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Abstract:  
 

Researchers and practitioners alike agree that software traceability is important to 
software development. Despite its recognized utility, software traceability has largely 
been infeasible in practice due to the high costs involved and the low benefits obtained. 
In the first part of this survey, we identify the difficulties that hinder end-to-end software 
traceability, and we analyze these difficulties from economic, technical, and social 
perspectives. We also discuss current approaches that attempt to address the identified 
difficulties. In the second part of this survey, we highlight striking similarities between 
software traceability and the concept of data provenance in e-Science. We investigate 
whether data provenance techniques can potentially address the difficulties of 
implementing end-to-end software traceability. Inspired by data provenance techniques, 
we provide insights for improving software traceability.  
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Abstract 
Researchers and practitioners alike agree that software traceability is important to software 
development.  Despite its recognized utility, software traceability has largely been infeasible in 
practice due to the high costs involved and the low benefits obtained.   In the first part of this 
survey, we identify the difficulties that hinder end-to-end software traceability, and we analyze 
these difficulties from economic, technical, and social perspectives.  We also discuss current 
approaches that attempt to address the identified difficulties.  In the second part of this survey, 
we highlight striking similarities between software traceability and the concept of data 
provenance in e-Science.  We investigate whether data provenance techniques can potentially 
address the difficulties of implementing end-to-end software traceability.  Inspired by data 
provenance techniques, we provide insights for improving software traceability. 

 

1 Introduction 
Software traceability is important to the success of a software development project.  Software 
traceability relates the various information products generated in software development, called 
artifacts, to enable a comprehensive understanding of the software being produced.  The benefits 
of achieving software traceability include better verification and validation of customer 
requirements, lower maintenance costs, and better assessment of product quality. 
 
Despite the benefits of software traceability, tracing artifacts across the entire software 
development lifecycle, or end-to-end traceability, is difficult to achieve.  The confluence of 
factors such as the distribution of artifacts across different groups, the heterogeneity of artifacts 
and tools used, and the rapid changing nature of artifacts poses challenges to tracing artifacts.  
Because artifacts are distributed across different groups, artifacts are inaccessible and are 
difficult to trace.  Because of the heterogeneity of artifacts, it is difficult to trace across multiple 
formats and across multiple levels of abstraction.  Because of the heterogeneity of tools that lack 
interoperability, it is difficult to represent traceability links.  Because of rapidly changing nature 
of artifacts, established trace links quickly become obsolete.  All these factors contribute to the 
high cost of supporting traceability. 
 
To find fresh approaches to achieving traceability, we seek insights from e-Science, a domain 
with characteristics similar to software engineering.  Data provenance techniques in e-Science 
enable the tracing of data products across an entire experiment lifecycle.  We analyze the ways 
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that data provenance systems can potentially fulfill the requirements necessary for successful 
end-to-end software traceability. 
 
The survey is organized as follows.  Section 2 discusses software traceability and analyzes the 
factors that hinder software traceability in practice.  Section 3 identifies requirements for end-to-
end software traceability.  Section 4 introduces the domain of e-Science.  Section 5 discusses the 
similarities between data provenance and software traceability and the rationale for examining 
data provenance techniques.  Section 6 presents related works in software traceability and in data 
provenance.     Section 7 surveys the ways that data provenance systems and techniques 
potentially meet the software traceability requirements.  Insights gleaned from data provenance 
are presented in Section 8.  Finally, Section 9 concludes with insights that are applicable to 
software traceability.   
 

2 Software Traceability  
 
This section provides a brief history and accepted definitions of software traceability in the 
literature.  Next, we analyze the reported difficulties in achieving software traceability and we 
categorize them into three perspectives.  Then, we briefly survey existing approaches that aim to 
address these problems.  We end the section with our definition of software traceability.      
 

2.1 Brief History 
 
Historically, software traceability has predominantly been applied to the area of requirements 
engineering.  Requirements traceability was introduced in the 1970s  to minimize the drift 
between the software product’s actual behavior and the original requirements specified by the 
customer [22].  Originally concerned with tracing between requirements artifacts, the field of 
software traceability has grown to accommodate other types of artifact relationships across the 
software lifecycle [103] with the goal of enhancing the software product quality.  Almost 40 
years after the concept of traceability was introduced in the field of software engineering, the 
research literature is replete with approaches to software traceability [27, 28, 51, 52, 59, 61-63, 
86, 90, 95, 102].  However, the inability to achieve traceability still exists in industry [51, 74, 
103]. 
 

2.2 Definitions 
 
Definition: Software artifact is defined as “a piece of information produced or modified as a 
part of the software engineering process” [51].  Examples of software artifacts include 
requirements documents, design documents, code, and test cases. 
 
Definition: Requirements traceability is defined as “the ability to describe and follow the life 
of a requirement, in both forwards and backwards direction” [68].  Requirements are the encoded 
customer expectations of a software product [96].  Requirements traceability is capturing the 
relationship between requirements artifacts and the other artifacts in the software lifecycle.  
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Requirements traceability has been classified into pre- and post- requirements specification 
traceability.  Pre-requirements specification (pre-RS) traceability is concerned with tracing 
requirements to the sources of requirements while post-requirements specification (post-RS) 
traceability is concerned with tracing requirements to downstream artifacts in the lifecycle [68]. 
 
Definition: Software traceability is defined as the “ability to relate artefacts created during the 
development of a software system to describe the system from different perspectives and levels 
of abstraction with each other, the stakeholders that have contributed to the creation of the 
artefacts, and the rationale that explains the form of the artefacts” [103].  This broader definition 
of traceability encompasses the various possible relationships between artifacts. 
 
Definition: Trace link represents a relationship between artifacts.  A trace link may or may not 
contain the type of relationship represented, i.e. link semantics. 

 

2.3 Benefits of Software Traceability 
The importance of software traceability has been recognized by many researchers [59, 64, 74, 78, 
111] since it aids the following activities: system comprehension, impact analysis, system 
debugging, and communication between the development team and stakeholders [59, 77, 90, 92, 
95].  System comprehension is enhanced because software traceability connects the rationale 
(e.g. reasons for designing the system and reasons for using a component) to artifacts.  Impact 
analysis is supported because software traceability identifies which parts of the software system 
are affected by a changed artifact.  System debugging is informed because software traceability 
couples use cases with their implementation.  Communication between the development team 
and stakeholders is facilitated because software traceability associates artifacts with the 
contributors of those artifacts.  In some instances, traceability is needed to comply with internal 
standards and external regulations [32, 80, 92, 110].  Other benefits to traceability include lower 
maintenance costs and better assessments of product quality, both of which lead to improved 
customer relationships [73, 92]. 
 

2.4 Problem Analysis 
 
The inability to achieve software traceability in practice, henceforth referred to as the traceability 
problem, still exists.  Despite the numerous approaches suggested in the research literature, they 
are not adopted in practice [68, 103, 106].  Even in places where a requirements traceability 
approach is in place, the difficulties of tracing artifacts are still reported [32, 68, 103].  Since it is 
rare to achieve end-to-end traceability in practice [31], it has been identified as one of the grand 
challenges in traceability [74]. 
 
This section surveys the reported manifestations of the traceability problem in the literature.  
Since the traceability problem is multi-faceted [69], we examine it from three different 
perspectives: economic, technical, and social perspectives.  Examining the software traceability 
problem from these three perspectives helps us to understand why software traceability is 
difficult to achieve in practice. 
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Figure 1: Traceability Perspectives [32] 

 

2.4.1 Economic Perspective 
The economic perspective focuses on the cost of supporting traceability.  Implementing 
traceability has been known to incur high costs in terms of labor hours [77, 92] and high costs 
are a hindrance in achieving effective traceability [21].  There is a high cost associated with 
defining traceability links as well as maintaining these links [20].  For instance, a case study of a 
large government funded project reports that the costs of implementing traceability is more than 
double the normal documentation costs [92].  Some practitioners argue that time spent in 
performing traceability tasks could have been allocated to writing software code [54].  Even with 
companies that are willing to pay the high costs of traceability, the expected benefits are still not 
realized [93, 106].  Other sources of costs include purchasing or developing a trace tool as well 
as training users [32]. 
 
To mitigate the cost, some approaches examine the tradeoffs between cost and quality [63] or 
between cost and benefit [62].   Regarding the tradeoff between cost and quality, one can search 
for the optimal position by reducing the level of granularity of traces in order to save costs while 
still maintaining an acceptable level of quality [63].  For instance, generating trace links at the 
method source code level is more expensive than tracing at the class source code level even 
though there is usually not much difference in the accuracy of links; thus, in this case, one should 
not perform fine-grained tracing of the source code.  Meanwhile, approaches that examine the 
cost-benefit tradeoff assign importance values to trace links and concentrate on tracing over only 
higher value links to minimize cost [62].  One limitation of this scheme is that values assigned to 
trace links are entirely project-specific.  A similar approach allocates more trace support to the 
crucial parts of the software system [52].  
 

2.4.2 Technical Perspective 
The technical perspective deals with establishing and maintaining trace links as well as tracing 
across heterogeneous artifacts and heterogeneous tools.  While the economic perspective 
addresses the costs in supporting traceability, the technical perspective addresses the complexity 
of tracing due to the explosion of the artifact space, the differing levels of formality of artifacts, 
and the numerous relationships [102], sometimes implicit [27], that occur at various levels of 
granularity.  The different types of trace relationships are surveyed in [103].     
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Explosion of Artifact Space 
Tracing across various artifacts in a software development lifecycle is difficult due to the sheer 
number of artifacts and the numerous relationships between these artifacts.  While it is necessary 
to capture all relevant traces to avoid the loss of knowledge, capturing too many traces is 
unwanted. Excessive traceability is known to be unmanageable [59] and can negatively impact 
the accuracy of links [62].  Thus, it is important to know the boundary between complete and 
excessive tracing. 
 
There are currently different ways of bounding the problem space of artifacts and artifact-
relationships.  The agile community advocates a lean traceability approach where the only traces 
captured are those determined to be relevant by the developers of the system [54].  This approach 
assumes that the developers already have a basic understanding of the system.  The approach 
may also be subject to staff turnover.  The selection of specific artifacts to trace can also be 
based on the project manager’s discretion or the information gleaned from past projects [59].  
However, this approach does not aid inexperienced managers or organizations that lack records 
of past projects.  Some examples of the types of artifacts that may be captured are in [59].   
 
Maintenance of Trace Links   
Maintaining trace links is another major problem due to the prevalence of link deterioration.    
Link deterioration is defined as the obsolescence of links due to the evolution of artifacts.  
Artifacts evolve independently and the changes are not reflected in the trace links nor are they 
reflected in the related artifacts.  For example, in a requirements-centric traceability, changing 
the requirements necessitates the update of all the corresponding links and related artifacts.  
Without a systematic approach to performing updates, the cost of maintaining traceability can be 
very high.  Not only is the cost high, but there is also no guarantee that all the impacted links are 
updated.  Thus, the volatility of requirements is identified as one of the main sources of difficulty 
in large complex systems [93]. 
 
Approaches to maintaining trace links include controlling artifact changes, cascading changes 
through events, and recovering traces automatically.  Artifact changes can be controlled by 
establishing a development process to disallow people from changing artifacts directly (e.g. 
Review Boards [102]).  In this approach changes have to be approved by a review board.  Since 
this process imposes high overhead, only high visibility documents go through review boards.  
The cascading of artifact changes through events can be performed by event-based traceability, 
which uses the publish-subscribe mechanism to relate various artifacts to the requirements 
artifact [51].  Thus, when a requirements artifact changes, the subscribed artifacts are notified.  A 
drawback of this approach is the cost of manually registering artifacts with the requirements 
artifact.  The third approach is recovering candidate trace links automatically through 
information retrieval (IR) techniques.  To date, trace recovery techniques have not been able to 
provide full accuracy [76].  One hindrance is that artifacts must be preprocessed before IR 
techniques are used  [53].  Even with more sophisticated IR techniques, it is difficult to achieve 
high recall and precision rates.  (Recall is the percentage of retrieved links out of all relevant 
links while precision is the percentage of correct links out of the retrieved links [54].)    
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Heterogeneity of Artifacts  
The heterogeneity of artifacts is another factor that contributes to the traceability problem.  
Artifacts produced in the course of software development vary in their levels of formality, 
ranging from unstructured documents to highly formal code.  The differing formats and notations 
by which artifacts are expressed as well as the different levels of abstractions represented by the 
artifacts present challenges to establishing traces across different artifact types. 
 
Approaches that address the heterogeneity of artifacts include two-dimensional traceability, 
model transformation, and information integration.  Two-dimensional traceability enables tracing 
between different types of artifacts to increase program comprehension [81].  The two 
dimensions, horizontal and vertical traceability, are complementary to each other.  Horizontal 
traceability maps associated items across different artifacts while vertical traceability maps items 
within the same artifact.  Another approach, model transformation, enables tracing design 
artifacts across multiple levels of abstraction.  Transformations can vary in the level of 
automation.  Fully automated transformation entails the use of transformation specification on a 
design artifact to produce a realization that is at a lower level of abstraction [23].  Still another 
approach, information integration, translates heterogeneous artifacts into a common format in a 
repository.  Trace relationships between artifacts are automatically generated within the 
repository [27].   
 
Heterogeneity of Tools 
Tracing software artifacts across different tools is difficult due to the lack of interoperability 
between different tools [59, 68, 92].  The separation of information by tools is referred to as the 
“islands of information” problem [27].  For instance, changing the artifacts outside a trace tool 
does not guarantee that the artifacts inside the trace tool are updated [55, 59].  The lack of 
interoperability between different tools necessitates redundant data entry [31].  Not only is 
redundant data entry a tedious task, but it also adds the overhead of reconciling data [27].   
 
One way to address tool heterogeneity is through the use of custom code to enable different tools 
to exchange data with a shared repository [32].  This approach avoids the problem of redundant 
data entry since artifact changes are always reflected in the shared repository. 
 

2.4.3 Social Perspective  
The social perspective is equally important to consider, since it focuses on the interaction of 
various groups and their effect on traceability.  This perspective also focuses on the expectations 
and attitudes of various stakeholders toward traceability.  It is recognized that the human element 
plays a crucial part in determining the quality of traceability [31, 74, 76].  For instance, 
regardless of the results of the automatically generation of trace links, users determine whether 
the trace links are correct in the end [76].   
 
Different Groups Own Different Artifacts 
Traceability across artifacts owned by different groups is difficult due to the lack of accessibility 
of artifacts to those outside the groups. For example, the lack of accessibility to the 
requirements’ sources, which could be distributed among multiple groups, has been the most 
frequently cited problem by practitioners [68].  In addition, distributing the ownership of 
requirements among different groups makes it difficult to trace the dependency relationships 
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among the requirements [93].  Lack of communication between groups is one of the factors that 
contribute to the lack of accessibility of artifacts  [68]. 
 
Approaches that address the lack of accessibility to artifacts include negotiating changes to 
upstream artifacts and publishing artifacts to a portal.  Encouraging teams to negotiate the 
changes to upstream artifacts like requirements enhances communication between groups and 
increases the accessibility of artifacts [31].  Publishing artifacts to a portal raises the visibility 
and accessibility of artifacts to other groups [32]. 
 
 
Differing Expectations of Traceability Tool 
Implementing software traceability is difficult since traceability some times carries different 
meanings to different people.  For example, requirements traceability can mean tracking 
requirements in the contract for estimating project costs, tracking requirements to various 
artifacts in the lifecycle, or tracking the input and output of phases in the lifecycle [68].  In 
addition, stakeholders may have different expectations of trace tool [92].  For instance, a 
maintenance engineer expects support for impact analysis while a project manager expects 
support for tracking project status.   

 
One way to address different stakeholder expectations is by identifying the key users of a trace 
tool and developing custom in-house extensions to existing trace tools [93] or developing their 
own custom trace tools [32].  
 
Low Motivation for Performing Traceability Tasks 
In general, software engineers have little or no motivation to perform traceability tasks [30, 77].  
To them, traceability tasks are “laborious” [23] and “burdensome” [21].  In one study, half of the 
subjects who were commissioned to verify trace links dropped out because they “disliked” 
tracing [76].  There are several reasons for the low motivation of software engineers.  One reason 
is that traceability tasks are additional imposed work with no direct benefits [31, 77], known as 
the Traceability Benefit Problem [31].  Other reasons include the lack of understanding of the 
usage of trace information and the lack of first-hand knowledge of the artifacts [31].  
 
One way to address the low motivation for performing traceability tasks is by coupling 
traceability tasks with the usage [31].  Another method is to use trace information to directly 
support stakeholders in their lifecycle tasks [32] in order to provide direct benefits to users. 
 
Other Difficulties 
In addition to the above manifestations of the traceability problem, the following social factors 
are also reported in the literature: privacy [59, 92], politics [68, 77], low priority given to 
traceability [68] and unrecorded links due to lack of time [81].  One way to address privacy is by 
considering all artifacts as owned by a project team so that traces to individual contributors will 
not be used in performance evaluation [93]. 

2.4.4 Perspective Interplay 
Factors that pose challenges to traceability are not in isolation.  A factor affects or is affected by 
factors in other perspectives (See Figure 1).  The following subsections illustrate the interplay 
between the different perspectives and explain why solely addressing one perspective falls short 
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of addressing the traceability problem. We do not provide an exhaustive list of all possible 
interactions, but simply illustrate the interplay between the different perspectives. 
 

2.4.4.1 Interplay of Economic and Technical Perspectives  
There is a bidirectional relationship between the economic and technical perspectives.  The 
economic perspective is a major factor in determining whether a traceability approach will be 
adopted in industry [32].  The cost of establishing and maintaining trace links affects the number 
of artifact and relationship types that will be traced by an organization.  Since fine-grained 
tracing is more costly [31, 34], the economic perspective also determines the level of granularity 
that will be traced.   
 
Meanwhile, the technical perspective also affects the economic perspective.  The level of tool 
support in establishing or defining traceability links heavily determines the cost of tracing [81].  
The lack of interoperability between tools also contributes to the high cost of traceability since 
this necessitates redundant data entry and manual reconciliation [27, 32]. 
 
There is also tension between capturing all possibly relevant links to ensure that no loss of 
knowledge occurs [59, 93] and taking a minimalistic approach in trace capture [54] to lower the 
cost.    There is currently a lack of cost-benefit models [74] that guide organizations in selecting 
the types of artifacts, the level of granularity, and the types of relationships to trace.    
 

2.4.4.2 Interplay of Social and Technical Perspectives  
There is also a bidirectional interaction between the social and technical perspectives.  For 
instance, due to the low motivation of software engineers in performing traceability tasks, the 
captured traces were unusable in one case study [31].  In addition, different user expectations 
[68] make it difficult to use a commercial trace tool without customization.  Meanwhile, the 
technical perspective also affects the social perspective.  If a trace tool supports the development 
activities of stakeholders, it is more likely to be adopted [32, 86]. 
 

2.4.4.3 Interplay of Economic and Social Perspectives  
There is also a relationship between the economic and the social perspectives.  Due to the high 
costs required in performing traceability tasks, most software engineers have an aversion toward 
traceability [76, 77].  The high startup and maintenance cost of the manual approaches is also 
one of the common complaints of developers [30].   
 
The social perspective also affects economic perspective.   Lack of accessibility of artifacts 
between groups can make tracing across groups more costly since more time is spent locating 
artifacts. 

2.4.4.4 Interplay of Economic, Technical and Social Perspectives  
There is also interplay between the three perspectives.  One example where this interplay can be 
illustrated is the automation of trace link generation.  To mitigate the costs, information retrieval 
methods are used [29, 55, 75, 83] to provide automated support for traceability at the risk of 
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potentially establishing inaccurate links.  Not only is this technique limited by its inability to 
provide fully accurate links, but it also does not provide the level of semantics needed for 
analysis [103].  Another difficulty with information retrieval techniques is that the accuracy is 
dependent on people [54, 55, 76].  First, the artifacts must be pre-processed to be more amenable 
to the information retrieval technique in order to yield better results [55].  Since link recovery 
techniques cannot reach 100% accuracy, post-processing by a human analyst identifies which of 
the candidate links generated are correct links [76].  Without human intervention, the validity of 
the traces is in question [62].  However, human analysts are also prone to error [76]. Hence, we 
see that all three perspectives can be interwined. 
 

2.5 Working Definition of Software Traceability  
 

As illustrated in the previous subsection, an effective end-to-end traceability approach should 
address the economic, technical, and social perspectives simultaneously.  Our definition for 
software traceability tackles these three perspectives. 
 
Definition: Software traceability elucidates relationships between artifacts in such a way that it 
supports various stakeholders in their software lifecycle tasks.  An elaboration of this definition 
follows. 

• Elucidate relationships: Software traceability should explain or make clear the 
relationships between artifacts through the captured trace semantics.   

• Support the entire software lifecycle: Traceability should not be restricted to one phase 
in development, nor should it be restricted to development activities prior to deployment.  
Traceability should enable comprehensive system understanding by enabling traceability 
from software inception to retirement.  For example, traceability should lower software 
maintenance costs by increasing the accessibility of related artifacts. 

• Support stakeholders in their software lifecycle tasks: Various stakeholders have 
different notions of traceability and we aim to cater to these differing interests.  The 
recorded traces should have semantic information beneficial to stakeholders.  We use the 
concept of layered traceability where users can customize their traceability view by 
maintaining their customized trace information.  This also implies the ability to trace at 
different levels of abstraction.  Since the usage of traceability is stakeholder-defined, 
traceability is not merely an overhead task to satisfy external (e.g. customer) 
requirements.  Instead, traceability supports stakeholders in their day-to-day tasks.  By 
enabling stakeholders to directly use the traced information they capture, the accuracy of 
traces increases.  Compliance with external traceability requirements is simply a by-
product of maintaining accurate internal (i.e. within project team) trace information.  
Supporting life cycle tasks implies that a benefit is derived from the cost of establishing 
and maintaining traceability.  The cost is invested into supporting actual development 
tasks. 

 
 
We have just examined the software traceability problem from the economic, technical, and 
social perspectives.  We also discussed our definition of software traceability.  We will now 
move on to discuss our framework of comparing provenance systems.  This framework addresses 
the specific challenges to traceability identified in Section 2.4. 
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3 Requirements for Effective End-To-End Software Traceability 
This section discusses important traceability properties that are necessary to achieve successful 
end-to-end traceability.  The following properties address the specific difficulties in achieving 
traceability (see Section 2.4 and [18, 74]).  The table below maps the properties to the primary 
perspective that they address. 

 

 
Table 1: Perspectives that the Software Traceability Properties Address 

 

3.1 Capturability  
One of the identified problems with software traceability lies in establishing traceability links.  
Manual approaches enable semantically-rich links to be captured but at a high cost.  On the other 
hand, trace recovery techniques lower cost but the links do not deliver the right level of 
semantics [103].  Thus, capturability is the property concerned with the means of capturing 
traces as well as the type of information captured.  This property distinguishes between 
automatic and manual trace capture since the type of capture affects the level of manual 
intervention required.  Finally, since the level of granularity can affect both the cost of tracing 
and the understandability of traces, it is important to understand the level of granularity 
supported.   
 
Capture Trace Semantics 
A sub-property of capturability, relationship semantics is concerned with capturing the semantics 
of trace links.  If the semantics are not explicitly recorded, they can be inferred via context.  In 
this survey, context is defined as the following: 
 
Definition: Context refers to the surrounding processes, people, tools or artifacts that affect 
either the production or modification of a given artifact.  Context aids in understanding trace 
relationships, since it can provide information on how and why artifacts are related.  However, 
the difficulty in a typical software development project is that context is lost.   
 

3.2 Utilizability 
Utilizability is a property concerned with the usage of trace information, e.g. querying and 
applying trace information to accomplish other tasks.  This property also identifies the actual 
benefits gained in having the traceability information.  This property answers the following 
questions.  How effectively does the traceability method provide the required information?  How 
usable is it?  How beneficial is it?     
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3.3 Affordability 
The problem of high costs of traceability is one of the hindrances to industry adoption [54].  
Affordability is a property that is concerned with minimizing costs.  Cost can be measured in 
terms of level of effort needed to train users, level of manual intervention required, and level of 
effort needed to develop custom code to enable traceability across different tools.   
 

3.4 Maintainability 
This property is concerned with the ease of maintaining traceability links.  One of the main 
challenges with adopting a traceability method is the high rate of link deterioration.  Software 
artifacts are constantly modified but the links are not updated.    

 

3.5 Accessibility 
Accessibility refers to the ability of various stakeholders to navigate to the traced artifacts.  There 
are three dimensions in this property: heterogeneity of artifacts, heterogeneity of tools, and the 
distribution of artifacts across different groups in a development team.  It is a challenge to trace 
between heterogeneous artifacts since they are at different levels of formality.  It is equally 
challenging to trace artifacts across heterogeneous tools due to lack of tool interoperability [55, 
59].  Finally, tracing artifacts across different groups is a challenge due to the lack of 
communication between groups [68].  Understanding mechanisms on how to effectively share 
artifacts used by other groups is essential.   
 

3.6 Scalability 
Due to the numerous artifacts produced in a software lifecycle, it is important for a traceability 
approach to be scalable.  Scalability is a property that addresses the ability to trace artifacts in 
large-scale projects.  Scalability can be evaluated in terms of the amount of storage needed for 
trace information, and number of users. 
 

3.7 Customizability 
Since traceability is perceived differently by different users [68], customizing a traceability 
approach is essential.  This property addresses the ease of customizing traceability according to 
the following categories: domain, project, and user.  Domain-specific customization is the ability 
to adapt a traceability approach to a specific domain [18].  Project-specific customization is the 
ability to adapt a traceability approach to a specific project.  Different organizations have 
different traceability requirements which may also vary from project to project [59].  Finally, 
user-specific customization is the ability to adapt a traceability approach to the different needs of 
the various stakeholders [68].  This customization enables stakeholders to directly benefit from 
the trace information they capture [31].   
 



   
 

16 of 51

3.8 Auditability 
This property addresses the ability of third party auditing of traceability links.  An outside user 
should be able to follow the traceability links to answer specific questions such as which 
requirements were tested, what is the project scope, who implemented a subsystem, what is the 
rationale for the design, etc.     
 
 
We have just covered the required properties for effective end-to-end traceability.  We now 
introduce the domain of e-Science in the next section.   

4 Overview of e-Science  
Scientists are increasingly relying on large-scale computation to perform experiments [71].   The 
burgeoning field of e-Science, in which computational resources are heavily used in scientific 
research [10, 98], involves collaborating teams of scientists who use distributed and 
heterogeneous resources to accomplish shared goals [70].  In silico experiments, which are 
performed on the computer or via computer simulation  [49], and data analysis are conducted in 
scientific fields such as high energy physics [1], biology [11, 14], geosciences [13], and 
engineering [12].  In silico experiments enable further data analysis on existing data as well as 
the formulation of hypotheses that can be tested in the laboratory [87]. 
 

4.1 Importance of Repeatability 
 
Despite the shift to increased usage of computational resources, the basic requirement for 
repeatability of experiments still holds.  The results of an experiment are compromised if one is 
not able to identify the data source and processing applied to it.  In some cases, the acceptance of 
results by the community hangs on the ability to reproduce the experiment [60].  Another reason 
for the importance of repeatability is the need to verify other researcher’s results and further 
one’s own research [37].  Tracking contextual information, such as users of the experiment, the 
rationale behind the experiment, and details about the experiment run, is essential to the 
scientific process [104].   
 
Due to the increased complexity of experiments and increased size of data sets, sometimes in the 
range of petabytes [1, 40], it is now more important to record the execution of an experiment 
because re-running experiments is a time-consuming effort.  Thus, the automated capture of data 
provenance, the series of transformations applied to input data [56], has become necessary  for 
repeatability of experiments. Consequently, provenance support for in silico experiments has 
recently received wide attention in the literature in different scientific domains [104].  Grand 
Challenges have been issued  [5] and several workshops [15-17, 19] have been organized to 
increase discussion on the topic of data provenance.  Numerous techniques [24, 33, 42, 50, 56, 
85] have been proposed and new tools [26, 36, 40, 46, 57, 58, 67, 71, 104, 114] have been 
developed to address data provenance.   
 
The main approach to capturing data provenance is through the use of scientific workflows [104] 
since they not only make it feasible to capture the individual workflow run, but they also codify 
the design of the experiment or scientific analysis.  Introduced more than a decade ago [101, 
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109], scientific workflows have gained wide adoption today among scientists due to their 
capabilities of tracking data and ordered transformations on data [104].  There are also other 
approaches that enable the capture of data provenance, such as the automated capture of user 
interaction with data [40] and the capture of file-related events [46].   
 

4.2 Definitions 
 
Definition: e-Science is defined as "[s]cience increasingly performed through distributed global 
collaborations enabled by the Internet, using very large data collections, terascale computing 
resources and high performance visualizations" [98]. 

 
Definition: Data provenance defined as the “origin and history of data” [104], enables the 
identification of the series of transformations applied to an input data [56].  Data provenance is 
also defined as the “metadata about experiment processes, the derivation paths of data, and the 
sources and quality of experimental components, which includes the scientists themselves, 
related literature, etc” [113].   Data provenance enables repeatability of experiments, verification 
and reproduction of data, and validation of in silico experiments that cannot be checked against 
the real world [71].  Other terms used for data provenance are data lineage or data pedigree, 
depending on the type of processing applied to data [38].   
 
Definition: Scientific workflow is defined as “a series of structured activities and computations 
that arise in scientific problem-solving” [101], and an “automated process that combines data and 
processes in a structured set of steps to implement computational solutions to a scientific 
problem” [26].  Scientific workflows are distinguished from business workflows in that scientific 
workflows are data-centric [56, 82, 109], are more flexible [97, 109], and are mainly used for 
running experiments [97]. 
 
 
We have briefly looked at e-Science and introduced terms that will be used for the remainder of 
the survey.  The next section juxtaposes the areas of data provenance in e-Science with software 
traceability in software engineering.  Interestingly, the problems in e-Science can also be 
analyzed from the economic, technical and social perspectives. 
 

5 Why Data Provenance Potentially Provides Insights to the 
Software Traceability Problem  

This section explains why insights can potentially be gained from data provenance approaches.  
Many similarities exist between these two domains, in terms of benefits, challenges, and 
requirements.    Like a software product, a scientific workflow is an intellectual product that is 
subject to intellectual property [79].  In addition, distributed collaborative research teams in e-
Science are similar to distributed software project teams in software development.  Table 2 
below summarizes other similarities. 
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Table 2: Similarities Between Data Provenance and Software Traceability 

 

5.1 Similar Benefits  
 

The benefits of capturing data provenance parallel the benefits of establishing traces between 
artifacts. One benefit to provenance is the ability to understand the significance of experimental 
results.  Similarly, traceability enables a more comprehensive understanding of the software 
product being developed.  Another benefit is the ability to assess the impact of a change.  Data 
provenance enables users to understand which processes need to be re-run due to parameter 
changes.  Software traceability also enables users to identify the dependent artifacts that must be 
changed.  A third benefit is the enhanced communication between scientists.  Data provenance 
records enable other scientists to understand the methods of analysis used in an experiment.  
Similarly, traceability allows software engineers to understand the rationale behind an artifact by 
being able to follow traces to related documents.  Still another benefit to data provenance is the 
ability to verify experiments.  Similarly, traceability also validates that requirements have been 
met.  Other benefits include the enabling of third party auditing, the lowering of cost through re-
use, and the identifying of bugs in the system. 

 

5.2 Similar Challenges  
Many of the manifestations of the software traceability problem parallel the problems in e-
Science.  In fact, the problems in e-Science can also be classified into the three perspectives we 
mentioned: economic, technical, and social (see Table 3).   
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Table 3: Similar Challenges Between Data Provenance and Software Traceability 

 

5.3 Similar Requirements  
Although there are different uses for provenance across the different fields in science, the basic 
requirements of recording, querying, and processing provenance information are applicable 
across science [84].  These parallel the requirements in software traceability for defining 
traceability links (recording provenance) and utilizing trace links (querying and processing 
provenance).  Other requirements in data provenance such as enabling the reuse of the 
experiment’s process, summarizing experimental results for project management, and enabling 
other scientists to use the information [84, 104] are also similar to the software traceability 
requirements of enabling reuse of software artifacts, collecting of progress statistics, and 
enabling the accessibility of information across different stakeholders.  Finally, the requirement 
for detailed, accurate, and reproducible audits of experiments [104] parallels the requirements for 
third party auditing in a software development setting.  
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5.4 Comparing and Contrasting Lifecycles  
 

 
  

Figure 2: Life Cycle of In Silico Experiment [104] 
 

 

 
Figure 3: Software Lifecycle - Spiral Model [35] 
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The in silico experiment lifecycle is very similar to the software development lifecycle.  The 
stages of experiment design, experiment running, experiment publication [104] (see Figure 2) are 
analogous to the software design, implementation, and deployment phases.  However, 
experiment preservation and experiment learning in the experiment life cycle [104] do not have 
counterparts in the software lifecycle.  It can be argued that risk analysis phase in the Spiral 
Development Life Cycle [35] (see Figure 3) has some semblance with the idea of learning from 
past experience.  Finally, the requirements elicitation phase in software development is not 
present in an in silico experiment lifecycle since the end-user and the developer of the 
experiment are the same person: the scientist.  Thus, the experimental design can be considered 
“correct” for an entire experiment lifecycle.  The design is then modified in subsequent lifecycles 
to test other hypotheses. 
 

5.5 Differences  
There are also some differences between data provenance and software traceability.  In data 
provenance, data products are more constrained (i.e. restricted to one level of abstraction) while 
software artifacts exist at different levels of formality.  However, even though data provenance is 
restricted to one level of formality, it still has problems with incompatible formats, incompatible 
data types, and incompatible semantic domains [33].  Thus, data integration techniques that 
address these problems could possibly be applied to software traceability.  In addition, data 
products in themselves do not carry any semantic information without added user annotation.  
Software artifacts, on the other hand, carry some semantic information that is understandable to 
humans.  Even in the presence of this semantic information, metadata such as timestamps and 
authorship would help to inform how an artifact relates to other artifacts.  Techniques that link 
data products with metadata would thus potentially be useful in software traceability.   
 
Lastly, in data provenance systems like scientific workflows, all processes are automated. In 
other words, all manipulations to a data product are performed by a computational object.  
Consequently, the data product is amenable to automatic provenance capture.  Meanwhile in 
software development, processes are mainly performed by humans and capturing traces 
automatically may be more difficult.  However, even with automated provenance capture, user 
annotations are still needed to supplement the captured data provenance.  Thus, insights from 
both automatic and manual provenance capture will still be useful in capturing traces.  
 

5.6 Discussion 
 
Due to the similarities between data provenance and software traceability, we conjecture that 
data provenance techniques could improve software traceability.  Since scientific workflows 
have led the way in providing provenance support [14, 105], most of the tools surveyed come 
from this category.  Since the recording of process and decisions [90] along with software 
artifacts is important in software traceability, we believe that insights from scientific workflows 
will especially be useful because scientific workflows raise the visibility of the process of  
manipulating and transforming data [88].  It is also important to note that scientific workflow 
systems, like Pegasus [59] and Condor [58], are not surveyed because they do not emphasize 
provenance capture but focus on scheduling jobs on the grid and providing reliable access to 
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high performance computing. In addition, provenance systems that focus on fine-grained 
provenance [48] such as scientific databases are also not surveyed.  While these techniques are 
useful in closed world domains, artifacts in a software development setting are not constrained to 
transformations between databases.  Yet, there are data integration techniques from scientific 
databases that may be useful, and they are briefly mentioned in Section 7.6.1.1.  Other tools and 
techniques surveyed are selected based on the data provenance insights they provide. 
 
 
We discussed the similarities between software traceability and data provenance.  We also 
explained why we can potentially glean insights from data provenance.  The next section 
presents related surveys in the areas of data provenance and software traceability. 
 

6 Related Surveys 
While surveys in the topics of software traceability and data provenance in e-Science already 
exist, this survey is unique in that it seeks insights from data provenance to apply to the software 
traceability problem.  In this section, we give an overview of related surveys in both software 
traceability and data provenance. 
 
An extensive survey on software traceability [103] discusses the state of the art in the field and 
covers topics such as trace link representation, the different uses of traceability, and approaches 
for generating and maintaining trace relations.  Interestingly, the survey attributes the traceability 
problem to issues reflecting the three perspectives we identified in Section 2.4.  Meanwhile, a 
survey of tools and approaches that aim to tackle the requirements traceability problem is 
provided in [69].  Since the focus of that work is identifying the sources of requirements, 
difficulties are attributed to human and organizational problems and high start-up costs. 
 
In the area of e-Science, data provenance systems are categorized according to usage, type of 
provenance (i.e. data-oriented or process-oriented), representation, storage, and method of 
dissemination [100].  Data provenance systems are also categorized according to their 
architectures (e.g. service-oriented, database, command processing, scripting) [100].  Another 
means of classifying of provenance systems is along the key functions in data lineage [37].  
Meanwhile, scientific processing systems are evaluated according to their workflow model, 
metadata model, and capabilities for lineage retrieval [38].  A taxonomy of scientific workflow 
systems is presented in [112].  Scientific workflows are classified according to workflow 
specification, workflow execution, error handling, information retrieval, and movement of data. 
 
 
We have just covered related surveys in software traceability and data provenance.  The next 
section surveys data provenance systems.  Specific data provenance techniques are also 
discussed where appropriate. 
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7 How Data Provenance Systems/Techniques Potentially Meet 
Software Traceability Requirements 

 
In this section, we survey various data provenance systems.  We then analyze the ways that these 
systems potentially meet the software traceability requirements.  
 

 
 

Figure 4: Categories of Automatic Provenance Capture 
 

7.1 System Overviews 
This section provides an overview of the provenance systems that we survey.  The systems are 
categorized by the level of automatic provenance capture they provide (see Figure 4). 

 
 

7.1.1 Category: Workflows 
This category of provenance systems is characterized by awareness of process.  The steps in an 
experiment or data analysis are manually encoded in the workflow specification.  The workflow 
specification is then used as the basis for executing the experiment or analysis.  Similar to the 
User Interaction category, provenance capture is coarse-grained.   
 
Kepler 
Kepler, a workflow editing environment based on Ptolemy II, enables actor-oriented modeling 
[82].  An actor is a component that represents a data or computational object [25]. A workflow 
consists of both actors and ports, the communication channels between actors.  Actors pass 
tokens that contain information through ports [44].  The director oversees the communication 
between actors and the overall workflow coordination [43, 82].  Kepler records provenance by 
capturing events at the communication ports.  Used in the domains of ecology, geology, biology, 
astrophysics, and chemistry [25], Kepler is an open-source project [4] with contributors from 
various projects including the Science Environment for Ecological Knowledge (SEEK) [8] and 
the Cyber infrastructure for the Geosciences (GEON) [13].  Although Kepler is still at its beta 
version, it has an active user mailing list [4] and is currently used by the German Research 
Center for Artificial Intelligence [108] to process spatial information. 
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Figure 7: Kepler System Architecture [26] 
 
 

Taverna 
Taverna is part of the myGrid project which is geared towards supporting the rapid prototyping 
of in silico experiments in the domain of bioinformatics [104].  A characteristic of the 
bioinformatics domain is the emphasis on the exchange of data analysis rather than the execution 
of computationally intensive experiments on the grid [87].  myGrid presents the Provenance 
Pyramid (see Figure 8) which classifies provenance into the following levels: process level, data 
level, organization level, and knowledge level [104].  A provenance service in the myGrid 
project, COHSE (Conceptual Open Hypermedia Services Environment) [113], dynamically 
generates hyperlinks between provenance logs and documents sets based on the attached 
semantic concepts from the myGrid ontology.  Taverna uses the Resource Description 
Framework (RDF) to represent provenance.   As an open source project, Taverna has gone 
through several official releases [3].   Taverna has been successfully used in the genetic research 
of the Graves Disease and Williams-Beuren Syndrome and it is now being used in various 
biological research projects [3]. 
 
 

 
 

Figure 8: Provenance Pyramid [104] 
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Figure 9: Taverna Architecture and myGrid Components [3]  
 

 
 

 
VisTrails 
VisTrails tracks and records steps performed by the user in a scientific exploratory process [67].  
It captures changes to both a workflow instance (e.g. parameter value change) and a workflow 
specification (e.g. modules and connection change).  VisTrails is the first system to enable 
capture of workflow evolution, and it uses an action-based mechanism to capture both the 
provenance of data products and workflows.  In a VisTrails tree, a node corresponds to a version 
of a workflow.  Nodes in the VisTrails version tree are never deleted; thus, the infrastructure is 
similar to a version control system.  The VisTrails Builder is the workflow editor and the 
VisTrails Repository stores workflow specifications.  Previously saved workflows can be 
retrieved through the VisTrails Server or imported into the Visualization Spreadsheet where they 
can also be modified.  The workflow is executed by the VisTrails Cache Execution Manager.   
VisTrails is an open source tool  [99] that is currently in beta version [7].  VisTrails is currently 
being used in radiation oncology and environmental observation and forecasting [7]. 
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Figure 10: VisTrails Architecture [67] 
 

 
Virtual Data System  
The Virtual Data System (VDS) is a workflow system that enables the maintenance and 
accessibility of distributed and decentralized provenance information.  Resources are maintained 
by local groups and federated indexes are used to enable access to provenance information 
owned by other groups [114].  VDS treats all resources, i.e. data and computational objects, as 
first class entities.  Thus, all resources are assigned types and are represented in a schema (see 
Figure 11).  The term “virtual data” is used to represent data that may not yet exist but can be 
defined by the transformations that will be applied to it.  A Virtual Data Catalog stores the 
information defined by the schema.  A part of the GriPhyN project [115], VDS has been applied 
to the domains of high energy physics, astronomy, and neuroscience  [66, 114].  VDS has several 
official releases [6], and VDS is currently being used in projects such as ATLAS (high energy 
physics event simulator), FOAM (ocean and atmospheric modeling), and GADU (Genomics) [6]. 
 

 
 

Figure 11: Virtual Data Schema [114] 
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7.1.2 Category: User Interaction with Data 
This category of provenance systems automatically captures the user interactions with data.  No 
prior specification of the processing steps is needed in this coarse-grained provenance capture. 

 
CAVES 
The Collaborative Analysis Versioning Environment System (CAVES) project  supports the 
collaboration between researchers or groups of researchers in the domain of high energy physics 
by enabling the capture of scientific analyses [40].  Users select which analyses will be published 
to a remote server and made available to other researchers and which analyses will be stored in 
their local machines. CAVES extends ROOT, an object-oriented data analysis framework that is 
widely used in high energy physics. CAVES uses CVS and plug-in extensions for ROOT to 
support provenance capture. CAVES records the series of data manipulation commands issued 
by the user and saves them into a log in the repository.  Provenance logs can be extracted from 
the repository to reproduce a virtual data product on demand.  (Virtual data are data products that 
are either produced in the past or may be generated in the future based on a well defined method 
of production).  CAVES is designed to support a large community of users running large 
amounts of simulated and real data on the scale of tens and hundreds of petabytes.  One specific 
application of this project is to support scientists who are running experiments at the Large 
Hadron Collider at CERN in Geneva, Switzerland.  CAVES has also been used to capture data 
analysis as demonstrated at Supercomputing 2005 [41].  An official version of CAVES is 
available for download [41]. 
 

 

 
  

Figure 5: CAVES Distributed Repositories 
[40] 

 

Figure 6: CAVES Architecture [39] 
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7.1.3 Category: Component (a.k.a. Actor) Interaction 
In this category of provenance systems, the basis for automatic provenance capture is the 
interactions between components.  Thus, there is no awareness of the process. 

 
PreServ 
PreServ, an implementation of the Provenance Recording Protocol (PReP), is designed to enable 
provenance capture among heterogeneous actors.  An actor is either a client or a service in the 
Service Oriented Architecture.  This approach enables two types of provenance capture: 
interactions between actors (referred to as interaction p-assertion) and internal actor state 
(referred to as actor state p-assertion). Provenance capture is accomplished by wrapping services 
and capturing the interactions between services through the exchanged messages [45, 71].  
Provenance can be recorded as long as each service implement the protocol, i.e. the APIs, 
specified by PReP [71].  A part of the PASOA (Provenance Aware Service Oriented 
Architecture) project, PreServ is used in the domain of bioinformatics [2, 71].  PreServ can be 
downloaded from [2].   

 

 
 

Figure 12: PreServ Component Interactions [2] 
 

 
 

Figure 13: Layered Design of the Provenance Store [2] 
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7.1.4 Category: Operating System Level 
This category of automatic provenance capture has no awareness of actor entities.  This fine-
grained provenance capture records all observed operating system level events.    
 
PASS  
Based on the capture of all observed file-related events, Provenance-Aware Storage System 
(PASS) enables automatic provenance collection across heterogeneous tools without requiring 
the user to manually enter information and without using applications that explicitly collect 
provenance information.  Observed provenance collection is the approach PASS uses for 
recording provenance.  The information collected is also more complete since it explicitly 
records environment information such as configuration, environment variables, etc.  A drawback 
to this approach is it can lead to “false provenance” or extraneous provenance.  Other difficulties 
with observed provenance collection, such as mismatch in granularity, large numbers of 
versions, and introduction of cycles, are addressed by PASS.  Since provenance is captured at a 
much lower granularity than expected by the user, PASS supports manual user annotations to 
allow the grouping of provenance into coarser granularities.  To address difficulties with 
versioning, PASS supports “copy-on-write” versioning, in which a new version is created for 
every first file-write event (between the file-open and file-close events).  Cycles in provenance 
are also checked every time an edge is added.  Observed provenance collection can be used to 
supplement the disclosed provenance approach, i.e. provenance collection is specified by users 
or tools [46].  PASS can be obtained by contacting the research group  [9]. 
 
 
We have just introduced relevant provenance systems.  We now evaluate these tools according to 
the software traceability properties identified in Section 3. 
 

7.2 Capturability 
The following subsections discuss the automated and manual capture of provenance data.  In 
each category, the kind of provenance information captured, the capture methods, and the 
granularity of capture are discussed.  It is interesting to note that most of the tools surveyed [26, 
40, 67, 104, 114] supplement automatically captured provenance with manual user annotations.  
Section 7.2.3 further discusses the types of semantics provided by these different tools. 
 

7.2.1 Automated Capture 
Various provenance systems automatically capture provenance at different levels of abstraction 
(see Figure 4).  These systems range from capturing all low level operating system processes 
without awareness of provenance, as in PASS [46], to high level capture of researcher interaction 
with the data, as in CAVES [40].  Meanwhile, in scientific workflows systems like Kepler, 
Taverna, and VDS, the user specifies the series of transformations that will be applied on the 
data through a workflow specification language [26, 104, 114].  During the workflow execution, 
provenance is captured in the form of events  [26], service invocations   [104], or general 
invocations (e.g. executable programs, SQL command queries, or method invocations) [65].  In 
these systems, input and output data are associated with the captured provenance information.  
Another system in the scientific workflow category, VisTrails, captures the workflow evolution 
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itself [67].  Thus, VisTrails supports tracking changes to a workflow instance (e.g. changes to 
parameter values) and to a workflow specification (e.g. changes to modules and connections).  
At the component interaction level, PreServ automatically captures the series of interactions 
between services as well as the internal states of the services [71]. 
 
There are also different methods of automated capture. Across these different methods of 
capture, chronological ordering is preserved.  CAVES extends a popular data analysis 
framework, ROOT, to automatically log all changes to the data [40].  Meanwhile, Kepler uses a 
Provenance Recorder to capture registered events at the communication ports between actors 
[26].  Taverna’s workflow enactment engine stores the order of services invoked in a process log 
[104].    VisTrails records action-based provenance such as the user interaction with the 
workflow [67].  VDS, on the other hand, wraps a workflow execution with a parent process 
which uses operating system events to capture the execution [114].  PreServ records the 
interaction between services [71].  Finally, PASS observes all processes that run on a PASS 
enabled operating system and captures all operating system events associated with a data file 
[46].   
 
The granularity of automated capture varies among the different tools surveyed.  Capture at the 
granularity of user-interaction is performed by CAVES and VisTrails [40, 67].  Tools such as 
Taverna and VDS automatically capture provenance at the granularity of service invocation 
[104, 114].  Meanwhile, PreServ captures at the granularity of service interaction and internal 
service state [71].  Capture at the granularity of events are performed by Kepler and PASS [26, 
46].  Kepler captures at the granularity of component (a.k.a. actor) events [26] while PASS 
captures at the granularity of operating system events [46].   
 

7.2.2 Manual Capture 
Most of the tools surveyed enable manual capture of provenance data to supplement the 
automatically captured provenance.  In scientific workflows like Kepler, Taverna, VisTrails, and 
VDS [26, 67, 104], users manually specify the sequence of processing as a workflow.  The 
workflow specification is then executed after physical resources are mapped to the logical 
representations.  Besides the workflow specification, Kepler and Taverna enable the manual 
capture of context by having users specify the context of the experiment (e.g. who, what, where, 
when, and why) in Kepler [26] and organizational information (e.g. user, creator, organization, 
project, hypothesis, experiment design) in Taverna  [104].  Taverna also enables users to enter 
knowledge level information such as user notes and domain-specific information. In VisTrails, 
users may also tag selected versions of the workflow with a name [67].  Finally, CAVES and 
PASS allow free form annotations [40, 46]. 
 
There are different methods for manually entering provenance information.  CAVES provide an 
‘annotate’ command that enables users to attach annotations to a uniquely identified dataset [40].  
Names or tags may also be attached to important workflow versions in VisTrails [67].  
Meanwhile, formal annotations are specified by Taverna and VDS. Taverna supports the use of 
ontology in the myGrid registry to annotate the workflow [113].  Finally, annotations in VDS 
should conform to the Virtual Data Schema [114]. 
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The granularity of manual capture varies by tool.  Annotations may be at the workflow level as 
in Kepler and Taverna [26, 104] or at a specific workflow version as in VisTrails [67].  
Annotations may also be at the data product level as in CAVES [40] or at the file level as in 
PASS [46].  Finally, VDS enables annotations at the level of virtual data objects (i.e. procedure, 
parameters, workflows, data sets) as defined by the schema [114]. 

7.2.3 Capture Trace Semantics   
In scientific computing, achieving reproducibility and repeatability requires a high level of 
exactness to be recorded: the right input dataset, the correct version of a component, the correct 
series of transformation, the infrastructure support (i.e. libraries or modules used), and the 
hardware used.  At the same time, all resources, data and computational objects, must be given 
semantic annotations, i.e. their real world representation and how they relate to each other.  Even 
though software traceability does not require the same level of exactness for reproducibility, the 
techniques in capturing or inferring semantics may be applicable to software traceability. 

7.2.3.1 The Importance of Context 
In e-science, context aids in evaluating the results of an experiment or scientific analysis [104].  
Context can be broadly defined as “anything that was true” during an experiment run [84].  
There are two levels of context [104].   First, context refers to the details of the experiment run, 
i.e. provenance [104].  Context can also refer to information surrounding experiments, including 
hypotheses, conclusions, findings, users, creators, organizations, projects, personal notes, 
domain-specific information, and time and location of the experiment run [26, 87, 104].   

7.2.3.1.1 Context: Experiment Run 
In an experiment run, contextual information can identify the types of relationships between 
objects.  These relationships can be classified by dependency, time, or contributor.  Dependency 
relationships between different versions of a workflow are captured in VisTrails [67].  Since a 
version tree represents the workflow evolution, a child node is dependent on the parent nodes.   
Another example of a dependency relationship is the relationship of objects with the execution 
environment since reproducing same results may depend on the kernel module loaded, libraries 
installed, etc [46].  Temporal relationship are another type of relationship provided by context.  
An example is the chronological order of services invoked by a workflow engine. The order of 
invocation is automatically captured by workflow systems [104].  The chronological order of 
workflow versions created are also captured in VisTrails and are represented by the color of the 
nodes [67].  Contributor relationships identify which entities initiate the production of a data 
object.  Contributors can be users [40] or services [71].    
 
Meanwhile, specific relationship types between objects can also be specified.  VDS captures 
semantic relationships between objects by assigning types to all scientific resources [114].  The 
relationships are represented by the virtual data schema. 

7.2.3.1.2 Context: Information Surrounding an Experiment 
Information surrounding an experiment is equally important in evaluating the results of an 
experiment.  The provenance pyramid (see Figure 8) illustrates the relationship between context 
captured as a workflow run, i.e. data and process provenance, and context as information 
surrounding an experiment [104].  The Provenance pyramid classifies the surrounding 
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information of an experiment as organizational (e.g. user, creator, hypothesis, project, 
organization, experiment design) and knowledge-based (e.g. user notes, domain relationships).  
Context information also include time and location of an experiment run and the rationale behind 
the experiment [26].  

7.2.3.2 Categories of Captured Semantics in the Literature 

7.2.3.2.1 Prospective vs. Retrospective Provenance 
This category distinguishes between a planned experiment or analysis (a.k.a. prospective) and a 
record of an experiment or analysis already performed (a.k.a. retrospective) [38].  Prospective 
provenance is represented as a workflow specification [114].  Meanwhile retrospective 
provenance is represented by the workflow execution or the data lineage which contains 
mappings to the physical resources used, e.g. data sets, functions, etc. [38, 114].  It is useful to 
combine the information from both types of provenance.  Prospective provenance aids in 
understanding retrospective provenance since it is specified at a higher level of abstraction.  
Meanwhile, retrospective provenance fills in the missing details of prospective provenance. 

7.2.3.2.2 Observed Actor Interaction vs. Internal Actor Provenance 
Another distinction is the source of provenance information.  Observed actor interaction is 
provenance recorded by other services that interact with an actor.  Meanwhile, internal actor 
provenance is provenance recorded by an actor about its own internal events [72].  Observed 
actor interaction provenance is useful in cross checking the recorded provenance among multiple 
sources. 

7.2.3.2.3 Observed vs. Disclosed Provenance 
This distinction identifies provenance collection based on what has been determined a priori 
(disclosed) and provenance collection based on recording all events (observed).  Disclosed 
provenance provides more semantics, but is limited to collecting provenance within the 
provenance system.  Observed provenance does not have this limitation.  However, collected 
provenance does not have semantics and could even contain “false provenance” [46]. 

7.2.3.2.4 Internal vs. External Provenance 
This category is concerned with provenance collected within a provenance system and 
provenance collected outside a provenance system.  One technique to achieve external 
provenance is database integration.  The ability to obtain external provenance is difficult and 
may sometimes entail manual processes, such as the  manual curation of databases [48]. 

7.2.3.2.5 Logical vs. Infrastructural Provenance 
Provenance information can be distinguished between logical and infrastructural concerns.  
Logical provenance refers to the data and the transformations on the data while infrastructural 
provenance refers to the environment on which the transformations are performed, such as the 
environment variables and the state of hardware [94].  This is an important distinction since 
provenance recording should not be limited to capturing the processes surrounding the data.  The 
assumptions about the environment should also be recorded. 
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7.2.3.3 Inferring Semantics 
There are a couple of ways that semantic relationships between objects can be inferred.  One way 
is through the use of a reasoner such as the Description Logic reasoner which automatically 
classifies concepts into hierarchies [113].  Since these concepts are attached to provenance logs 
and document sets, provenance logs can be related to publications or experiment notes that are of 
the same concepts in the hierarchy.  Another way to infer semantic relationships is through the 
use of an inference engine.  New relationships are inferred between indirectly related data 
products by applying backward and forward chaining to a knowledge base.  The knowledge base 
consists of captured provenance represented as an RDF and inference rules [50]. 

 

7.2.4 Discussion 
We note that the level of automatic semantic capture increases with the increased awareness of 
semantics in the framework of the provenance tool.  For example, since the CAVES project is 
based on an existing data analysis tool [40], it is easy to infer the semantics of a provenance log.  
Similarly, the data flow is specified in workflows [43].  Thus, the ordering of processes invoked 
reflects the ordering of transformations applied to a given dataset.  In contrast, PASS has no 
awareness of semantics and thus will capture all observed events related to a file [46].   
 
Meanwhile, the increased built-in semantics in the framework limits the ability to capture 
provenance information from different tools outside the framework (known as level of 
openness).  For example, CAVES is only able to track provenance within the data analysis 
framework [40] while PASS enables provenance tracking across different tools as long as the 
host’s operating system is PASS enabled [46].  Thus, there is a tradeoff between the ability to 
automatically capture the semantics of provenance information and the ability to capture 
provenance across heterogeneous tools. 

 

7.3 Affordability 
The following subsections discuss the costs involved in using data provenance tools.  Cost is 
measured in terms of training time to use a provenance tool, effort in manual provenance 
capture, and effort in developing custom code to capture provenance across heterogeneous tools. 

7.3.1 Training Time to Use a Provenance Tool 
The cost of training time varies between the different tools.  Since CAVES builds upon an 
existing data analysis tool [40], the cost associated with training existing users is low to none. 
The cost of training for PASS [46] is also low to none since most of the provenance capture is 
automatic.  Kepler [43] and Taverna [104] have a low cost since the graphical workflow 
language used is easy to learn.  VisTrails [67] also has a low cost since it is easy to learn to 
navigate through the recorded workflow space.   

7.3.2 Effort in Manual Provenance Capture 
The cost of manual provenance capture varies from low to high between tools.  VisTrails [67] 
has low overhead since users simply assign names to noteworthy versions of the workflow.  
CAVES [40] and PASS [46] also have low cost since the manual annotations are based on what 
users deem important.  VDS [114] has a low to medium cost in provenance capture since 
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annotations must comply with the schema.  Taverna [104] has a high cost in manual provenance 
capture.  Capturing knowledge level annotations require users to relate the experiment with 
domain-specific concepts through the use of myGrid ontology. The high cost provides benefits 
that are not realized in other tools.  Mapping experiments to ontology enables the dynamic 
generation of hyperlinks between provenance information and other document sets.   

7.3.3 Effort in Developing Custom Code 
The effort needed to develop code extensions that capture of provenance across different tools 
also varies.  PASS [46] has virtually no cost since it is able to capture all the system level calls to 
any tool or function as long as the operating system is PASS-enabled.  PreServ [71] has a low 
cost since it only requires custom wrappers on existing systems to intercept provenance 
information.  The other workflow systems like Kepler, Taverna and VDS require that the 
components conform to their framework.  Meanwhile, CAVES [40] has no allowance for 
integrating other tools since provenance capture is limited to the ROOT data analysis tool. 

 

7.4 Utilizability 
Provenance information is used to reproduce data [40, 104].  Provenance information is also used 
to identify problems with workflow execution [26] as well as to identify differences with the 
execution environment [46].  Saved workflows are reused [26, 67] to save time in re-running the 
analysis.  Ontology-related provenance is also used to dynamically generate hypertext [113].  
Other uses of trace information include browsing [40, 67, 104], querying [71, 104, 114], and 
comparing workflow versions (VisTrails) [67]. 

 

7.5 Maintainability 
These data provenance systems do not have many explicit techniques for achieving 
maintainability.  VDS [114] enables object updates through the use of SQL.  CAVES [40] 
enables browsing virtual data products and annotations, which users can retrieve and update.    

 

7.6 Accessibility  
The following subsections discuss the ways that provenance systems enable the accessibility of 
provenance data.  Accessibility is examined along the following dimensions: heterogeneous data, 
heterogeneous tools, and different groups. 

7.6.1 Heterogeneous Data 
In e-Science, the issue of heterogeneous data is generally addressed when integrating data from 
different sources and when composing heterogeneous components into a workflow.  The 
following subsections discuss the techniques used in handling heterogeneous data. 

7.6.1.1 Data Integration 
The problem of data integration is especially prevalent in the life sciences domain since it is 
difficult to determine whether records from different databases represent the same data.  This 
problem has come to be known as the “Life Science Identity Crisis” [104]. The myGrid project 
and Taverna address this problem by uniquely identifying data with a life science identification 
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(LSID).  However, the problem still exists when integrating with data from outside myGrid.  
Another technique used in data integration is manually extracting data from various sources and 
producing a manually curated database [48].  There is a high cost to this approach, but the 
database is considered high quality by the community of users. 

7.6.1.2 Input/Output Data Mismatch 
When creating the workflow out of different components, the problem of matching the required 
input of one component with the given output of another component exists [104].  Taverna 
addresses this problem through the use of “shim services”, which reconcile differences between 
the input and output data [104].  Another approach is through the use of ontology.  Different 
ontologies are used to classify mismatches.  Parameters are annotated with concepts from the 
ontology.  When there is an identified mismatch, the library of transformations based on 
mismatch type is checked and the appropriate conversion is used [33].  In a similar approach, the 
system automatically checks for the data and semantic type compatibility when users specify the 
workflow [24].  An ontology is used to determine semantic compatibility.  When a mismatch is 
detected, the tool automatically inserts a conversion rule.  Generating an automatic conversion 
program is also used in resolving incompatible formats between semantically compatible input 
and output data [42].  Another approach used in Kepler is annotating parameters to enable semi-
automated transformations [88]. 

7.6.2 Heterogeneous Tools  
One means of enabling provenance capture among heterogeneous components is through the use 
of event listeners and message passing, as in Taverna [104].  A plug-in listens to subscribed 
events and generates messages once it receives an event.  Another method of capturing 
provenance among different tools is by wrapping code around these tools so that their interaction 
with the provenance store is via a specified API, as in PreServ [71].  Lastly, systems like PASS 
[46] capture provenance over heterogeneous tools by intercepting system level calls.  In such 
systems, it is not necessary to develop custom code for different tools. 

 

7.6.3 Different Groups 
The surveyed tools present several techniques for improving accessibility of provenance 
information across distributed groups.  One way is to enable users to publish their provenance 
information in a remote repository that is accessible to other users as in CAVES and VisTrails 
[40, 67].  VisTrails has the added functionality of enabling scientists to synchronize their 
changes to the workflow [67].  Meanwhile, VDS enables distributed groups to access provenance 
information owned by other groups through the use of federated indexes [114].  Users query  the 
inter-catalog references which then point to locally owned Virtual Data Catalogs. 

 

7.7 Scalability 
There are various approaches to achieving scalability.  Since captured provenance information 
can quickly become large, scalability in storage is important.  CAVES, VDS, PreServ enable the 
use of distributed repositories to store provenance information [40, 71, 114].  Distributed and 
decentralized VDS repositories are owned by local groups [114].  PreServ also enables the use of 
multiple types of repositories as long as the interaction is through the PReP API [71]. Other 
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techniques in minimizing storage overhead include pruning selected provenance information, 
compressing provenance information, combining frequently accessed attributes, and deleting 
irrelevant attributes [46]. 

 
These tools can also scale to many users.  CAVES and VDS have no upper limit to the number 
of users [40, 114].   

 

7.8 Customizability 
The following subsections discuss the extent of customization provided by the provenance 
systems.  The three types of customization examined are domain-specific, project-specific, and 
user-specific customization. 

7.8.1 Domain-Specific Customization 
Among the tools surveyed, only Taverna enables domain specific customization to the 
provenance information captured [104].  Users enter annotations that map experiments to 
domain-specific concepts.   

7.8.2 Project-Specific Customization 
Project-specific customization is achieved in a couple of ways.  Virtual organizations may adopt 
naming conventions in assigning unique identification to their virtual data products, as in 
CAVES [40].  In VDS, virtual data objects (i.e. data and components) are maintained in a 
distributed and decentralized context.  Thus, local groups can choose the virtual data objects to 
store in their local VDS [66].  Furthermore, groups may also maintain “overlay” information, or 
a separate set of annotations, on objects owned by other groups.   

7.8.3 User-Specific Customization 
There are different means for achieving user-specific customization.  Users have control over the 
time at which to capture provenance information [71] and the level of granularity at which to 
capture provenance [26].  Users also have control over which provenance to publish [40] and 
which information to keep in their local machine or workspace [40, 114].  Users may also 
maintain their own custom metadata over the same set of data sets or virtual data objects [104, 
114].  In Taverna, users may use their custom ontology to create different views of the 
provenance [104]. 

 
There are also other techniques for enabling user-customized views.  The provenance 
information presented to a user can be customized with user views [56] and scoped provenance 
queries [85].  Scoped provenance queries enable users to limit provenance information by 
filtering out a type of relationship, internal operations of an actor, or a data role.  Another means 
of customizing provenance views is by limiting access to provenance information based on 
access policies [50]. 
 
 
 



   
 

37 of 51

7.9 Auditability  
 

A third party entity may audit a scientific analysis or experiment mainly by reproducing the data 
set through the use of captured provenance as in Taverna [104] and VDS [65].  CAVES also 
enables on-demand reproducibility of data by extracting the derivation log from the server [40]. 
 
One of the challenges to auditability is that different results could be produced even though the 
same input data and the same workflow is executed.  The difference lies in the execution 
environment.  PASS [46] addresses this challenge by capturing details about the execution 
environment, such as the kernel modules used and the libraries installed. 
 
 
We have just surveyed the ways in which data provenance systems and techniques meet the 
requirements for end-to-end software traceability.  The next section highlights the lessons 
learned from the survey. 
 

8 What are the Lessons Learned? 
 

This section highlights the insights gained from the survey of data provenance techniques.  These 
insights will inform an approach to tackle the software traceability problem.   
 
Insight: Use shared semantic concepts to automatically generate trace links 
Ontology is used to dynamically generate hypertext linking provenance logs with various 
documents to form a web of science [113].  Since one of the shortcomings of automatic trace 
recovery is the lack of link semantics, using domain-specific vocabularies or ontologies to 
improve the automatic generation of trace links is a possible solution [103].  
 
Insight: Provenance of data is intertwined with provenance of process  
Provenance of data can be viewed as the process that brought the data to its current state [47, 85].  
In addition, the provenance of data identifies which processes were used to reach a conclusion or 
an output [107].  Thus, tracing the process enables the tracing of data.  Scientific workflow 
systems are especially suited to track processes [104].  In software traceability, it is also 
important to trace both product and process objects [77].  Documenting the development 
processes aids in selecting which artifacts to trace.   PRO-ART is a software traceability system 
that records both the artifacts and the processes that manipulate the artifacts (e.g. generating, 
removing, editing artifacts) [89].  However, there is a high upfront cost in recording processes 
since all products and interrelationships must first be formally represented in a schema. Using 
provenance capture techniques can potentially lower the cost of recording the processes that 
manipulate the artifacts 
 
Insight: Context can inform the type of relationship between artifacts  
The two types of contextual information in e-Science are the provenance information captured 
during an experiment run and the information surrounding an experiment.   The first type aids in 
understanding how data is manipulated while the second type describes how data is related to 
entities in the real world.  Context in an experiment run frames assumptions about the 
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environment (e.g. hardware environment, loaded libraries, means of communication between 
independent computational objects) and how entities are related (e.g. “input data X and 
intermediate data Y are fed into computation object A to produce output data Z”).  In addition, 
context as information surrounding an experiment links the objects in an experiment run to what 
they represent in the real world.  In the domain of software engineering, context is also 
important.  Context can inform the assumptions made when artifacts were generated (e.g. 
company conventions, regulatory requirement, time restrictions) and how artifacts are related 
(e.g. “Use Cases are developed before the system is implemented, and QA engineers develop test 
suites using the Functional Requirements Document and Design document, but they do not look 
at the code”).   
 
Insight: The type of provenance information captured is directly related to provenance usage 
The type of provenance information captured depends on how and where it will be used [48].  
How provenance information will be used is demonstrated in the use of workflows.  Workflows 
[26, 67, 104] are used to encapsulate a scientific analysis or experiment by explicitly specifying 
the series of transformations that will be applied to an input data.  Where provenance information 
will be used is also important.  CAVES tracks user interaction with the data within the ROOT 
data analysis tool for several reasons.  It minimizes the training time for users since the intended 
users already use the tool.  Recording the scientific analysis within ROOT also enables the 
scientific analysis to be reproduced on demand within ROOT.  In this situation, enabling 
provenance to be captured across heterogeneous tools is unnecessary.   
 
Insight: Reasoners help in automatically inferring relationships 
One of the capabilities afforded by some provenance systems is the ability to reason, i.e. analyze, 
query, and browse captured provenance [45, 91].  Reasoners can also be applied to infer 
semantic relationships between objects [50, 113].  For instance, the Description Logic reasoner 
classifies concepts into a hierarchy.  Consequently provenance logs with annotated concepts can 
be related to other provenance logs or documentation with concepts in the same hierarchy.  The 
reasoner used in [45]  can sometimes infer the data provenance even with missing provenance 
information.  An inference engine can be used to infer new relationships between indirectly 
related objects [50]. 
 
Insight: Automated provenance capture has limits 
It is interesting to note that most of the tools surveyed [26, 40, 46, 67, 104, 114] supplement the 
automated provenance capture with manual capture, e.g. user annotation.  This indicates that 
regardless of the approach, automated techniques are limited in the scope of information they can 
capture.  Automatic capture is limited to events observable by a computer (e.g. user issued 
commands [40], communication between computational objects [26, 71],  and file events on the 
operating system level [46]).  The rationale, purpose, and other extrinsic information cannot be 
automatically captured and must be manually entered by the user. 
 
Insight:  Cost in collecting data provenance is invested into the scientific process 
Scientists have traditionally maintained experiment records in their log books [104].  Thus, for 
scientists, the cost of record keeping is invested into the scientific process.  Without a scientist’s 
log of past experiments, it would be difficult for a scientist to analyze the results.  It would also 
be equally difficult to remember specific details about the experiment.  Scientists are willing to 
manually specify the design of the workflow since it will be the basis for running their 
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experiment while at the same time serving as a future reference for further experiments [26, 36, 
104].  In this scenario, the producer of data provenance is the same as the consumer of data 
provenance.   
 
Insight: Cost in collecting data provenance is outweighed by the utility of the information 
Manually curated databases are integrated from different data sources by scientists.  This effort 
usually involves examining publications and going over databases.  Even though this process is 
costly in terms of labor hours, it is outweighed by the perceived benefit since manually curated 
databases are considered “higher quality” by the community [48]. In this scenario, even though 
the producers are different from consumers, there is a well-understood benefit to their activity 
(i.e. benefit to the community of users).  It is also important to note that individuals who collect 
provenance information have a good understanding of the data that should be included [48]. 
 
Insight: There is a tradeoff between cost and the level of manual semantic capture 
There is a tradeoff between minimizing cost and increasing the level of semantic understanding 
among the manual captured techniques. Lightweight approaches [40, 46, 67] have lower cost but 
capture less semantics.  Meanwhile, annotating provenance logs with concepts from the ontology 
is a heavyweight approach with high cost.  However, these annotations enable the dynamic 
generation of hyperlinks between provenance logs and publications with similar concepts [113].  
This link between provenance and relevant publications provides a better understanding of the 
data.   

 
Insight: There is a tradeoff between the level of “openness” and the level of automatic 
semantic capture 
“Openness” is the ability to capture provenance among heterogeneous tools [71].  The higher the 
level of openness, the more capable it is in capturing provenance across heterogeneous tools.  
However, the more open is the provenance capture, the lower the level of semantics that can be 
captured.  For example, CAVES [40] has no means of capturing provenance with other tools, but 
the provenance captured has a high level of semantics since it is directly related to the data 
analysis tool.  On the other end of the spectrum, PASS [46] has a high level of openness, i.e. can 
capture provenance across any tool, but the level of semantics is none.   
 
Insight: Provenance collection is stakeholder-centric 
Users control provenance collection.  Users determine what to record [26, 40], when to record 
[26, 71], where to store provenance information [40, 66], what to publish [40], and what level of 
granularity to record [26].  Users may also provide information to enable user-customized views 
on provenance [104, 114].  The individual who usually collects provenance information is the 
same individual who uses that provenance information [56, 84].  We learn from software 
traceability case studies like [32][92] that stakeholder role is directly associated with the 
expected usage of trace information.  For instance, a system designer is interested in using a trace 
tool to record the design rationale and to understand the impact of a requirements change on 
system modules and test plans [92].  Meanwhile, a QA engineer is interested in using a trace tool 
to ensure that test plans cover all the requirements [92].  A traceability approach should cater to 
these varied stakeholder interests to provide direct benefits to them. 
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Insight: Provenance systems enable local ownership and global access 
The concept of local ownership and global access is provided by provenance systems like 
CAVES [40], Taverna [104], and VDS [114].  Local users or groups have complete control over 
their provenance information.  At the same time, provenance information is visible to external 
groups via globally accessible servers as in CAVES [40] or federated indexes as in VDS [114].  
Taverna also enables groups to maintain annotations on provenance data owned by other groups 
[104]. 
 

9 Conclusion: How to Apply Insights to Software Traceability?  
Software traceability, despite its recognized importance in software development, has largely 
been unachievable in practice.  We analyzed the reported problems with implementing software 
traceability from the economic, technical, and social perspectives.  These perspectives are 
intertwined and must be tackled simultaneously.  Then we examined how similar problems are 
solved in e-Science, a domain with similar characteristics to software engineering.  Data 
provenance systems and techniques in e-Science were surveyed to gain potential insights in 
approaching the software traceability problem.  We now conclude with the application of these 
insights to software traceability. 
 
Addressing the economic perspective 
Cost is a major inhibiting factor to industry adoption of a traceability approach [32].  By 
integrating traceability with existing development processes, the cost of traceability can be 
considered part of the overall development costs. In addition, by understanding how traceability 
information can benefit software development, e.g. by significantly lowering software 
maintenance cost, the benefits can outweigh the cost of tracing.   
 
Addressing the technical perspective 
The technical perspective is concerned with addressing the explosion of the artifacts space, 
maintenance of trace links, heterogeneity of artifacts, and heterogeneity of tools.  An insight 
from e-Science is that data provenance collection should be directly related to provenance usage.  
This insight can be used to address the explosion of the artifact space.  The types of artifacts, the 
types of relationships and the granularity at which they are traced should reflect the expected 
usage of the trace information.  Case studies like [92] provide some examples of expected uses 
of trace information.  To address trace link maintenance, reasoning techniques such as bulk 
query and bulk updates [114] can be used to keep the links updated.  To address the 
heterogeneity of artifacts, using a transformation program [42, 104] to automatically convert 
between artifact types perhaps provide a solution.  However, this is limited in cases where the 
information can easily be mapped from one artifact type to another.  To address the 
heterogeneity of tools, events or protocols can be used to automatically cascade additions or 
changes of artifacts across different tools.  This way, redundant data entry and manual 
reconciliation of data can be avoided.  This approach is limited to those artifacts that are at the 
same level of formality and abstraction. 
 
Addressing the social perspective 
The social perspective is concerned with addressing the distribution of artifacts across different 
groups, the different user expectations of a traceability tool, and the low motivation for 
performing traceability tasks.  To address tracing across different groups, one can publish 
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artifacts publicly or use global pointers [40, 114].  Groups may publish artifacts to a server 
accessible by other groups [40].  Similar to the federated index used in VDS, a global pointer  
directs users to the traced artifacts owned by different groups [114].  To address different 
expectations of the tool, users should have the option of customizing the traceability tool.  For 
example, users should have the option to maintain their own trace information, i.e. similar to 
custom ontology [104] or “overlay” information [114], over the set of traced artifacts.  
Automatically generated customized views of traceability will help provide user-specific 
customization.  To address the problem of low motivation, there should be a clear benefit to the 
task of traceability.  There is a distinct difference in the level of motivation between scientists 
and software engineers.  Scientists are willing to keep records while most software engineers 
dislike traceability tasks.  Scientists invest their time in collecting provenance because they 
directly benefit from the provenance information, i.e. they are the consumers of information 
[104].  Therefore, enabling software engineers to directly benefit from traceability will 
potentially encourage them to perform traceability tasks.    Even in cases where the producers are 
not necessarily the consumers of data, such as in the case of manually curated databases [48],  
high value could still be assigned to the task of tracing the source of data.  Thus, assigning a high 
value to traced information can potentially motivate software engineers to perform traceability 
tasks.   
 
Addressing the economic, technical, and social perspectives 
To minimize cost, to enable the automatic capture of semantics, and to increase the quality of 
links as determined by human analysts, a combination of automated and manual approaches 
should be used.  First, an automatic capture of the context and the processes that generate and 
manipulate artifacts enables the automatic capture of trace semantics, e.g. dependency, temporal, 
and contributor relationships.  Then, lightweight annotations, can be attached to an artifact by the 
user who generated or manipulated the artifact.  This procedure enables the dynamic generation 
of semantically-rich traceability links at lower costs.  The quality of links increases since 
knowledgeable users attach the annotations to traced artifacts. 
 
 
While the possible approaches presented in this survey are by no means complete, these provide 
a good start for exploring the solution space of the end-to-end software traceability problem.  
These approaches are well-grounded since they have already been applied in the similar field of 
e-Science.  We hope that a feasible traceability approach that is adoptable in industry will result 
from this endeavor. 
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extracted, inspected, and 
modified for further analysis. 
Extracted provenance logs 
can be used to reproduce 
virtual data product on 
demand

Analyzing process 
provenace aids in 
debugging a workflow 
execution.   Smart re-run 
saves time in re-running 
experiments where only a 
parameter change is 
involved

Use ontology to dynamically 
generate hypertext.  Ability 
to query, browse 
provenance logs. 
Reproducibility 

View history of workflow 
changes, re-use, compare 
workflows

Query against virtual data 
relationships (i.e. workflow 
design and execution), 
metadata annotation, 
lineage info (e.g. derived 
datasets, ancestor datasets)

Reasoning over provenance 
logs aids in determining the 
provenance of a dataset.  
Query against resulting 
metadata catalog

In combination with 
disclosed provenance 
techniques (e.g. scientific 
workflows), provenance info 
can aid in identifying 
differences in execution 
environment

Training Time 
to Use 

Provenance 
Tool

Low to none for existing 
users of the ROOT data 
analysis tool

Low - easy to learn 
graphical workflow 
language

Low - easy to learn 
graphical workflow 
language

Low - easy to navigate 
through graphical workflow 
space

Medium - medium effort to 
learn scripting workflow 
language  

Low to none. Minimal user 
interaction

Manual 
Provenance 
Collection Low - Manual annotation 

based on what users deem 
important Low - context

High - Knowledge level 
annotations require high 
effort from experts

Low to none - assign names 
to versions

Low to medium.  Annotation 
must comply with the 
schema  

Low - Manual annotation 
based on what users deem 
important

Developing 
Custom Code No allowance for 

provenance collection 
outside the analysis tool

Provenance capture only 
possible with actors used in 
the workflow. Can wrap web 
services as actors

Provenance capture only 
possible with myGrid 
services must be used 
within the workflow  

Provenance capture 
possible with components 
that conform to the Globus 
toolkit

Develop wrappers on 
existing systems to capture 
provenance

No custom code necessary 
to capture provenance.  
Only requirement is that OS 
is PASS-enabled

M
ai

nt
ai

na
bi

lit
y

Browse data/components to 
retrieve and update  

Not specified, although it 
states that provenance is 
collected/used at each 
stage in the lifecycle  Update objects using SQL

Provenance data can be 
queried  

Heterogeneous 
Data

 

Annotate parameters to 
partially automate 
transformation of 
output/input data

Use unique IDs (Life 
Science Identifier) to 
uniquely identify data within 
myGrid.  External identity is 
still a problem.  Use shim 
services to reconcile type 
mismatches between input 
and output data  

Ability to access multiple 
sources of data through 
inter-catalog references   

Heterogeneous 
Tools

 Wrap webservices as actors

Integration between 
workflow execution engine 
and different components - 
based on plug-ins that listen 
to events generated.   

Any component as long as it 
conforms to the PReP 
protocol of interacting with 
the provenance store

Capture OS level calls - 
automatically collect 
provenance on any tool 
invoked

Different 
Groups Users in the access control 

list can access analysis 
published in the server   

Users commit selected 
changes.  Scientists 
exchange patches and 
synchronize their VisTrails

Virtual Data Catalogs 
(VDCs) are maintained by 
local groups.  Use federated 
indexes to access 
distributed VDCs   
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Storage Repositories, known as 
caves, are distributed, 
mirrored and synchronized.  
Users may store partial or 
complete provenance 
locally or remotely in a 
virtual data logbook    

A potential limit to scalability 
in the method of creating 
federated indexes

Potentially no limit to the 
provenance data to be 
recorded since different 
data stores can be used as 
long as the PReP API is 
used.  Different services 
can interact with the 
provenance store 
asynchronously.

Strategies to minimize 
storage overhead include 
pruning, merging similar 
information, deleting 
irrelevant attributes

Number of 
Users

No upper limit to the 
number of users    

No upper limit to the 
number of users   

Domain 
Customization

None.  Tool is focused on 
high energy physics  

Manually entered annotation 
may contain domain-
specific concepts     

Project 
Customization

Virtual organizations can 
adopt naming conventions 
to label their virtual data 
products    

Local control over what 
objects are stored in the 
VDC.  May also maintain 
"overlay" information on 
objects maintained by other 
groups   

User 
Customization

Control over which analysis 
history to publish and what 
to store in local machine

Control over what level of 
granularity to capture 
provenance.  Option to save 
all provenance info or to 
recreate the data

Different users may 
maintain different ontologies 
over the same datasets.  
This affords different views 
on provenance logs  

May make a permanent 
copy of derivation logs in 
their workspace.  May also 
maintain "overlay" 
information on objects 
maintained by other groups 

May choose when 
documentation of process 
should be recorded  

A
ud

ita
bi

lit
y

Reproduce virtual data 
product by extracting logs 
from the server  

Reproducibility through the 
use of captured provenance  (Re)derivation of data   
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