
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Hazeline Asuncion
University of California, Irvine
hasuncio@ics.uci.edu

Richard N. Taylor
University of California, Irvine
taylor@ics.uci.edu

Establishing the Connection Between
Software Traceability and Data Provenance

November 2007

ISR Technical Report # UCI-ISR-07-9

Institute for Software Research
ICS2 217

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Establishing the Connection Between

Software Traceability and Data Provenance

Hazeline Asuncion and Richard N. Taylor
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
{hasuncion, taylor}@ics.uci.edu

ISR Technical Report # UCI-ISR-07-9

November 2007

Abstract:

Researchers and practitioners alike agree that software traceability is important to
software development. Despite its recognized utility, software traceability has largely
been infeasible in practice due to the high costs involved and the low benefits obtained.
In the first part of this survey, we identify the difficulties that hinder end-to-end software
traceability, and we analyze these difficulties from economic, technical, and social
perspectives. We also discuss current approaches that attempt to address the identified
difficulties. In the second part of this survey, we highlight striking similarities between
software traceability and the concept of data provenance in e-Science. We investigate
whether data provenance techniques can potentially address the difficulties of
implementing end-to-end software traceability. Inspired by data provenance techniques,
we provide insights for improving software traceability.

2 of 51

Table of Contents

ABSTRACT ... 5

1 INTRODUCTION... 5

2 SOFTWARE TRACEABILITY .. 6

2.1 Brief History ...6

2.2 Definitions ...6

2.3 Benefits of Software Traceability..7

2.4 Problem Analysis..7
Figure 1: Traceability Perspectives [32] ...8

2.4.1 Economic Perspective..8
2.4.2 Technical Perspective ..8
2.4.3 Social Perspective..10
2.4.4 Perspective Interplay ...11

2.4.4.1 Interplay of Economic and Technical Perspectives ...12
2.4.4.2 Interplay of Social and Technical Perspectives..12
2.4.4.3 Interplay of Economic and Social Perspectives ...12
2.4.4.4 Interplay of Economic, Technical and Social Perspectives..12

2.5 Working Definition of Software Traceability ..13

3 REQUIREMENTS FOR EFFECTIVE END-TO-END SOFTWARE TRACEABILITY.. 14
Table 1: Perspectives that the Software Traceability Properties Address ...14

3.1 Capturability ..14

3.2 Utilizability..14

3.3 Affordability ...15

3.4 Maintainability ...15

3.5 Accessibility ..15

3.6 Scalability..15

3.7 Customizability...15

3.8 Auditability ...16

4 OVERVIEW OF E-SCIENCE ... 16

4.1 Importance of Repeatability..16

3 of 51

4.2 Definitions ...17

5 WHY DATA PROVENANCE POTENTIALLY PROVIDES INSIGHTS TO THE
SOFTWARE TRACEABILITY PROBLEM .. 17

Table 2: Similarities Between Data Provenance and Software Traceability ...18

5.1 Similar Benefits ..18

5.2 Similar Challenges..18
Table 3: Similar Challenges Between Data Provenance and Software Traceability ...19

5.3 Similar Requirements ..19

5.4 Comparing and Contrasting Lifecycles..20
Figure 2: Life Cycle of In Silico Experiment [104] ..20
Figure 3: Software Lifecycle - Spiral Model [35] ...20

5.5 Differences ..21

5.6 Discussion..21

6 RELATED SURVEYS ... 22

7 HOW DATA PROVENANCE SYSTEMS/TECHNIQUES POTENTIALLY MEET
SOFTWARE TRACEABILITY REQUIREMENTS.. 23

Figure 4: Categories of Automatic Provenance Capture...23

7.1 System Overviews...23
7.1.1 Category: Workflows ..23

Figure 7: Kepler System Architecture [26] ...24
Figure 8: Provenance Pyramid [104] ..24
Figure 9: Taverna Architecture and myGrid Components [3] ..25
Figure 10: VisTrails Architecture [67]..26
Figure 11: Virtual Data Schema [114] ..26

7.1.2 Category: User Interaction with Data ..27
Figure 5: CAVES Distributed Repositories [40]...27
Figure 6: CAVES Architecture [39]..27

7.1.3 Category: Component (a.k.a. Actor) Interaction ...28
Figure 12: PreServ Component Interactions [2]..28
Figure 13: Layered Design of the Provenance Store [2] ...28

7.1.4 Category: Operating System Level..29

7.2 Capturability...29
7.2.1 Automated Capture..29
7.2.2 Manual Capture ...30
7.2.3 Capture Trace Semantics ...31

7.2.3.1 The Importance of Context ..31
7.2.3.2 Categories of Captured Semantics in the Literature...32
7.2.3.3 Inferring Semantics ..33

7.2.4 Discussion ...33

7.3 Affordability ...33
7.3.1 Training Time to Use a Provenance Tool..33

4 of 51

7.3.2 Effort in Manual Provenance Capture ...33
7.3.3 Effort in Developing Custom Code ...34

7.4 Utilizability..34

7.5 Maintainability ...34

7.6 Accessibility ..34
7.6.1 Heterogeneous Data...34

7.6.1.1 Data Integration ...34
7.6.1.2 Input/Output Data Mismatch..35

7.6.2 Heterogeneous Tools ...35
7.6.3 Different Groups..35

7.7 Scalability..35

7.8 Customizability...36
7.8.1 Domain-Specific Customization..36
7.8.2 Project-Specific Customization ...36
7.8.3 User-Specific Customization ...36

7.9 Auditability ...37

8 WHAT ARE THE LESSONS LEARNED? .. 37

9 CONCLUSION: HOW TO APPLY INSIGHTS TO SOFTWARE TRACEABILITY?.... 40

10 REFERENCES.. 42

11 APPENDIX: SURVEY OF PROVENANCE SYSTEMS ... 49

5 of 51

Establishing the Connection Between
Software Traceability and Data Provenance

Hazeline Asuncion and Richard N. Taylor

Institute for Software Research

ISR Technical Report # UCI-ISR-07-9
November 2007

Abstract
Researchers and practitioners alike agree that software traceability is important to software
development. Despite its recognized utility, software traceability has largely been infeasible in
practice due to the high costs involved and the low benefits obtained. In the first part of this
survey, we identify the difficulties that hinder end-to-end software traceability, and we analyze
these difficulties from economic, technical, and social perspectives. We also discuss current
approaches that attempt to address the identified difficulties. In the second part of this survey,
we highlight striking similarities between software traceability and the concept of data
provenance in e-Science. We investigate whether data provenance techniques can potentially
address the difficulties of implementing end-to-end software traceability. Inspired by data
provenance techniques, we provide insights for improving software traceability.

1 Introduction
Software traceability is important to the success of a software development project. Software
traceability relates the various information products generated in software development, called
artifacts, to enable a comprehensive understanding of the software being produced. The benefits
of achieving software traceability include better verification and validation of customer
requirements, lower maintenance costs, and better assessment of product quality.

Despite the benefits of software traceability, tracing artifacts across the entire software
development lifecycle, or end-to-end traceability, is difficult to achieve. The confluence of
factors such as the distribution of artifacts across different groups, the heterogeneity of artifacts
and tools used, and the rapid changing nature of artifacts poses challenges to tracing artifacts.
Because artifacts are distributed across different groups, artifacts are inaccessible and are
difficult to trace. Because of the heterogeneity of artifacts, it is difficult to trace across multiple
formats and across multiple levels of abstraction. Because of the heterogeneity of tools that lack
interoperability, it is difficult to represent traceability links. Because of rapidly changing nature
of artifacts, established trace links quickly become obsolete. All these factors contribute to the
high cost of supporting traceability.

To find fresh approaches to achieving traceability, we seek insights from e-Science, a domain
with characteristics similar to software engineering. Data provenance techniques in e-Science
enable the tracing of data products across an entire experiment lifecycle. We analyze the ways

6 of 51

that data provenance systems can potentially fulfill the requirements necessary for successful
end-to-end software traceability.

The survey is organized as follows. Section 2 discusses software traceability and analyzes the
factors that hinder software traceability in practice. Section 3 identifies requirements for end-to-
end software traceability. Section 4 introduces the domain of e-Science. Section 5 discusses the
similarities between data provenance and software traceability and the rationale for examining
data provenance techniques. Section 6 presents related works in software traceability and in data
provenance. Section 7 surveys the ways that data provenance systems and techniques
potentially meet the software traceability requirements. Insights gleaned from data provenance
are presented in Section 8. Finally, Section 9 concludes with insights that are applicable to
software traceability.

2 Software Traceability

This section provides a brief history and accepted definitions of software traceability in the
literature. Next, we analyze the reported difficulties in achieving software traceability and we
categorize them into three perspectives. Then, we briefly survey existing approaches that aim to
address these problems. We end the section with our definition of software traceability.

2.1 Brief History

Historically, software traceability has predominantly been applied to the area of requirements
engineering. Requirements traceability was introduced in the 1970s to minimize the drift
between the software product’s actual behavior and the original requirements specified by the
customer [22]. Originally concerned with tracing between requirements artifacts, the field of
software traceability has grown to accommodate other types of artifact relationships across the
software lifecycle [103] with the goal of enhancing the software product quality. Almost 40
years after the concept of traceability was introduced in the field of software engineering, the
research literature is replete with approaches to software traceability [27, 28, 51, 52, 59, 61-63,
86, 90, 95, 102]. However, the inability to achieve traceability still exists in industry [51, 74,
103].

2.2 Definitions

Definition: Software artifact is defined as “a piece of information produced or modified as a
part of the software engineering process” [51]. Examples of software artifacts include
requirements documents, design documents, code, and test cases.

Definition: Requirements traceability is defined as “the ability to describe and follow the life
of a requirement, in both forwards and backwards direction” [68]. Requirements are the encoded
customer expectations of a software product [96]. Requirements traceability is capturing the
relationship between requirements artifacts and the other artifacts in the software lifecycle.

7 of 51

Requirements traceability has been classified into pre- and post- requirements specification
traceability. Pre-requirements specification (pre-RS) traceability is concerned with tracing
requirements to the sources of requirements while post-requirements specification (post-RS)
traceability is concerned with tracing requirements to downstream artifacts in the lifecycle [68].

Definition: Software traceability is defined as the “ability to relate artefacts created during the
development of a software system to describe the system from different perspectives and levels
of abstraction with each other, the stakeholders that have contributed to the creation of the
artefacts, and the rationale that explains the form of the artefacts” [103]. This broader definition
of traceability encompasses the various possible relationships between artifacts.

Definition: Trace link represents a relationship between artifacts. A trace link may or may not
contain the type of relationship represented, i.e. link semantics.

2.3 Benefits of Software Traceability
The importance of software traceability has been recognized by many researchers [59, 64, 74, 78,
111] since it aids the following activities: system comprehension, impact analysis, system
debugging, and communication between the development team and stakeholders [59, 77, 90, 92,
95]. System comprehension is enhanced because software traceability connects the rationale
(e.g. reasons for designing the system and reasons for using a component) to artifacts. Impact
analysis is supported because software traceability identifies which parts of the software system
are affected by a changed artifact. System debugging is informed because software traceability
couples use cases with their implementation. Communication between the development team
and stakeholders is facilitated because software traceability associates artifacts with the
contributors of those artifacts. In some instances, traceability is needed to comply with internal
standards and external regulations [32, 80, 92, 110]. Other benefits to traceability include lower
maintenance costs and better assessments of product quality, both of which lead to improved
customer relationships [73, 92].

2.4 Problem Analysis

The inability to achieve software traceability in practice, henceforth referred to as the traceability
problem, still exists. Despite the numerous approaches suggested in the research literature, they
are not adopted in practice [68, 103, 106]. Even in places where a requirements traceability
approach is in place, the difficulties of tracing artifacts are still reported [32, 68, 103]. Since it is
rare to achieve end-to-end traceability in practice [31], it has been identified as one of the grand
challenges in traceability [74].

This section surveys the reported manifestations of the traceability problem in the literature.
Since the traceability problem is multi-faceted [69], we examine it from three different
perspectives: economic, technical, and social perspectives. Examining the software traceability
problem from these three perspectives helps us to understand why software traceability is
difficult to achieve in practice.

8 of 51

Figure 1: Traceability Perspectives [32]

2.4.1 Economic Perspective
The economic perspective focuses on the cost of supporting traceability. Implementing
traceability has been known to incur high costs in terms of labor hours [77, 92] and high costs
are a hindrance in achieving effective traceability [21]. There is a high cost associated with
defining traceability links as well as maintaining these links [20]. For instance, a case study of a
large government funded project reports that the costs of implementing traceability is more than
double the normal documentation costs [92]. Some practitioners argue that time spent in
performing traceability tasks could have been allocated to writing software code [54]. Even with
companies that are willing to pay the high costs of traceability, the expected benefits are still not
realized [93, 106]. Other sources of costs include purchasing or developing a trace tool as well
as training users [32].

To mitigate the cost, some approaches examine the tradeoffs between cost and quality [63] or
between cost and benefit [62]. Regarding the tradeoff between cost and quality, one can search
for the optimal position by reducing the level of granularity of traces in order to save costs while
still maintaining an acceptable level of quality [63]. For instance, generating trace links at the
method source code level is more expensive than tracing at the class source code level even
though there is usually not much difference in the accuracy of links; thus, in this case, one should
not perform fine-grained tracing of the source code. Meanwhile, approaches that examine the
cost-benefit tradeoff assign importance values to trace links and concentrate on tracing over only
higher value links to minimize cost [62]. One limitation of this scheme is that values assigned to
trace links are entirely project-specific. A similar approach allocates more trace support to the
crucial parts of the software system [52].

2.4.2 Technical Perspective
The technical perspective deals with establishing and maintaining trace links as well as tracing
across heterogeneous artifacts and heterogeneous tools. While the economic perspective
addresses the costs in supporting traceability, the technical perspective addresses the complexity
of tracing due to the explosion of the artifact space, the differing levels of formality of artifacts,
and the numerous relationships [102], sometimes implicit [27], that occur at various levels of
granularity. The different types of trace relationships are surveyed in [103].

9 of 51

Explosion of Artifact Space
Tracing across various artifacts in a software development lifecycle is difficult due to the sheer
number of artifacts and the numerous relationships between these artifacts. While it is necessary
to capture all relevant traces to avoid the loss of knowledge, capturing too many traces is
unwanted. Excessive traceability is known to be unmanageable [59] and can negatively impact
the accuracy of links [62]. Thus, it is important to know the boundary between complete and
excessive tracing.

There are currently different ways of bounding the problem space of artifacts and artifact-
relationships. The agile community advocates a lean traceability approach where the only traces
captured are those determined to be relevant by the developers of the system [54]. This approach
assumes that the developers already have a basic understanding of the system. The approach
may also be subject to staff turnover. The selection of specific artifacts to trace can also be
based on the project manager’s discretion or the information gleaned from past projects [59].
However, this approach does not aid inexperienced managers or organizations that lack records
of past projects. Some examples of the types of artifacts that may be captured are in [59].

Maintenance of Trace Links
Maintaining trace links is another major problem due to the prevalence of link deterioration.
Link deterioration is defined as the obsolescence of links due to the evolution of artifacts.
Artifacts evolve independently and the changes are not reflected in the trace links nor are they
reflected in the related artifacts. For example, in a requirements-centric traceability, changing
the requirements necessitates the update of all the corresponding links and related artifacts.
Without a systematic approach to performing updates, the cost of maintaining traceability can be
very high. Not only is the cost high, but there is also no guarantee that all the impacted links are
updated. Thus, the volatility of requirements is identified as one of the main sources of difficulty
in large complex systems [93].

Approaches to maintaining trace links include controlling artifact changes, cascading changes
through events, and recovering traces automatically. Artifact changes can be controlled by
establishing a development process to disallow people from changing artifacts directly (e.g.
Review Boards [102]). In this approach changes have to be approved by a review board. Since
this process imposes high overhead, only high visibility documents go through review boards.
The cascading of artifact changes through events can be performed by event-based traceability,
which uses the publish-subscribe mechanism to relate various artifacts to the requirements
artifact [51]. Thus, when a requirements artifact changes, the subscribed artifacts are notified. A
drawback of this approach is the cost of manually registering artifacts with the requirements
artifact. The third approach is recovering candidate trace links automatically through
information retrieval (IR) techniques. To date, trace recovery techniques have not been able to
provide full accuracy [76]. One hindrance is that artifacts must be preprocessed before IR
techniques are used [53]. Even with more sophisticated IR techniques, it is difficult to achieve
high recall and precision rates. (Recall is the percentage of retrieved links out of all relevant
links while precision is the percentage of correct links out of the retrieved links [54].)

10 of 51

Heterogeneity of Artifacts
The heterogeneity of artifacts is another factor that contributes to the traceability problem.
Artifacts produced in the course of software development vary in their levels of formality,
ranging from unstructured documents to highly formal code. The differing formats and notations
by which artifacts are expressed as well as the different levels of abstractions represented by the
artifacts present challenges to establishing traces across different artifact types.

Approaches that address the heterogeneity of artifacts include two-dimensional traceability,
model transformation, and information integration. Two-dimensional traceability enables tracing
between different types of artifacts to increase program comprehension [81]. The two
dimensions, horizontal and vertical traceability, are complementary to each other. Horizontal
traceability maps associated items across different artifacts while vertical traceability maps items
within the same artifact. Another approach, model transformation, enables tracing design
artifacts across multiple levels of abstraction. Transformations can vary in the level of
automation. Fully automated transformation entails the use of transformation specification on a
design artifact to produce a realization that is at a lower level of abstraction [23]. Still another
approach, information integration, translates heterogeneous artifacts into a common format in a
repository. Trace relationships between artifacts are automatically generated within the
repository [27].

Heterogeneity of Tools
Tracing software artifacts across different tools is difficult due to the lack of interoperability
between different tools [59, 68, 92]. The separation of information by tools is referred to as the
“islands of information” problem [27]. For instance, changing the artifacts outside a trace tool
does not guarantee that the artifacts inside the trace tool are updated [55, 59]. The lack of
interoperability between different tools necessitates redundant data entry [31]. Not only is
redundant data entry a tedious task, but it also adds the overhead of reconciling data [27].

One way to address tool heterogeneity is through the use of custom code to enable different tools
to exchange data with a shared repository [32]. This approach avoids the problem of redundant
data entry since artifact changes are always reflected in the shared repository.

2.4.3 Social Perspective
The social perspective is equally important to consider, since it focuses on the interaction of
various groups and their effect on traceability. This perspective also focuses on the expectations
and attitudes of various stakeholders toward traceability. It is recognized that the human element
plays a crucial part in determining the quality of traceability [31, 74, 76]. For instance,
regardless of the results of the automatically generation of trace links, users determine whether
the trace links are correct in the end [76].

Different Groups Own Different Artifacts
Traceability across artifacts owned by different groups is difficult due to the lack of accessibility
of artifacts to those outside the groups. For example, the lack of accessibility to the
requirements’ sources, which could be distributed among multiple groups, has been the most
frequently cited problem by practitioners [68]. In addition, distributing the ownership of
requirements among different groups makes it difficult to trace the dependency relationships

11 of 51

among the requirements [93]. Lack of communication between groups is one of the factors that
contribute to the lack of accessibility of artifacts [68].

Approaches that address the lack of accessibility to artifacts include negotiating changes to
upstream artifacts and publishing artifacts to a portal. Encouraging teams to negotiate the
changes to upstream artifacts like requirements enhances communication between groups and
increases the accessibility of artifacts [31]. Publishing artifacts to a portal raises the visibility
and accessibility of artifacts to other groups [32].

Differing Expectations of Traceability Tool
Implementing software traceability is difficult since traceability some times carries different
meanings to different people. For example, requirements traceability can mean tracking
requirements in the contract for estimating project costs, tracking requirements to various
artifacts in the lifecycle, or tracking the input and output of phases in the lifecycle [68]. In
addition, stakeholders may have different expectations of trace tool [92]. For instance, a
maintenance engineer expects support for impact analysis while a project manager expects
support for tracking project status.

One way to address different stakeholder expectations is by identifying the key users of a trace
tool and developing custom in-house extensions to existing trace tools [93] or developing their
own custom trace tools [32].

Low Motivation for Performing Traceability Tasks
In general, software engineers have little or no motivation to perform traceability tasks [30, 77].
To them, traceability tasks are “laborious” [23] and “burdensome” [21]. In one study, half of the
subjects who were commissioned to verify trace links dropped out because they “disliked”
tracing [76]. There are several reasons for the low motivation of software engineers. One reason
is that traceability tasks are additional imposed work with no direct benefits [31, 77], known as
the Traceability Benefit Problem [31]. Other reasons include the lack of understanding of the
usage of trace information and the lack of first-hand knowledge of the artifacts [31].

One way to address the low motivation for performing traceability tasks is by coupling
traceability tasks with the usage [31]. Another method is to use trace information to directly
support stakeholders in their lifecycle tasks [32] in order to provide direct benefits to users.

Other Difficulties
In addition to the above manifestations of the traceability problem, the following social factors
are also reported in the literature: privacy [59, 92], politics [68, 77], low priority given to
traceability [68] and unrecorded links due to lack of time [81]. One way to address privacy is by
considering all artifacts as owned by a project team so that traces to individual contributors will
not be used in performance evaluation [93].

2.4.4 Perspective Interplay
Factors that pose challenges to traceability are not in isolation. A factor affects or is affected by
factors in other perspectives (See Figure 1). The following subsections illustrate the interplay
between the different perspectives and explain why solely addressing one perspective falls short

12 of 51

of addressing the traceability problem. We do not provide an exhaustive list of all possible
interactions, but simply illustrate the interplay between the different perspectives.

2.4.4.1 Interplay of Economic and Technical Perspectives
There is a bidirectional relationship between the economic and technical perspectives. The
economic perspective is a major factor in determining whether a traceability approach will be
adopted in industry [32]. The cost of establishing and maintaining trace links affects the number
of artifact and relationship types that will be traced by an organization. Since fine-grained
tracing is more costly [31, 34], the economic perspective also determines the level of granularity
that will be traced.

Meanwhile, the technical perspective also affects the economic perspective. The level of tool
support in establishing or defining traceability links heavily determines the cost of tracing [81].
The lack of interoperability between tools also contributes to the high cost of traceability since
this necessitates redundant data entry and manual reconciliation [27, 32].

There is also tension between capturing all possibly relevant links to ensure that no loss of
knowledge occurs [59, 93] and taking a minimalistic approach in trace capture [54] to lower the
cost. There is currently a lack of cost-benefit models [74] that guide organizations in selecting
the types of artifacts, the level of granularity, and the types of relationships to trace.

2.4.4.2 Interplay of Social and Technical Perspectives
There is also a bidirectional interaction between the social and technical perspectives. For
instance, due to the low motivation of software engineers in performing traceability tasks, the
captured traces were unusable in one case study [31]. In addition, different user expectations
[68] make it difficult to use a commercial trace tool without customization. Meanwhile, the
technical perspective also affects the social perspective. If a trace tool supports the development
activities of stakeholders, it is more likely to be adopted [32, 86].

2.4.4.3 Interplay of Economic and Social Perspectives
There is also a relationship between the economic and the social perspectives. Due to the high
costs required in performing traceability tasks, most software engineers have an aversion toward
traceability [76, 77]. The high startup and maintenance cost of the manual approaches is also
one of the common complaints of developers [30].

The social perspective also affects economic perspective. Lack of accessibility of artifacts
between groups can make tracing across groups more costly since more time is spent locating
artifacts.

2.4.4.4 Interplay of Economic, Technical and Social Perspectives
There is also interplay between the three perspectives. One example where this interplay can be
illustrated is the automation of trace link generation. To mitigate the costs, information retrieval
methods are used [29, 55, 75, 83] to provide automated support for traceability at the risk of

13 of 51

potentially establishing inaccurate links. Not only is this technique limited by its inability to
provide fully accurate links, but it also does not provide the level of semantics needed for
analysis [103]. Another difficulty with information retrieval techniques is that the accuracy is
dependent on people [54, 55, 76]. First, the artifacts must be pre-processed to be more amenable
to the information retrieval technique in order to yield better results [55]. Since link recovery
techniques cannot reach 100% accuracy, post-processing by a human analyst identifies which of
the candidate links generated are correct links [76]. Without human intervention, the validity of
the traces is in question [62]. However, human analysts are also prone to error [76]. Hence, we
see that all three perspectives can be interwined.

2.5 Working Definition of Software Traceability

As illustrated in the previous subsection, an effective end-to-end traceability approach should
address the economic, technical, and social perspectives simultaneously. Our definition for
software traceability tackles these three perspectives.

Definition: Software traceability elucidates relationships between artifacts in such a way that it
supports various stakeholders in their software lifecycle tasks. An elaboration of this definition
follows.

• Elucidate relationships: Software traceability should explain or make clear the
relationships between artifacts through the captured trace semantics.

• Support the entire software lifecycle: Traceability should not be restricted to one phase
in development, nor should it be restricted to development activities prior to deployment.
Traceability should enable comprehensive system understanding by enabling traceability
from software inception to retirement. For example, traceability should lower software
maintenance costs by increasing the accessibility of related artifacts.

• Support stakeholders in their software lifecycle tasks: Various stakeholders have
different notions of traceability and we aim to cater to these differing interests. The
recorded traces should have semantic information beneficial to stakeholders. We use the
concept of layered traceability where users can customize their traceability view by
maintaining their customized trace information. This also implies the ability to trace at
different levels of abstraction. Since the usage of traceability is stakeholder-defined,
traceability is not merely an overhead task to satisfy external (e.g. customer)
requirements. Instead, traceability supports stakeholders in their day-to-day tasks. By
enabling stakeholders to directly use the traced information they capture, the accuracy of
traces increases. Compliance with external traceability requirements is simply a by-
product of maintaining accurate internal (i.e. within project team) trace information.
Supporting life cycle tasks implies that a benefit is derived from the cost of establishing
and maintaining traceability. The cost is invested into supporting actual development
tasks.

We have just examined the software traceability problem from the economic, technical, and
social perspectives. We also discussed our definition of software traceability. We will now
move on to discuss our framework of comparing provenance systems. This framework addresses
the specific challenges to traceability identified in Section 2.4.

14 of 51

3 Requirements for Effective End-To-End Software Traceability
This section discusses important traceability properties that are necessary to achieve successful
end-to-end traceability. The following properties address the specific difficulties in achieving
traceability (see Section 2.4 and [18, 74]). The table below maps the properties to the primary
perspective that they address.

Table 1: Perspectives that the Software Traceability Properties Address

3.1 Capturability
One of the identified problems with software traceability lies in establishing traceability links.
Manual approaches enable semantically-rich links to be captured but at a high cost. On the other
hand, trace recovery techniques lower cost but the links do not deliver the right level of
semantics [103]. Thus, capturability is the property concerned with the means of capturing
traces as well as the type of information captured. This property distinguishes between
automatic and manual trace capture since the type of capture affects the level of manual
intervention required. Finally, since the level of granularity can affect both the cost of tracing
and the understandability of traces, it is important to understand the level of granularity
supported.

Capture Trace Semantics
A sub-property of capturability, relationship semantics is concerned with capturing the semantics
of trace links. If the semantics are not explicitly recorded, they can be inferred via context. In
this survey, context is defined as the following:

Definition: Context refers to the surrounding processes, people, tools or artifacts that affect
either the production or modification of a given artifact. Context aids in understanding trace
relationships, since it can provide information on how and why artifacts are related. However,
the difficulty in a typical software development project is that context is lost.

3.2 Utilizability
Utilizability is a property concerned with the usage of trace information, e.g. querying and
applying trace information to accomplish other tasks. This property also identifies the actual
benefits gained in having the traceability information. This property answers the following
questions. How effectively does the traceability method provide the required information? How
usable is it? How beneficial is it?

15 of 51

3.3 Affordability
The problem of high costs of traceability is one of the hindrances to industry adoption [54].
Affordability is a property that is concerned with minimizing costs. Cost can be measured in
terms of level of effort needed to train users, level of manual intervention required, and level of
effort needed to develop custom code to enable traceability across different tools.

3.4 Maintainability
This property is concerned with the ease of maintaining traceability links. One of the main
challenges with adopting a traceability method is the high rate of link deterioration. Software
artifacts are constantly modified but the links are not updated.

3.5 Accessibility
Accessibility refers to the ability of various stakeholders to navigate to the traced artifacts. There
are three dimensions in this property: heterogeneity of artifacts, heterogeneity of tools, and the
distribution of artifacts across different groups in a development team. It is a challenge to trace
between heterogeneous artifacts since they are at different levels of formality. It is equally
challenging to trace artifacts across heterogeneous tools due to lack of tool interoperability [55,
59]. Finally, tracing artifacts across different groups is a challenge due to the lack of
communication between groups [68]. Understanding mechanisms on how to effectively share
artifacts used by other groups is essential.

3.6 Scalability
Due to the numerous artifacts produced in a software lifecycle, it is important for a traceability
approach to be scalable. Scalability is a property that addresses the ability to trace artifacts in
large-scale projects. Scalability can be evaluated in terms of the amount of storage needed for
trace information, and number of users.

3.7 Customizability
Since traceability is perceived differently by different users [68], customizing a traceability
approach is essential. This property addresses the ease of customizing traceability according to
the following categories: domain, project, and user. Domain-specific customization is the ability
to adapt a traceability approach to a specific domain [18]. Project-specific customization is the
ability to adapt a traceability approach to a specific project. Different organizations have
different traceability requirements which may also vary from project to project [59]. Finally,
user-specific customization is the ability to adapt a traceability approach to the different needs of
the various stakeholders [68]. This customization enables stakeholders to directly benefit from
the trace information they capture [31].

16 of 51

3.8 Auditability
This property addresses the ability of third party auditing of traceability links. An outside user
should be able to follow the traceability links to answer specific questions such as which
requirements were tested, what is the project scope, who implemented a subsystem, what is the
rationale for the design, etc.

We have just covered the required properties for effective end-to-end traceability. We now
introduce the domain of e-Science in the next section.

4 Overview of e-Science
Scientists are increasingly relying on large-scale computation to perform experiments [71]. The
burgeoning field of e-Science, in which computational resources are heavily used in scientific
research [10, 98], involves collaborating teams of scientists who use distributed and
heterogeneous resources to accomplish shared goals [70]. In silico experiments, which are
performed on the computer or via computer simulation [49], and data analysis are conducted in
scientific fields such as high energy physics [1], biology [11, 14], geosciences [13], and
engineering [12]. In silico experiments enable further data analysis on existing data as well as
the formulation of hypotheses that can be tested in the laboratory [87].

4.1 Importance of Repeatability

Despite the shift to increased usage of computational resources, the basic requirement for
repeatability of experiments still holds. The results of an experiment are compromised if one is
not able to identify the data source and processing applied to it. In some cases, the acceptance of
results by the community hangs on the ability to reproduce the experiment [60]. Another reason
for the importance of repeatability is the need to verify other researcher’s results and further
one’s own research [37]. Tracking contextual information, such as users of the experiment, the
rationale behind the experiment, and details about the experiment run, is essential to the
scientific process [104].

Due to the increased complexity of experiments and increased size of data sets, sometimes in the
range of petabytes [1, 40], it is now more important to record the execution of an experiment
because re-running experiments is a time-consuming effort. Thus, the automated capture of data
provenance, the series of transformations applied to input data [56], has become necessary for
repeatability of experiments. Consequently, provenance support for in silico experiments has
recently received wide attention in the literature in different scientific domains [104]. Grand
Challenges have been issued [5] and several workshops [15-17, 19] have been organized to
increase discussion on the topic of data provenance. Numerous techniques [24, 33, 42, 50, 56,
85] have been proposed and new tools [26, 36, 40, 46, 57, 58, 67, 71, 104, 114] have been
developed to address data provenance.

The main approach to capturing data provenance is through the use of scientific workflows [104]
since they not only make it feasible to capture the individual workflow run, but they also codify
the design of the experiment or scientific analysis. Introduced more than a decade ago [101,

17 of 51

109], scientific workflows have gained wide adoption today among scientists due to their
capabilities of tracking data and ordered transformations on data [104]. There are also other
approaches that enable the capture of data provenance, such as the automated capture of user
interaction with data [40] and the capture of file-related events [46].

4.2 Definitions

Definition: e-Science is defined as "[s]cience increasingly performed through distributed global
collaborations enabled by the Internet, using very large data collections, terascale computing
resources and high performance visualizations" [98].

Definition: Data provenance defined as the “origin and history of data” [104], enables the
identification of the series of transformations applied to an input data [56]. Data provenance is
also defined as the “metadata about experiment processes, the derivation paths of data, and the
sources and quality of experimental components, which includes the scientists themselves,
related literature, etc” [113]. Data provenance enables repeatability of experiments, verification
and reproduction of data, and validation of in silico experiments that cannot be checked against
the real world [71]. Other terms used for data provenance are data lineage or data pedigree,
depending on the type of processing applied to data [38].

Definition: Scientific workflow is defined as “a series of structured activities and computations
that arise in scientific problem-solving” [101], and an “automated process that combines data and
processes in a structured set of steps to implement computational solutions to a scientific
problem” [26]. Scientific workflows are distinguished from business workflows in that scientific
workflows are data-centric [56, 82, 109], are more flexible [97, 109], and are mainly used for
running experiments [97].

We have briefly looked at e-Science and introduced terms that will be used for the remainder of
the survey. The next section juxtaposes the areas of data provenance in e-Science with software
traceability in software engineering. Interestingly, the problems in e-Science can also be
analyzed from the economic, technical and social perspectives.

5 Why Data Provenance Potentially Provides Insights to the
Software Traceability Problem

This section explains why insights can potentially be gained from data provenance approaches.
Many similarities exist between these two domains, in terms of benefits, challenges, and
requirements. Like a software product, a scientific workflow is an intellectual product that is
subject to intellectual property [79]. In addition, distributed collaborative research teams in e-
Science are similar to distributed software project teams in software development. Table 2
below summarizes other similarities.

18 of 51

Table 2: Similarities Between Data Provenance and Software Traceability

5.1 Similar Benefits

The benefits of capturing data provenance parallel the benefits of establishing traces between
artifacts. One benefit to provenance is the ability to understand the significance of experimental
results. Similarly, traceability enables a more comprehensive understanding of the software
product being developed. Another benefit is the ability to assess the impact of a change. Data
provenance enables users to understand which processes need to be re-run due to parameter
changes. Software traceability also enables users to identify the dependent artifacts that must be
changed. A third benefit is the enhanced communication between scientists. Data provenance
records enable other scientists to understand the methods of analysis used in an experiment.
Similarly, traceability allows software engineers to understand the rationale behind an artifact by
being able to follow traces to related documents. Still another benefit to data provenance is the
ability to verify experiments. Similarly, traceability also validates that requirements have been
met. Other benefits include the enabling of third party auditing, the lowering of cost through re-
use, and the identifying of bugs in the system.

5.2 Similar Challenges
Many of the manifestations of the software traceability problem parallel the problems in e-
Science. In fact, the problems in e-Science can also be classified into the three perspectives we
mentioned: economic, technical, and social (see Table 3).

19 of 51

Table 3: Similar Challenges Between Data Provenance and Software Traceability

5.3 Similar Requirements
Although there are different uses for provenance across the different fields in science, the basic
requirements of recording, querying, and processing provenance information are applicable
across science [84]. These parallel the requirements in software traceability for defining
traceability links (recording provenance) and utilizing trace links (querying and processing
provenance). Other requirements in data provenance such as enabling the reuse of the
experiment’s process, summarizing experimental results for project management, and enabling
other scientists to use the information [84, 104] are also similar to the software traceability
requirements of enabling reuse of software artifacts, collecting of progress statistics, and
enabling the accessibility of information across different stakeholders. Finally, the requirement
for detailed, accurate, and reproducible audits of experiments [104] parallels the requirements for
third party auditing in a software development setting.

20 of 51

5.4 Comparing and Contrasting Lifecycles

Figure 2: Life Cycle of In Silico Experiment [104]

Figure 3: Software Lifecycle - Spiral Model [35]

21 of 51

The in silico experiment lifecycle is very similar to the software development lifecycle. The
stages of experiment design, experiment running, experiment publication [104] (see Figure 2) are
analogous to the software design, implementation, and deployment phases. However,
experiment preservation and experiment learning in the experiment life cycle [104] do not have
counterparts in the software lifecycle. It can be argued that risk analysis phase in the Spiral
Development Life Cycle [35] (see Figure 3) has some semblance with the idea of learning from
past experience. Finally, the requirements elicitation phase in software development is not
present in an in silico experiment lifecycle since the end-user and the developer of the
experiment are the same person: the scientist. Thus, the experimental design can be considered
“correct” for an entire experiment lifecycle. The design is then modified in subsequent lifecycles
to test other hypotheses.

5.5 Differences
There are also some differences between data provenance and software traceability. In data
provenance, data products are more constrained (i.e. restricted to one level of abstraction) while
software artifacts exist at different levels of formality. However, even though data provenance is
restricted to one level of formality, it still has problems with incompatible formats, incompatible
data types, and incompatible semantic domains [33]. Thus, data integration techniques that
address these problems could possibly be applied to software traceability. In addition, data
products in themselves do not carry any semantic information without added user annotation.
Software artifacts, on the other hand, carry some semantic information that is understandable to
humans. Even in the presence of this semantic information, metadata such as timestamps and
authorship would help to inform how an artifact relates to other artifacts. Techniques that link
data products with metadata would thus potentially be useful in software traceability.

Lastly, in data provenance systems like scientific workflows, all processes are automated. In
other words, all manipulations to a data product are performed by a computational object.
Consequently, the data product is amenable to automatic provenance capture. Meanwhile in
software development, processes are mainly performed by humans and capturing traces
automatically may be more difficult. However, even with automated provenance capture, user
annotations are still needed to supplement the captured data provenance. Thus, insights from
both automatic and manual provenance capture will still be useful in capturing traces.

5.6 Discussion

Due to the similarities between data provenance and software traceability, we conjecture that
data provenance techniques could improve software traceability. Since scientific workflows
have led the way in providing provenance support [14, 105], most of the tools surveyed come
from this category. Since the recording of process and decisions [90] along with software
artifacts is important in software traceability, we believe that insights from scientific workflows
will especially be useful because scientific workflows raise the visibility of the process of
manipulating and transforming data [88]. It is also important to note that scientific workflow
systems, like Pegasus [59] and Condor [58], are not surveyed because they do not emphasize
provenance capture but focus on scheduling jobs on the grid and providing reliable access to

22 of 51

high performance computing. In addition, provenance systems that focus on fine-grained
provenance [48] such as scientific databases are also not surveyed. While these techniques are
useful in closed world domains, artifacts in a software development setting are not constrained to
transformations between databases. Yet, there are data integration techniques from scientific
databases that may be useful, and they are briefly mentioned in Section 7.6.1.1. Other tools and
techniques surveyed are selected based on the data provenance insights they provide.

We discussed the similarities between software traceability and data provenance. We also
explained why we can potentially glean insights from data provenance. The next section
presents related surveys in the areas of data provenance and software traceability.

6 Related Surveys
While surveys in the topics of software traceability and data provenance in e-Science already
exist, this survey is unique in that it seeks insights from data provenance to apply to the software
traceability problem. In this section, we give an overview of related surveys in both software
traceability and data provenance.

An extensive survey on software traceability [103] discusses the state of the art in the field and
covers topics such as trace link representation, the different uses of traceability, and approaches
for generating and maintaining trace relations. Interestingly, the survey attributes the traceability
problem to issues reflecting the three perspectives we identified in Section 2.4. Meanwhile, a
survey of tools and approaches that aim to tackle the requirements traceability problem is
provided in [69]. Since the focus of that work is identifying the sources of requirements,
difficulties are attributed to human and organizational problems and high start-up costs.

In the area of e-Science, data provenance systems are categorized according to usage, type of
provenance (i.e. data-oriented or process-oriented), representation, storage, and method of
dissemination [100]. Data provenance systems are also categorized according to their
architectures (e.g. service-oriented, database, command processing, scripting) [100]. Another
means of classifying of provenance systems is along the key functions in data lineage [37].
Meanwhile, scientific processing systems are evaluated according to their workflow model,
metadata model, and capabilities for lineage retrieval [38]. A taxonomy of scientific workflow
systems is presented in [112]. Scientific workflows are classified according to workflow
specification, workflow execution, error handling, information retrieval, and movement of data.

We have just covered related surveys in software traceability and data provenance. The next
section surveys data provenance systems. Specific data provenance techniques are also
discussed where appropriate.

23 of 51

7 How Data Provenance Systems/Techniques Potentially Meet
Software Traceability Requirements

In this section, we survey various data provenance systems. We then analyze the ways that these
systems potentially meet the software traceability requirements.

Figure 4: Categories of Automatic Provenance Capture

7.1 System Overviews
This section provides an overview of the provenance systems that we survey. The systems are
categorized by the level of automatic provenance capture they provide (see Figure 4).

7.1.1 Category: Workflows
This category of provenance systems is characterized by awareness of process. The steps in an
experiment or data analysis are manually encoded in the workflow specification. The workflow
specification is then used as the basis for executing the experiment or analysis. Similar to the
User Interaction category, provenance capture is coarse-grained.

Kepler
Kepler, a workflow editing environment based on Ptolemy II, enables actor-oriented modeling
[82]. An actor is a component that represents a data or computational object [25]. A workflow
consists of both actors and ports, the communication channels between actors. Actors pass
tokens that contain information through ports [44]. The director oversees the communication
between actors and the overall workflow coordination [43, 82]. Kepler records provenance by
capturing events at the communication ports. Used in the domains of ecology, geology, biology,
astrophysics, and chemistry [25], Kepler is an open-source project [4] with contributors from
various projects including the Science Environment for Ecological Knowledge (SEEK) [8] and
the Cyber infrastructure for the Geosciences (GEON) [13]. Although Kepler is still at its beta
version, it has an active user mailing list [4] and is currently used by the German Research
Center for Artificial Intelligence [108] to process spatial information.

24 of 51

Figure 7: Kepler System Architecture [26]

Taverna
Taverna is part of the myGrid project which is geared towards supporting the rapid prototyping
of in silico experiments in the domain of bioinformatics [104]. A characteristic of the
bioinformatics domain is the emphasis on the exchange of data analysis rather than the execution
of computationally intensive experiments on the grid [87]. myGrid presents the Provenance
Pyramid (see Figure 8) which classifies provenance into the following levels: process level, data
level, organization level, and knowledge level [104]. A provenance service in the myGrid
project, COHSE (Conceptual Open Hypermedia Services Environment) [113], dynamically
generates hyperlinks between provenance logs and documents sets based on the attached
semantic concepts from the myGrid ontology. Taverna uses the Resource Description
Framework (RDF) to represent provenance. As an open source project, Taverna has gone
through several official releases [3]. Taverna has been successfully used in the genetic research
of the Graves Disease and Williams-Beuren Syndrome and it is now being used in various
biological research projects [3].

Figure 8: Provenance Pyramid [104]

25 of 51

Figure 9: Taverna Architecture and myGrid Components [3]

VisTrails
VisTrails tracks and records steps performed by the user in a scientific exploratory process [67].
It captures changes to both a workflow instance (e.g. parameter value change) and a workflow
specification (e.g. modules and connection change). VisTrails is the first system to enable
capture of workflow evolution, and it uses an action-based mechanism to capture both the
provenance of data products and workflows. In a VisTrails tree, a node corresponds to a version
of a workflow. Nodes in the VisTrails version tree are never deleted; thus, the infrastructure is
similar to a version control system. The VisTrails Builder is the workflow editor and the
VisTrails Repository stores workflow specifications. Previously saved workflows can be
retrieved through the VisTrails Server or imported into the Visualization Spreadsheet where they
can also be modified. The workflow is executed by the VisTrails Cache Execution Manager.
VisTrails is an open source tool [99] that is currently in beta version [7]. VisTrails is currently
being used in radiation oncology and environmental observation and forecasting [7].

26 of 51

Figure 10: VisTrails Architecture [67]

Virtual Data System
The Virtual Data System (VDS) is a workflow system that enables the maintenance and
accessibility of distributed and decentralized provenance information. Resources are maintained
by local groups and federated indexes are used to enable access to provenance information
owned by other groups [114]. VDS treats all resources, i.e. data and computational objects, as
first class entities. Thus, all resources are assigned types and are represented in a schema (see
Figure 11). The term “virtual data” is used to represent data that may not yet exist but can be
defined by the transformations that will be applied to it. A Virtual Data Catalog stores the
information defined by the schema. A part of the GriPhyN project [115], VDS has been applied
to the domains of high energy physics, astronomy, and neuroscience [66, 114]. VDS has several
official releases [6], and VDS is currently being used in projects such as ATLAS (high energy
physics event simulator), FOAM (ocean and atmospheric modeling), and GADU (Genomics) [6].

Figure 11: Virtual Data Schema [114]

27 of 51

7.1.2 Category: User Interaction with Data
This category of provenance systems automatically captures the user interactions with data. No
prior specification of the processing steps is needed in this coarse-grained provenance capture.

CAVES
The Collaborative Analysis Versioning Environment System (CAVES) project supports the
collaboration between researchers or groups of researchers in the domain of high energy physics
by enabling the capture of scientific analyses [40]. Users select which analyses will be published
to a remote server and made available to other researchers and which analyses will be stored in
their local machines. CAVES extends ROOT, an object-oriented data analysis framework that is
widely used in high energy physics. CAVES uses CVS and plug-in extensions for ROOT to
support provenance capture. CAVES records the series of data manipulation commands issued
by the user and saves them into a log in the repository. Provenance logs can be extracted from
the repository to reproduce a virtual data product on demand. (Virtual data are data products that
are either produced in the past or may be generated in the future based on a well defined method
of production). CAVES is designed to support a large community of users running large
amounts of simulated and real data on the scale of tens and hundreds of petabytes. One specific
application of this project is to support scientists who are running experiments at the Large
Hadron Collider at CERN in Geneva, Switzerland. CAVES has also been used to capture data
analysis as demonstrated at Supercomputing 2005 [41]. An official version of CAVES is
available for download [41].

Figure 5: CAVES Distributed Repositories
[40]

Figure 6: CAVES Architecture [39]

28 of 51

7.1.3 Category: Component (a.k.a. Actor) Interaction
In this category of provenance systems, the basis for automatic provenance capture is the
interactions between components. Thus, there is no awareness of the process.

PreServ
PreServ, an implementation of the Provenance Recording Protocol (PReP), is designed to enable
provenance capture among heterogeneous actors. An actor is either a client or a service in the
Service Oriented Architecture. This approach enables two types of provenance capture:
interactions between actors (referred to as interaction p-assertion) and internal actor state
(referred to as actor state p-assertion). Provenance capture is accomplished by wrapping services
and capturing the interactions between services through the exchanged messages [45, 71].
Provenance can be recorded as long as each service implement the protocol, i.e. the APIs,
specified by PReP [71]. A part of the PASOA (Provenance Aware Service Oriented
Architecture) project, PreServ is used in the domain of bioinformatics [2, 71]. PreServ can be
downloaded from [2].

Figure 12: PreServ Component Interactions [2]

Figure 13: Layered Design of the Provenance Store [2]

29 of 51

7.1.4 Category: Operating System Level
This category of automatic provenance capture has no awareness of actor entities. This fine-
grained provenance capture records all observed operating system level events.

PASS
Based on the capture of all observed file-related events, Provenance-Aware Storage System
(PASS) enables automatic provenance collection across heterogeneous tools without requiring
the user to manually enter information and without using applications that explicitly collect
provenance information. Observed provenance collection is the approach PASS uses for
recording provenance. The information collected is also more complete since it explicitly
records environment information such as configuration, environment variables, etc. A drawback
to this approach is it can lead to “false provenance” or extraneous provenance. Other difficulties
with observed provenance collection, such as mismatch in granularity, large numbers of
versions, and introduction of cycles, are addressed by PASS. Since provenance is captured at a
much lower granularity than expected by the user, PASS supports manual user annotations to
allow the grouping of provenance into coarser granularities. To address difficulties with
versioning, PASS supports “copy-on-write” versioning, in which a new version is created for
every first file-write event (between the file-open and file-close events). Cycles in provenance
are also checked every time an edge is added. Observed provenance collection can be used to
supplement the disclosed provenance approach, i.e. provenance collection is specified by users
or tools [46]. PASS can be obtained by contacting the research group [9].

We have just introduced relevant provenance systems. We now evaluate these tools according to
the software traceability properties identified in Section 3.

7.2 Capturability
The following subsections discuss the automated and manual capture of provenance data. In
each category, the kind of provenance information captured, the capture methods, and the
granularity of capture are discussed. It is interesting to note that most of the tools surveyed [26,
40, 67, 104, 114] supplement automatically captured provenance with manual user annotations.
Section 7.2.3 further discusses the types of semantics provided by these different tools.

7.2.1 Automated Capture
Various provenance systems automatically capture provenance at different levels of abstraction
(see Figure 4). These systems range from capturing all low level operating system processes
without awareness of provenance, as in PASS [46], to high level capture of researcher interaction
with the data, as in CAVES [40]. Meanwhile, in scientific workflows systems like Kepler,
Taverna, and VDS, the user specifies the series of transformations that will be applied on the
data through a workflow specification language [26, 104, 114]. During the workflow execution,
provenance is captured in the form of events [26], service invocations [104], or general
invocations (e.g. executable programs, SQL command queries, or method invocations) [65]. In
these systems, input and output data are associated with the captured provenance information.
Another system in the scientific workflow category, VisTrails, captures the workflow evolution

30 of 51

itself [67]. Thus, VisTrails supports tracking changes to a workflow instance (e.g. changes to
parameter values) and to a workflow specification (e.g. changes to modules and connections).
At the component interaction level, PreServ automatically captures the series of interactions
between services as well as the internal states of the services [71].

There are also different methods of automated capture. Across these different methods of
capture, chronological ordering is preserved. CAVES extends a popular data analysis
framework, ROOT, to automatically log all changes to the data [40]. Meanwhile, Kepler uses a
Provenance Recorder to capture registered events at the communication ports between actors
[26]. Taverna’s workflow enactment engine stores the order of services invoked in a process log
[104]. VisTrails records action-based provenance such as the user interaction with the
workflow [67]. VDS, on the other hand, wraps a workflow execution with a parent process
which uses operating system events to capture the execution [114]. PreServ records the
interaction between services [71]. Finally, PASS observes all processes that run on a PASS
enabled operating system and captures all operating system events associated with a data file
[46].

The granularity of automated capture varies among the different tools surveyed. Capture at the
granularity of user-interaction is performed by CAVES and VisTrails [40, 67]. Tools such as
Taverna and VDS automatically capture provenance at the granularity of service invocation
[104, 114]. Meanwhile, PreServ captures at the granularity of service interaction and internal
service state [71]. Capture at the granularity of events are performed by Kepler and PASS [26,
46]. Kepler captures at the granularity of component (a.k.a. actor) events [26] while PASS
captures at the granularity of operating system events [46].

7.2.2 Manual Capture
Most of the tools surveyed enable manual capture of provenance data to supplement the
automatically captured provenance. In scientific workflows like Kepler, Taverna, VisTrails, and
VDS [26, 67, 104], users manually specify the sequence of processing as a workflow. The
workflow specification is then executed after physical resources are mapped to the logical
representations. Besides the workflow specification, Kepler and Taverna enable the manual
capture of context by having users specify the context of the experiment (e.g. who, what, where,
when, and why) in Kepler [26] and organizational information (e.g. user, creator, organization,
project, hypothesis, experiment design) in Taverna [104]. Taverna also enables users to enter
knowledge level information such as user notes and domain-specific information. In VisTrails,
users may also tag selected versions of the workflow with a name [67]. Finally, CAVES and
PASS allow free form annotations [40, 46].

There are different methods for manually entering provenance information. CAVES provide an
‘annotate’ command that enables users to attach annotations to a uniquely identified dataset [40].
Names or tags may also be attached to important workflow versions in VisTrails [67].
Meanwhile, formal annotations are specified by Taverna and VDS. Taverna supports the use of
ontology in the myGrid registry to annotate the workflow [113]. Finally, annotations in VDS
should conform to the Virtual Data Schema [114].

31 of 51

The granularity of manual capture varies by tool. Annotations may be at the workflow level as
in Kepler and Taverna [26, 104] or at a specific workflow version as in VisTrails [67].
Annotations may also be at the data product level as in CAVES [40] or at the file level as in
PASS [46]. Finally, VDS enables annotations at the level of virtual data objects (i.e. procedure,
parameters, workflows, data sets) as defined by the schema [114].

7.2.3 Capture Trace Semantics
In scientific computing, achieving reproducibility and repeatability requires a high level of
exactness to be recorded: the right input dataset, the correct version of a component, the correct
series of transformation, the infrastructure support (i.e. libraries or modules used), and the
hardware used. At the same time, all resources, data and computational objects, must be given
semantic annotations, i.e. their real world representation and how they relate to each other. Even
though software traceability does not require the same level of exactness for reproducibility, the
techniques in capturing or inferring semantics may be applicable to software traceability.

7.2.3.1 The Importance of Context
In e-science, context aids in evaluating the results of an experiment or scientific analysis [104].
Context can be broadly defined as “anything that was true” during an experiment run [84].
There are two levels of context [104]. First, context refers to the details of the experiment run,
i.e. provenance [104]. Context can also refer to information surrounding experiments, including
hypotheses, conclusions, findings, users, creators, organizations, projects, personal notes,
domain-specific information, and time and location of the experiment run [26, 87, 104].

7.2.3.1.1 Context: Experiment Run
In an experiment run, contextual information can identify the types of relationships between
objects. These relationships can be classified by dependency, time, or contributor. Dependency
relationships between different versions of a workflow are captured in VisTrails [67]. Since a
version tree represents the workflow evolution, a child node is dependent on the parent nodes.
Another example of a dependency relationship is the relationship of objects with the execution
environment since reproducing same results may depend on the kernel module loaded, libraries
installed, etc [46]. Temporal relationship are another type of relationship provided by context.
An example is the chronological order of services invoked by a workflow engine. The order of
invocation is automatically captured by workflow systems [104]. The chronological order of
workflow versions created are also captured in VisTrails and are represented by the color of the
nodes [67]. Contributor relationships identify which entities initiate the production of a data
object. Contributors can be users [40] or services [71].

Meanwhile, specific relationship types between objects can also be specified. VDS captures
semantic relationships between objects by assigning types to all scientific resources [114]. The
relationships are represented by the virtual data schema.

7.2.3.1.2 Context: Information Surrounding an Experiment
Information surrounding an experiment is equally important in evaluating the results of an
experiment. The provenance pyramid (see Figure 8) illustrates the relationship between context
captured as a workflow run, i.e. data and process provenance, and context as information
surrounding an experiment [104]. The Provenance pyramid classifies the surrounding

32 of 51

information of an experiment as organizational (e.g. user, creator, hypothesis, project,
organization, experiment design) and knowledge-based (e.g. user notes, domain relationships).
Context information also include time and location of an experiment run and the rationale behind
the experiment [26].

7.2.3.2 Categories of Captured Semantics in the Literature

7.2.3.2.1 Prospective vs. Retrospective Provenance
This category distinguishes between a planned experiment or analysis (a.k.a. prospective) and a
record of an experiment or analysis already performed (a.k.a. retrospective) [38]. Prospective
provenance is represented as a workflow specification [114]. Meanwhile retrospective
provenance is represented by the workflow execution or the data lineage which contains
mappings to the physical resources used, e.g. data sets, functions, etc. [38, 114]. It is useful to
combine the information from both types of provenance. Prospective provenance aids in
understanding retrospective provenance since it is specified at a higher level of abstraction.
Meanwhile, retrospective provenance fills in the missing details of prospective provenance.

7.2.3.2.2 Observed Actor Interaction vs. Internal Actor Provenance
Another distinction is the source of provenance information. Observed actor interaction is
provenance recorded by other services that interact with an actor. Meanwhile, internal actor
provenance is provenance recorded by an actor about its own internal events [72]. Observed
actor interaction provenance is useful in cross checking the recorded provenance among multiple
sources.

7.2.3.2.3 Observed vs. Disclosed Provenance
This distinction identifies provenance collection based on what has been determined a priori
(disclosed) and provenance collection based on recording all events (observed). Disclosed
provenance provides more semantics, but is limited to collecting provenance within the
provenance system. Observed provenance does not have this limitation. However, collected
provenance does not have semantics and could even contain “false provenance” [46].

7.2.3.2.4 Internal vs. External Provenance
This category is concerned with provenance collected within a provenance system and
provenance collected outside a provenance system. One technique to achieve external
provenance is database integration. The ability to obtain external provenance is difficult and
may sometimes entail manual processes, such as the manual curation of databases [48].

7.2.3.2.5 Logical vs. Infrastructural Provenance
Provenance information can be distinguished between logical and infrastructural concerns.
Logical provenance refers to the data and the transformations on the data while infrastructural
provenance refers to the environment on which the transformations are performed, such as the
environment variables and the state of hardware [94]. This is an important distinction since
provenance recording should not be limited to capturing the processes surrounding the data. The
assumptions about the environment should also be recorded.

33 of 51

7.2.3.3 Inferring Semantics
There are a couple of ways that semantic relationships between objects can be inferred. One way
is through the use of a reasoner such as the Description Logic reasoner which automatically
classifies concepts into hierarchies [113]. Since these concepts are attached to provenance logs
and document sets, provenance logs can be related to publications or experiment notes that are of
the same concepts in the hierarchy. Another way to infer semantic relationships is through the
use of an inference engine. New relationships are inferred between indirectly related data
products by applying backward and forward chaining to a knowledge base. The knowledge base
consists of captured provenance represented as an RDF and inference rules [50].

7.2.4 Discussion
We note that the level of automatic semantic capture increases with the increased awareness of
semantics in the framework of the provenance tool. For example, since the CAVES project is
based on an existing data analysis tool [40], it is easy to infer the semantics of a provenance log.
Similarly, the data flow is specified in workflows [43]. Thus, the ordering of processes invoked
reflects the ordering of transformations applied to a given dataset. In contrast, PASS has no
awareness of semantics and thus will capture all observed events related to a file [46].

Meanwhile, the increased built-in semantics in the framework limits the ability to capture
provenance information from different tools outside the framework (known as level of
openness). For example, CAVES is only able to track provenance within the data analysis
framework [40] while PASS enables provenance tracking across different tools as long as the
host’s operating system is PASS enabled [46]. Thus, there is a tradeoff between the ability to
automatically capture the semantics of provenance information and the ability to capture
provenance across heterogeneous tools.

7.3 Affordability
The following subsections discuss the costs involved in using data provenance tools. Cost is
measured in terms of training time to use a provenance tool, effort in manual provenance
capture, and effort in developing custom code to capture provenance across heterogeneous tools.

7.3.1 Training Time to Use a Provenance Tool
The cost of training time varies between the different tools. Since CAVES builds upon an
existing data analysis tool [40], the cost associated with training existing users is low to none.
The cost of training for PASS [46] is also low to none since most of the provenance capture is
automatic. Kepler [43] and Taverna [104] have a low cost since the graphical workflow
language used is easy to learn. VisTrails [67] also has a low cost since it is easy to learn to
navigate through the recorded workflow space.

7.3.2 Effort in Manual Provenance Capture
The cost of manual provenance capture varies from low to high between tools. VisTrails [67]
has low overhead since users simply assign names to noteworthy versions of the workflow.
CAVES [40] and PASS [46] also have low cost since the manual annotations are based on what
users deem important. VDS [114] has a low to medium cost in provenance capture since

34 of 51

annotations must comply with the schema. Taverna [104] has a high cost in manual provenance
capture. Capturing knowledge level annotations require users to relate the experiment with
domain-specific concepts through the use of myGrid ontology. The high cost provides benefits
that are not realized in other tools. Mapping experiments to ontology enables the dynamic
generation of hyperlinks between provenance information and other document sets.

7.3.3 Effort in Developing Custom Code
The effort needed to develop code extensions that capture of provenance across different tools
also varies. PASS [46] has virtually no cost since it is able to capture all the system level calls to
any tool or function as long as the operating system is PASS-enabled. PreServ [71] has a low
cost since it only requires custom wrappers on existing systems to intercept provenance
information. The other workflow systems like Kepler, Taverna and VDS require that the
components conform to their framework. Meanwhile, CAVES [40] has no allowance for
integrating other tools since provenance capture is limited to the ROOT data analysis tool.

7.4 Utilizability
Provenance information is used to reproduce data [40, 104]. Provenance information is also used
to identify problems with workflow execution [26] as well as to identify differences with the
execution environment [46]. Saved workflows are reused [26, 67] to save time in re-running the
analysis. Ontology-related provenance is also used to dynamically generate hypertext [113].
Other uses of trace information include browsing [40, 67, 104], querying [71, 104, 114], and
comparing workflow versions (VisTrails) [67].

7.5 Maintainability
These data provenance systems do not have many explicit techniques for achieving
maintainability. VDS [114] enables object updates through the use of SQL. CAVES [40]
enables browsing virtual data products and annotations, which users can retrieve and update.

7.6 Accessibility
The following subsections discuss the ways that provenance systems enable the accessibility of
provenance data. Accessibility is examined along the following dimensions: heterogeneous data,
heterogeneous tools, and different groups.

7.6.1 Heterogeneous Data
In e-Science, the issue of heterogeneous data is generally addressed when integrating data from
different sources and when composing heterogeneous components into a workflow. The
following subsections discuss the techniques used in handling heterogeneous data.

7.6.1.1 Data Integration
The problem of data integration is especially prevalent in the life sciences domain since it is
difficult to determine whether records from different databases represent the same data. This
problem has come to be known as the “Life Science Identity Crisis” [104]. The myGrid project
and Taverna address this problem by uniquely identifying data with a life science identification

35 of 51

(LSID). However, the problem still exists when integrating with data from outside myGrid.
Another technique used in data integration is manually extracting data from various sources and
producing a manually curated database [48]. There is a high cost to this approach, but the
database is considered high quality by the community of users.

7.6.1.2 Input/Output Data Mismatch
When creating the workflow out of different components, the problem of matching the required
input of one component with the given output of another component exists [104]. Taverna
addresses this problem through the use of “shim services”, which reconcile differences between
the input and output data [104]. Another approach is through the use of ontology. Different
ontologies are used to classify mismatches. Parameters are annotated with concepts from the
ontology. When there is an identified mismatch, the library of transformations based on
mismatch type is checked and the appropriate conversion is used [33]. In a similar approach, the
system automatically checks for the data and semantic type compatibility when users specify the
workflow [24]. An ontology is used to determine semantic compatibility. When a mismatch is
detected, the tool automatically inserts a conversion rule. Generating an automatic conversion
program is also used in resolving incompatible formats between semantically compatible input
and output data [42]. Another approach used in Kepler is annotating parameters to enable semi-
automated transformations [88].

7.6.2 Heterogeneous Tools
One means of enabling provenance capture among heterogeneous components is through the use
of event listeners and message passing, as in Taverna [104]. A plug-in listens to subscribed
events and generates messages once it receives an event. Another method of capturing
provenance among different tools is by wrapping code around these tools so that their interaction
with the provenance store is via a specified API, as in PreServ [71]. Lastly, systems like PASS
[46] capture provenance over heterogeneous tools by intercepting system level calls. In such
systems, it is not necessary to develop custom code for different tools.

7.6.3 Different Groups
The surveyed tools present several techniques for improving accessibility of provenance
information across distributed groups. One way is to enable users to publish their provenance
information in a remote repository that is accessible to other users as in CAVES and VisTrails
[40, 67]. VisTrails has the added functionality of enabling scientists to synchronize their
changes to the workflow [67]. Meanwhile, VDS enables distributed groups to access provenance
information owned by other groups through the use of federated indexes [114]. Users query the
inter-catalog references which then point to locally owned Virtual Data Catalogs.

7.7 Scalability
There are various approaches to achieving scalability. Since captured provenance information
can quickly become large, scalability in storage is important. CAVES, VDS, PreServ enable the
use of distributed repositories to store provenance information [40, 71, 114]. Distributed and
decentralized VDS repositories are owned by local groups [114]. PreServ also enables the use of
multiple types of repositories as long as the interaction is through the PReP API [71]. Other

36 of 51

techniques in minimizing storage overhead include pruning selected provenance information,
compressing provenance information, combining frequently accessed attributes, and deleting
irrelevant attributes [46].

These tools can also scale to many users. CAVES and VDS have no upper limit to the number
of users [40, 114].

7.8 Customizability
The following subsections discuss the extent of customization provided by the provenance
systems. The three types of customization examined are domain-specific, project-specific, and
user-specific customization.

7.8.1 Domain-Specific Customization
Among the tools surveyed, only Taverna enables domain specific customization to the
provenance information captured [104]. Users enter annotations that map experiments to
domain-specific concepts.

7.8.2 Project-Specific Customization
Project-specific customization is achieved in a couple of ways. Virtual organizations may adopt
naming conventions in assigning unique identification to their virtual data products, as in
CAVES [40]. In VDS, virtual data objects (i.e. data and components) are maintained in a
distributed and decentralized context. Thus, local groups can choose the virtual data objects to
store in their local VDS [66]. Furthermore, groups may also maintain “overlay” information, or
a separate set of annotations, on objects owned by other groups.

7.8.3 User-Specific Customization
There are different means for achieving user-specific customization. Users have control over the
time at which to capture provenance information [71] and the level of granularity at which to
capture provenance [26]. Users also have control over which provenance to publish [40] and
which information to keep in their local machine or workspace [40, 114]. Users may also
maintain their own custom metadata over the same set of data sets or virtual data objects [104,
114]. In Taverna, users may use their custom ontology to create different views of the
provenance [104].

There are also other techniques for enabling user-customized views. The provenance
information presented to a user can be customized with user views [56] and scoped provenance
queries [85]. Scoped provenance queries enable users to limit provenance information by
filtering out a type of relationship, internal operations of an actor, or a data role. Another means
of customizing provenance views is by limiting access to provenance information based on
access policies [50].

37 of 51

7.9 Auditability

A third party entity may audit a scientific analysis or experiment mainly by reproducing the data
set through the use of captured provenance as in Taverna [104] and VDS [65]. CAVES also
enables on-demand reproducibility of data by extracting the derivation log from the server [40].

One of the challenges to auditability is that different results could be produced even though the
same input data and the same workflow is executed. The difference lies in the execution
environment. PASS [46] addresses this challenge by capturing details about the execution
environment, such as the kernel modules used and the libraries installed.

We have just surveyed the ways in which data provenance systems and techniques meet the
requirements for end-to-end software traceability. The next section highlights the lessons
learned from the survey.

8 What are the Lessons Learned?

This section highlights the insights gained from the survey of data provenance techniques. These
insights will inform an approach to tackle the software traceability problem.

Insight: Use shared semantic concepts to automatically generate trace links
Ontology is used to dynamically generate hypertext linking provenance logs with various
documents to form a web of science [113]. Since one of the shortcomings of automatic trace
recovery is the lack of link semantics, using domain-specific vocabularies or ontologies to
improve the automatic generation of trace links is a possible solution [103].

Insight: Provenance of data is intertwined with provenance of process
Provenance of data can be viewed as the process that brought the data to its current state [47, 85].
In addition, the provenance of data identifies which processes were used to reach a conclusion or
an output [107]. Thus, tracing the process enables the tracing of data. Scientific workflow
systems are especially suited to track processes [104]. In software traceability, it is also
important to trace both product and process objects [77]. Documenting the development
processes aids in selecting which artifacts to trace. PRO-ART is a software traceability system
that records both the artifacts and the processes that manipulate the artifacts (e.g. generating,
removing, editing artifacts) [89]. However, there is a high upfront cost in recording processes
since all products and interrelationships must first be formally represented in a schema. Using
provenance capture techniques can potentially lower the cost of recording the processes that
manipulate the artifacts

Insight: Context can inform the type of relationship between artifacts
The two types of contextual information in e-Science are the provenance information captured
during an experiment run and the information surrounding an experiment. The first type aids in
understanding how data is manipulated while the second type describes how data is related to
entities in the real world. Context in an experiment run frames assumptions about the

38 of 51

environment (e.g. hardware environment, loaded libraries, means of communication between
independent computational objects) and how entities are related (e.g. “input data X and
intermediate data Y are fed into computation object A to produce output data Z”). In addition,
context as information surrounding an experiment links the objects in an experiment run to what
they represent in the real world. In the domain of software engineering, context is also
important. Context can inform the assumptions made when artifacts were generated (e.g.
company conventions, regulatory requirement, time restrictions) and how artifacts are related
(e.g. “Use Cases are developed before the system is implemented, and QA engineers develop test
suites using the Functional Requirements Document and Design document, but they do not look
at the code”).

Insight: The type of provenance information captured is directly related to provenance usage
The type of provenance information captured depends on how and where it will be used [48].
How provenance information will be used is demonstrated in the use of workflows. Workflows
[26, 67, 104] are used to encapsulate a scientific analysis or experiment by explicitly specifying
the series of transformations that will be applied to an input data. Where provenance information
will be used is also important. CAVES tracks user interaction with the data within the ROOT
data analysis tool for several reasons. It minimizes the training time for users since the intended
users already use the tool. Recording the scientific analysis within ROOT also enables the
scientific analysis to be reproduced on demand within ROOT. In this situation, enabling
provenance to be captured across heterogeneous tools is unnecessary.

Insight: Reasoners help in automatically inferring relationships
One of the capabilities afforded by some provenance systems is the ability to reason, i.e. analyze,
query, and browse captured provenance [45, 91]. Reasoners can also be applied to infer
semantic relationships between objects [50, 113]. For instance, the Description Logic reasoner
classifies concepts into a hierarchy. Consequently provenance logs with annotated concepts can
be related to other provenance logs or documentation with concepts in the same hierarchy. The
reasoner used in [45] can sometimes infer the data provenance even with missing provenance
information. An inference engine can be used to infer new relationships between indirectly
related objects [50].

Insight: Automated provenance capture has limits
It is interesting to note that most of the tools surveyed [26, 40, 46, 67, 104, 114] supplement the
automated provenance capture with manual capture, e.g. user annotation. This indicates that
regardless of the approach, automated techniques are limited in the scope of information they can
capture. Automatic capture is limited to events observable by a computer (e.g. user issued
commands [40], communication between computational objects [26, 71], and file events on the
operating system level [46]). The rationale, purpose, and other extrinsic information cannot be
automatically captured and must be manually entered by the user.

Insight: Cost in collecting data provenance is invested into the scientific process
Scientists have traditionally maintained experiment records in their log books [104]. Thus, for
scientists, the cost of record keeping is invested into the scientific process. Without a scientist’s
log of past experiments, it would be difficult for a scientist to analyze the results. It would also
be equally difficult to remember specific details about the experiment. Scientists are willing to
manually specify the design of the workflow since it will be the basis for running their

39 of 51

experiment while at the same time serving as a future reference for further experiments [26, 36,
104]. In this scenario, the producer of data provenance is the same as the consumer of data
provenance.

Insight: Cost in collecting data provenance is outweighed by the utility of the information
Manually curated databases are integrated from different data sources by scientists. This effort
usually involves examining publications and going over databases. Even though this process is
costly in terms of labor hours, it is outweighed by the perceived benefit since manually curated
databases are considered “higher quality” by the community [48]. In this scenario, even though
the producers are different from consumers, there is a well-understood benefit to their activity
(i.e. benefit to the community of users). It is also important to note that individuals who collect
provenance information have a good understanding of the data that should be included [48].

Insight: There is a tradeoff between cost and the level of manual semantic capture
There is a tradeoff between minimizing cost and increasing the level of semantic understanding
among the manual captured techniques. Lightweight approaches [40, 46, 67] have lower cost but
capture less semantics. Meanwhile, annotating provenance logs with concepts from the ontology
is a heavyweight approach with high cost. However, these annotations enable the dynamic
generation of hyperlinks between provenance logs and publications with similar concepts [113].
This link between provenance and relevant publications provides a better understanding of the
data.

Insight: There is a tradeoff between the level of “openness” and the level of automatic
semantic capture
“Openness” is the ability to capture provenance among heterogeneous tools [71]. The higher the
level of openness, the more capable it is in capturing provenance across heterogeneous tools.
However, the more open is the provenance capture, the lower the level of semantics that can be
captured. For example, CAVES [40] has no means of capturing provenance with other tools, but
the provenance captured has a high level of semantics since it is directly related to the data
analysis tool. On the other end of the spectrum, PASS [46] has a high level of openness, i.e. can
capture provenance across any tool, but the level of semantics is none.

Insight: Provenance collection is stakeholder-centric
Users control provenance collection. Users determine what to record [26, 40], when to record
[26, 71], where to store provenance information [40, 66], what to publish [40], and what level of
granularity to record [26]. Users may also provide information to enable user-customized views
on provenance [104, 114]. The individual who usually collects provenance information is the
same individual who uses that provenance information [56, 84]. We learn from software
traceability case studies like [32][92] that stakeholder role is directly associated with the
expected usage of trace information. For instance, a system designer is interested in using a trace
tool to record the design rationale and to understand the impact of a requirements change on
system modules and test plans [92]. Meanwhile, a QA engineer is interested in using a trace tool
to ensure that test plans cover all the requirements [92]. A traceability approach should cater to
these varied stakeholder interests to provide direct benefits to them.

40 of 51

Insight: Provenance systems enable local ownership and global access
The concept of local ownership and global access is provided by provenance systems like
CAVES [40], Taverna [104], and VDS [114]. Local users or groups have complete control over
their provenance information. At the same time, provenance information is visible to external
groups via globally accessible servers as in CAVES [40] or federated indexes as in VDS [114].
Taverna also enables groups to maintain annotations on provenance data owned by other groups
[104].

9 Conclusion: How to Apply Insights to Software Traceability?
Software traceability, despite its recognized importance in software development, has largely
been unachievable in practice. We analyzed the reported problems with implementing software
traceability from the economic, technical, and social perspectives. These perspectives are
intertwined and must be tackled simultaneously. Then we examined how similar problems are
solved in e-Science, a domain with similar characteristics to software engineering. Data
provenance systems and techniques in e-Science were surveyed to gain potential insights in
approaching the software traceability problem. We now conclude with the application of these
insights to software traceability.

Addressing the economic perspective
Cost is a major inhibiting factor to industry adoption of a traceability approach [32]. By
integrating traceability with existing development processes, the cost of traceability can be
considered part of the overall development costs. In addition, by understanding how traceability
information can benefit software development, e.g. by significantly lowering software
maintenance cost, the benefits can outweigh the cost of tracing.

Addressing the technical perspective
The technical perspective is concerned with addressing the explosion of the artifacts space,
maintenance of trace links, heterogeneity of artifacts, and heterogeneity of tools. An insight
from e-Science is that data provenance collection should be directly related to provenance usage.
This insight can be used to address the explosion of the artifact space. The types of artifacts, the
types of relationships and the granularity at which they are traced should reflect the expected
usage of the trace information. Case studies like [92] provide some examples of expected uses
of trace information. To address trace link maintenance, reasoning techniques such as bulk
query and bulk updates [114] can be used to keep the links updated. To address the
heterogeneity of artifacts, using a transformation program [42, 104] to automatically convert
between artifact types perhaps provide a solution. However, this is limited in cases where the
information can easily be mapped from one artifact type to another. To address the
heterogeneity of tools, events or protocols can be used to automatically cascade additions or
changes of artifacts across different tools. This way, redundant data entry and manual
reconciliation of data can be avoided. This approach is limited to those artifacts that are at the
same level of formality and abstraction.

Addressing the social perspective
The social perspective is concerned with addressing the distribution of artifacts across different
groups, the different user expectations of a traceability tool, and the low motivation for
performing traceability tasks. To address tracing across different groups, one can publish

41 of 51

artifacts publicly or use global pointers [40, 114]. Groups may publish artifacts to a server
accessible by other groups [40]. Similar to the federated index used in VDS, a global pointer
directs users to the traced artifacts owned by different groups [114]. To address different
expectations of the tool, users should have the option of customizing the traceability tool. For
example, users should have the option to maintain their own trace information, i.e. similar to
custom ontology [104] or “overlay” information [114], over the set of traced artifacts.
Automatically generated customized views of traceability will help provide user-specific
customization. To address the problem of low motivation, there should be a clear benefit to the
task of traceability. There is a distinct difference in the level of motivation between scientists
and software engineers. Scientists are willing to keep records while most software engineers
dislike traceability tasks. Scientists invest their time in collecting provenance because they
directly benefit from the provenance information, i.e. they are the consumers of information
[104]. Therefore, enabling software engineers to directly benefit from traceability will
potentially encourage them to perform traceability tasks. Even in cases where the producers are
not necessarily the consumers of data, such as in the case of manually curated databases [48],
high value could still be assigned to the task of tracing the source of data. Thus, assigning a high
value to traced information can potentially motivate software engineers to perform traceability
tasks.

Addressing the economic, technical, and social perspectives
To minimize cost, to enable the automatic capture of semantics, and to increase the quality of
links as determined by human analysts, a combination of automated and manual approaches
should be used. First, an automatic capture of the context and the processes that generate and
manipulate artifacts enables the automatic capture of trace semantics, e.g. dependency, temporal,
and contributor relationships. Then, lightweight annotations, can be attached to an artifact by the
user who generated or manipulated the artifact. This procedure enables the dynamic generation
of semantically-rich traceability links at lower costs. The quality of links increases since
knowledgeable users attach the annotations to traced artifacts.

While the possible approaches presented in this survey are by no means complete, these provide
a good start for exploring the solution space of the end-to-end software traceability problem.
These approaches are well-grounded since they have already been applied in the similar field of
e-Science. We hope that a feasible traceability approach that is adoptable in industry will result
from this endeavor.

42 of 51

10 References

[1] Grid Physics Network (GriPhyN). <http://www.griphyn.org/>.
[2] Provenance Aware Service Oriented Architecture. <http://www.pasoa.org/>.
[3] myGrid. <http://www.mygrid.org.uk/>.
[4] Kepler Project. <http://www.kepler-project.org/>.
[5] Provenance Challenge Wiki. <http://twiki.ipaw.info/bin/view/Challenge/>.
[6] VDS - The GriPhyN Virtual Data System

<http://www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain>.
[7] VisTrails Wiki. <http://www.vistrails.org/>.
[8] Science Environment for Ecological Knowledge (SEEK). <http://seek.ecoinformatics.org/>.
[9] PASS: Provenance-Aware Storage Systems. <http://www.eecs.harvard.edu/~syrah/pass/>.
[10] 2nd IEEE International Conference on e-Science and Grid Computing.

<http://www.escience-meeting.org/>.
[11] E-Science Resource for High Throughput Protein Crystallography (e-HTPX Project).

<http://clyde.dl.ac.uk/e-htpx/index.htm>.
[12] Grid enabled Optimisation and Design Search for Engineering (Geodise).

<http://www.geodise.org/>.
[13] Geosciences Network (GEON). <http://www.geongrid.org/>.
[14] Genomics: GTL - Systems Biology for Energy and Environment.

<http://genomicsgtl.energy.gov/>.
[15] Workshop on Data Derivation and Provenance. <http://www-

fp.mcs.anl.gov/~foster/provenance/>, 2002.
[16] Data Provenance and Annotation Workshop. <http://www.nesc.ac.uk/esi/events/304/>,

2003.
[17] International Provenance and Annotation Workshop (IPAW).

<http://www.ipaw.info/ipaw06/>, 2006.
[18] 3rd ECMDA Traceability Workshop. <http://modelbased.net/ecmda-traceability/>, 2007.
[19] Principles of Provenance Workshop. <http://www.cis.upenn.edu/~plclub/propr/>, 2007.
[20] Aizenbud-Reshef, N., Nolan, B.T., et al. Model Traceability. IBM Systems Journal. 45(3), p.

515-26, 2006.
[21] Alexander, I. Towards Automatic Traceability in Industrial Practice. In Proc. of the 1st

International Workshop on Traceability. p. 26-31, 2002.
[22] Alford, M. A Requirements Engineering Methodology for Real-time Processing

Requirements. In Proc. of the 2nd International Conference on Software Engineering. San
Francisco, California, US, 1976.

[23] Almeida, J., van Eck, P., et al. Requirements Traceability and Transformation Conformance
in Model-Driven Development. In Proc. of the 10th IEEE International Enterprise
Distributed Object Computing Conference. Hong Kong, China, Oct 16-20 2006.

[24] Altintas, I., Bhagwanani, S., et al. A Modeling and Execution Environment for Distributed
Scientific Workflows. In Proc. of the 15th International Conference on Scientific and
Statistical Database Management. Cambridge, MA, July 9-11, 2003.

43 of 51

[25] Altintas, I., Berkley, C., et al. Kepler: An Extensible System for Design and Execution of
Scientific Workflows. In Proc. of the 16th International Conference on Scientific and
Statistical Database Management. Santorini Island, Greece, June 21-23 2004.

[26] Altintas, I., Barney, O., et al. Provenance Collection Support in the Kepler Scientific
Workflow System. In International Provenance and Annotation Workshop (IPAW): Chicago,
IL, 2006.

[27] Anderson, K.M., Sherba, S.A., et al. Towards Large-Scale Information Integration. In Proc.
of the 24th Intl. Conference on Software Engineering. Orlando, Florida, May, 2002.

[28] Antoniol, G., Caprile, B., et al. Design-code Traceability Recovery: Selecting the Basic
Linkage Properties. Elsevier. Science of Computer Programming. 40(2-3), p. 213-34, July,
2001.

[29] Antoniol, G., Canfora, G., et al. Recovering traceability links between code and
documentation. IEEE Transactions on Software Engineering. 28(10), p. 970-83, Oct, 2002.

[30] Appleton, B. The Trouble with Tracing: Traceability Dissected.
<http://www.cmcrossroads.com/articles/agile-cm-environments/the-trouble-with-tracing%3a-
traceability-dissected.html>, CM Crossroads, 2005.

[31] Arkley, P. and Riddle, S. Overcoming the Traceability Benefit Problem. In Proc. of the 13th
IEEE International Conference on Requirements Engineering. Paris, France, Aug 29 - Sep 2,
2005.

[32] Asuncion, H., François, F., et al. An End-To-End Industrial Software Traceability Tool. In
Proc. of the 6th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Int'l Symposium on the Foundations of Software Engineering (ESEC/FSE).
Dubrovnik,Croatia, September, 2007.

[33] Belhajjame, K., Embury, S.M., et al. On Characterising and Identifying Mismatches in
Scientific Workflows. In 3rd International Workshop on Data Integration in the Life
Sciences (DILS): Hinxton, UK, 2006.

[34] Bianchi, A., Fasolino Anna, R., et al. An Exploratory Case Study of the Maintenance
Effectiveness of Traceability Models. In Proc. of the 8th International Workshop on
Program Comprehension (IWPC). Limerick, Ireland. , June 10-11, 2000.

[35] Boehm, B.W. A Spiral Model of Software Development and Enhancement. IEEE Computer.
21(5), p. 61-72, May, 1988.

[36] Boose, E.R., Ellison, A.M., et al. Ensuring Reliable Datasets for Environmental Models and
Forecasts. In Proc. of the 5th International Conference on Ecological Informatics. Santa
Barbara, CA, Dec 4-7, 2006.

[37] Bose, R. A Conceptual Framework for Composing and Managing Scientific Data Lineage. In
Proc. of the 4th International Conference on Scientific and Statistical Database
Management. Edinburgh, UK, July 24-26 2002.

[38] Bose, R. and Frew, J. Lineage Retrieval for Scientific Data Processing: A Survey. ACM
Computing Surveys. 37(1), p. 1-28, March, 2005.

[39] Bourilkov, D. CAVES/CODESH. <http://bourilko.web.cern.ch/bourilko/caves.html>.
[40] Bourilkov, D. THE CAVES Project - Collaborative Analysis Versioning Environment

System. International Journal of Modern Physics. 20, p. 3889-3892, 2005.
[41] Bourilkov, D., Khandelwal, V., et al. Virtual Logbooks and Collaboration in Science and

Software Development. In Proc. of the International Provenance and Annotation Workshop
(IPAW). Chicago, IL, May 3-5, 2006.

44 of 51

[42] Bowers, S. and Ludasher, B. An Ontology-Driven Framework for Data Transformation in
Scientific Workflows. In First International Workshop on Data Integration in the Life
Sciences (DILS): Leipzig, Germany, 2004.

[43] Bowers, S. and Ludascher, B. Actor-Oriented Design of Scientific Workflows. In Proc. of
the 24th International Conference on Conceptual Modeling. Klagenfurt, Austria, Oct 24-28,
2005.

[44] Bowers, S., McPhillips, T., et al. A Model for User-Oriented Data Provenance in Pipelined
Scientific Workflows. In International Provenance and Annotation Workshop (IPAW) 2006.

[45] Branco, M. and Moreau, L. Enabling Provenance on Large Scale e-Science Applications. In
Proc. of the International Provenance and Annotation Workshop (IPAW). Chicago, IL, May
3-5, 2006.

[46] Braun, U., Garfinkel, S., et al. Issues in Automatic Provenance Collection. In International
Provenance and Annotation Workshop (IPAW): Chicago, IL, 2006.

[47] Buneman, P., Khanna, S., et al. Why and Where: A Characterization of Data Provenance. In
Proc. of the 8th International Conference on Database Theory. London, UK, Jan 4-6, 2001.

[48] Buneman, P., Chapman, A., et al. A Provenance Model for Manually Curated Data. In Proc.
of the International Provenance and Annotation Workshop (IPAW). Chicago, IL, May 3-5,
2006.

[49] Cavalcanti, M.C., Targino, R., et al. Managing structural genomic workflows using Web
services. Data & Knowledge Engineering. 53(1), p. 45-74, 2005.

[50] Cheung, K. and Hunter, J. Provenance Explorer - Customized Provenance Views Using
Semantic Inferencing. In Proc. of the 5th International Semantic Web Conference. Athens,
GA, Nov 5-9, 2006.

[51] Cleland-Huang, J., Chang, C.K., et al. Event-based Traceability for Managing Evolutionary
Change. IEEE Transactions on Software Engineering. 29(9), p. 796-810, Sep, 2003.

[52] Cleland-Huang, J., Zemont, G., et al. A Heterogeneous Solution for Improving the Return on
Investment of Requirements Traceability. In Proc. of the 12th IEEE International
Requirements Engineering Conference. p. 230-239, Kyoto, Japan, Sept 6-11, 2004.

[53] Cleland-Huang, J. Toward Improved Traceability of Non-Functional Requirements. In 3rd
International Workshop on Traceability in Emerging Forms of Software Engineering. p. 14-
19 ACM Press: Long Beach, CA, 2005.

[54] Cleland-Huang, J. Just Enough Requirements Traceability. In Proc. of the 30th Annual
International Computer Software and Applications Conference (COMPSAC). Chicago, IL,
Sep 17-21, 2006.

[55] Cleland-Huang, J., Berenbach, B., et al. Best Practices for Automated Traceability.
Computer. 40(6), p. 27-35, 2007.

[56] Cohen, S., Cohen-Boulakia, S., et al. Towards a Model of Provenance and User Views in
Scientific Workflows. In Proc. of the Data Integration in the Life Sciences. Third
International Workshop, DILS 2006. Hinxton, UK, July 20-22, 2006.

[57] Couvares, P., Kosar, T., et al. Workflow Management in Condor. In Workflows for e-Science,
Taylor, I.J., et al. eds. p. 357-375, Springer: London, 2007.

[58] Deelman, E., Mehta, G., et al. Pegasus: Mapping Large-Scale Workflows to Distributed
Resources. In Workflows for e-Science, Taylor, I.J., et al. eds. p. 376-393, Springer: London,
2007.

[59] Domges, R. and Pohl, K. Adapting Traceability Environments to Project Specific Needs.
Communications of the ACM. 41(12), p. 54-62, 1998.

45 of 51

[60] Dvorak, F., Koufil, D., et al. gLite Job Provenance. In International Provenance and
Annotation Workshop (IPAW). Moreau, L. and Foster, I., Editors: Chicago, IL, 2006.

[61] Egyed, A. A Scenario-driven Approach to Traceability. In Proc. of the 23rd International
Conference on Software Engineering. p. 123-132, Toronto, Ontario, Canada, May 12-19,
2001.

[62] Egyed, A., Biffl, S., et al. A Value-based Approach for Understanding Cost-benefit Trade-
offs During Automated Software Traceability. In 3rd International Workshop on Traceability
in Emerging Forms of Software Engineering. p. 2-7, ACM Press: Long Beach, CA, 2005.

[63] Egyed, A., Biffl, S., et al. Determining the Cost-Quality Trade-Off for Automated Software
Traceability. In 20th IEEE/ACM international Conference on Automated Software
EngineeringACM Press: Long Beach, CA, USA, 2005.

[64] Evans, M. SPMN Director Identifies 16 Critical Software Practices CrossTalk, The Journal
of Defense Software Engineering. March, 2001.

[65] Foster, I., Vockler, J., et al. Chimera: A Virtual Data System for Representing, Querying, and
Automating Data Derivation. In Proc. of the 14th International Conference on Scientific and
Statistical Database Management. p. July 24-26 Edinburgh, UK, 2002.

[66] Foster, I., Vockler, J., et al. The Virtual Data Grid: A New Model and Architecture for Data-
Intensive Collaboration. In Proc. of the 15th International Conference on Scientific and
Statistical Database Management. Cambridge, MA, July 9-11, 2003.

[67] Freire, J., Silva, C.T., et al. Managing Rapidly-Evolving Scientific Workflows. In Proc. of
the International Provenance and Annotation Workshop (IPAW). Chicago, IL, 3-5 May,
2006.

[68] Gotel, O. and Finkelstein, C. An Analysis of the Requirements Traceability Problem. In
Proc. of the 1st Intl. Conference on Requirements Engineering. p. 94-101, Los Alamitos, CA,
1994.

[69] Gotel, O. Contribution Structures for Requirements Engineering. Thesis (Ph.D) Thesis.
Imperial College of Science, Technology, and Medicine, 1996. <http://www-
dse.doc.ic.ac.uk/dse-papers/viewpoints/olly_phd_thesis.ps.Z>.

[70] Groth, P., Luck, M., et al. A Protocol for Recording Provenance in Service-Oriented Grids.
In Proc. of the 8th International Conference on Principles of Distributed Systems (OPODIS).
Grenoble, France, Dec 15-17 2004.

[71] Groth, P., Miles, S., et al. Recording and Using Provenance in a Protein Compressibility
Experiment. In Proc. of the 14th IEEE International Sympsoium on High Performance
Distributed Computing. Research Triangle Park, NC, July 24-27 2005.

[72] Groth, P., Miles, S., et al. Principles of High Quality Documentation for Provenance: a
Philosophical Discussion. In Proc. of the International Provenance and Annotation
Workshop (IPAW). Chicago, IL, May 3-5, 2006.

[73] Hamilton, V.L. and Beeby, M.L. Issues of Traceability in Integrating Tools. In Proc. of the
IEE Colloquium on Tools and Techniques for Maintaining Traceability During Design.
London, UK, Dec 2, 1991.

[74] Hayes, J. and Dekhtyar, A. Grand Challenges for Traceability. Center of Excellence for
Traceability, Technical Report COET-GCT-06-01-0.9, 2007.

[75] Hayes, J.H., Dekhtyar, A., et al. Helping Analysts Trace Requirements: An Objective Look.
In Proc. of the 12th IEEE International Requirements Engineering Conference. p. 249-59,
Kyoto, Japan, Sept 6-11, 2004.

46 of 51

[76] Hayes, J.H. and Dekhtyar, A. Humans in the Traceability Loop: Can't Live with 'Em, Can't
Live Without 'Em. In Proc. of the 3rd Intl. Workshop on Traceability in Emerging Forms of
Software Engineering. p. 20-23, Long Beach, CA, Nov 8, 2005.

[77] Jarke, M. Requirements Tracing. Communications ACM. 41(12), p. 32-36, Dec, 1998.
[78] Jarke, M., Bui, X.T., et al. Scenario Management: An Interdisciplinary Approach.

Requirements Engineering Journal. p. 155-173, 1998.
[79] Khan, I., Schroeter, R., et al. Implementing a Secure Annotation Service. In Proc. of the

International Provenance and Annotation Workshop (IPAW). Chicago, IL, 3-5 May, 2006.
[80] Leffingwell, D. and Widrig, D. The Role of Requirements Traceability in System

Development. <http://www-
128.ibm.com/developerworks/rational/library/content/RationalEdge/sep02/TraceabilitySep02
.pdf>, 2002.

[81] Lindvall, M. and Sandahl, K. Practical Implications of Traceability. Software - Practice and
Experience. 26(10), p. 1161-80, 1996.

[82] Ludäscher, B., Altintas, I., et al. Scientific Workflow Management and the Kepler System.
Concurrency and Computation: Practice and Experience. 18(10), p. 1039-1065, 2006.

[83] Marcus, A. and Maletic, J.I. Recovering Documentation-To-Source-Code Traceability Links
Using Latent Semantic Indexing. In Proc. of the Proceedings of the 25th International
Conference on Software Engineering. Portland, OR, 2003.

[84] Miles, S., Groth, P., et al. The Requirements of Recording and Using Provenance in e-
Science Experiments. Electronics and Computer Science, University of Southampton,
Technical Report, 2005.

[85] Miles, S. Electronically Querying for the Provenance of Entities. In International
Provenance and Annotation Workshop (IPAW). Moreau, L. and Foster, I., Editors: Chicago,
IL, 2006.

[86] Neumuller, C. and Grunbacher, P. Automating Software Traceability in Very Small
Companies - a Case Study and Lessons Learned. In Proc. of the 21st IEEE International
Conference on Automated Software Engineering. Tokyo, Japan, Sep 18-22, 2006.

[87] Oinn, T., Greenwood, M., et al. Taverna: Lessons in Creating a Workflow Environment for
the Life Sciences. Concurrency and Computation: Practice and Experience. 18(10), p. 1067-
1100, 2006.

[88] Pennington, D., Higgins, D., et al. Ecological Niche Modeling Using the Kepler Workflow
System. In Workflows for e-Science, Taylor, I.J., et al. eds. p. 91-108, Springer: London,
2007.

[89] Pohl, K. and Jacobs, S. Concurrent Engineering: Enabling Traceability and Mutual
Understanding. Concurrent Engineering: Research and Applications. 2(4), p. 279-90, 1994.

[90] Pohl, K., Brandenburg, M., et al. Integrating Requirement and Architecture Information: A
Scenario and Meta-Model Based Approach. In 7th Intl. Workshop on Requirements
Engineering: Foundation for Software Quality, 2001.

[91] Rajbhandari, S. and Walker, D.W. Support for Provenance in a Service-based Computing
Grid. In Proc. of the e-Science All-Hands Meeting Nottingham, UK, Aug 31-Sep 3, 2004.

[92] Ramesh, B., Powers, T., et al. Implementing Requirements Traceability: A Case Study. In
Proc. of the 1995 Intl. Symposium on Requirements Engineering (RE'95). p. 89-95, York,
UK, Mar 27-29 1995.

[93] Ramesh, B. and Jarke, M. Towards Reference Models for Requirements Traceability. IEEE
Transactions in Software Engineering, 27(1),. 27(1), p. 58-93, 2001.

47 of 51

[94] Reilly, C.F. and Naughton, J.F. Exploring Provenance in a Distributed Job Execution
System. In Proc. of the International Provenance and Annotation Workshop (IPAW).
Chicago, IL, May 3-5, 2006.

[95] Richardson, J. and Green, J. Automating Traceability for Generated Software Artifacts. In
Proc. of the 19th Intl. Conference on Automated Software Engineering. p. 24-33, Linz,
Austria, Sept 20-24, 2004.

[96] Schach, S.R. Classical & Object-Oriented Software Engineering. Fourth ed. 616 pgs.,
McGraw Hill, 1999.

[97] Seffino, L.A., Bauzer Medeiros, C., et al. WOODSS - A Spatial Decision Support System
Based on Workflows. Decision Support Systems. 27(1-2), p. 105-23, 1999.

[98] Senior, I. e-Science Definitions. <http://e-science.ox.ac.uk/public/general/definitions.xml>,
2002.

[99] Silva, C.T., Freire, J., et al. Provenance for Visualizations: Reproducibility and Beyond.
Computing in Science & Engineering. 9(5), p. 82-89, Sep-Oct, 2007.

[100] Simmhan, Y.L., Plale, B., et al. A Survey of Data Provenance in e-Science. p. 31-36, ACM
Press, 2005.

[101] Singh, M.P. and Vouk, M.A. Scientific Workflows: Wcientific Computing Meets
Transactional Workflows. In Proc. of the NSF Workshop on Workflow and Process
Automation in Information Systems: State of the Art and Future Directions. . Athens, GA,
May 8-10, 1996.

[102] Singleton, M.E. Automating Code and Documentation Management. Prentice-Hall, Inc.:
New Jersey, 1987.

[103] Spanoudakis, G. and Zisman, A. Software Traceability: A Roadmap Advances in Software
Engineering and Knowdledge Engineering. Chang, S.K. ed. 3, World Scientific Publishing,
2005.

[104] Stevens, R., Zhao, J., et al. Using Provenance to Manage Knowledge of In Silico
Experiments. Briefings in Bioinformatics. 8(3), p. 183-94, May, 2007.

[105] Stevens, R.D., Tipney, H.J., et al. Exploring Williams–Beuren Syndrome Using myGrid.
Bioinformatics. 20(1), p. i303-10, Aug 4, 2004.

[106] Sugden, R.C. and Strens, M.R. Strategies, Tactics and Methods for Handling Change. In
IEEE Symposium and Workshop on Engineering of Computer-Based Systems:
Friedrichshafen, Germany, 1996.

[107] Szomszor, M. and Moreau, L. Recording and Reasoning Over Data Provenance in Web and
Grid Services. In Proc. of the On The Move Confederated International Conferences:
CoopIS, DOA, and ODBASE. Catania, Sicily, Italy, Nov 3-7 2003.

[108] Tuot, C.J. Kepler: A Platform to Process Spatial Information?
<http://ctuot.twoday.net/stories/4133335/>.

[109] Wainer, J., Weske, M., et al. Scientific Workflow Systems. In Proc. of the Proceedings of
NSF Workshop on Workflow and Process Automation in Information Systems: State of the
Art and Future Directions. . Athens, GA, May 8-10, 1996.

[110] Wallace, D. and Ippolito, L. A Framework for the Development and Assurance of High
Integrity Software, Commerce, U.S.D.o., NIST, 1994

[111] Weidenhaupt, K., Pohl, K., et al. Scenarios in System Development: Current Practice. IEEE
Software. 15(2), p. 34-45, 1998.

[112] Yu, J. and Buyya, R. A taxonomy of scientific workflow systems for grid computing.
SIGMOD Record. 34(3), p. 44-9, 2005.

48 of 51

[113] Zhao, J., Goble, C., et al. Semantically Linking and Browsing Provenance Logs for E-
science. In Proc. of the 1st International Federation for Information Processing Conference.
Paris, France, June 17-19 2004.

[114] Zhao, Y., Wilde, M., et al. Applying the Virtual Data Provenance Model. In International
Provenance and Annotation Workshop (IPAW): Chicago, IL, 2006.

[115] Zhao, Y., Wilde, M., et al. Virtual Data Language: A Typed Workflow Notation for
Diversely Structured Scientific Data. In Workflows for e-Science, Taylor, I.J., et al. eds. p.
258-275, Springer: London, 2007.

CAVES [39, 40] Kepler [26, 43, 88] Taverna [104, 113] VisTrails [67] VDS [6, 65, 66, 114] PreServ [45, 71] PASS [46]

D
om

ai
n

High energy physics
Ecology, Biology, Geology,
Astrophysics, Chemistry Bioinformatics

High Energy Physics,
Astronomy, Neuroscience Bioinformatics

Pr
oj

ec
t

myGrid GriPhyN PASOA

What

Interaction between
researchers & their data
analyses

Provenance events;
Workflow evolution

Process provenance (how,
when, where the workflow is
run, data input/output,
services invoked) and data
provenance

Workflow evolution;
changes to workflow
instance (e.g parameter
value change); changes to
workflow specification (e.g.
changes to modules and
connections, operations
invoked)

Workflow execution (which
includes calls to
transformations, executable
programs, SQL command
queries, method of
invocation); derived files

Service interaction
(interaction p-assertion);
internal service state (actor
state p-assertion)

Processes at the operating
system level; kernel
modules loaded, installed
libraries, process
environment

How Extend data analysis
framework to automatically
log all changes to the data.
Different versions of data
product and code checked
into the CVS

Provenance Recorder
captures registered events
at the communication ports
between actors and saves
them to the provenance
store. Provenance info is
associated with a data
product

Workflow enactment engine
records the order of
services invoked in a log.
Data provenance is inferred
from the process log.

Action-based provenace -
records user interaction
with a workflow. This is
recorded as a tree with
each node representing a
version of a workflow

Use a parent process
wrapper to capture the
workflow execution and the
derived files. Captured
provenance is sent back to
the workflow enactment
engine and saved to the
virtual data catalog as
invocation records

Record interaction between
services

Observes processes and
captures low-level details

Granularity

User-interaction with data
stored by session. Ability to
select between partial or
complete logs Event level Service invocation

User-interaction with the
workflow Service invocation; dataset

Service interaction; internal
service state

OS Events; Record
provenance on a per-file
basis

What

Free form annotation

Context (who, what, where,
when, why); experiment
steps or process of data
analysis

Organizational (user,
creator, organization,
project, hypothesis,
experiment design);
Knowledge (personal notes,
domain-specific info);
experiment steps or process
of data analysis

Identify selected versions;
experiment steps or process
of data analysis

Semantic annotation on
procedures, arguments,
datasets, and workflows;
experiment steps or process
of data analysis Free form annotation

How

Annotate a uniquely
identified data product or
component (processing
unit) using the 'annotate'
command in the user
interface

Specify context & workflow
in a workflow editor

Knowledge - use ontologies
in the myGrid registry to
annotate logs; specify
workflow in editor

Assigning names (aka tags)
to versions deemed
important; specify workflow
in editor

Metadata annotation
defined by the virtual data
schema; specify workflow in
editor

Add annotation through a
query tool (Provenance
Explorer)

Granularity Data product level Process level Process level Workflow version
Virtual data objects defined
by the schema File-level

Appendix: Survey of Provenance Systems

Automated
Capture

Manual
Capture

C
ap

tu
ra

bi
lit

y

Hazel
Text Box
 49 of 51

CAVES [39, 40] Kepler [26, 43, 88] Taverna [104, 113] VisTrails [67] VDS [6, 65, 66, 114] PreServ [45, 71] PASS [46]

Appendix: Survey of Provenance Systems

U
til

iz
ab

ili
ty Provenance logs can be

extracted, inspected, and
modified for further analysis.
Extracted provenance logs
can be used to reproduce
virtual data product on
demand

Analyzing process
provenace aids in
debugging a workflow
execution. Smart re-run
saves time in re-running
experiments where only a
parameter change is
involved

Use ontology to dynamically
generate hypertext. Ability
to query, browse
provenance logs.
Reproducibility

View history of workflow
changes, re-use, compare
workflows

Query against virtual data
relationships (i.e. workflow
design and execution),
metadata annotation,
lineage info (e.g. derived
datasets, ancestor datasets)

Reasoning over provenance
logs aids in determining the
provenance of a dataset.
Query against resulting
metadata catalog

In combination with
disclosed provenance
techniques (e.g. scientific
workflows), provenance info
can aid in identifying
differences in execution
environment

Training Time
to Use

Provenance
Tool

Low to none for existing
users of the ROOT data
analysis tool

Low - easy to learn
graphical workflow
language

Low - easy to learn
graphical workflow
language

Low - easy to navigate
through graphical workflow
space

Medium - medium effort to
learn scripting workflow
language

Low to none. Minimal user
interaction

Manual
Provenance
Collection Low - Manual annotation

based on what users deem
important Low - context

High - Knowledge level
annotations require high
effort from experts

Low to none - assign names
to versions

Low to medium. Annotation
must comply with the
schema

Low - Manual annotation
based on what users deem
important

Developing
Custom Code No allowance for

provenance collection
outside the analysis tool

Provenance capture only
possible with actors used in
the workflow. Can wrap web
services as actors

Provenance capture only
possible with myGrid
services must be used
within the workflow

Provenance capture
possible with components
that conform to the Globus
toolkit

Develop wrappers on
existing systems to capture
provenance

No custom code necessary
to capture provenance.
Only requirement is that OS
is PASS-enabled

M
ai

nt
ai

na
bi

lit
y

Browse data/components to
retrieve and update

Not specified, although it
states that provenance is
collected/used at each
stage in the lifecycle Update objects using SQL

Provenance data can be
queried

Heterogeneous
Data

Annotate parameters to
partially automate
transformation of
output/input data

Use unique IDs (Life
Science Identifier) to
uniquely identify data within
myGrid. External identity is
still a problem. Use shim
services to reconcile type
mismatches between input
and output data

Ability to access multiple
sources of data through
inter-catalog references

Heterogeneous
Tools

 Wrap webservices as actors

Integration between
workflow execution engine
and different components -
based on plug-ins that listen
to events generated.

Any component as long as it
conforms to the PReP
protocol of interacting with
the provenance store

Capture OS level calls -
automatically collect
provenance on any tool
invoked

Different
Groups Users in the access control

list can access analysis
published in the server

Users commit selected
changes. Scientists
exchange patches and
synchronize their VisTrails

Virtual Data Catalogs
(VDCs) are maintained by
local groups. Use federated
indexes to access
distributed VDCs

A
ffo

rd
ab

ili
ty

A
cc

es
si

bi
lit

y

Hazel
Text Box
 50 of 51

CAVES [39, 40] Kepler [26, 43, 88] Taverna [104, 113] VisTrails [67] VDS [6, 65, 66, 114] PreServ [45, 71] PASS [46]

Appendix: Survey of Provenance Systems

Storage Repositories, known as
caves, are distributed,
mirrored and synchronized.
Users may store partial or
complete provenance
locally or remotely in a
virtual data logbook

A potential limit to scalability
in the method of creating
federated indexes

Potentially no limit to the
provenance data to be
recorded since different
data stores can be used as
long as the PReP API is
used. Different services
can interact with the
provenance store
asynchronously.

Strategies to minimize
storage overhead include
pruning, merging similar
information, deleting
irrelevant attributes

Number of
Users

No upper limit to the
number of users

No upper limit to the
number of users

Domain
Customization

None. Tool is focused on
high energy physics

Manually entered annotation
may contain domain-
specific concepts

Project
Customization

Virtual organizations can
adopt naming conventions
to label their virtual data
products

Local control over what
objects are stored in the
VDC. May also maintain
"overlay" information on
objects maintained by other
groups

User
Customization

Control over which analysis
history to publish and what
to store in local machine

Control over what level of
granularity to capture
provenance. Option to save
all provenance info or to
recreate the data

Different users may
maintain different ontologies
over the same datasets.
This affords different views
on provenance logs

May make a permanent
copy of derivation logs in
their workspace. May also
maintain "overlay"
information on objects
maintained by other groups

May choose when
documentation of process
should be recorded

A
ud

ita
bi

lit
y

Reproduce virtual data
product by extracting logs
from the server

Reproducibility through the
use of captured provenance (Re)derivation of data

C
us

to
m

iz
ab

ili
ty

Sc
al

ab
ili

ty

Hazel
Text Box
 51 of 51

	UCI-ISR-07-9-cvr
	abs-TR_UCI-ISR-07-9
	TRv1_UCI-ISR-07-9

