
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

James C. Jenista
University of California, Irvine
jjenista@uci.edu

Brian Demsky
University of California, Irvine
bdemsky@uci.edu

Disjointness Analysis for Java-Like Languages

February 2009

ISR Technical Report # UCI-ISR-09-1

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Disjointness Analysis for Java-Like Languages

James C. Jenista, Brian Demsky

University of California, Irvine

Institute for Software Research

UCI-ISR-09-1

February 2009

This paper presents a disjointness analysis for Java-like languages. Two

objects are disjoint if the parts of the heap reachable from the two objects are

disjoint. The analysis is based on static reachability graphs, which characterize

the reachability of each object in the heap from a set of objects of interest.

Reachability graphs contain nodes to represent objects and edges to represent

heap references. The graphs are annotated with sets of reachability states that

describe which objects can reach other objects. The analysis includes a global

pruning step which analyzes the entire reachability graph to prune impossible

reachability states that cannot be removed with local information alone.

We have developed an implementation of the analysis and have evaluated the

implementation on several benchmarks. Our evaluation shows that the analysis

reported all known aliases and no false aliases for our benchmark suite.

1

Disjointness Analysis for Java-Like Languages

James C. Jenista and Brian Demsky

University of California, Irvine
Institute for Software Research

UCI-ISR-09-1
February 2009

Abstract
This paper presents a disjointness analysis for Java-like languages.
Two objects are disjoint if the parts of the heap reachable from the
two objects are disjoint. The analysis is based on static reachabil-
ity graphs, which characterize the reachability of each object in the
heap from a set of objects of interest. Reachability graphs contain
nodes to represent objects and edges to represent heap references.
The graphs are annotated with sets of reachability states that de-
scribe which objects can reach other objects. The analysis includes
a global pruning step which analyzes the entire reachability graph
to prune impossible reachability states that cannot be removed with
local information alone.

We have developed an implementation of the analysis and have
evaluated the implementation on several benchmarks. Our evalua-
tion shows that the analysis reported all known aliases and no false
aliases for our benchmark suite.

1. Introduction
This paper introduces a static analysis that discovers disjointness
properties for select objects in Java-like languages. Two objects
are disjoint if the parts of the heap reachable from each object are
disjoint. While other analyses like alias analysis [2, 11, 14, 24],
pointer analysis [26, 20, 29, 5], and shape analysis [6, 16, 25]
also extract heap reference properties from a program’s source,
disjointness analysis answers a different question: Given that two
objects (possibly from the same allocation site) are determined to
be distinct at runtime or through other means, are the parts of the
heap reachable from these two objects disjoint?

Our analysis is based on reachability graphs, which divide the
heap into disjoint regions and characterize for each region the
set of heap regions with objects that can reach the given region.
The analysis is interprocedural and compositional. The analysis
analyzes a given method once for a given aliasing context and
uses the summarized analysis results for future calling contexts;
recursive methods may require analyzing a method multiple times
until a fixed-point is reached.

The analysis results are useful for determining whether code can
be parallelized. For example, to execute two serial method calls
in parallel, it is necessary to determine that they do not have any
conflicting data structure accesses. If our analysis determines that
all of the parameter objects of the two calls are mutually disjoint,
checking that the same object does not serve as a parameter for
both method calls suffices to ensure that the two calls can be safely
executed in parallel.

1.1 Basic Approach
The analysis represents reachability information with reachability
graphs. Reachability graphs contain label nodes that represent pro-
gram labels and heap region nodes that represent disjoint collec-

tions of objects. These nodes are connected with edges that repre-
sent heap references. We say that one object can reach a second
object if there exists a path of references in the reachability graph
from the first object to the second object. A reachability state for an
object gives the heap region nodes of the objects that can reach the
given object. The reachability state contains an arity for each heap
region node which constrains how many objects from that heap re-
gion can reach the given object. The analysis annotates heap region
nodes with sets of reachability states that describe what objects can
reach the given object. The analysis annotates edges with sets of
reachability states that give the possible reachability states for the
objects that can be reached from that edge. The analysis can deter-
mine that two objects are disjoint if they do not appear together in
any reachability states of a reachability graph.

Our analysis is compositional — it analyzes each method once
to produce a reachability graph. Future call sites to the method use
the previously computed reachability graph.

The analysis can perform strong updates in certain cases. The
analysis includes a global pruning step that globally analyzes the
reachability graph to prune impossible reachability states that can-
not be removed with just local knowledge. The global pruning step
primarily serves to improve the precision of reachability informa-
tion after strong updates and method calls.

1.2 Contributions
The paper makes the following contributions:
• Disjointness Analysis: It presents a new compositional disjoint-

ness analysis that can discover heap reachability properties for
objects of interest.
• Selective Analysis: The analysis client can flag the set of object

allocation sites for the objects whose disjointness information is
of interest. The analysis only analyzes reachability information
for the objects of interest.
• Global Pruning: It introduces a global pruning step that glob-

ally analyzes the reachability graph to remove impossible reach-
ability states that cannot be removed with just local knowledge.
• Experimental Results: It presents experimental results from a

prototype implementation of the analysis. The results show that
the analysis successfully discovers disjointness properties for our
benchmarks.
The remainder of the paper is organized as follows. Section 2

presents an example that illustrates how the analysis operates. Sec-
tion 3 presents the program representation and the reachability
graph. Section 4 presents the intraprocedural analysis. Section 5
presents the interprocedural analysis. Section 6 presents an eval-
uation of the analysis on several benchmarks. Section 7 presents
related work; we conclude in Section 8.

1

2. Example
In this section we present an example to illustrate how our analysis
works. Figure 1 presents an example that constructs several graphs
and then runs a graph analysis that modifies information stored
in the graph nodes. The method graphLoop populates an array
with graph objects that are fully constructed by makeGraph. Our
analysis will show that the objects reachable from a Graph object
constructed in the first loop are disjoint from objects reachable
from other Graph objects allocated in that loop. This information
could be used to parallelize the iterations of the second loop in
conjunction with a simple dynamic check; if the iterations operate
on different Graph objects at run-time, then our analysis results
imply that the methods operate on disjoint sets of objects.

1 public void makeGraph(Graph graph) {
2 Node s = new Node();
3 Node t = new Node();
4 s.f = t;
5 t.f = s;
6 graph.node = s;
7 }
8
9 public void graphLoop() {

10 Graph[] a = new Graph[nGraphs];
11 for(int i=0; i<nGraphs; i++) {
12 Graph g = new Graph();
13 makeGraph(g);
14 a[i] = g;
15 }
16 for(int i=0; i<nGraphs; i++) {
17 analyzeGraph(a[i]);
18 }
19 }

Figure 1. Graph Example
We begin with an intraprocedural analysis of the makeGraph

method. Figure 2(a) presents the analysis results for the example
at the beginning of the makeGraph method. The ellipse labeled
graph represents the parameter variable graph. The rectangular
heap region node labeled ID1 represents the part of the caller’s heap
reachable from the first parameter object. The chords on the corners
of the node indicate that the heap region may represent multiple
objects. The shading of the node represents that the analysis must
compute reachability information from this node. The set {[1]}
indicates that the objects represented by this heap region node
have the reachability state [1]. The reachability state [1] means that
objects with this reachability state are reachable from heap region
node ID1. The reflexive edge on the heap region node labeled ID1
indicates that objects in this heap region can reference other objects
in the same heap region. The set {[1]} on this edge indicates that
the edge models a heap reference that can reach objects in the
reachability state [1]. Similarly, the edge from the label node graph
to the heap region node ID1 indicates that the label graph may
point to an object in the heap region ID1.

Figure 2(b) presents the reachability graph immediately after
line 3. Two new label nodes have been created for s and t that
have references to heap regions ID2 and ID3, respectively. These
heap regions are associated with the allocation site that allocated
the objects. Heap regions ID2 and ID3 have no chords as they
represent the most recently allocated object at the corresponding
allocation sites. They are labeled with the corresponding allocation
site. The analysis uses a k-limited abstraction for the allocation
sites — these nodes are marked as the zeroth oldest, or newest node
from the allocation sites.

As in Figure 2(a), the heap region node ID1 is shaded. Shaded
heap regions are flagged; heap regions are flagged only when they
contain objects in which the analysis client is interested in finding

ID1
param
{ [1] }

Rflx
{ [1] }

graph

{ [1] }

(a) Reachability graph after line 1

graph

ID1
param
{ [1] }

{ [1] }

Rflx
{ [1] }

ID3
alloc line 3

Node
0 oldest
{ [] }

ID2
alloc line 2

Node
0 oldest
{ [] }

t

{ [] }

s

{ [] }

(b) Reachability graph after line 3

ID1
param
{ [1] }

Rflx
{ [1] }

ID2
alloc line 2

Node
0 oldest
{ [1] }

node
{ [1] }

ID3
alloc line 3

Node
0 oldest
{ [1] }

f
{ [1] }

f
{ [1] }

t

{ [1] }

graph

{ [1] }

s

{ [1] }

(c) Reachability graph after line 6

Reference Edge

Heap Region Node
containing Flagged Object

Multiple-Object
Heap Region Node

Single-Object
Heap Region Node

Label Node

Figure 2. Intraprocedural Reachability Graphs

disjointness information about. The empty reachability state in the
set of reachability states for heap regions ID2 and ID3 implies that
no objects from flagged heap regions can reach heap regions ID2
and ID3 at this program point.

Figure 2(c) shows the reachability graph at the exit of the
makeGraph method. Lines 4, 5, and 6 create reference edges
〈ID2, f, ID3〉, 〈ID3, f, ID2〉, and 〈ID1, node, ID2〉, respectively.
Note that the set of reachability states for ID1 remains {[1]} and
therefore the final reachability graph shows that the method does
not change the reachability states of the parameter objects.

At this point, the makeGraph method has been fully analyzed
and its results are available for analyzing the graphLoop method.
By inspection, it is clear that graphLoop populates an array with
references to graphs that are disjoint. In Figure 3 the array object
is represented by a single-object heap region ID4, and the result of
assigning its elements is to create a reference edge that acts like a
member field with the special label element. Element references
are not removed by strong updates.

2

ID4
alloc line 10

Graph[]
0 oldest

{[]}

ID5
alloc line 12

Graph
0 oldest

{[5]}

element
{[5]}

ID8
alloc line 12

Graph
summary

{[8]}

element
{[8]}

ID6
alloc line 2

Node
0 oldest

{[5]}

node
{[5]}

ID7
alloc line 3

Node
0 oldest

{[5]}

f
{[5]}

ID9
alloc line 2

Node
summary

{[8]}

node
{[8]}

ID10
alloc line 3

Node
summary

{[8]}

f
{[8]}

f
{[5]}

f
{[8]}

a

{[5],[8]}

g

{[5]}

Figure 3. Reachability graph after line 15

The analysis combines information about allocated objects that
are older than the k-limit into a per allocation site, multiple-object,
summary heap region node. Figure 3 shows that label node g
always references the newest allocated Graph object. The objects
that are allocated in line 12 are flagged so the heap region nodes
for that allocation site are shaded. Consider this reachability graph
without reachability states on edges or nodes. The reference edge
〈ID8, node, ID9〉 could represent references from disjoint pairs of
objects from heap regions ID8 and ID9 or it could represent more
than one object from the heap region ID8 referencing the same
object from ID9. By maintaining a set of reachability states for
heap region ID9 it is clear that any object in that region is reachable
only from exactly one object in heap region ID8. Therefore, this
reachability graph implies that Graph objects from the allocation
site in line 12 reference disjoint heap regions.

3. Analysis Representations
This section presents the representation of the input for the analysis
and the representation of the reachability graph.

3.1 Program Representation
The analysis takes as input a control flow graph intermediate repre-
sentation for each method; edges indicate control flow and all pro-
gram statements have been decomposed into statements relevant
to the analysis: copy statements, load statements, store statements,
object allocation statements, and method invocation statements.

We define for a statement st in a method’s control flow graph:
- •st is the program point just before st
- st• is the program point just after st
- parents(st) is the set of statements that may flow to st

- children(st) is the set of statements that st may flow to.
For each method m there is a single entry statement entry(m)

and a set of return statements returns(m).

3.2 Reachability Graph Elements
Label nodes represent the values of program variables — there is
exactly one label node l ∈ L for each program variable. Heap
region nodes represent objects in the heap. Their properties are
listed below:
• Heap region nodes can bound a single object or multiple objects.

Multiple-object heap region nodes have chords across each cor-
ner in visualized reachability graphs.

• Flagged heap regions contain objects that the analysis is inter-
ested in tracking the disjointness properties of or reachability
from. These regions are shaded in visualized reachability graphs.
• A heap region associated with a parameter is marked with the

parameter’s index.
• We use a k-limited approximation for heap regions associated

with an allocation site. The most recent k objects at an allocation
site are assigned their own single-object heap region node, and
all older object allocations are mapped to the summary node for
the allocation site.
The set of all heap region nodes n ∈ N for the method m is

given by Equation 1.

n ∈ N := Allocation sites× {0, 1, . . . , k} ∪NP (1)
np ∈ NP := Parameter nodes for the methodm (2)

The set of flagged heap region nodes to track reachability of is
given by Equation 3.

nf ∈ NF := Flagged allocation sites ⊆ N (3)

Reference edges e ∈ E are of the form 〈l, n〉 or 〈n, f, n′〉.
The heap region node or label node that reference edge e originates
from is given by src(e). The heap region node e refers to is given
by dst(e). Every reference edge between heap region nodes has
an associated field f ∈ F , including element access or the special
field type F that matches all fields, as given in Equation 4. The field
f refers to is given by field(〈n, f, n′〉).

f ∈ F := Fields ∪ [] ∪ F (4)

The initial reflexive edge on a parameter heap region always
has the F field and is specially marked Rlfx. The marking is
required so that, for any particular invocation, a parameter object
can be arbitrarily dereferenced to get an internal object by taking
the reflexive edge. However, the Rlfx marking exempts the edge
from adding new edges into a caller’s reachability graph in the
interprocedural mapping process.

The set of reference edges E in a reachability graph is given by
Equation 5.

E ⊆ N × F ×N ∪ L×N (5)

We define five convenience functions for reachability graph
elements given by Equation 10.

E(l) = {n | 〈l, n〉 ∈ E} (6)
E◦(l) = {〈l, n〉 | 〈l, n〉 ∈ E} (7)
E(n) = {n′ | 〈n, f, n′〉 ∈ E} (8)

E(l, f) = {n′ | 〈l, n〉, 〈n, f, n′〉 ∈ E} (9)
E◦(l, f) = {〈n, f, n′〉 | 〈l, n〉, 〈n, f, n′〉 ∈ E} (10)

3.3 Reachability Annotations
This sections describes how the analysis extends the basic graph
representation of the heap with a set of reachability annotations.
A token ηn is the symbol of a heap region node n that we are
interested in the disjointness properties of. A token tuple 〈η, µ〉 ∈
M is a token and arity pair where the arity value µ in this analysis
is taken from the set {ZERO, ONE, ZERO-OR-MORE, ONE-OR-MORE}.
The arity gives the number of objects from a given heap region that
can reach the relevant object. Our notation for token tuples is to
write just the token η for the arity ONE or η∗ and η+ for the arities
ZERO-OR-MORE and ONE-OR-MORE, respectively. Token tuples with
arity ZERO are not written explicitly.

A reachability state φ ∈ Φ contains exactly one token tuple for
every distinct token, and when written omits token tuples with arity

3

ZERO. For example, the reachability state φn = [ηn1 , η
+
n2] ∈ Φn

at some heap region node n indicates that it is possible for exactly
one object in heap region n1, one-or-more objects from heap region
n2 and exactly zero objects from all other heap regions to reach the
objects of heap region n. This reachability state implies that objects
from heap regions n1 and n2 are not disjoint.

The function α(n) → 22M

maps a heap region node n to
sets of possible reachability states. The reachability of an object
represented by the heap region node n is described by one of the
reachability states given by the function α. Two heap regions n1

and n2 are definitely disjoint in a reachability graph if there is
no heap region node n whose set of reachability states contains
a reachability state with both ηn1 and ηn2 with non-ZERO arity. We
represent the function α as a set of tuples. We define the helper
function

α(n) = {φ | 〈n, φ〉 ∈ α}. (11)

The function β(e) → 22M

maps a reference edge e to sets of
reachability states that are possible for objects accessible through e.
We represent the function β as a set of tuples. We define the helper
functions

β(l) = {φ | 〈〈l, n〉, φ〉 ∈ β}, (12)
β◦(l) = {〈〈l, n〉, φ〉 | 〈〈l, n〉, φ〉 ∈ β}, (13)
β(e) = {φ | 〈e, φ〉 ∈ β}. (14)

The analysis maintains the invariant that for heap region node n
with φ ∈ α(n), an edge e that can reach n must have φ ∈ β(e),
and φ ∈ β(e′) for every edge e′ along the path from e to n.

4. Intraprocedural Analysis
The intraprocedural analysis of a method m begins by initializing
the reachability graph associated with s• for each statement s in m
to the empty graph. Then entry(m) is scheduled for analysis.

The reachability graphs associated with statements during the
intraprocedural analysis are a partial result r and may be revisited
many times. The analysis uses a standard fixed-point algorithm
which performs the following basic steps at each statement:
1. Create a new, empty reachability graph, r′.
2. Merge each graph in parents(s) into r′. This represents the

reachability for •s.
3. Use the type of s to transform r′ as described below.
4. If r′ 6= r, r ← r′ and schedule children(s) for analysis.

4.1 Method Entry
The parameter information for a method m is contained in a spe-
cial statement that is always entry(m). We first describe how the
analysis analyzes methods whose parameters are disjoint. We then
extend the approach to handle aliases between parameter objects.
The transform for this statements creates, for each parameter pi, a
new multiple-object heap region node npi . Then a label node pi
is added along with reference edge 〈pi, npi〉. A special label qi
that is out of the program scope is also added with 〈qi, npi〉; the
purpose of qi is described in the discussion of method calls in Sec-
tion 5.1. Finally, a reference edge 〈npi ,F, npi〉marked as reflexive
is added. This reference edge models an arbitrary internal structure
for the heap objects reachable from label pi.

Each method contains an aliasing context set Π that contains
the parameter indices for any parameters that may contain aliases
to or from other parameters. In this case, the analysis generates a
single multiple-object heap region node npΠ for all parameters that
may be aliased. The label nodes for each parameter in Π all initially
point to npΠ . The node npΠ contains the special label qΠ and the
reflexive edge as described above.

The statement entry(m) has no parent statements and always
generates the same reachability graph; therefore it is analyzed once
per intraprocedural method analysis.

4.2 Copy Statement
A copy statement of the form x = y makes the variable x point to
the object that y points to. The analysis always uses strong updates
for label nodes. The analysis models the effect of this statement by
discarding all the old references from label x and then copying all
the references from label y. Equation 15 and Equation 16 give the
transformations.

E′ = (E − E◦(x)) ∪ ({x} × E(y)) (15)
β′ = (β − β◦(x)) ∪ ({x} × β(y)) (16)

4.3 Load Statement
Load statements of the form x = y.f make the variable x point to
the object that y.f points to. The analysis uses strong updates for
the label node x. The reference edges from the field, including the
reachability information, are copied to x. Note that this statement
does not create any new references for reachability information to
flow across.

E′ = (E − E◦(x)) ∪ ({x} × E(y, f)) (17)
β′ = (β − β◦(x)) ∪[
〈n,f,n′〉∈E◦(y,f)

8:{〈x, n′〉} × “β(〈y, n〉) u β(〈n, f, n′〉)
”9; (18)

4.4 Store Statement
Store statements of the form x.f = y point the f field of the object
to which x points at the object to which y points. The transform for
store statements is broken into three steps:
1. Remove reference edges for strong updates.
2. Calculate reachability changes and propagate them.
3. Add reference edges to model the store operation.

While in general the analysis performs weak updates that simply
add edges, under certain circumstances the analysis can perform
strong updates that also remove edges to increase the precision of
the analysis results. Weak updates are given in Equation 19.

E′ = E ∪ (E(x)× {f} × E(y)) (19)
Strong updates are possible under either of two conditions. First,

when label node x is the only reference to some heap region node
nu. In this case we can destroy all reference edges from nu with
field f because no other label nodes can reach nu.

The second condition for strong updates is when the label node
x references exactly one heap region node nw and nw is a single-
object heap region. When this is true x definitely refers to the object
in nw and the existing edges with field f from nw can be removed.

Note that when reference edges are removed by a strong up-
date, reachability for any heap region node or reference edge in the
reachability graph may change if the removed edge provided the
reachability path. When a strong update occurs, a global reachabil-
ity sweep is used to prune impossible reachability states following
the completion of the store statement transform. The global sweep
is discussed in Section 4.9.

The store statement creates reference edges between heap re-
gion nodes and may create new reachability paths. Therefore reach-
ability must propagate in two ways when a store statement creates
a new reference edge enew. Heap region nodes upstream of enew
may now have a reachability path to heap regions downstream of
enew so new tokens may appear in α information downstream. Ad-
ditionally, β may change for reference edges upstream of any heap
region node with whose reachability changes.

4

∪N 0 1 + *
0 0 1 + *
1 1 + + +
+ + + + +
* * + + *

Table 1. Results of taking union of two input arity values.

For each heap region node nx ∈ E(x) and ny ∈ E(y):
• The set of source reachability states that x can contribute is
R = α(nx) ∩ β(〈x, nx〉).
• The set of reachability states reachable from y is O =
β(〈y, ny〉).
• Define Cny = {〈o, o ∪4 r〉 | o ∈ O, r ∈ R}, and Cnx =
{〈r, o∪4 r〉 | o ∈ O, r ∈ R}, where ∪4 takes the union of two
reachability states.
Recall that each token of the token tuples in a reachability state
must be unique. When two reachability states are combined,
however, token tuples with matching tokens should merge arity
values according to ∪N shown in Table 1.
The second step of the store statement transform is to propa-

gate the reachability change tuple sets captured in Cnx and Cny .
Intuitively, to update a set of reachability states the first item in a
change tuple must match an existing reachability state; if it does
the second item should be added to the set.

There are five phases to the propagation.
1. Calculate change function Λnode(n) for each heap region node n

that is reachable from ny using the two constraints

Λnode(ny) ⊇ Cny , (20)

Λnode(n′) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λnode(n),

〈n, f, n′〉 ∈ E, φ ∈ β(〈n, f, n′〉)}. (21)

The implementation uses a fixed-point strategy to compute a
solution to these constraints.

2. Next, calculate the new reachability set for each heap region n

α′(n) = α(n) ∪ {φ′ | 〈φ, φ′〉 ∈ Λnode(n), φ ∈ α(n)}. (22)

3. The analysis next computes the update for β from the changes
made to α. The change function Λedge satisfies the two con-
straints:

Λedge(e) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λnode(dst(e)),

φ ∈ α(dst(e)), φ ∈ β(e)} (23)

Λedge(e) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Λedge(e′),

φ ∈ βe, dst(e) = src(e′)} (24)

The implementation computes a solution for Λedge with a fixed-
point algorithm.

4. Similar to the previous phase, the analysis propagates Cnx up-
stream from nx using the change function Υedge. Υedge satisfies
the two constraints:

Υedge(e) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Cnx ,

φ ∈ β(e), dst(e) = nx} (25)

Υedge(e) ⊇ {〈φ, φ′〉 | 〈φ, φ′〉 ∈ Υedge(e′),

φ ∈ β(e), dst(e) = src(e′)} (26)

5. Finally, the analysis calculates the new reachability set for edge
e using Λedge(e) and Υedge(e)

β′(e) = β(e) ∪ {φ′ | 〈φ, φ′〉 ∈ Λedge(e), φ ∈ β(e)}
∪{φ′ | 〈φ, φ′〉 ∈ Υedge(e), φ ∈ β(e)}. (27)

After the propagation is completed, the analysis adds the refer-
ence edges enew = {〈nx, f, ny〉 | nx ∈ E(x), ny ∈ E(y)}. The
reachability states for a new edge must be (1) in the set of reacha-
bility states for the edge 〈y, ny〉 and (2) must be a superset or equal
to some reachability state in α′(nx) as nx can reach the new edge.

We give the formula for β′ for the new edge

β′(〈nx, f, ny〉) = {φ ∈ β′(〈y, ny〉) |
∃φ′ ∈ α′(nx), φ

′ ⊆4 φ}, (28)

where φ′ ⊆4 φ if φ contains all tokens with a non-ZERO arity that
φ′ contains with a non-ZERO arity.

4.5 Element Load and Store Statements
Array elements are treated as a single, special field of an array
object and always have weak store semantics. The analysis does
not differentiate between the statements y[1] = z and y[2] = z.

4.6 Object Allocation Statement
Objects created at an allocation site are represented as single-
object heap regions for the k most recently allocated objects at that
allocation site. Any references to objects from the allocation site
that are older than the kth object refer to a summarization node for
the allocation site.

The transform for an allocation program point merges the kth
single-object heap region into the site’s summary node. The newest
single-object heap region node is then the target of the label assign-
ment similar to label assignments described above.

This step merges the reachability information for the kth single-
object heap region nk into the summary node ns. Note that when
ηns and ηnk appear in the same token set before the aging operation
there will be two ηns tokens afterward. In this case the new arity
for the summary token is given by ∪N. The reachability annotations
enable the analysis to maintain precise reachability information in
the presence of the summarization step.

4.7 Return Statement
Return statements are of the form return x which returns the ob-
ject referenced by the label x to the caller. The analysis introduces
a special Return label that is out of program scope to each reach-
ability graph. At a method return the transform is to assign the
Return label to the references of label x. We assume without loss
of generality that the control flow graph has been modified to merge
the control flow for all return statements. The Return label is dis-
cussed in the call site section when mapping callee information to
the caller context.

4.8 Control Flow Join Points
To analyze a statement, the analysis first must compute the join
of the incoming reachability graphs. The operation for merging
reachability graphs r0 and r1 into rout follows below:
1. The set of label nodes for rout is the union of the label nodes in

the input graphs r0 and r1.
2. The set of heap region nodes for rout is the union of the heap

region nodes in the input graphs. A simple union of the reacha-
bility states is taken, α(nout) = α(n0) ∪ α(n1).

3. The set of reference edges for rout is the union of the reference
edges of the input graphs. Recall that reference edges are unique
in a reachability graph with respect to source, field, and destina-
tion. If a reference edge e0 in r0 and e1 in r1 have these attributes
in common then β(eout) = β(e0) ∪ β(e1).

5

4.9 Global Reachability
Strong updates for store statements may remove reference edges
leaving some impossible reachability states in the reachability
graph. Transformations that model method invocations (which will
be given in the interprocedural analysis in Section 5.1) can also
introduce impossible reachability states. These impossible reacha-
bility states potentially make the analysis results less precise. Our
analysis includes a global pruning step that uses global reachability
constraints to identify and prune impossible reachability states.

4.9.1 Global Reachability Constraints
Reachability information must satisfy two reachability constraints:
• Node Reachability Constraint: For each node n, ∀φ ∈ α(n),
∀〈n′, µ〉 ∈ φ if µ ∈ {ONE, ONE-OR-MORE}, then there must
exist a set of edges e1, . . . , em such that φ ∈ β(ei) for all
1 ≤ i ≤ m and the set of edges e1, . . . , em form a path through
the reachability graph from n′ to n.
• Edge Reachability Constraint: For each edge e, ∀φ ∈ β(e)

there exists n ∈ N and e1, . . . , em ∈ E such that φ ∈ α(n);
φ ∈ β(ei) for all 1 ≤ i ≤ m; and the set of edges e1, . . . , em
form a path through the reachability graph from e to n.

4.9.2 Global Reachability Algorithm
The algorithm proceeds in two phases: the first phase enforces the
node reachability constraint and the second phase enforces the edge
reachability constraint.

The first phase uses the existing β information to prune impos-
sible reachability sets to generate a consistent α′ from the previous
α. The algorithm iterates through each flagged node nf . It uses a
standard graph reachability algorithm to enforce the node reacha-
bility constraint. We define the function Bf : E → 22M

to store
reachability information from node nf . We represent B as a set of
tuples. B satisfies the constraints: ∀e ∈ E(nf),B(e) ⊇ β(e) and
∀e ∈ E, e′ ∈ E(dst(e))B(e′) ⊇ β(e′) ∩ B(e). It uses fixed point
algorithm to propagate reachability information to solve the con-
straints. Finally, for each node n the analysis prunes from each α
all reachability sets that contain either ηnf or η+

nf
but do not appear

in the B(e) of any edge e incident to n. Note the exception that this
step should not prune the reachability state [nf] from α(nf) of the
flagged node nf . The analysis next computes reachability from the
next flagged node.

The second phase uses the now internally consistent α′ infor-
mation and the β information that existed before the first phase
to generate a consistent β′. Conceptually, the analysis starts from
every heap region node n and propagates the reachability states
of α(n) backwards over reference edges. The analysis initializes
β′ = {β(e) ∩ α′(n) | ∀e ∈ E,n = dst(e)}. The analysis then
propagates reachability information backwards to satisfy the con-
straint: β′(e) ⊇ β(e) ∩ β′(e′) for all e′ ∈ E(dst(e)). The propa-
gation continues until a fixed-point is reached.

4.10 Static Fields
We have omitted a description of how to analyze static fields or
globals. We assume that the preprocessing stage creates a special
global object that contains all of the static fields and the passes
the global object through every call site. Through this semantics-
preserving program transformation, static field store statements
become normal store statements and static field load statements
become normal field load statements.

5. Interprocedural Analysis
The interprocedural analysis uses a standard fixed point algorithm.
The analysis begins at the top level method mmain with the aliasing

context Π = ∅. The analysis removes a method m and aliasing
context Π from the workset for analysis. If the intraprocedural
result for a method m in the aliasing context Π is different from
the previously stored rm,Π then the new result replaces rm,Π and
all methods that can potentially call m in context Π are added back
into the work set.

5.1 Analyzing Call sites
We next present how the interprocedural analysis adds support for
analyzing call sites to the intraprocedural analysis. Conceptually
for the call site cs, the analysis maps the heap regions of the caller
reachability graph at •cs onto the heap regions of the callee’s cur-
rent reachability graph at the call site. Then the callee graph is used
to update the caller’s reachability graph. We execute this update
conservatively by restricting precision such that results apply for
all invocations possible at cs.

Some definitions for the concepts in call site analysis:
• The ith argument passed to the callee has a label node ai in

the caller reachability graph and ai references ji heap regions,
{ni0, . . . , niji} in the caller.
• The ith parameter of the callee has a label node pi in the callee

reachability graph referencing a multi-object heap region npi .
• A special, label qi out of program context references npi . During

analysis of the callee the reference edge 〈qi, npi〉 will naturally
capture changes to β useful for fixing callers.
• Define M = {〈np0 , n00〉, 〈np0 , n01〉, . . . , 〈np1 , n10〉} to de-

scribe the mapping between heap region nodes in the callee
graph and caller graph.
• For each allocation site Gt = {ngt0 , . . . , ngtk , ngts} of the

callee the same nodes temporarily exist in the caller separately
as G′t = {ng′t0 , . . . , ng′tk

, ng′ts
}.

Let the program point for the call site callee(a0, a1) be
cs and the method declaration be void callee(p0, p1). Fig-
ure 4(a) presents an example caller context reachability graph for
the method caller at the callsite cs and Figure 4(b) presents an
example callee reachability graph for the method callee.

We establish a mapping between heap region nodes in the caller
graph and the callee to determine how the reachability of the callee
may affect the caller graph. Figure 4 shows the caller-to-callee heap
region node and reference edge mapping. Figure 4(c) shows the
updated caller context.

5.2 Conceptual Steps for Call Site Analysis
The following steps describe conceptually how the caller-to-callee
mapping of edges and heap regions is used to fold callee effects
into the caller context reachability graph.
• Aliasing Context: The caller computes the alias context set Π

for the call site. It then checks whether the analysis has processed
this call site before for the given caller aliasing context. If the
analysis has already processed this call site for the same caller
alias context, the analysis looks up the previous call site alias
context Πold. The analysis adds any parameters in Πold to the
new aliasing context Π to ensure termination.
• Caller Node Reachability: The callee may change reachability

states of objects reachable from its parameters. Conceptually,
the reachability states in α(npi) summarize how the callee may
change the reachability of parameter objects.
• Caller/Callee Edge Reachability: The callee may change

reachability states of caller reference edges that are reachable
from the callee’s parameters. Conceptually, the reachability state
for the reflexive edge β(〈npi ,F, npi〉) summarizes how the
callee may change the reachability of these edges.
• Upstream Caller Edge Reachability: The callee may change

the reachability states of caller reference edges that are upstream

6

a0

n0,0

�

a1

n1,0

κ

n1,1

κ

◊ ◊

‡
†

‡

†

(a) Caller Context: ∂ maps into np0 , κ maps into np1 , †
maps into 〈q0, np0 〉, ‡ maps into 〈q1, np1 〉, � maps into
〈np1 ,F, np1 〉

p1

np1

κ

q1

‡

p0

np0
�

q0

†

◊

ng1,0

§

§

§

ng0,0

§

§

§

(b) Callee Context: § nodes and edges generated by
callee program statements.

a0

n0,0
ζ

ζ

a1

n1,0
ζ

ζ

ng’0,0

§

§
n1,1

ζ

ζ

ng’1,0

§

§

ζ

§

ζ

ζ

ζ

ζ

§

§

§

(c) Updated Caller: § nodes and edges generated by
callee program statements, ζ nodes and edges have altered
reachability from call site transform.

Figure 4. Classification of nodes and edges in the caller-callee
mapping are shown in (a) and (b). The effect of updating the caller
context reachability graph of (a) with the callee (b) is shown in (c).

from the callee’s parameters. Conceptually, the reachability state
for the callee reference edge β(〈qi, npi〉) summarizes how the
callee may change the reachability of upstream edges.
• Callee Node Reachability: The caller’s reachability information

for the reachability of the parameter objects is used to update
the parameter object reachability tokens that appear in α for the
nodes allocated by the callee.
• Callee Edge Reachability: The caller’s reachability information

for the reachability of the parameter objects is used to update
the parameter object reachability tokens that appear in β for the
edges created by the callee.

• Summarize Allocation Site Nodes: The graph at this point may
contain allocation site nodes for the same allocation site from
both the caller and callee. The analysis summarizes the oldest
nodes to ensure the abstraction fits within its normal k-limit.

5.3 Helper Functions
This section defines several helper functions and operators that the
call site transfer function uses.
1. Caller Node Reachability: For each pi, define the node rewrite

set Hi = α(npi). Conceptually, the rewrite rule Hi captures
with respect to npi ’s initial reachability state at the beginning of
the callee how the callee changed the reachability of heap region
nodes that are reachable from the ith parameter.

2. Caller/Callee Edge Reachability: The reference edge
〈npi ,F, npi〉 abstracts all of the reference edges between objects
reachable from the parameter pi at the beginning of the callee.
For each pi, define the edge rewrite set Ji = β(〈npi ,F, npi〉).
Conceptually, the rewrite rule Ji captures with respect to
〈npi ,F, npi〉’s initial reachability state at the beginning of the
callee how the callee changed the reachability sets of the edges
between objects in npi .

3. Upstream Caller Edge Reachability: The reference edge
〈qi, npi〉 abstracts the caller reference edges upstream of pa-
rameter npi . For each pi, define the edge rewrite set Ki =
β(〈qi, npi〉). Conceptually, the rewrite rule Ki captures with re-
spect to 〈qi, npi〉’s initial reachability state at the beginning of
the callee how the callee changed the reachability sets of the up-
stream caller edges that can reach the objects in npi .

4. Reachability States For Token ηnpi
: For each pi, define:

di =
[

〈ai,nij〉

β(〈ai, nij〉)

The set of reachability states di is a simple union of all reach-
ability states on the reference edges out of label node ai in the
caller. Conceptually, di represents all reachability states that are
present on any heap region node reachable from ai. This set pro-
vides a conservative approximation of the caller-context reacha-
bility states in heap region npi before the callee’s execution may
change its reachability.

5. Reachability States For η∗npi
, η+
npi

: For each pi, define:
Let di = {φi0, . . . , φij}

Di =

8>>>>><>>>>>:

n
si0 ∪ · · · ∪ sij | sia ∈

{∅, φia, φia ∪4 φia}
o

if | di |< ωmax

n[
4[〈ηi0,µi0〉,...,〈ηij ,µij〉]∈di

[η∗i0, . . . , η
∗
ij]
o

otherwise

If a parameter token appears in a reachability state with an
arity of ZERO-OR-MORE or ONE-OR-MORE, that token represents
the tokens of any number of heap regions that are reachable
from the parameter in the caller. We define Di to generate all
possible combinations of caller reachability sets by taking any
combination of the reachability states in di any number of times.
Note that the calculation of Di is intractable when the set di is
large. When the size of di is greater than a threshold ωmax, we ap-
proximate the calculation with one reachability state that is union
of every state in di with token arity values all ZERO-OR-MORE.
Conceptually, Di gives the possible reachability states that the
callee tokens η∗npi

or η+
npi

represent.
6. Mapping Operator: The ∆ operator computes caller reachabil-

ity states from callee reachability states with respect to parameter
pi. ∆ takes as input the parameter index i, a set of callee-context
rewrite rules R, and a set of caller-context reachability states S
and produces a set of caller-context reachability states.

7

∆(i, R, S) =
[

{〈η0,µ0〉,...,〈ηj ,µj〉}∈R

Θ({〈η0, µ0〉, . . . , 〈ηj , µj〉}),where

Θ({〈η0, µ0〉, . . . , 〈ηj , µj〉}) = {
j[

a=0

τa | τ0 ∈ Ω(〈η0, µ0〉), . . . ,

τn ∈ Ω(〈ηj , µj〉)},where

Ω(〈η, µ〉) =

8>>>>>>>><>>>>>>>>:

S if 〈η, µ〉 = ηnpi

Di if 〈η, µ〉 = η∗npi
or η+

npi

dj if 〈η, µ〉 = ηnpb
, b 6= i

Dj if 〈η, µ〉 = η∗npb
or η+

npb
, b 6= i

{[〈ηng′tz
, µ〉]} if 〈η, µ〉 = ηµngtz

{[〈η, µ〉]} otherwise.

To illustrate ∆ take i = 0, R = {[ηnp0
, η+
np1

, η∗ng3,1
]}, S =

{[ηn4], [ηn4 , ηn5]}, and D1 = {[ηn6], [ηn7]}.
The expansion of each callee-context token tuple in a callee-
context reachability state results in a set of possible sets of caller-
context token tuples. In this example

Ω(ηnp0
) = S = {[ηn4], [ηn4 , ηn5]}

Ω(η+
np1

) = D1 = {[ηn6], [ηn7]}

Ω(η∗ng3,1
) = {[η+

ng′3,1
]}

and then we have

Θ({[ηp0 , η
+
p1 , η

∗
ng3,1

]}) =

8>>>>>><>>>>>>:

[ηn4 ,ηn6 ,η
+
n

g′3,1
],

[ηn4 ,ηn5 ,ηn6 ,η
+
n

g′3,1
],

[ηn4 ,ηn7 ,η
+
n

g′3,1
],

[ηn4 ,ηn5 ,ηn7 ,η
+
n

g′3,1
]

9>>>>>>=>>>>>>;
.

5.4 Call Site Algorithm
This section presents the call site algorithm. The algorithm per-
forms the following steps:
1. Caller Node Reachability: Rewrite α for each caller heap

region node nij reachable from argument label i. Initialize
α′(nij) = ∅.

δ = ∆
“
i,H, α(nij)

”
α′(nij) = α′(nij) ∪ δ.

It is possible for a caller heap region node to be reachable from
two or more argument labels, therefore the calculation for α′

iteratively adds the effects from each argument index.
2. Caller/Callee Edge Reachability: Rewrite β for caller refer-

ence edges reachable from argument label i. Initialize β′ = ∅.

δ = ∆
“
i, J, β(〈ni0z0 , f, ni1z1〉)

”
β′(〈ni0z0 , f, ni1z1〉) = β′(〈ni0z0 , f, ni1z1〉) ∪ δ.

The process for reference edges reachable from argument labels
is similar to the parameter-reachable heap region nodes above.

3. Upstream Caller Edge Reachability: This step generates β′

for caller reference edges upstream from the heap region nodes
reachable from parameter i. Initialize β′ = ∅.

δ = ∆
“
i,K, β(〈n, f, niz〉)

”
β′(〈n, f, niz〉) = β′(〈n, f, niz〉) ∪ δ

δ = ∆
“
i,K, β(〈l, niz〉)

”
β′(〈l, niz〉) = β′(〈l, niz〉) ∪ δ.

The analysis performs these updates only on the caller reference
edges that directly reference the parts of the heap reachable
from parameter objects. The analysis then uses the reachability
change propagation algorithm for edges described in Section 4.4
to propagate the changes through upstream caller edges.

4. Callee Nodes: This step generates reachability information for
the callee nodes. It rewrites the callee reachability sets in terms
of the caller reachability tokens.

δ = ∆(−1, α(ngtz), ∅)
α′(ng′tz

) = δ.

When bringing callee-allocated heap region node ngtz ∈ Gt
into the caller context note that the analysis need not convert the
α(ngtz) with respect to any particular parameter index because
the set of objects represented by ngtz in the callee were newly
allocated by the callee. Therefore, the parameter index −1 and
the ∅ caller-context is supplied to ∆ to prevent rewriting param-
eter tokens. As a result, only cases 3, 4, and 5 of Ω will be used
to convert the possible tokens in α(ngtz).

5. Callee Edges: This step generates reachability information for
the new caller edges by rewriting the callee reachability sets in
terms of the caller reachability tokens.
The algorithm first calculates β′ for a new edge ecaller from some
callee edge e.

δ = ∆(−1, β(e), ∅)
β′(ecaller) = δ.

In a similar manner to callee-allocated heap region nodes de-
scribed above, callee-generated reference edges must calculate
caller-context reachability. The calculation is given, but the next
step describes the sets of possible caller reference edges that will
be created, all of which will have this β information.
The next step computes the set of possible edges created by the
callee in the new reachability graph. A callee reference edge e
has either parameter heap region nodes or allocated heap region
nodes for the source and destination, making four classes of
callee reference edges. Each callee reference edge maps into the
caller context as a set of edges:

Ssrc =

8><>:
{ng′tz

} if src(e)=ngtz and
ngtz has a field name matching field(e),

{ni0, . . . , nij} if src(e)=npi
and

nij has a field name matching field(e).

Sdst =

8><>:
{ng′tz

} if dst(e)=ngtz and
ngtz ’s type matches field(e) or is multi-obj,

{ni0, . . . , nij} if dst(e)=npi
and

nij ’s type matches field(e) or is a multi-obj.

Ecaller = {〈s, d〉, s ∈ Ssrc, d ∈ Sdst}
Note that some edge eexisting = ecaller ∈ Ecaller may exist in the
caller context already if e is between two parameter regions in
the callee. If the edge does not exist in the caller then add it with
β(ecaller). Otherwise, β(eexisting) = β(eexisting) ∪ β(ecaller).

6. Update α, β: The analysis next replaces α and β with the
updated versions α′ and β′, respectively.

8

7. Return Value Assignment: If the call site assigns the return
value to a caller label then the transform discussed in Section 4.2
is used to capture the effect. The analysis identifies all heap
region nodes of the callee that are referenced by the label node
Return that is out of the program scope and then it map that
set of callee heap region nodes into the caller using mappings
described above. From there the copy statement transform is
trivial and can be committed in the midst of this larger call site
transform.

8. Summarizing Allocation Site Nodes: The graph at this point
may contain allocation site nodes for the same allocation site
from both the caller and callee. The analysis summarizes the
oldest nodes to ensure the abstract fits withing its normal k-limit.

5.5 Termination
Termination of the disjointness analysis is straightforward. There
are only two complications: strong updates and call site aliasing
contexts. All of the other transfer functions in the analysis are
monotonic and the reachability graphs form a lattice.

While a strong update can be initially non-monotonic if it is
processed before the variable on its left hand side is defined, we
note that the strong update becomes (and remain) monotonic once
the program variable on the left hand side is defined.

If adding a new edge changes the aliasing context for a call site,
the new callee reachability graph may be only partially analyzed
and therefore can contain fewer edges than the previous callee
reachability graph. We note that once the final result is computed
for the callee reachability graph for the new aliasing context, it
will contain at least as many edges. For a given caller aliasing
context, the analysis ensures that the aliasing context for a call
site monotonically increases. Therefore, at some point the aliasing
context for each call site will either include all parameter indices or
stop increasing. At this point the analysis becomes monotonic and
therefore terminates.

6. Evaluation
We have implemented the disjointness analysis in our compiler. We
have analyzed several applications written in the Bamboo language.
Bamboo extends a Java-like core language with a set of task ex-
tensions designed for parallel programming. Bamboo can execute
tasks in parallel if it can determine that the two tasks operate on
disjoint parts of the heap. We flagged all objects that can serve as
parameters to the Bamboo tasks. Bamboo uses a similar task invo-
cation model to the Bristlecone language [12] — the runtime task
invokes tasks when there exists objects in the heap in the appropri-
ate states to serve as parameter objects. These semantics mean that
flag objects even without explicit references are live, and therefore
the second strong update condition does not apply to them.

Bamboo task invocation locks on the parameter objects —
therefore, showing that the flagged objects can reach disjoint parts
of the heap is sufficient to execute tasks in parallel. We ran the
analysis on 17 benchmarks using the Bamboo extensions to Java
on a 2.4 GHz Core 2 Duo with 1 GB of RAM. The source code
for the analysis and the benchmarks can be downloaded from the
web. The jHTTPp2 benchmark was ported from http://jhttp2.
sourceforge.net/. The JGFSeries, JGFMoldyn, and JGFMon-
teCarlo benchmarks were ported from the Java Grande benchmark
suite [27]. The FilterBank benchmark was ported from the StreamIt
benchmark suite [17].

6.1 Disjointness Results
Table 2 presents the analysis results and execution times for our
benchmark suite. The analysis identified a total of 11 possible
aliases between flagged object classes over five of the benchmarks.

Benchmark Sharing Time
Chat 3 2.065s
OnlineMultiGame 4 54.986s
MapReduceA 1 8.792s
MapReduceB 2 10.867s
JGFMoldyn 1 14.257s
BankApp 0 1.222s
WebConglomerator 0 1.297s
jHTTPp2 0 3.114s
PERT 0 0.797s
FilterBank 0 0.188s
JGFMonteCarlo 0 1.961s
JGFSeries 0 0.162s
SpiderA 0 2.676s
SpiderB 0 4.042s
TileSearch 0 5.632s
TicTacToe 0 0.952s
WebServerA 0 2.939s
WebServerB 0 4.843s

Table 2. Benchmark Results

The other thirteen benchmarks were reported to have disjoint re-
gions reachable from flagged objects. We verified that the analysis
results were correct by manual inspection of the code. While it is
possible for the analysis to report false aliases, none appeared in
the analysis results for our benchmarks.

We note that the number of aliases between flagged objects is
relatively small as Bamboo applications were written to allow par-
allelization and therefore ensure that the parameter objects are dis-
joint. Bamboo provides language constructs that facilitate main-
taining disjointness. The alias reports for flagged objects were gen-
erated at the exit of each task invocation.

6.2 Performance
Table 2 presents the analysis times for the benchmark suite. The
benchmarks contain several hundred to a few thousand lines of ap-
plication code excluding the class libraries. The largest benchmark,
JGFMonteCarlo, contains 2,418 lines. Our current implementation
makes no effort to optimize the evaluation order of statements or
methods — it often must reanalyze methods that are not recursive
simply due to non-optimal evaluation ordering.

7. Related Work
Like disjointness analysis, both alias analysis [2, 11, 14, 24] and
pointer analysis [26, 20, 29, 5] analyze source code to discover
heap referencing properties of the data structures that applications
build. However, disjointness analysis extracts a different property
— disjointness analysis attempts to determine whether the parts of
the heap reachable from distinct objects taken from a selected set
are disjoint. Our analysis can determine that distinct objects from
the same static representation or name reach disjoint parts of the
heap. We extract a similar properties to the conditional must not
aliasing analysis by Naik and Aiken [22], however our analysis can
maintain disjointness properties in the presence of mutation.

Alias analyses vary in whether they are flow-sensitive [7] or
context-sensitive [31, 15, 28]. These design choices incur increased
analysis complexity to gain increased precision. Our analysis is
flow-sensitive and context-sensitive in an effort to produce a sound
result with enough precision to maintain disjointness properties for
real programs. We mitigate the algorithm’s complexity by reducing
the targets of reachability to only objects of interest, with the
expectation that more precision will dramatically increase how
effectively programs are parallelized.

Ruf [23] suggests that for alias analysis the benefit of context-
sensitivity is rare over context-insensitive analyses. We expect

9

that context sensitivity is more important for disjointness analysis.
Without context sensitivity, simply passing two flagged parameter
objects into a method that points the field of one these objects to
any object would violate the disjointness property.

The literature also proposes a variety of methods for modeling
structure references. Some use a k-limited approach of keeping k
distinct objects in a recursive structure or from an allocation site
before summarizing [20, 7]. Other strategies are to use symbolic
access paths [13] or regular expressions [19]. We create k distinct
heap regions for objects generated from allocation sites and then
summarize, but our reachability states maintain precision for ob-
jects within summarized heap regions. By combining the reacha-
bility information of the summarized heap region and its incoming
and outgoing references we can still know the disjointness proper-
ties of different classes of objects within the summary region.

Escape analysis [3, 30] tracks when heap elements have escaped
their static scope. The computations derive different program infor-
mation, but often use similar analysis techniques.

Ownership type systems have been developed to restrict aliasing
of heap data structures [1, 4, 8, 9, 10, 18]. We only make similar
observations when pruning method effects that are being mapped
into the calling context.

Shape analysis [6, 16, 25, 21] discovers and verifies shape heap
properties of data structures. Our analysis differs in an important
way: shape analysis can verify that some object is the root of a
valid tree, while our analysis can verify that trees are disjoint by
inspecting their roots, but not that they are in fact trees.

8. Conclusion
If a compiler can determine that two blocks of code operate on
disjoint data structures, it can safely parallelize them. We present
a new analysis, disjointness analysis, for extracting disjointness
properties from single-threaded code. The analysis uses the abstrac-
tion of reachability sets to maintain reachability information.

We have implemented the analysis in our compiler framework
and analyzed several benchmark programs written in Bamboo,
a set of task-based extension to a Java-like core language. For
our benchmark programs, the analysis precisely identified sharing
between the key data structures.

References
[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for

Program Understanding. In Proceedings of the 17th ACM SIGPLAN
conference on Object-Oriented Programming, Systems, Languages,
and Applications, 2002.

[2] J. P. Banning. An efficient way to find the side effects of procedure
calls and the aliases of variables. In Proceedings of the 6th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, 1979.

[3] B. Blanchet. Escape analysis for object-oriented languages: applica-
tion to Java. In Proceedings of the 14th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications,
1999.

[4] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for
Safe Programming: Preventing Data Races and Deadlocks. In
Proceedings of the 17th ACM SIGPLAN conference on Object-
Oriented Programming, Systems, Languages, and Applications, 2002.

[5] M. G. Burke, P. R. Carini, J.-D. Choi, and M. Hind. Flow-insensitive
interprocedural alias analysis in the presence of pointers. In
Proceedings of the 7th International Workshop on Languages and
Compilers for Parallel Computing. Springer-Verlag, 1995.

[6] D. R. Chase, M. Wegman, and F. K. Zadeck. Analysis of pointers and
structures. In Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementation, 1990.

[7] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side
effects. In Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 1993.

[8] D. G. Clarke. Object Ownership and Containment. PhD thesis,
University of New South Wales, Australia, 2003.

[9] D. G. Clarke and S. Drossopoulou. Ownership, Encapsulation and
the Disjointness of Type and Effect. In Proceedings of the 17th ACM
SIGPLAN conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2002.

[10] D. G. Clarke, J. M. Potter, and J. Noble. Ownership Types for Flexible
Alias Protection. ACM SIGPLAN Notices, 33(10):48–64, 1998.

[11] K. D. Cooper and K. Kennedy. Fast interprocedual alias analysis.
In Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 1989.

[12] B. Demsky and A. Dash. Bristlecone: A language for robust software
systems. In Proceedings of the 2008 European Conference o n Object-
Oriented Programming, 2008.

[13] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond
k-limiting. In Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation, 1994.

[14] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based alias
analysis. In Proceedings of the ACM SIGPLAN 1998 conference on
Programming language design and implementation, 1998.

[15] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. In Proceedings of the ACM SIGPLAN 1994 conference
on Programming language design and implementation, 1994.

[16] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph?
a shape analysis for heap-directed pointers in c. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1996.

[17] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, C. Leger,
A. A. Lamb, J. Wong, H. Hoffman, D. Z. Maze, and S. Amarasinghe.
A Stream Compiler for Communication-Exposed Architectures. In
International Conference on Architectural Support for Programming
Languages and Operating Systems, San Jose, CA, October, 2002.

[18] D. L. Heine and M. S. Lam. A practical flow-sensitive and context-
sensitive c and c++ memory leak detector. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and
implementation, 2003.

[19] J. Hummel, L. J. Hendren, and A. Nicolau. A general data dependence
test for dynamic, pointer-based data structures. In Proceedings of the
ACM SIGPLAN 1994 conference on Programming language design
and implementation, 1994.

[20] W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modification
side effect analysis with pointer aliasing. In Proceedings of the ACM
SIGPLAN 1993 conference on Programming language design and
implementation, 1993.

[21] S. McPeak and G. C. Necula. Data structure specifications via local
equality axioms. In Computer-Aided Verification, 2005.

[22] M. Naik and A. Aiken. Conditional must not aliasing for static race
detection. In Proceedings of the 34th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 2007.

[23] E. Ruf. Context-insensitive alias analysis reconsidered. In Pro-
ceedings of the ACM SIGPLAN 1995 conference on Programming
language design and implementation, 1995.

[24] E. Ruf. Partitioning dataflow analyses using types. In Proceedings
of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1997.

[25] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. ACM Trans. Program. Lang. Syst., 2002.

[26] M. Shapiro and S. Horwitz. Fast and accurate flow-insensitive points-
to analysis. In Proceedings of the 24th ACM SIGPLAN-SIGACT

10

symposium on Principles of programming languages, 1997.

[27] L. A. Smith, J. M. Bull, and J. Obdrzalek. A parallel Java Grande
benchmark suite. In Proceedings of SC2001, 2001.

[28] B. Steensgaard. Points-to analysis in almost linear time. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, 1996.

[29] W. E. Weihl. Interprocedural data flow analysis in the presence of
pointers, procedure variables, and label variables. In Proceedings
of the 7th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1980.

[30] J. Whaley and M. Rinard. Compositional pointer and escape analysis
for Java programs. In Proceedings of the 14th ACM SIGPLAN
conference on Object-oriented programming, systems, languages,
and applications, 1999.

[31] R. P. Wilson and M. S. Lam. Efficient context-sensitive pointer
analysis for c programs. In Proceedings of the ACM SIGPLAN 1995
conference on Programming language design and implementation.

11

