larman, C. and V. R. Basili (2003). Iterative and Incremental Development: A Brief History.
IEEE Computer. 36: 47-56.

Leclercq, M., V. Quema, et al. (2005). "DREAM: a Component Framework for the Construction
of Resource-Aware, Reconfigurable MOMs." IEEE Distributed Systems Online 6(9): 1-12.

Lee, K. and K. C. Kang (2004). "Feature Dependency Analysis for Product Line Component
Design." Lecture Notes in Computer Science - 8th International Conference on Software
Reuse, ICSR'04 3107: 69-85.

Lehman, M. M. and F. N. Parr (1976). Program evolution and its impact on software engineering.
2nd international conference on software engineering, San Francisco, CA, USA, IEEE
Computer Society Press.

Lehman, M. M., J. F. Ramil, et al. (1997). Metrics and laws of software evolution-the nineties
view. 4th International Software Metrics Symposium, Albuquerque, NM, USA, IEEE.

Leung, W.-H. F. (2006). "Program entanglement, feature interaction and the feature language
extensions." Computer Networks 51(2): 480-495.

Li, W. and S. Henry (1993). "Object-oriented metrics that predict maintainability." Systems and
Software 23(2): 111-122.

Lidwell, W., K. Holden, et al. (2003). Universal Principles of Design. Beverly, MA, Rockport.

Lieberherr, K. J. and I. M. Holland (1989). Assuring good style for object-oriented programs.
IEEE Software. 6: 38-48.

Liskov, B. (1987). Keynote address - Data Abstraction and Hierarchy. Object Oriented
Programming Systems Languages and Applications (OOPSLA'87), Orlando, Florida.

Liskov, B. and S. Zilles (1974). Programming with abstract data types. Proceedings of the ACM
SIGPLAN symposium on Very high level languages. Santa Monica, California, United
States, ACM.

Long, J. (2001). "Software reuse antipatterns." ACM SIGSOFT Software Engineering Notes
26(4): 68-76.

Lopes, C. and S. Bajracharya (2006). "Assessing Aspect Modularizations Using Design Structure
Matrix and Net Option Value." Transactions on Aspect-Oriented Software Development I
(TASOD) - Lecture Notes in Computer Science 3880(1): 1-35.

UCI-ISR-09-3 - August 2009

143

Lopes, C. V. and S. Bajracharya (2006). "An Analysis of Modularity in Aspect-Oriented Design."
Springer LNCS Transactions on Aspect-Oriented Software Development 1(3880): 1-35.

M. Eaddy, A. A. and G. C. Murphy (2007). Identifying, Assigning, and Quantifying Crosscutting
Concerns. Workshop on Assessment of Contemporary Modularization Techniques (ACoM),
Minneapolis, Minnesota, USA.

Mahdy, A. and M. E. Fayad (2002). A Software Stability Model Pattern. 9th Conference on
Pattern Language of Programs - PLOP2002, Monticello Illinois.

Martin, R. C. (2003). Agile Software Development, Principles, Patterns, and Practices.
Englewood Cliffs, NJ, Prentice Hall.

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software Engineering. SE-
2: 308-320.

McConnell, S. (2004). Code Complete, Second Edition, Microsoft Press.

McLellan, S. G., A. W. Roesler, et al. (1998). "Building more usable APIs." IEEE Software
15(3): 78-86.

Mens, T. and A. H. Eden (2005). "On the Evolution Complexity of Design Patterns." Electronic
Notes in Theoretical Computer Science 127(3): 147-163.

Meyer, B. (1992). "Applying `design by contract'." Computer 25(10): 40-51.

Meyer, B. (1997). Object-Oriented Software Construction, 2nd Edition. Upper Saddle River, NJ,
Prentice Hall.

Mohagheghi, P. and R. Conradi (2008). "An empirical investigation of software reuse benefits in
a large telecom product." ACM Trans. Softw. Eng. Methodol. 17(3): 1-31.

Murphy, A. L., G. P. Picco, et al. (2006). "LIME: A Coordination Middleware Supporting
Mobility of Hosts and Agents." ACM Transactions on Software Engineering and
Methodology 15(3): 279-328.

Naslavsky, L., R. S. Silva Filho, et al. (2004). Distributed Expectation-Driven Residual Testing.
Second International Workshop on Remote Analysis and Measurement of Software Systems
(RAMSS'04). Edinburgh, UK.

OMG (2001). CORBA Event Service Specification (version 1.1), Object Management Group.

OMG (2004). CORBAcos Notification Service version 1.1 formal/04-10-13, Object Management
Group: 229.

Parnas, D. L. (1972). On the Criteria to Be Used in Decomposing Systems into Modules.
Communications of the ACM. 15: 1053-1058.

Parnas, D. L. (1978). Designing software for ease of extension and contraction. 3rd international
conference on Software engineering, Atlanta, Georgia, USA, IEEE Press.

Parnas, D. L. (1994). Software Aging. 16th international conference on Software engineering,
Sorrento, Italy.

Parnas, D. L., P. C. Clements, et al. (1984). The modular structure of complex systems.
International Conference on Software Engineering, Orlando, Florida, United States, IEEE
Press Piscataway, NJ, USA.

Parnas, D. L., J. E. Shore, et al. (1976). "Abstract types defined as classes of variables." SIGMOD
Rec. 8(2): 149-154.

UCI-ISR-09-3 - August 2009

144

Paul Clements, R. K., Mark Klein (2001). Evaluating Software Architectures: Methods and Case
Studies, Addison-Wesley.

Pratap, R. M., F. Hunleth, et al. (2004). "Building fully customizable middleware using an aspect-
oriented approach." IEE Proceedings - Software Engineering 151(4): 199-216.

Raymond, E. S. (2004). The Art of UNIX Programming, Addison-Wesley.

Redmiles, D., A. van der Hoek, et al. (2007). "Continuous Coordination: A New Paradigm to
Support Globally Distributed Software Development Projects." Wirtschaftsinformatik
(Special Issue on the Industrialization of Software Development) 49(3).

Robillard, M. P. and G. C. Murphy (2007). "Representing concerns in source code." Transactions
on Software Engineering and Methodology (TOSEM) 16(1).

Robillard, M. P. and F. Weigand-Warr (2005). ConcernMapper: Simple ViewBased Separation of
Scattered Concerns. Eclipse Technology Exchange at OOPSLA, San Diego, CA, ACM
Press.

Roeller, R., P. Lago, et al. (2006). "Recovering architectural assumptions." Journal of Systems
and Software 79(4): 552-573.

Rosenblum, D. S. and A. L. Wolf (1997). A Design Framework for Internet-Scale Event
Observation and Notification. 6th European Software Engineering Conference/5th ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Zurich, Switzerland,
Springer-Verlag.

Ruengmee, W., R. S. Silva Filho, et al. (2008). XE (eXtreme Editor) - Bridging the Aspect-
Oriented Programming Usability Gap. Automated Software Engineering, 2008. ASE 2008.
23rd IEEE/ACM International Conference on.

Rus, D., R. Gray, et al. (1997). "Transportable Information Agents." Journal of Intelligent
Information Systems 9(3): 215-238.

Sangwan, R. S., L. Li-Ping, et al. (2008). "Structural Complexity in Architecture-Centric
Software Evolution." Computer 41(10): 96-99.

Schwartz, B. (2004). The Paradox of Choice: Why More Is Less. New York, NY, Harper
Collings.

Seltzer, M. (2008). "Beyond Relational Databases." Communications of the ACM 51(7): 52-58.

Siegel, J. (1998). OMG overview: CORBA and the OMA in enterprise computing.
Communications of the ACM. 41: 37-43.

Silva Filho, R. S., C. R. B. de Souza, et al. (2003). The Design of a Configurable, Extensible and
Dynamic Notification Service. International Workshop on Distributed Event Systems
(DEBS'03), San Diego, CA.

Silva Filho, R. S., W. Geyer, et al. (2005). Architectural Trade-Offs for Collaboration Services
Supporting Contextual Collaboration - RC23756. Cambridge, MA, IBM T. J. Watson.

Silva Filho, R. S. and D. Redmiles (2005). Striving for Versatility in Publish/Subscribe
Infrastructures. 5th International Workshop on Software Engineering and Middleware
(SEM'2005), co-located with ESEC/FSE'05 Conference, Lisbon, Portugal, ACM Press.

Silva Filho, R. S. and D. Redmiles (2005). Striving for Versatility in Publish/Subscribe
Infrastructures. 5th International Workshop on Software Engineering and Middleware
(SEM'2005), Lisbon, Portugal., ACM Press.

UCI-ISR-09-3 - August 2009

145

Silva Filho, R. S. and D. F. Redmiles (2005). A Survey on Versatility for Publish/Subscribe
Infrastructures. Technical Report UCI-ISR-05-8. Irvine, CA, Institute for Software Research:
1-77.

Silva Filho, R. S. and D. F. Redmiles (2006). Extending Desktop Applications with Pocket-size
Devices. Symposium on Usable Privacy and Security (SOUPS'06), Pittsburgh, PA.

Silva Filho, R. S. and D. F. Redmiles (2006). Towards the use of Dependencies to Manage
Variability in Software Product Lines. Workshop on Managing Variability for Software
Product Lines. (SPLC'2006), Baltimore, MD.

Silva Filho, R. S. and D. F. Redmiles (2007). Managing Feature Interaction by Documenting and
Enforcing Dependencies in Software Product Lines. 9th International Conference on Feature
Interaction, Grenoble, France.

Simon, H. A. (1996). The Sciences of the Artificial (3rd edition). Cambridge, MA, MIT Press.

Sinnema, M. and S. Deelstra (2007). "Classifying variability modeling techniques." Information
and Software Technology 49(7): 717-739.

Sinnema, M., S. Deelstra, et al. (2006). The COVAMOF Derivation Process. 9th International
Conference on Software Reuse (ICSR 2006), Torino, Italy.

Sinnema, M., S. Deelstra, et al. (2004). "COVAMOF: A Framework for Modeling Variability in
Software Product Families." Lecture Notes in Computer Science 3154/2004: 197-213.

Sivaharan, T., G. S. Blair, et al. (2005). GREEN: A Configurable and Re-Configurable Publish-
Subscribe Middleware for Pervasive Computing. Distributed Objects and Applications
(DOA’05), Agia Napa, Cyprus.

Stevens, W. P., G. J. Myers, et al. (1999). "Structured Design." IBM Systems Journal 38(2-3):
231 - 256.

Sullivan, K. J., W. G. Griswold, et al. (2001). The structure and value of modularity in software
design. 8th European software engineering conference held jointly with 9th ACM SIGSOFT
international symposium on Foundations of software engineering, Viena, Austria.

Sun Microsystems (2003). Java Message Service API, Sun Microsystems. 2003.

Svahnberg, M., J. v. Gurp, et al. (2005). "A Taxonomy of Variability Realization Techniques."
Software Practice and Experience 35(8): 705-754.

Szyperski, C. (2002). Component Software: Beyond Object-Oriented Programming, 2nd edition,
ACM Press.

Tarr, P., H. Ossher, et al. (1999). N degrees of separation: multi-dimensional separation of
concerns. International Conference on Software Engineering, Los Angeles, CA, ACM.

Tselikis, C., S. Mitropoulos, et al. (2007). "An evaluation of the middleware's impact on the
performance of object oriented distributed systems." Systems and Software 80(7): 1169-
1181.

van Gurp, J., J. Bosch, et al. (2001). On the notion of variability in software product lines.
Working IEEE/IFIP Conference on Software Architecture - WICSA'2001, Amsterdam,
IEEE.

van Ommering, R. (2005). "Software reuse in product populations." Software Engineering, IEEE
Transactions on 31(7): 537-550.

UCI-ISR-09-3 - August 2009

146

Wood, W. G. (2007). A Practical Example of Applying Attribute-Driven Design (ADD), Version
2.0 CMU/SEI-2007-TR-005. Pittsburgh, PA, CMU.

Woodfield, S. N. (1979). "An Experiment on Unit Increase in Problem Complexity." IEEE
Transactions on Software Engineering SE-5(2): 76-79.

Wulf, W., E. Cohen, et al. (1974). "HYDRA: the kernel of a multiprocessor operating system."
Commun. ACM 17(6): 337-345.

Wyckoff, P. (1998). "TSpaces." IBM Systems Journal 37(3).

Zavattaro, G. and N. Busi (2001). Publish/subscribe vs. Shared Dataspace Coordination
Infrastructures. 10th IEEE Workshop on Enabling Technologies: Infrastructures for
Collaborative Enterprises, Boston, MA.

Zhang, C. and H.-A. Jacobsen (2004). Resolving feature convolution in middleware systems. 19th
annual ACM SIGPLAN Conference on Object-oriented programming, systems, languages,
and applications, Vancouver, BC, Canada, ACM.

UCI-ISR-09-3 - August 2009

147

Appendix A. APIs of the Selected
Infrastructures

A.1 Siena API
Siena provides a simple API with calls that allow the subscription and publication of events

as follows:
• void publish(Notification e) publish a notification.
• void subscribe(Filter f, Notifiable n) subscribes for events matching Filter f.
• void subscribe(Pattern p, Notifiable n) subscribes for sequences of events match-

ing pattern p. A pattern is a list of Notifiable event templates.
• void unsubscribe(Filter f, Notifiable n) cancels the subscriptions, posted by n,

whose filter f' is covered by filter f.
• void unsubscribe(Notifiable n) cancels all the subscriptions posted by n.
• void unsubscribe(Pattern p, Notifiable n) cancels the subscriptions, posted by n,

whose pattern p' is covered by pattern p.

The subscription is supported by Filter and Pattern objects that are manually assembled us-
ing wildcard attributes to match events (Notification instances) by their content. Additional calls
control the advertisement of events and the federation of servers in the network. A code sample
containing Siena’s basic publication and subscription operations is presented in Table 14 as fol-
lows.

Table 14 Producing and consuming events with Siena

// connecting to Siena Server
 HierarchicalDispatcher mySiena = new HierarchicalDispatcher();

// Subscriber listener interface:
//receives notifications (or events)
 Notifiable subscriber;

// posting a subscription
 Filter f = new Filter();
 f.addConstraint("message", OP.ANY, null);
 mySiena.subscribe(f, subscriber);
 ...
// publishing an event
// events are instances of Notification in Siena
 Notification n = new Notification();
 n.putAttribute("message","Hello, World!");
 mySiena.publish(n);

UCI-ISR-09-3 - August 2009

148

A.2 CORBA-NS API
A schematic representation of CORBA-NS’s main APIs (or interfaces) is presented in Figure

70 as follows. The picture shows all possible types of consumers and suppliers of events as well
as the administrative interfaces of the service. Note that through backward compatibility with
CORBA-ES, the CORBA-NS supports all the existing CORBA-ES interfaces. The abbreviations
in Figure 70 correspond to: EC – Event Channel original interfaces, ECA – Event Channel Ad-
ministrative Interfaces, NC – the extended Notification Channel Interfaces, and NCA – the ex-
tended Notification Channel Administrative interfaces. The (*) indicates the possibility for multi-
ple instances of an interface.

Figure 70 CORBA-NS Architectural overview (source (OMG 2004))

Architecture wise, the EventChannelFactory is the main Façade of the CORBA-NS. It al-
lows the notification service users (consumers and suppliers) to create independent event channel
instances according to different qualities of service (for example, through the definition of: queue
size, time to live and number of clients per channel). This dynamic characteristic is shared by all
the components of CORBA-NS. The architecture of the service is also hierarchical in nature, and
all objects defined as part of an event channel are created by some parent object. For instance,
consumer and supplier admin instances are created by event channels, and all proxy objects (the
client access points to the channel) are created by some admin instance. The CORBA-NS is part
of an ecology of CORBA services. As such, Naming and communication are usually provided by

UCI-ISR-09-3 - August 2009

149

extra CORBA services such as CORBA Naming Service (COS Name), and the CORBA-ORB
respectively. Summary of CORBA-NS design principles:

• Independent event channels with their underlying queues and qualities of service

• Hierarchical and dynamic structure of components (channels, filters, suppliers and con-
sumers)

• Support for multiple suppliers and producers per channel

• Integration with underlying ORB protocol

• Dependence on existing COSServices: Persistency, Evaluation, Name Services.

• Backward compatibility with the Event Channel specification

The code showing a simple production and consumption of events using CORBA-Ns is
shown in Table XV as follows.

Table XV and consuming events with CORBA-NS (exception handling is
omitted)

 org.omg.CORBA.ORB orb;
 org.omg.CORBA.Object obj;

// connect to the notification server
 obj = orb.resolve_initial_references("NotificationService");
 EventChannelFactory eventChannelFactory;
 eventChannelFactory = EventChannelFactoryHelper.narrow(obj);
 Property[] initialQoS = new Property[0];
 Property[] initialAdmin = new Property[0];
 org.omg.CORBA.IntHolder channelId = new org.omg.CORBA.IntHolder();
 eventChannel = eventChannelFactory.create_channel(
 initialQoS, initialAdmin,channelId);
 objRef.set(eventChannel);
 ...

// subscribe to an event channel of push consumer type
 ConsumerAdmin consumerAdmin = eventChannel.default_consumer_admin();
 org.omg.CORBA.IntHolder proxyId = new org.omg.CORBA.IntHolder();
 ProxySupplier proxySupplier = null;
 proxySupplier = consumerAdmin.obtain_notification_push_supplier
 (ClientType.ANY_EVENT, proxyId);
 ProxyPushSupplier proxyPushSupplier = null;
 proxyPushSupplier = ProxyPushSupplierHelper.narrow(proxySupplier);
 PushConsumerPOA subscriber = (PushConsumerPOA) new MySubscriber();
 proxyPushSupplier.connect_any_push_consumer(
 subscriber.pushConsumer());
// set the filtering parameters
// (domain = "OpenORB", type = "HelloWorld", and a data filter)
 ConstraintExp constraints[] = new ConstraintExp[1];
 constraints[0] = new ConstraintExp();
 constraints[0].event_types = new EventType[1];
 constraints[0].event_types[0] = new EventType();
 constraints[0].event_types[0].domain_name = "*";
 constraints[0].event_types[0].type_name = "*";
 constraints[0].constraint_expr ="$.filterable_data(filter:content) ==
 'HelloWorld' “;
 ConstraintInfo[] add_constraints_results;

UCI-ISR-09-3 - August 2009

150

 Filter filter = null;
 add_constraints_results = filter.add_constraints(constraints);
 int filter_id = proxyPushSupplier.add_filter(filter);
 ...

// publish an event supplier
 org.omg.CORBA.IntHolder proxyId = new org.omg.CORBA.IntHolder();
 ProxySupplier proxySupplier = null;
 proxySupplier = consumerAdmin.obtain_notification_push_supplier
 (ClientType.ANY_EVENT, proxyId);
 ProxyPushSupplier proxyPushSupplier = null;
 proxyPushSupplier = ProxyPushSupplierHelper.narrow(proxySupplier);
// create an event
 String eventTypeName = “Message”;
 String message = “HelloWorld”;
// Event type has domain_name and type_name
 EventType eventType = new EventType("OpenORB", "HelloWorld");
 FixedEventHeader fixedEventHeader = new FixedEventHeader(
 eventType, eventName.toString()

);
// Event - Variable header
 Property[] variableHeader = new Property[2];
 variableHeader[0] = new Property("variable:type", orb.create_any());
 variableHeader[0].value.insert_string(eventTypeName);
 variableHeader[1]= new Property("variable:content",orb.create_any());
 variableHeader[1].value.insert_string(message);
 EventHeader eventHeader = new EventHeader(fixedEventHeader,

 variableHeader);
// Event - Filterable data declaration
 Property[] filterableData = new Property[2];
 filterableData[0] = new Property("filter:type", orb.create_any());
 filterableData[0].value.insert_string(eventTypeName);
 filterableData[1] = new Property("filter:source",orb.create_any());
 filterableData[1].value.insert_string(message);
 Any msg = orb.create_any();
 msg.insert_string(msgBody);
 StructuredEvent event = new StructuredEvent (eventHeader,
 filterableData, msg);
 Any anyEvent = orb.create_any();
 StructuredEventHelper.insert(anyEvent, event);

//publish the event
 proxyPushConsumer.push(event);
The CORBA-NS allows the definition of filters in their event channels. These filters are ex-

pressed using the TCL (Trader Control Language). Some examples of queries using this language
are presented in Table XVI as follows.

UCI-ISR-09-3 - August 2009

151

Table XVI CORBA-NS event filter language examples

Accept all CommunicationsAlarm events but no lost_packet messages:
$event_type == 'CommunicationsAlarm' and
not ($event_name == 'lost_packet')

Accept CommunicationsAlarm events with priorities ranging from 1 to 5:
($event_type == 'CommunicationsAlarm') and
($priority >= 1) and ($priority <= 5)

Select MOVIE events featuring at least three of the Marx Brothers:
($event_type == 'MOVIE') and ((('groucho' in $.starlist) +
('chico' in $.starlist) + ('harpo' in $.starlist) +
('zeppo' in $.starlist) + ('gummo' in $.starlist)) > 2)

Accept only recent events:
$origination_timestamp.high + <>2 < $curtime.high

Accept students that took all three tests and had an average score of at least 80%:
($.test._length == 3) and ((($.test[1].score + $.test[2].score
+ $.test[3].score) / 3) >= 80)

Select processes that exceed a certain usage threshold:
$memsize/5.5 + $cputime * 1275.0 + $filesize * 1.25 > 500000.0h

A.3 JavaSpaces API
The tuple space model as implemented by IBM TSpaces (Wyckoff 1998) and Sun

JavaSpaces (Freeman, Hupfer et al. 1999) combines the traditional Linda API with DBMS fea-
tures such as transactional semantics, allowing, for example roll-back of operations, access con-
trol, and event notification (applications can register to be notified whenever the tuple space is
changed). In our case studies, we used the open source implementation of JavaSpaces provided
by SUN. The basic primitive operations supported by JavaSpaces are:

• long[] write(EntryRep tuple, Transaction txn, long lease) Adds a tuple to the space, equiva-
lent to a publish command. Transaction and lease are optional parameters

• Object take(template_tuple, transaction, timeout, query_cookie) Performs an associative
search for a tuple that matches the template. When found, the tuple is removed from the space
and returned. If none is found, returns null. Transaction, timeout and query_cookie are op-
tional parameters.

• Object takeIfExists(EntryRep tmpl, Transaction txn, long timeout, QueryoCookie cookie)
Performs an associative search for a tuple that matches the template. Blocks until match is
found. Removes and returns the matched tuple from the space. Transaction, timeout and
query_cookie are optional parameters.

UCI-ISR-09-3 - August 2009

152

• Object read(EntryRep tmpl, Transaction txn, long timeout, QueryCookie cookie) Same as the
"take" command above, except that the tuple is not removed from the tuple space.

• Object readIfExists(EntryRep tmpl, Transaction txn, long timeout, QueryCooie cookie) Same
as the "takeIfExists" command above, except that the tuple is not removed from the tuple
space.

• EventRegistration notify(EntryRep tmpl, Transaction txn, RemoteEventListener listener, long
lease, marshalledObject handback) Registers a listener to entries matching the provided tem-
plate. Whenever a match occurs (on write() commands), a notification is sent to the listener
interface together with a handback that provides more information about the entry that
matched the template.

• contents(EntryRep[] tmpls, Transaction tr, long leaseTime, long lmit) Same as the "read"
command above, except returns the entire set of tuples that match the templates provided.

A sample of the use of tuple spaces to publish and subscribe to events is presented in Table
XVII as follows.

Table XVII Producing and consuming events with JavaSpaces (exception
handling is omitted)

// connecting to the tuple space
// Alternative and shorter way

 Class[] classes = new Class[]{ aServiceInterface };
 ServiceTemplate tmpl = new ServiceTemplate(null, classes, null);

 // Locate the JavaSpaces service and create a JavaSpace
 //proxy attached to it.
 LookupLocator locator = new LookupLocator(address);
 ServiceRegistrar sr = locator.getRegistrar();
 JavaSpace space = (JavaSpace)sr.lookup(tmpl);

// writing to the tuple space
 Tuple t = new Tuple();
 t.stringField = “ some value”;
 t.intField = new Integer(123);
 // publish the event with a minute lease time
 space.write(t, null, 60 * 1000);
 ...

// subscribing to notifications
// null = wild card
 Tuple template = new Tuple("Key2", null);
 reg = space.notify(template, null, tsListener,

 Lease.FOREVER, null);

// we need to implement TSLisetener that will read the tuple from
// the space when a notification is received.

UCI-ISR-09-3 - August 2009

153

A.4 YANCEES client-side API
For the point of view of the application engineers that use different YANCEES instances, the

API is similar to Siena. It provides methods for publishing and subscribing to events. Unlike
Siena, that uses object templates (or anti-tuples) as filters and patterns, YANCEES uses extensi-
ble subscription and notification languages. For the point of view of the infrastructure software
engineer, the extensibility and configurability API requires the use of abstract classes, interfaces
and configuration files. A code example containing the basic subscription and publication opera-
tions in YANCEES is presented in Table XVIII as follows.

Table XVIII Producing and consuming events with YANCEES (exception
handling is omitted)

//connect to YANCEES server
 YanceesRMIClient client;
 client = new YanceesRMIClient("hostname.mydomain.com");
 ...

// publishing an event
 YanceesEvent event = new YanceesEvent();

 event.put("name", "Roberto");
 event.put("Office", 247);
 ...

// subscribe to events
 GenericMessage msg = new GenericMessage("" +

 " <subscription>" +
 " <filter>" +
 " <EQ>" +
 " <name> name </name>" +
 " <value type=\"yanceesString\"> Roberto </value>" +
 " </EQ>"+
 " </filter>" +
 " </subscription>");

 // ‘this’ implements YanceesClientInterface

 client.subscribe(msg, this);

UCI-ISR-09-3 - August 2009

154

Appendix B. Extending
YANCEES

B.1 Case study: implementing CASSIUS services
with YANCEES

To illustrate the use of the architecture extensibility and configurability, this section presents
some examples on how to implement plug-ins in YANCEES. It also shows how YANCEES can
be customized to provide the functionality required by different application domains.

For example, suppose that YANCEES needs to be adapted to support awareness applica-
tions, providing a set of features similar to CASSIUS, which requires: event persistency, content-
based filtering, sequence detection, and the pull notification. Moreover, a special feature provided
by CASSIUS is the ability to browse and later subscribe to the event source hierarchies. This fea-
ture, called event source browsing, provides information about the publishers and the events they
publish.

B.1.1 Implementing a sequence detection subscription
command

Sequence detection requires the extension of the subscription model with the addition of a
new keyword <sequence>. It will operate over a set of content-based filters, which are already
supported by YANCEES baseline configuration.

The first step is to extend the YANCESS subscription language with the new <sequence>
tag. This is illustrated in the code fragment as follows.

<complexType name="SequenceSubscriptionType">
 <complexContent>
 <extension base="sub:SubscriptionType">
 <sequence minOccurs="0" maxOccurs="1">
 <element name="sequence" type= "FilterSequenceType" />
 </sequence>
 </extension>
 </complexContent>
</complexType>

<complexType name="FilterSequenceType">
 <sequence minOccurs="1" maxOccurs="unbounded">
 <element name="filter" type="FilterType"/>
 </sequence>
</complexType>

The next step is to implement the sequence detection plug-in, extending the subscription
model. For such, developers may choose to extend AbstractPlugin, a convenience class that pro-

UCI-ISR-09-3 - August 2009

155

vides default implementations to YANCEES PluginInterface, which methods are described be-
low.

interface PluginInterface extends PluginListenerInterface {
 long getId();
 String getTag();
 String getFullContext();
 String getFullPath();
 Node getSubtree();
 void addListener (PluginListenerInterface plugin);
 void removeListener (PluginListenerInterface plugin);
 void addRequiredPlugin (PluginInterface plugin);
 PluginInterface[] getRequiredPluginsList();
 boolean hasChildren();
 void dispose();
}

Note that the PluginInterface is a listener to events produced in other plug-ins. As such, it
implements the PluginListenerInterface as follows.

interface PluginListenerInterface {
 void receivePluginNotification (EventInterface evt, PluginInterface
source);
 void receivePluginNotification (EventInterface[] evtList, PluginIn-
terface source);
}

A simple sequence detection implementation will collect events, in the right order, that come
from two or more content-based filter plug-ins. When a successful sequence is detected, the se-
quence plug-in returns the set of events collected, publishing it to higher-level plug-ins (listeners)
as an array of YanceesEvent objects. Note that we are assuming that the event dispatcher guaran-
tees the in-order delivery of events. If this is not the case, more complex algorithms must be used.

In order to be dynamically loaded, at runtime, every plug-in must provide a factory imple-
mentation that implements the PluginFactoryInterface as follows.

interface PluginFactoryInterface {
 String[] getTags();
 PluginInterface createNewInstance (Node subTree);
}

A simple factory implementation will return a new instance of the plug-in each time the cre-
ateNewInstance() method is invoked in its interface. The plug-in factory must then be registered
under the “sequence” tag name in the YANCEES configuration file as described below.

UCI-ISR-09-3 - August 2009

156

<subscription>
...
 <plugin>
 <name> sequence.plugin </name>
 <mainClass>
 <javaClassName>
 plugin.sequence.SequencePlugin
 </javaClassName>
 </mainClass>
 <factoryClass>
 <javaClassName>
 plugin.sequence.SequencePluginFactory
 </javaClassName>
 </factoryClass>
 <depends> siena.plugin </depends>
 </plugin>
...
</subscription>

The plug-in is then ready to be used. It will be activated each time a subscription is provided
that uses the <sequence> tag as its part. An example of a subscription using this new extension is
presented in the code below. The Java DOM parser automatically checks the subscription for syn-
tax errors by using the XML schema definition of the <sequence> command.

<subscription>
 <sequence xsi:type="FilterSequenceType">
 <filter xsi:type="FilterType">
 <EQ>
 <name> status</name>
 <value> Fail </value>
 </EQ>
 </filter>
 <filter xsi:type="FilterType">
 <LT>
 <name> cooler Temp </name>
 <value> 90 </value>
 </LT>
 </filter>
 </sequence>
</subscription>
<notification>
 <push>
</notification>

B.1.2 Pull delivery mechanism implementation
Pull delivery allows subscribers to periodically poll (or check) the server for new events

matching their subscriptions. This mechanism copes with the requirements of some mobile appli-
cations, where subscribers usually get temporarily disconnected.

UCI-ISR-09-3 - August 2009

157

This mechanism is provided by a pull notification plug-in. In order to temporarily store the
events that are not being delivered, the pull mechanism needs an event persistency service (or
static plug-in). As a consequence, together with the pull notification plug-in, an event persistency
service must also be defined.

Users need to control when to collect and when to store the events being routed to them as a
result of a subscription. This usually requires a polling interaction protocol. This interaction is not
part of the regular publish() and subscribe() commands of a notification server, so a protocol
plug-in must be defined. In short, the implementation of a pull delivery mechanism requires:

• The extension of the notification language to add pull support

• The implementation of a pull notification plug-in

• The implementation of a persistency service

• The definition of a polling protocol

• The implementation of a polling protocol plug-in

The implementation of the pull notification plug-in follows the same steps as the sequence
detection plug-in previously described. The same is true for the notification language extension.
An extension is provided to the notification language that defines the <pull> tag. Additionally, a
factory to instantiate this plug-in is also provided. In order to activate the pull plug-in, a <pull>
tag must be provided in the <notification> session of a subscription message (see Table 6). As a
consequence, a pull plug-in instance is created and registered to handle the events that match the
subscription.

The pull plug-in implementation is very simple; it directs the events to the persistency serv-
ice component and registers them under their target subscriber interface.

The poll plug-in responds to commands such as <poll-interval>, <stop-polling> and
<poll>, which define different polling mechanisms. It collects the events stored in the persistency
service, and delivers them periodically to the subscriber (poll-interval command); it then collects
the notifications whenever requested (using the poll command) or deactivates the periodic deliv-
ery (using the stop-polling command) in case of a temporary disconnection.

These sets of plug-ins define a configuration, a set of components that need to be present in
order for a service to operate. The dependencies between these are checked by YANCEES with
the help of the <depends> clause in the configuration file.

B.1.3 Implementing CASSIUS features
In addition to the features described in the previous sessions, CASSIUS provides event typ-

ing and the ability to browse through hierarchies of event sources.

The browsing of event sources in CASSIUS allows publishers to register events in a hierar-
chy based on accounts and objects. This model and the API required to operate the server are de-
scribed elsewhere.

In the YANCEES framework, the CASSIUS functionality is implemented by the use of pro-
tocol plug-ins and a CassiusService component. The CASSIUS protocol plug-in interacts with the
CassiusService, which allows the creation and management of objects, accounts, and their events.
These operations include registering/un-registering accounts, objects, and events, as well as poll-
ing commands.

UCI-ISR-09-3 - August 2009

158

CASSIUS uses events with a fixed set of attributes. These events can be easily identified and
checked for correctness by an input filter. This filter checks all incoming events for the proper
CASSIUS template format. Once a CASSIUS event is identified and validated, it is copied to the
CassiusService, which stores it in a database in its proper account/object record.

Polling of events, in this case, is handled by the CASSIUS protocol plug-in, which allows
the collection of events by account, object, or sub-hierarchies. Note that this approach does not
prevent the simultaneous installation of both services, the simple pull and the CASSIUS pull pro-
tocol.

The poll mechanism is not the only way to collect CASSIUS events. At any time, subscrip-
tions can also be performed on regular CASSIUS events.

