
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Wiwat Ruengmee David F. Redmiles
University of California, Irvine University of California, Irvine
wruengme@ics.uci.edu redmiles@ics.uci.edu

Roberto Silveira Silva Filho Cristina Videira Lopes
University of California, Irvine University of California, Irvine
rsilvafi@ics.uci.edu lopes@ics.uci.edu

Sushil Krishna Bajracharya
University of California, Irvine
sbajrach@ics.uci.edu

XE (eXtreme Editor) - Tool Support for Evolution in
Aspect-Oriented Programming

June 2008

ISR Technical Report # UCI-ISR-08-1

Institute for Software Research
ICS2 217

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

XE (eXtreme Editor) - Tool Support for Evolution in Aspect-Oriented
Programming

Wiwat Ruengmee, Roberto Silveira Silva Filho,
Sushil Krishna Bajracharya, David F. Redmiles, Cristina Videira Lopes

{wruengme, rsilva!, sbajrach, redmiles, lopes}@ics.uci.edu

Department of Informatics
Donald Bren School of Information and Computer Sciences, University of California

Irvine, CA, 92697 USA
ISR Technical Report # UCI-ISR-08-1

June 2008

Abstract. In spite of themodularizationbene!ts supportedby theAspect-Orientedprogrammingparadigm,
di"erent usability issues have hindered its adoption.#e decoupling between aspect de!nitions and base
code, and the compile-time weaving mechanism adopted by di"erent AOP languages, require develop-
ers to manage the consistency between base code and aspect code themselves.#ese mechanisms create
opportunities for errors related to aspect weaving invisibility and non-local control characteristics of
AOP languages. In short, AOP developers lack adequate support for: 1) visualizing and identifying the
exact points in the code where aspects are woven; 2) preventing aspect-base code inconsistencies, and
3) evolving aspect-oriented code in a coherent way.#is paper describes XE (Extreme Editor), an IDE
that supports developers in managing these issues in the functional aspect-oriented programming do-
main. We validate our approach through a case study showing how XE reduces the cognitive e"ort of
developers in evolving AOP programs.

XE (eXtreme Editor) - Tool Support for Evolution in Aspect-Oriented
Programming

Wiwat Ruengmee, Roberto Silveira Silva Filho,
Sushil Krishna Bajracharya, David F. Redmiles, Cristina Videira Lopes

{wruengme, rsilva!, sbajrach, redmiles, lopes}@ics.uci.edu

Department of Informatics
Donald Bren School of Information and Computer Sciences, University of California

Irvine, CA, 92697 USA
ISR Technical Report # UCI-ISR-08-1

June 2008

Abstract. In spite of the modularization bene!ts supported by the Aspect-Oriented programming paradigm, dif-
ferent usability issues have hindered its adoption."e decoupling between aspect de!nitions and base code, and the
compile-time weaving mechanism adopted by di#erent AOP languages, require developers to manage the consis-
tency between base code and aspect code themselves."ese mechanisms create opportunities for errors related to
aspect weaving invisibility and non-local control characteristics of AOP languages. In short, AOP developers lack
adequate support for: 1) visualizing and identifying the exact points in the code where aspects are woven; 2) prevent-
ing aspect-base code inconsistencies, and 3) evolving aspect-oriented code in a coherent way."is paper describes
XE (Extreme Editor), an IDE that supports developers in managing these issues in the functional aspect-oriented
programming domain. We validate our approach through a case study showing how XE reduces the cognitive e#ort
of developers in evolving AOP programs.

Key words: Programming environment, Aspect-Oriented Programming, so$ware development, program
understanding, program transformations.

1 Introduction

Aspect-Oriented Programming (AOP) is a methodology that aims to improve the modularity of so$ware
systems by encapsulating scattered and tangled code into distinct abstractions called aspects [16]. Aspect
abstractions comprise two basic components: the aspect behavior, or advice, and a point cut descriptor (or
PCD), which provides references to runtime conditions and the places in the base code where aspect be-
haviors are woven. "rough this mechanism, code weavers combine aspects and base code to form a !nal
program."is programmingmodel promotes the separation of aspect code and base program, allowing their
independent modi!cation. From a usability perspective, however, the decoupling between aspects and base
code, and the PCD/weaving mechanism raises di#erent problems experienced by many AOP developers
[20].

"e idea of obliviousness to AOP development that would “allow programming by making quanti!ed
programmatic assertions over programs written by programmers oblivious to such assertions” [7] has been
shown to be %awed [21]."is separation actually adds considerable complexity to aspect-oriented develop-
ment. Popular general purpose AOP languages such as AspectJ [15] employ a regular-expression based PCD
language that, while very powerful and general, can lead to problems such as over-weaving (when aspects
are woven to wrong parts of the code) or under-weaving (when aspects are not woven with the code they
should). For example, in AspectJ, by de!ning a point cut described as paint*(..) to implement a GUI refresh

UCI-ISR-08-1 June 2008

aspect, developers can unintentionally advise base code methods such as paintBrushCon!g(). In these situa-
tions, neither the weaver nor the compiler can detect these semantic mistakes that can only be perceived at
runtime, when the program behaves erroneously.

Another commonproblem faced byAOPdevelopers is the lack of support for evolution.A simplemethod
rename can break the PCD-base code contract, removing themethod from the set of point cuts advised by an
aspect. Moreover, semantic changes in the code may also require adjustments to the aspect-base code con-
tract. For example, the addition of a new GUI widget may require a di#erent type of refresh implementation.
In order to support this new behavior, the new repaint method needs to adopt a di#erent name convention
from the standard paint() command. Another option is to update the PCD to exclude that particular method
from its advice. Both options, however, usually require successive trial-and-error compilation cycles to assure
the developer that the change does not impact other methods in the system. It also requires many context
switches between base code and aspect code to verify the correctness of the PCD descriptors. Both activities
have shown to increase the cognitive load of the developers, leading to potential programming errors [14].

"ese issues reveal a more fundamental problem in the AOP programming model: the lack of support
for developers to detect side-e#ects of semantic changes in the program. Such commonmistakes are syntac-
tically correct, and cannot be automatically detected by the aspect weaver nor by the programming language
compiler."erefore, they are only detected at runtime, when an erroneous behaviormanifests itself, an error-
prone and tedious process.

In this paper,we presentXE, an IntegratedDevelopmentEnvironment (IDE) thatmitigates these usability
issues, originated by the lack of feedback to AOP programmers. By supporting automatic edit-time aspect
weaving, XE supports developers in assessing the impact of changes they make in either the aspect or the
base code, and helps in the visual detection of both over and under-matching conditions. In doing so, it
also avoids the need for repetitive context switches from base to aspect code, which increases the developers’
cognitive load. Moreover, in XE both base code and aspect implementations are kept consistent trough the
use of an underlying relational model and engine. "is feature supports refactoring and evolution through
the automatic adjustment of the aspect visualization in response to code changes, and by permitting the end-
user to select between di#erent aspect implementations to weave. Finally, through the use of di#erent views,
larger-scale projects and debugging are also supported.

XEwas developed in PLTScheme,whichwas selected for its extensibility, and for the ability of the Scheme
language and environment to support runtime codemanipulation."ese features signi!cantly simpli!ed our
prototype implementation.

"e rest of the paper is organized as follows: Section 2 brie%y introduces the aspect-oriented program-
ming concepts in Scheme used throughout this paper. Section 3 presents a motivating scenario, showing the
problems of evolving AOP code without appropriate IDE support; Section 4 describes the main features of
the XE IDE. Section 5 discusses XE implementation details; Section 6 shows howXE can be employed to bet-
ter support developers in evolving AOP programs. Section 7 presents the results of our evaluation, showing
the cognitive bene!ts of using XE tool. Section 8 presents related work and Section 9 concludes.

2 Aspects in Scheme

In this section, we present the pointcut and advice models we developed for Scheme, showing how they
are used to implement aspects in the functional programming paradigm. Our AOP language mimics the
operators of AspectJ [21].

2

UCI-ISR-08-1 June 2008

"e aspect de!nition in Scheme consists of a list of advice expressions, each one binding a set of join
points to an interceptor expression (typically a function call in Scheme base program) as shown in Figure 1.
"e <advice-type> can be any of the types supported in AspectJ, namely before, a$er and around. A query,
<jp-query>, matches a list of join points of the base program using a regular expression on program identi-
!ers. Two pointcut types are supported: call (representing a function call) and exec (representing a function
execution). Sub-expressions inside a query can be combined using logical operators ‘and’, ‘or’, and ‘not’. Fi-
nally, <interceptor-exp> represents a set of Scheme expressions.

(a s p e c t <a sp e c t−a r gumen t s− l i s t>
(< adv i ce− t ype> <jp−query> <i n t e r c ep t o r− e xp >)
. . .
(< adv i ce− t ype> <jp−query> <i n t e r c ep t o r− e xp >))

Fig. 1. Scheme aspect meta-model

"e current implementation of XE aspect extensions is based on the subset of the Scheme language
implemented by PLT Scheme, namedDrScheme1."e interpreters used in XE are derived from those imple-
mented in Abelson and Sussman’s book [1]. Hence, XE extends PLT Scheme to support aspects as described
in Figure 1.

3 Motivating Scenario

In this section, we illustrate the use of aspects in XE Scheme, showing a simple example of the problems
faced by aspect-oriented developers in 1) identifying the exact points in the code where aspects are woven;
2) detecting aspect-base code inconsistencies, and 3) evolving aspect-oriented code in a coherent way.

3.1 Simple banking transaction API

Our Scheme aspect extensionwas used tomodularize a simple banking transactionAPI."e originalAPI had
three major operations: deposit, withdraw, and balance inquire. "is API was later evolved to support new
features as discussed in this section. We present the steps necessary to modularize and evolve this banking
application without any extra XE support."e only available mechanisms are the weaving and execution of
XE Scheme code. Our goal is to mimic the functionality provided by existing AOP weavers and compilers,
where no extra IDE support is provided.

In the original code, the authentication concernwas scattered through the program, individually handled
by each function of the API as seen in Figure 2.

"is code was modularized, within an authentication aspect, by factoring out the permission-checking
code from the API methods, as shown in Figure 3, and by creating an authentication aspect in XE Scheme
as shown in Figure 4. Both base code and aspect code reside in separate !les.

A$er separating a concern into base code and aspect code, the developers need to reintegrate (or weave)
the aspect and base code behaviors by 1) loading both base code and aspect code !les into the XE environ-
ment, and 2)manually weaving the aspect code with the base code through amenu command in XE Scheme.
Section 4 explains the weaving and unweaving processes in XE Scheme in more detail.
1 http://www.drscheme.org

3

UCI-ISR-08-1 June 2008

; ; (1) D e p o s i t p r o c e d u r e d e f i n i t i o n
(d e f i n e (d e p o s i t)

(lambda ()
(i f (not (au then t i c a t e−us e r−db

(get−username)
(ge t−password)))

(e r ro r ” Au t h e n t i c a t i o n F a i l u r e ”)
f a l s e))

(run−depos i t 2 0 0 0)))

; ; (2) Withdraw p r o c e d u r e d e f i n i t i o n
(d e f i n e (wi thdraw)

(lambda ()
(i f (not (au then t i c a t e−us e r−db

(get−username)
(ge t−password)))

(e r ro r ” Au t h e n t i c a t i o n F a i l u r e ”)
f a l s e))

(run−withdraw 2 0 0 0)))

; ; (3) Ba l an c e p r o c e d u r e d e f i n i t i o n
(d e f i n e (b a l a n c e)

(lambda ()
(i f (not (au then t i c a t e−us e r−db

(get−username)
(ge t−password)))

(e r ro r ” Au t h e n t i c a t i o n F a i l u r e ”)
f a l s e))

(run−show−balance)))

Fig. 2. Original code with scattered authentication mechanisms

(d e f i n e (d e p o s i t)
(lambda ()

(run−depos i t 2 0 0 0)))

(d e f i n e (wi thdraw)
(lambda ()

(run−withdraw 1 0 0 0)))

(d e f i n e (b a l a n c e)
(lambda ()

(run−show−balance)))

Fig. 3. Base code without the factored-out authentication code

4

UCI-ISR-08-1 June 2008

(d e f i n e au t h en t i c a t i on−db− a s p e c t
(a s p e c t ()

((b e f o r e
(c a l l

(or
(i n s i d e d e p o s i t ∗)
(i n s i d e wi thdraw ∗)
(i n s i d e b a l a n c e ∗)))

(b eg in
(i f (not (au then t i c a t e−us e r−db

(get−username)
(ge t−password)))

(e r ro r ” Au t h e n t i c a t i o n F a i l u r e ”)
f a l s e))))))

Fig. 4. Database authentication aspect de!nition

3.2 Evolving and debugging the application

"e original API was very simple; it supported screen-only balance display and the authentication was based
on information stored in a local database (password !le). In order to broaden its applicability, the API was
extended to support new functionality: 1) a new print balance function that directs balance inquiry results
to a network printer, and 2) a distributed (web-based) authentication mechanism that grants access to the
network printer."e steps for this course of evolution were:

1. "e !rst step towards the evolution of the banking API is to implement the new run-print-balance

function that sends the balance inquire output to a printer.
2. "e next step is to extend the balance de!nition to invoke this function whenever a balance is requested.

"e balance is then printed both to the screen and to the printer (the result code is shown in Figure 5
(1)). A$er this evolution step, the program becomes semantically incorrect."e (inside balance *)
interceptor, which directs the weaving of the database authentication code with the base code, will in-
correctly advise (run-print-balance) with the authenticate-db-user code. We call this situation
“over-matching”.

3. A$er a weaving/execution/testing cycle, where thewrong behavior becomes evident, a developer corrects
this problem by modifying the wildcard in (inside balance *) to a more speci!c, (inside bal-
ance run-show-balance), as seen in Figure 5 (2)."is modi!cation, however, creates another seman-
tically inconsistent situation that we call “under-matching”. A$er this change, the run-print-balance
is no longer advised by any aspect, while it should have been advised by the new authentication-ws-

aspect aspect.
4. A$er another weave/execute/test when the print jobs could not be completed due to the lack of authenti-

cation, the developers detect their mistake."ey then create the new aspect, namely authentication-
ws-aspect, to !x this problem. Let’s suppose that they use a copy-and-paste programming strategy to
reuse the old authentication aspect, theauthenticate-user-db, as a template for the new authenticate-

user-ws. In this process they forget to remove the (inside balance *) and (inside withdraw *) PCD ex-
pressions. "is common mistake would again result in “over-matching” of other function calls inside

5

UCI-ISR-08-1 June 2008

; ; (1) Added new p r o c e d u r e
(d e f i n e (b a l a n c e)

(lambda ()
(run−show−balance)
(run−pr in t−ba lance)))

; ; (2) Mod i f i e d o l d a s p e c t
(d e f i n e au t h en t i c a t i on−db− a s p e c t

(a s p e c t ()
((b e f o r e

(c a l l
(or (i n s i d e d e p o s i t ∗)

(i n s i d e wi thdraw ∗)
(i n s i d e b a l a n c e run−show−balance)))

(b eg in
(i f (not (au then t i c a t e−us e r−db

(get−username)
(ge t−password)))

(e r ro r ” Au t h e n t i c a t i o n F a i l u r e ”)
f a l s e))))))

; ; (3) New a s p e c t
(d e f i n e au th en t i c a t i on−ws− a sp e c t

(a s p e c t ()
((b e f o r e

(c a l l
(i n s i d e b a l a n c e run−pr in t−ba lance))
(b eg in

(i f (not (au then t i c a t e−use r−ws
(get−username)
(ge t−password)))

(e r ro r ” Au t h e n t i c a t i o n F a i l u r e ”)
f a l s e))))))

Fig. 5. Updated base and aspect code

balance and withdraw. Moreover, a feature interference condition would also occur with the existing
authenticate-ws-aspect.

5. At last, a$er removing the extra PCD expressions, the evolution step is complete and the program is
correct.

In the previous scenario, we showed how a simple evolution step can result in di#erent inconsistent code
stages that can result in syntactically correct, but semantically wrong programs. Additionally, it required
repetitive switches of context from the base code to the aspect code, followed by repetitive weaving/execution
cycles."e root of the problem is the lack ofmechanisms to support developers in identifying these situations.
In this paper, we argue for the need of instant-feedback mechanisms as supported by XE IDE.

6

UCI-ISR-08-1 June 2008

4 XE IDE Features

In order to address the types of problems described in the last section, we developed XE (Extreme Editor),
an IDE that supports developers in the evolution, refactoring, and debugging of aspect-oriented programs
(see Figure 6 and Figure 7). As such, XE combines di#erent visualizations, automatic tracking of aspects
and base code, and edit-time aspect code weaving. Combined, these features help developers overcome the
usability problems induced by the AOP model."e main features of XE, and their bene!ts, are described in
this section.

Figure 6 and Figure 7 present the main screen of XE. In Figure 6, di#erent aspect and lambda de!nitions
are shown. In Figure 7, the main editor shows the base code with any woven aspect that the user may have
selected."e Eval console (bottom of the IDE) allows users to run the program whereas the XEval console
allows users to interact with meta-level functions, for instance functions to generate call graphs or to gather
di#erent joint points in a single view (Section 4.2).

Fig. 6. XE main window screenshot illustrates woven code and Eval console

4.1 Editing time code weaving

XE provides two mechanisms for interacting with the crosscutting structure of the system: 1) the multiple
aspects selector (Figure 6), that permits developers to select a sub-set of aspects to automatically weave with
the base code; and 2) edit-time code weaving (Figure 8), that automatically shows the aspect code (high-
lighted), in-line with the base code (normal font)."rough the use of these two mechanisms, a programmer
can directly interact with both aspects and base code implementations.

For example, if one renames a function argument in a woven view, that change is retained and incorpo-
rated into the base code. By the same token, changes to the woven aspect code can either be incorporated into
the original aspect declaration or can be permanently incorporated to the base code itself. Figure 9, shows
a user dialog that provides the programmer the option of incorporating the changes to the original aspect
code or to the local function declaration only. Moreover, changes committed to the source aspect de!nition
are automatically incorporated and updated in all views of program. In the case of incorporation of the as-
pect code to the base code, the PCD (the aspect’s query de!nition) is automatically modi!ed to exclude the

7

UCI-ISR-08-1 June 2008

Fig. 7. XE main window screenshot illustrates gather join point view with woven code and XEval console

current function declaration."is action prevents an aspect behavior to be woven twice in the same function
point.

By supporting the in-line and consistent modi!cation of both base code and aspect code, XE also allows
developers to avoid switching contexts, between base code and aspect code, in the middle of a task.

Fig. 8. Example of edit-time code weaving

4.2 Multiple views

In addition to the editing-time weaving of code, XE provides two additional views: 1) the gather joint point
view, and 2) the call graph view (see below). Both are particularly important for large-scale projects, when the
extension of program codemay hinder its complete understanding by single developers. In these situations, it
can be di&cult for the developers to visually inspect the code and detect over- or under-matching conditions
using the edit-mode view alone."ese two additional views help to reduce information overload by allowing
developers to skip through relevant code snippets or to inspect speci!c programexecution slices.More details
are presented in the next sections.

Gather join point model view A gather join point view allows developers to !lter out di#erent identi!ed
join points from the base code, displaying them, together, into a single editable active view. Using this view,

8

UCI-ISR-08-1 June 2008

Fig. 9. Incorporation of aspect code to base code

a developer can interactively test a PCD descriptor expressiveness, detecting any under and over-matching
situations, or selectively inspect di#erent points in the code. Similar to the normal code view, the editing of
the woven aspect code or the base code itself are both allowed, any changes being immediately re%ected in
other parts of the code.

Adeveloper produces di#erent gather join point views by specifying queries toXE’smeta-level interpreter
using the XEval pane (see Section 5). For example, by querying (view (call (run-transaction *))),
a view is produced that shows any function invocations within run-transaction, as seen in Figure 10 (A).
Gather join point view also includes woven code of function calls that are advised by aspects. As shown in
Figure 10 (B), run-deposit and run-withdraw are advised by authenticate-aspect.

Call graph view "e call graph view allows developers to visually inspect individual program execution
traces, looking for inconsistent function calls or aspect weavings. A novel feature of this view is the ability
to show the aspect code in-line with the base code, thus supporting developers in identifying under and
over-matching conditions in a program execution trace.

"is view is produced by specifying a starting point (function) and an ending point (another function)
that constitutes a function call chain. For example, (call-graph (inside main run-transaction)
(inside run-deposit run-show-balance)) results the list of all intermediate functions calls between
run-transaction and run-show-balance, as seen in Figure 11 (A).

5 XE Implementation

"is section describes the main XE components and their role in the implementation of IDE.

9

UCI-ISR-08-1 June 2008

Fig. 10. Gather joint-point view

Fig. 11. Call graph view

Fig. 12. XE architecture

10

UCI-ISR-08-1 June 2008

In its core, the XE IDE integrates di#erent components around a common relational model. "e typed
entities and relations (top of Figure 12), store representations of both aspects and base code."ese elements
are selected through the use of a query engine that combines these entities based on Facts and Rules Repos-
itory. "ese rules are automatically produced based on the PCD descriptors of each aspect. Once selected,
aspects and base code are combined into the !nal program that is presented, according to di#erent views,
to the developers through PLT rendering engine. Current XE implementation supports the same set of reg-
ular Scheme language as in SICP book [1]. XE also uses the same interpreter, EVal, to execute the program.
"e EVal interpreter is incorporated to XE so that a developer can execute the program and inspect the be-
havior when aspect is woven or unwoven. In addition, XE provides meta-level interpreter, XEval. XEval is
responsible for integrating aspect and base Scheme codes into a single view so that it is easy for a developer
to understand and manage the program. It is central to views such as: gather join point and call graph, as
previously discussed in Section 4.2."ese components and their contribution to the system are described in,
more detail, in the following sections.

5.1 Relational model and query support

"e internal representation of programs (base code and aspect de!nitions) in XE is neither text- nor s-
expression-based, but relational. Both aspect and base codes are stored as typed entities a relational database.
A program is, therefore, a database that can be easily queried. Aspects are ‘stored procedures’ that de!ne ac-
tive queries. In the functional paradigm, these queries are implemented as meta-level editing functions that
encapsulate the aspect advice and the point cut descriptors. Point cut descriptors are queries in the content
of the program (function names, for example).

5.2 XEval engine

XEval engine is the component responsible for evaluating the plain text Scheme code. In addition to apply-
ing (or executing) the scheme code, XEval engine is also responsible for converting plain code text into an
internal tabular (relational) representation of base code and aspects.

5.3 Typed entities and relations

All the source representations of the program that a programmer interacts with are views rendered in the
XE user interface using typed entities and relations information. "e views are generated on-demand; as a
result of interaction with XE, or as requested by the developers. For example, clicking on one of the names in
a list view of function de!nitions triggers a rendering of the Scheme representation of the code. To increase
querying performance, query engine maintains the Facts and Rules Repository of the program synchronized
with the typed entities and relation information so that aspect queries can be quickly resolved.

5.4 Rendering engine and code generator

Under the hood, a Rendering Engine that processes an annotated Scheme representation of the code from
the Code Generator enables the editing-time visualization of aspects and base code."e Renderer Engine is
also responsible to provide a rich drawing capability on a canvas that also acts as a structured code editor.
It supports basic functionality like syntax highlighting and pretty printing. More importantly, it supports
custom decoration of crosscutting fragments of code that are composed as a result of applying aspects on

11

UCI-ISR-08-1 June 2008

existing lambda de!nitions. Currently this decoration comes in the form of custom color highlighting of
code fragments.

"e code generator produces an intermediate representation of the scheme code to be rendered. "is
intermediate representation is fully annotated with various static-meta information about the many code
fragments that constitutes a view. "e key role of this meta-information is to support syntax highlighting,
code coloring, in-line weaving of code. For example, using this information, the rendering engine gathers
and combines code fragments from the: Typed Entities and Relations component and the query results from
Query Engine.

6 Supporting AOP with XE

"is section shows how XE supports developers in the evolution and debugging of aspect oriented programs
in Scheme. For such, we use the same application discussed in Section 3 and follow the same evolutionary
steps.

6.1 Evolving the bank accounting API

"e user starts with a woven view in the main XE editor, where the database aspect authentication (Figure 4)
and the base code of Figure 3 appear woven, in the same view, as shown in Figure 13.

Fig. 13. Visualizing and identifying the points of woven code

A$er implementing the new run-print-balance function and extending the balance de!nition to in-
voke this function; whenever a balance is requested, the authentication aspect is automatically woven to that
function call as shown in Figure 14.

As the over-matching condition becomes obvious, the developer !xes this problem by changing the in-
lined aspect code from authenticate-user-db to authenticate-user-ws. A$er modifying the in-line
code from the source aspect, the developer is given two options as shown in Figure 15, and discussed in the
next sub-sections.

Apply the changes to any join point that match this PDC of the aspect Should the developer choose this
option, the authenticate-db-aspect is automatically revised to exclude any run-print-balance calls from being
advised by this aspect (see in Figure 16). A new aspect, authenticate-ws-aspect is then created to capture and
advise run-print-balance join points (see Figure 17).

12

UCI-ISR-08-1 June 2008

Fig. 14. Visually detect the over-matching condition

Fig. 15. Dialog providing di#erent change strategies

Permanently incorporating aspect code to this join point If the developer chooses to incorporate the
existing aspect code to the base code, XE automatically revises the aspect PDC to exclude the incorporated
join point, thus preventing the re-weaving of the aspect to the new join point. In this case, the revised aspect,
produced by the XE IDE would become the one shown in Figure 18.

7 Evaluation

In this section, we evaluate the usefulness of XE by quantitatively comparing the e#orts required to perform
our motivation scenario tasks with and without XE support. As such, we compute di#erent metrics as shown
in Table 1, collected during the process of evolving the banking API described in this paper. "ese metrics
were chosen to elucidate common problems such as over- and under-matching as well as context switching,
which have been shown to increase the developer’s cognitive load [14].

"ese metrics represent:

– the number of major steps that the developer needs to perform during the course of evolution in order
to detect the di#erent programming errors (which includes debugging cycles);

13

UCI-ISR-08-1 June 2008

Fig. 16. Excluding run-print-balance from PDC

Fig. 17. Creating new aspect to capture run-print-balance procedure call join points

– the number of context switches between aspect and base code !les, which potentially increases the cog-
nitive load of developers;

– the number of times an over-matching condition was present during the course of the task without any
feedback provided to the developer by the IDE;

– And the points in the programwhere the code became inconsistent (or semantically wrong) without any
notice to the developers."is number includes over and under-matching conditions.

"is simple task analysis shows how the visualization and consistencymechanisms build onXE can better
support developers in evolving andunderstandingAOPcode by reducing the number of context switches and
by making explicit under and over-matching conditions, preventing common AOP programming mistakes.

8 RelatedWork

In the literature, di#erent strategies have been proposed to address the de!ciencies of the AOP programming
model."is section discusses some of these approaches, comparing its bene!ts and shortcomings with those
provided by XE.

Programming language constructs. Some examples of programming language constructs developed to
address the AOP obliviousness de!ciencies include: Crosscut Programming Interfaces (or XPIs) [9], Open
Modules [2][18], and the use of source code annotations as employed by JBoss AOP and Spring Framework
AOP. "ese approaches break the original base code-aspect obliviousness by explicitly de!ning points in
the base code where aspects should be woven. In spite of these advances, developers still need to manage

14

UCI-ISR-08-1 June 2008

Fig. 18. Revised aspect a$er incorporating of aspect code to base code

Table 1. Summary of usability metrics collected with and without IDE support

Item Without Tool With Tool
Steps 4 2
Context switches 3 0
over-matching 1 0
under-matching 1 0
Points where code becomes seman-
tically wrong, without any feedback to
the developer

3 0

con!guration !les (as in Spring and JBoss) or adopt general code conventions and design rules as in XPIs
and Open Modules. Moreover, these approaches, while representing a signi!cant step in addressing aspect-
base code inconsistencies, do not support the semantic co-evolution of aspects and base code as shown in
our examples.

IDE-level approaches. "ese approaches address the AOP usability issues by providing tool support
around existing compilers, tools and languages. In this category, di#erent systems, including our own, have
been developed as follows.

"e Eclipse AJDT 2 supports the visualization of places in the base code advised by AspectJ joint points
through the use of decorators along the code. It does not provide in-line visualization, requiring developers
to constantly switch context between base and aspect code in order to: understand the semantics of the aspect
code in order to perform semantic changes in the aspects or base code.

AspectBrowser [8], Aspect Visualizer [3] and ActiveAspect [4] are tools that permit the visualization of
locations in the code where aspects are woven."ese tools, however, are based on birds-eye visualizations of
these relations, and lack the in-line visualization capability of XE, together with the ability to maintain the
consistency of base and aspect code.

SourceWeave.NET [12] is a project that supports source level weaving of classes written in various .NET
languages (C#, VB.NET and J#). It uses a XML descriptor !le to specify the interaction between the aspects
and representative components."e technique uses a mapping to identify join point shadows (areas in the
source where join points may emerge) and a pointcut-to-joinpoint binding to isolate parts of the source. A
unique feature of SourceWeave.NET is the support for cross-language weaving of aspect de!nition and base
2 http://www.eclipse.org/ajdt/

15

UCI-ISR-08-1 June 2008

code. Even though SourceWeave.NET supports weaving at source code level, it does not target edit-time code
weaving as supported by XE.

"ere are few other tools that support source level weaving of aspects. Aspect.NET, for example, is an
AOP framework for Microso$.NET. Another example is AspectC++ that provides a static aspect-oriented
system for C/C++, supporting the same kinds of pointcut designators as AspectJ, and providing source-to-
source translation from its AOP language to regular C/C++. None of these tools, however, allow the viewing
of the target application code a$er aspect weaving. "ey also do not provide any functionality that allows
developers to gauge the changes in the code when aspect de!nition has been changed.

In-line (or %uid) code weaving is a novel technique toward providing better support for AOP developers.
It provides in-line representation of aspect and base code in a single view, minimizing context switching and
helping in the identi!cation of over and under-matching situations.

Fluid AOP [11] and Fluid Source Code View [5] are IDEs that provide the ability to temporarily shi$
a program (or other so$ware model) to a di#erent structure (or view), allowing developers to operate over
that view. "e idea of shi$ing back and forth between di#erent structural representations of a program is
deeply ingrained in XE. Both %uid AOP and XE support weaving (applying) at the level of source code share
the common idea that a single change has multiple e#ects to the base code. However, Fluid AOP lacks the
selectivity of views supported by XE. In Fluid AOP, developers cannot weave and unweave aspects arbitrarily,
they cannot change the aspect code in place, nor debug their application through additional views such as
the call graph and gather-joint-point.

Aspect-JEdit [19] is a tool that supports editing of in-line aspects. It supports depicting multiple views
of the program, revealing aspects in the editing context. However, it does not support the code querying
capability of XE. Furthermore, to see the e#ect of woven code in Aspect-JEdit, developers must manually
mark the code in di#erent colors in all the places where they are in-lined. With XE, simply assigning a color
to an aspect associates all the woven code (due to that aspect) with that particular color.

Relational code representation. "e relational presentation of programs used in XE is not a new idea.
For example, systems as CodeQuest [10] and the work of Lam et al. [17] use a relational model to store
information of program in a relational database system. XE leverages this characteristic to support multiple
views and aspect-base code consistency.

XE also shares some similarities with the Decal tool by Janzen and Volder [13]. Like XE, Decal uses a
relational database as a common representation of the program so that views can be generated on-demand.
Decal and XE have a similarity in a way that they produce e#ective textual views. In summary, the major
di#erence of XE over most of the above implementations is that they ignore editing and interaction capabili-
ties of woven code and do not support more advanced features such as the call graph and gather-joint-point,
which are particularly important in large-scale code bases.

9 Conclusion

AOP has gained popularity and been implemented in a wide variety of applications, for example, J2EE web
applications and large-scale enterprise applications [6][22]. While the Aspect-Oriented paradigm has sup-
ported the modularization of crosscutting concerns, separating base and aspect code in disjoint entities, this
novel programming paradigm comes with extra usability costs. In particular, the excessive context switching
between base and aspect code, and the lack of support for developers in detecting over- and under-matching
conditions can result in di#erent programming errors.

16

UCI-ISR-08-1 June 2008

In this paper, we presented XE, a programming environment that addresses these issues at the IDE level.
"e contributions of this paper include: A discussion of the main usability problems found in AOP lan-
guages; A scheme implementation for AOP allowing the construction of AOP programs in the functional
model, and XE, an IDE that addresses fundamental usability issues existing in current AOP languages. In
our experiments, the use of in-line code editing and the support for automatic PCD adjustment have shown
to preventmany of the common errors induced by theAOPprogrammingmodel."is paper shows the bene-
!ts of XE both through amotivating example and through a case study that shows howXE can reduce context
switching, while supporting developers in the detection of under and over-matching conditions. Future work
also includes extending XE programmodel and approach to other programming paradigms, i.e. Java and As-
pectJ, and support for parallel development, when di#erent programmers participate in the development of
so$ware.

10 Acknowledgements

"is researchwas supported by theU.S.National Science Foundationunder grant numbers 0534775, 0205724
and 0326105, an IBM Eclipse Technology Exchange Grant, by the Intel Corporation, and the grant by the
Royal"ai Army.

References

1. Harold Abelson andGerald Jay Sussman. Structure and Interpretation of Computer Programs. "eMIT Press, 2nd edition, 1996.
2. J. Aldrich. Open modules: A proposal for modular reasoning in aspect-oriented programming. In Foundations of Aspect

Languages, 2004.
3. A. Clement, A. Colyer, and M. Kersten. Aspect-oriented programming with ajdt. In ECOOP Workshop on Analysis of Aspect-

Oriented So"ware, July 2003.
4. Wesley Coelho and Gail C. Murphy. Activeaspect: presenting crosscutting structure. pages 1–4, St. Louis, Missouri, 2005.
5. Michael Desmond, Margaret-Anne Storey, and Chris Exton. Fluid source code views. pages 260–263, Washington, DC, USA,

2006. IEEE Computer Society.
6. A. Duck. Implementation of aop in non-academic projects. Bonn, Germany, 2006. ACM Press.
7. T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming: Introduction. Communications of the ACM, 44:29–33,

2001.
8. W. G. Griswold, Y. Kato, and J. J. Yuan. Aspectbrowser: Tool support for managing dispersed aspects, 2000.
9. W. G. Griswold, M. Shonle, K. Sullivan, Y. Song, N. Tewari, Y. Cai, and H. Rajan. Modular so$ware design with crosscutting

interfaces. IEEE So"ware, 23:51–60, 2006.
10. Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest: Scalable source code queries with datalog. volume 4067 of

Lecture Notes in Computer Science, pages 2–27, Berlin, Germany, 2006. Springer.
11. Terry Hon and Gregor Kiczales. Fluid aop join point models. pages 712–713, New York, NY, USA, 2006. ACM Press.
12. A. Jackson and S. Clarke. Sourceweave.net: Cross-language aspect-oriented programming. Lecture Notes in Computer Science,

3286/2004:115–135, 2004.
13. D. Janzen and K. de Volder. Programming with crosscutting e#ective views. pages 197–222. Springer-Verlag, 2004.
14. Mik Kersten and Gail Murphy. Using task context to improve programmer productivity. In SIGSOFT ’06/FSE-14, pages 1–11.

ACM Press, 2006.
15. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, andW. Griswold. Getting started with aspectj. Communications of the

ACM, 44:59–65, 2006.
16. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In

European Conference on Object-Oriented Programming, Jyväskylä, Finland, 1997.
17. M. Lam, J. Whaley, V. Livshits, M. Martin, D. Avots, and M. Context-sensitive program analysis as database queries. In Pro-

ceedings of the ACM Symposium on Principles of Database Systems, pages 1–12, 2005.
18. N. Ongkingco, P. Avgustinov, L. Hendren, O. de Moor, G. Sittampalam, and J. Tibble. Adding open modules to aspectj. In

International Conference on Aspect-Oriented So"ware Development, 2006.

17

UCI-ISR-08-1 June 2008

19. T. Panas, J. Karlsson, and M. Hgberg. Aspect-jedit for inline aspect support. March 2003.
20. Friedrich Steimann. "e paradoxical success of aspect-oriented programming. SIGPLAN, pages 481–497, NY, October 2006.

ACM.
21. Kevin Sullivan, William G. Griswold, Yuanyuan Song, Yuanfang Cai, Macneil Shonle, Nishit Tewari, and Hridesh Rajan. Infor-

mation hiding interfaces for aspect-oriented design. pages 166–175, Lisbon, Portugal, 2005. ACM.
22. Daniel Wiese, Regine Meunier, and Uwe Hohenstein. How to convince industry of aop. In Sixth International Conference on

Aspect-Oriented So"ware Development, Canada, 2007.

18

	UCI-ISR-08-1-cvr
	UCI-ISR-08-1-abs
	UCI-ISR-08-1-body

