
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Sushil Bajracharya 		 	 Yimeng Dou 	
University of California, Irvine 	 	 University of California, Irvine
sbajrach@ics.uci.edu		 	 ydou@ics.uci.edu		

	
Trung Ngo 	 	 Pierre Baldi
University of California, Irvine	 University of California, Irvine
trungcn@ics.uci.edu		 pfbaldi@ics.uci.edu		

Erik Linstead			 Cristina Lopes
University of California, Irvine	 University of California, Irvine
elinstea@ics.uci.edu		 lopes@ics.uci.edu		
	

Paul Rigor
University of California, Irvine
prigor@ics.uci.edu

A Study of Ranking Schemes in
Internet-Scale Code Search

November 2007

ISR Technical Report # UCI-ISR-07-8

Institute for Software Research
ICS2 217

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

A Study of Ranking Schemes in Internet-Scale
Code Search

Sushil Bajracharya∗, Trung Ngo∗, Erik Linstead†, Paul Rigor†, Yimeng Dou†,
Pierre Baldi†, Cristina Lopes∗

∗Institute for Software Research †Institute for Genomics and Bioinformatics

{sbajrach,trungcn,elinstea,prigor,ydou,pfbaldi,lopes}@ics.uci.edu

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3423
ISR Technical Report # UCI-ISR-07-08

November 2007

Abstract. The large availability of source code on the Internet is enabling the
emergence of specialized search engines that retrieve source code in response to
a query. The ability to perform search at this scale amplifies some of the prob-
lems that also exist when search is performed at single-project level. Specifically,
the number of hits can be several orders of magnitude higher, and the variety of
conventions much broader.
Finding information is only the first step of a search engine. In the case of source
code, a method as simple as ‘grep’ will yield results. The second, and more dif-
ficult, step is to present the results using some measure of relevance with respect
to the terms being searched.
We present an assessment of 4 heuristics for ranking code search results. This
assessment was performed using Sourcerer, a search engine for open source code
that extracts fine-grained structural information from the code. Results are re-
ported involving 1,555 open source Java projects, corresponding to 254 thousand
classes and 17 million LOCs. Of the schemes compared, the scheme that pro-
duced the best search results was one consisting of a combination of (a) the stan-
dard TF-IDF technique over Fully Qualified Names (FQNs) of code entities, with
(b) a ‘boosting’ factor for terms found towards the right-most handside of FQNs,
and (c) a composition with a graph-rank algorithm that identifies popular classes.

A Study of Ranking Schemes in Internet-Scale
Code Search

Sushil Bajracharya∗, Trung Ngo∗, Erik Linstead†, Paul Rigor†, Yimeng Dou†,
Pierre Baldi†, Cristina Lopes∗

∗Institute for Software Research †Institute for Genomics and Bioinformatics

{sbajrach,trungcn,elinstea,prigor,ydou,pfbaldi,lopes}@ics.uci.edu

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3423
ISR Technical Report # UCI-ISR-07-08

November 2007

Abstract. The large availability of source code on the Internet is enabling the
emergence of specialized search engines that retrieve source code in response to
a query. The ability to perform search at this scale amplifies some of the prob-
lems that also exist when search is performed at single-project level. Specifically,
the number of hits can be several orders of magnitude higher, and the variety of
conventions much broader.
Finding information is only the first step of a search engine. In the case of source
code, a method as simple as ‘grep’ will yield results. The second, and more dif-
ficult, step is to present the results using some measure of relevance with respect
to the terms being searched.
We present an assessment of 4 heuristics for ranking code search results. This
assessment was performed using Sourcerer, a search engine for open source code
that extracts fine-grained structural information from the code. Results are re-
ported involving 1,555 open source Java projects, corresponding to 254 thousand
classes and 17 million LOCs. Of the schemes compared, the scheme that pro-
duced the best search results was one consisting of a combination of (a) the stan-
dard TF-IDF technique over Fully Qualified Names (FQNs) of code entities, with
(b) a ‘boosting’ factor for terms found towards the right-most handside of FQNs,
and (c) a composition with a graph-rank algorithm that identifies popular classes.

1 Introduction

With the popularity of the Open Source Software movement [26], there has been an
increasingly wide availability of high quality source code over the Internet. This often
makes developers view the Internet as a Scrapheap for collecting the raw materials they
use in production in the form of some reusable component, library, or simply examples
showing implementation details [1].

Quantity carries with it the problem of finding relevant and trusted information. A
few years ago, there were only a few open source projects, and developers knew what
those were, what they did, and where they were on the Internet. These days, the sce-
nario is quite different. For example, Sourceforge hosts more than 128,000 open source

projects, Freshmeat has a record of more than 41,000 projects and Tigris has more than
900 high quality open source projects. When going to well-known repositories, it is
difficult to find relevant components, much less relevant pieces of code. Moreover, the
available projects are of varying quality. Some of these sites provide simple searching
capabilities, which are essentially keyword-based searches over the projects’ meta-data.

This paper focuses on the problem of source code search over Open Source projects
available on the Internet. When looking for source code on the Internet, developers
usually resort to powerful general-purpose search engines, such as Google. Web search
engines perform well for keyword-based search of unstructured information, but they
are unaware of the specificities of software, so the relevant results are usually hard to
find. Recently there has been some initiative in developing large scale source-code-
specific search engines [2, 3, 4, 5, 6]. While these systems are promising, they do not
seem to leverage the various complex relations present in the code, and therefore have
limited features and search performance.

In [30], code search is reported as the most common activity for software engineers.
Sim et al. summarize a good list of motivations for code search [28] where the use of
several search forms – such as looking for implementations of functions and looking
for all places that call a function – stand out. Unfortunately, these empirical studies are
too small, slightly outdated, and made in the context of proprietary code. Even though
several forms of code search have been heavily used in software engineering tools, and,
recently, in code search engines, the concept of code search still has plenty of room for
innovative interpretations. What motivations, goals, and strategies do developers have
when they search for open source code?

Without empirical data to answer that question, but based on Sim’s study and on
informal surveys, we use the following basic goals for Sourcerer: (a) Search for imple-
mentations: A user is looking for the implementation of certain functionality. This can
be at different levels of granularity: a whole component, an algorithm, or a function. (b)
Search for uses: A user is looking for uses of an existing piece of code. Again, this can
be at different levels of granularity: a whole component, a collection of functions as a
whole, or a function. (c) Search for characteristic structural properties: A user is look-
ing for code with certain properties or patterns. For example, one might be looking for
code that includes concurrency constructs. Although Sourcerer can serve all the search
goals mentioned, this paper focuses on the search for implementations.

But finding source code that matches some search criteria is only the first step of
a search engine. The second, and more difficult, step is to present the (possibly thou-
sands of) results using some measure of relevance, so that the time that people spend
searching for relevant code is minimized. The approaches taken by existing code search
engines to the issue of ranking the results vary from conventional text-based ranking
methods, to graph-based methods. From a research perspective, it would be desirable to
conduct experiments that compare the performance of several existing search engines.
That, however, has proven quite difficult, because they work on considerably differ-
ent code bases (datasets). For example, the search for “quick sort” implementations
in Java using Koders, Krugle, and Google codesearch, produces 636, 960, and 7,000+
results respectively. Moreover, the indexed code doesn’t seem to be the same: for ex-
ample, project JOElib, which contains an implementation of quick sort, seems to be

indexed by Koders and Krugle, but not by Google codesearch; conversely, the package
www.di.fc.ul.pt/∼jpn/java/srcs/dataStructures.zip is indexed by Google codesearch, but
not by the other two.

In order to focus on the issue of ranking code search results, we used Sourcerer
to perform a comparative study of four schemes for ranking source code; the results
are reported here. Access to the system, and all supporting materials for this paper, is
available at http://sourcerer.ics.uci.edu.

The rest of the paper is organized as follows. Section 2 presents the architecture of
Sourcerer. Section 3 describes the source code feature extraction and storage in detail.
Section 4 presents the heuristics we studied for ranking search results and Section 5
presents our assessment methodology and assesses the performance of those ranking
methods. In Section 7 we present related work. Finally Section 8 concludes the paper.

2 Sourcerer Architecture

Fig. 1. Architecture of the Sourcerer infrastructure

Figure 1 shows the architecture of Sourcerer. The arrows show the flow of infor-
mation between various components. Information on each system component is given
below.

– External Code Repositories: These are the source code repositories available on the
Internet.

– Code Crawler and Managed Downloader: We have implemented an extensible
crawling framework that runs several kinds of crawlers as plugins: some target

well-known repositories, such as Sourceforge, others act as web spiders that look
for arbitrary code available from web servers. The crawlers accumulate pertinent
information about a project they find in the web. This information is used by a Man-
aged Downloader to schedule the downloads (or checkouts) of source code from
the projects’ site to our local storage.

– Repository Manager: The local downloads of the projects are processed by the
Repository Manager for some sanity checks such as presence of valid parsable
content and libraries, and metadata extraction such as version information. Valid
downloads are then added to the Managed Repository.

– Managed Code Repository: The system maintains a local copy of each significant
release of the projects, as well as project specific meta-data. This meta-data is in-
crementally built starting with the information from crawlers to the information ex-
tracted from the parsers. For example, a project build configuration that conforms to
to the project object model as given by the Maven build system (http://maven.apache.org),
is produced for each project in the repository using the dependency information ob-
tained during parsing.

– Code Database: This is the relational database that stores features of the source
code. Part of this information is described in Section 3. We are using PostgresSQL
8.0.1.

– Parser / Feature Extractor: A specialized parser parses every source file from
a project in the local repository and extracts entities, fingerprints, keywords and
relations. These features are extracted in multiple passes and stored in the rela-
tional database. The parser was built using the JFlex (http://www.jflex.de) /CUPP
(http://www2.cs.tum .edu/projects/cup/) toolset. Some highlights of the Parser are
described in Section 3.

– Text Search Engine (Lucene): The keywords coming out from the parser, along with
information about related entities, are fed into a text search engine. We are using
Lucene 1.9.1 (http://lucene.apache.org).

– Ranker: The ranker performs additional non-text ranking of entities. The relations
table from the code database is used to compute ranks for the entities using ranking
techniques as discussed in Section 4.

With these components, we have an infrastructure for parsing and indexing large
amounts of source code. This infrastructure is able to operate in various operating envi-
ronments, ranging from personal desktop computers, used for development, to a cluster,
used for indexing very large datasets. In the latter case, a custom task scheduler utilizes
Suns Grid Engine 6 for parallel indexing of multiple repositories. We use a cluster of 80
computer nodes (Sun V20z) each with dual-core, dual-cpu AMD Opterontm Processor
250, and 4GB of RAM. Indexing over 4,000 projects amounting to 35 million SLOCs
takes about 2.5 hours on this cluster.

Code Search Applications
We have developed two code search applications, one as a public web interface and the
other as an internal tool specifically designed for performing the ranking experiments
described in this paper. At their core, they both use the exact same mechanism for
searching, which we explain in the next paragraph. Once the results are found, the web

Fig. 2. User interface of the web search application, which can be accessed live at
http://sourcerer.ics.uci.edu

application displays them along with information about the projects where they come
from, and additional features (see Figure 2). The internal tool that we used for studying
ranking takes an additional parameter consisting on the list of best hits for the control
queries, and then outputs their positions in the retrieved results.

In either case, code search is built using the indexed keys and ranked entities in
Sourcerer. It takes a list of query keywords entered by a user that are matched against
the set of keywords maintained in the index (Lucene). Each key in the index is mapped
to a list of entities. Each entity has its rank associated with it. Each entity also has other
associated information such as its location in the source code, version, and location
in the local repository to fetch the source file from. Thus, the list of entities that are
matched against the sets of matching keys can be presented to the user as search results
with all this information attached in a convenient way.

3 Feature Extraction and Storage

Implementing a conventional search engine (or tool) involves extracting pertinent fea-
tures from the artifacts to be searched, and storing them in an efficiently indexed form.
In the case of Sourcerer, we are exploring several heuristics for ranking search results
that involve complex structural information that can’t be obtained simply with string
matching. This section describes the most important structures and processes associ-
ated with the extraction and storage of source code features in Sourcerer.

3.1 Relational Representation

Various storage models have been used to represent source code and each have their
limitations and benefits [13]. Given the scale of our system, we base it on a relational
model of source code.1

One direct benefit of using a relational model is that it provides structural infor-
mation explicitly laid out in a database. However, breaking down the model into finer
level of granularity can make querying inefficient, both in expression and execution
[13]. Therefore, the model and design of our database schema (program entities and
their relations) were carefully assessed. Rather than having tables for each type of pro-
gram entity, which would be a relational representation of the Abstract Syntax Tree that
would be inefficient for querying, we use a source model consisting of only of two ta-
bles: (i) program entities, and (ii) their relations. Additionally, we also store compact
representations of attributes for fast retrieval of search results. Two such representations
are a) indexed keywords, and b) fingerprints of the entities. These entities, relations,
and attributes are extracted from the source code using a specialized parser that works
in multiple passes. We discuss these elements of our model for Java as of version 1.4
(we are not yet handling Java 5 features such as generics and annotations).

1. Entities: Entities are uniquely identifiable elements from the source code. Declara-
tions produce unique program entity records in the database. Program entities can

1 Relational models have been widely used for representing source code. See [21, 11, 10, 16],
among others.

be identified with a fully qualified name (FQN) or they can be anonymous. The list
of entities that are extracted during the parsing steps are: (i) package, (ii) interface,
(iii) class (including inner class), (iv) method, (v) constructor, (vi) field, and (vii)
initializer.
When the parser encounters any of these declarations it records an entry in the
database assigning the following attributes to the entity: a FQN, document loca-
tion in the local repository that associates version and location information (where
declared) with the entity, position and length of the entity in the original source
file, and a set of meta-data as name-value pairs. These include a set of keywords
extracted from the FQN. The meta-data field is extensible as needed.

2. Relations: Any dependency between two entities is represented as a relation. A
dependency d originating from a source entity s to a target entity t is stored as a
relation r from s to t.
The list of relations are: (1) inside, implying lexical containment, (2) extends, (3)
implements, (4) holds, a relation originating from a field to its declared type (Class
or Interface), (5) receives, a relation originating from a method or a constructor to
the type (Class or Interface) of any of its formal parameters, (6) calls, implying a
source entity (method. constructor, or an initializer) makes a call on a target method
or constructor, (7) throws, (8) returns, and, (9) accesses, a source entity (method,
constructor or initializer) accesses a field.

3. Keywords: Keywords are meaningful text associated with entities; they are more
appropriate for humans than for machines. The parser extracts keywords from two
different sources: FQNs and comments. Keyword extraction from FQNs is based on
language-specific heuristics that follows the commonly practiced naming conven-
tions in that language. For example, the Java class name “QuickSort” will generate
the keywords “Quick” and “Sort”. Keywords extraction from comments is done
by parsing the text for natural and meaningful keywords. These keywords are then
mapped to the entities that have unique IDs and that are close to the comment, for
example the immediate entity that follows the comment. These keywords are also
associated with the immediate parent entity inside which the comment appears.
The current version of Sourcerer does not fully exploit the specificity and meta-
information in Java comments. We will be adding this feature soon.

4. Fingerprints: Fingerprints are quantifiable features associated with entities. A fin-
gerprint is a sequence of numbers, implemented as a d-dimensional vector. This
allows similarity to be measured using techniques such as cosine distance and in-
ner product computation, well-known techniques in information retrieval [9].
We have defined three types of fingerprints: (i) Control structure fingerprint that
captures the control structure of an entity (ii) Type fingerprint that captures infor-
mation about a type. It currently contains 17 attributes including the number of
implemented interfaces, the number of declared methods, and the number of fields
(iii) Micro patterns fingerprint that captures information about implementation pat-
terns, also known as micro patterns [15]. It contains 23 selected attributes from the
catalog of 27 micro patterns presented in [15]. Fingerprints were not used in as-
sessing the ranking heuristics, thus further discussion on them is out of the scope
of this paper. Suffice it to say that they are used in Sourcerer to support structural
searches of source code.

3.2 Inter-Project Links

Unlike in a regular compiler, we are looking for source code, and not just interface
information. For example, when parsing some class A, the parser may encounter a ref-
erence to a class named B that is not part of the project’s source code. Maybe the project
being parsed includes the bytecodes version of B, or maybe not. If the bytecodes exist,
then the parser can resolve the name B and find its interface. If the bytecodes do not ex-
ist, then this cannot be done. In any case, the source-to-source link from A to B cannot
be directly made, in general, during parsing of A – for example, the project where B is
declared may not have been parsed yet or may even not be part of the local repository
at the moment.

Our system resolves source-to-source inter-project links in an additional pass through
the database. In its simplest version, this pass consists of name matching between the
referred library entities and source entities. However, there are some details that we
need to account for, namely the fact that developers often reuse code by replicating
the source of others project in their own projects – notice, for example, the results in
Figure 2, where the same class org.mortbay.http.HttpServer appears in two different
projects, jetty and usemodj. Moreover, Sourcerer has been designed to handle multi-
ple versions of projects, as new releases are made available. As such, we have devised
a probabilistic method that establishes source-to-source inter-project links by finding
the most likely version of the target project that the source project may be using. This
method is relatively complex to be explained here, and is not relevant for the purposes of
this paper, therefore we skip its explanation. The main point to be made is that Sourcerer
is able to resolve source-to-source inter-project links very accurately, even in the pres-
ence of multiple versions of the projects. These links are critical for the graph-based
algorithms that we are using and for additional ones that we will be using in the future.

4 Ranking Search Entities

Finding information is only the first step of a search engine. In the case of source code,
a method as simple as ‘grep’ will yield results. The second, and more difficult, step is
to present the information using some measure of relevance with respect to the terms
being searched. We present the ranking methods that we have implemented and that are
assessed in the next section.

Heuristic 1 (Baseline): TF-IDF on Code-as-Text
One of the most well-known and successful methods for ranking generic text docu-

ments is term frequency - inverted document frequency (TF-IDF) [9]. TF-IDF’s heuris-
tic is that the relevance of a document with respect to a search term is a function of the
number of occurrences of the search term in that document (TF) multiplied by the num-
ber of documents in which the term occurs (IDF). This method is at the heart of Lucene,
a well-known text retrieval tool that is available as open source. We fed the source code
files, as text, to Lucene, and used that as the baseline ranking method.2

2 Note that what we did here is nothing but a glorified ‘grep’ on source files. As baseline it is
quite appropriate, because (1) Lucene is a freely available tool providing powerful text retrieval
facilities, and (2) anyone can easily replicate this baseline.

As free text goes, TF-IDF is very effective. We know, however, that source code is
not free text: it follows a strict structure and several well-known conventions that can
be used to the advantage of ranking methods.

Heuristic 2: Packages, Classes, and Methods Only
When searching for implementations of functionality we can assume that those

pieces of functionality are wrapped either in packages, classes, or methods, and aren’t
simply anonymous blocks of code. Moreover, most likely the developers have named
those code entities with meaningful names. To capture the concept of “meaningful
names” we used Fully Qualified Names for all entities in the code. This knowledge
suggests focusing the search on names of packages, classes, and methods names, and
ignoring everything else. We did this as a first heuristic, and then applied TF-IDF to this
much smaller collection of words.

Heuristic 3: Specificity
We also know that there is a strict containment relation between packages, classes,

and methods, in this order, and that developers use this to organize their thoughts/designs.
So a hit on a package name is less valuable than a hit on a class name, which, in turn, is
less valuable than a hit on a method name. As such, we weighted the results by boosting
matches towards the right-hand side of names.

Heuristic 4: Popularity
In their essence, programs are best modeled as graphs with labels. As such, it is

worth exploring other possible ranking methods that work over graphs. In Inoue et al.
(Spars-J) [19], it has been suggested that a variation of Google’s PageRank [20] is also
an effective technique for source code search. In their Component Rank model, a col-
lection of software components is represented by a weighted directed graph, where the
nodes correspond to components (classes) and the edges correspond to cross compo-
nent usage. A graph rank algorithm is then applied to compute component ranks based
on analyzing actual usage relations of the components and propagating the significance
through the usage relations. Using the component rank model, classes frequently used
by other classes (i.e. popular classes) have higher ranks than nonstandard and special
classes.

We took Spars-J’s Component Rank method and reimplemented it in Sourcerer as
Code Rank, different from Component Rank in the following ways:

– Our method is more fine-grained than Spars-J’s in that we apply it not only to
classes but also to fields, methods and packages.

– Our method is less sophisticated that Spars-J’s in that it doesn’t perform pre-processing
of the graph to cluster similar code. This simplification is justified for the purpose
of the assessment goals (see Section 5): the dataset we used did not have significant
amount of code replication.

– We exclude all classes from the JDK, because they rank the highest and developers
know them well; as such, they are not that interesting for the purposes of the ranking
assessment.

Additional comparisons between Spars-J and our work are given in Section 7.

We used Google’s PageRank almost verbatim. The Code Rank of a code entity
(package, class, or method) A is given by: PR(A) = (1 − d) + d(PR(T1)/C(T1) +
... + PR(Tn)/C(Tn)) where T1...Tn are the code entities referring to A, C(A) is the
number of outgoing links of A, and d is a damping factor. We used a damping factor of
0.85, similarly to the original PageRank algorithm [20].

!" #$%&'()%'*+&",-(.(/%,0(120, 3(120, !" #$%&'()%'*+&",-(.(/%,0(120, 3(120,

#4 5+$6"%"(7(5$88%& 9 #: 9
! !

!! !!

!!! !!!

!; !;

; ;

#< =$2>?(7(,+&0 4@ #A 4@
! !

!! !!

!!! !!!

!;

!; ;

; ;!

;! ;!!

;!! ;!!!

;!!! !B

!B B

B

#C 9
#D "%E0F(7(82&,0(7(,%G&>F 9 !

! !!

!! !!!

!!! !;

!; ;

; #H A
!

#I &%J$KG&(7(%LE&%,,2+6 D !!

! !!!

!! !;

!!! ;

;!

#9 02>(7(0G>(7(0+% D ;!!

! #4@ I
!! !

!!! !!

!!!

M+0GK(/%,0(120,(N((9A !;

>+OPQ2,$GKO%0&2>,P52+,0&%GOP80EPR0ESK2%60

+&JPGEG>F%PTO%0%&PE&+0+>+KP80EP,GOEK%&PR0ESK2%60

+&JP+,"?P80EP%60%&E&2,%"0PU"0R0ESK2%60

6%0P,+$&>%8+&J%PT,&QG6'P0%,0PSFG0V%&Q%&MF&%G"

%>F+<%LGOEK%P>FG0,%&Q%&PSFG0V%&Q%&V%&QK%0

SFG0V%&Q%&

>+OP26"2J+0EP80EPR0ESK2%60

>+OP5&255K%P6KPS+&%PRKG,FSFG0V%&Q%&

)UWXSFG0P,%&Q%&PSFG0V%&Q%&

O'>KG,,P>FG0PSFG0V%&Q%&

6%0P,+$&>%8+&J%PT,&QG6'P0%,0PSFG0V%&Q%&

$?PO2"%G&0FP"Q5P,%&Q%&PYZ!

OG&=$%%PLOK&E>P+5T%>0>+OOP%LGOEK%PBOKYO2V%&Q%&

6[P>+PQ2KPOEDP&O2P\/Y%O+0%V%&Q%&

>+6,>2+$,>+"%P,%%"K26JP,%&Q%&PYO2Y%J2,0&']+"%

UEEM%,0V%&Q%&M>EPOG26^V0&26J_`a

+&JPGEG>F%P0+O>G0P$02KP6%0Pb++KM>EU6"E+260

P,%0V%&Q%&V+>?%0^V%&Q%&V+>?%0a

6%0P,8P>&2,E'P2OEKP&O2PZ262YO2V%&Q%&

252,P2OEKP6GO%V%&Q%&P0>EP]GO%V%&Q%&SK2%60

0F%&GP,%&Q%&,PM>EV%&Q%&

0F%&GP,%&Q%&,PZ$K020F&%G"M>EV%&Q%&

+&JPGEG>F%PTO%0%&PE&+0+>+KP0>EP,GOEK%&PMSbVGOEK%&P,%0V%&Q%&^V0&26Ja

UEEM%,0V%&Q%&M>E

252,P2OEKP6GO%V%&Q%&P0>EP]GO%V%&Q%&

>+OP26"2J+0EP2,PM>EV%&Q%&

"%P,2%O%6,P8G,0P>+&%P>+60G26%&PEK$J26P0&G6,8%&P6%0Pc5,0&G>0V%&Q%&MSb

+&JPK62>F+KK,PTGQGFO+PEK$J26,PJGO%,PM2>MG>M+%

>+OPK%Q%K+6%KG5,PG2O5+0PO+"$K%,PM2>MG>M+%Z+"$K%

M2>MG>M+%

^c0+OS+60G26%&dc0+Odc0+Odc0+OS+60G26%&a

+&JPGEG>F%PL%&>%,P2OEKPLEG0FP&%J%LPY%J$KG&ULE&%,,2+6

+&JPGEG>F%PLOK5%G6,P2OEKP&%J%LPY%J$KG&ULE&%,,2+6

+&JPGEG>F%P0++K,PG60P0'E%,PY%J$KG&ULE&%,,2+6

T+E0P>,EP,E2P,%G&>FP0%>F62=$%P\%E0FR2&,0V%G&>F

+&JPO+TGQ%PT%G0P,%G&>FP"8,P/G,2>\%E0FR2&,0V%G&>F

+&JPO+TGQ%PT%G0P,%G&>FP"8,P/&G6>Fc6"/+$6"\%E0FR2&,0V%G&>F

+&JP+E%6,>2%6>%P>"?PJ&GEFPbG0FM++K,P"%E0FR2&,0MG&J%0V%G&>F(

+&JPF0OKEG&,%&P$02KP,+&0PV+&0P#$2>?V+&0^;%>0+&d260d260a

+&JPF0OKEG&,%&P$02KP,+&0PV+&0P#$2>?V+&0^V+&0G5K%d260d260a

"%P$62>G0,PGJ%60,P260%J&G02+6cJ%60P?WG'V+&026JP#$2>?V+&0

Z0"8P,EG*6e"%E0FR2&,0V%G&>F^]+"%M'E%d260d260d,F+&0a

+&JP0[2P2"%GKP0%L0$02K,PRG,0#$2>?V+&0

+&JPF0OKEG&,%&P$02KP,+&0PV+&0P#$2>?V+&0^f&"%&%"_`a

>GP=>P>,KGQGKPGJ%6"GP$02KP#$2>?V+&0

+&JPGEG>F%P0$&526%P$02KP#$2>?V+&0P=$2>?V+&0^f5T%>0d260d260dS+OEG&G5K%a

>%&6P>+K0PV+&026JP=$2>?V+&0^f5T%>0_`d260d260dS+OEG&G0+&a

"%P0%GO*+&?P$02KP#$2>?V+&0

+&JPGEG>F%P8+&&%,0P8+&&%,0"+>PTGQGP,&>P$02KP#$2>?V+&0(

P=$2>?V+&0^f5T%>0d260d260dS+OEG&G0+&a

+&JPGEG>F%P>+OO+6,P>+KK%>02+6,P5$88%&P/+$6"%"R28+/$88%&

+&JPGEG>F%P>+OO+6,P>+KK%>02+6,P/+$6"%"R28+/$88%&

+&JPGEG>F%P>+OO+6,P>+KK%>02+6,P5$88%&P/+$6"%"/$88%&

+&JP"5$620P$02KP>+6>$&&%60P/+$6"%"/$88%&

+&JPGEG>F%P0$&526%P$02KPE++KP/+$6"%"/$88%&

80E(7(>K2%60

80E(7(,%&Q%&

0>E(7(,%&Q%&

&O2(7(,%&Q%&

>FG0(7(,%&Q%&

+&JP0[2P2"%GKP80EP!"%GKR0EV%&Q%&

+&JPO+&05G'P80EPM%,0V%&Q%&

EF+0++&JG62[%&P80EPR0EPE+&0^V%&Q%&V+>?%0a

+&JPGEG>F%PTO%0%&PE&+0+>+KP80EP,GOEK%&PRMbVGOEK%&PJ%0V%&Q%&^a

+&JP>G&2+6P,D"GQP80EPRMbV%&Q%&P,0+EV%&Q%&^a

Fig. 3. Control queries used in the assessment of Sourcerer showing the keywords used and the
best hits hand-picked by human oracles for each query. (‘+’ in Keywords implies logical AND)

5 Methodology for Assessing Ranking Heuristics

Open source code search engines can be assessed using the standard information re-
trieval metrics recall and precision. Recall is the ratio of the number of relevant records

retrieved to the total number of relevant records available; precision is the ratio of
the number of relevant records retrieved to the total number of irrelevant and relevant
records retrieved. For the purposes of this paper, we fixed the precision parameter, and
we focused mainly on recall issues. Specifically, we focused on recall of the records
that fall within the top 10 and 20 ranking positions.

The dataset used for this study consists of 1,555 open source Java projects (see
Fig. 6, at the end of the paper), corresponding to 254 thousand classes and 17 million
SLOCs.

Comparisons between Sourcerer and other search engines are problematic, because
there is no benchmark dataset, as discussed before. We note that other work on source
code search engines has included comparisons with Google general search (see e.g. [19]).
That is not controlled enough to address the assessment goals we are pursuing. We be-
lieve that the methodology we devised, described in this section, is the most appropriate
for the goal at hand. Our assessment methodology is comparable to that used in [23].
We are making the dataset used in this study publicly available, so that other approaches
can be compared to ours.

5.1 Assessment Goal

The goal of the assessment is to compare the text-based, structure-based, and graph-
based methods described in Section 4, and combinations of those methods. Ultimately,
what one wants of an open source code engine is that it presents the most relevant search
hits on the first page of results. Therefore, the question for which we want to find an
answer is: what is the best combination of heuristics for ranking the results of open
source code search? The results presented here are a first step into the answer.

5.2 Control Queries

For achieving our assessment goal we used carefully chosen control queries and studied
the results for those queries. Control queries have the following properties:

1. they result in a reasonable number of hits, large enough for diversity of results but
small enough to be manually analyzable by people, and

2. their search intent is obvious so that it is easy to agree which hits are the most
relevant.

Once control queries are selected, a person (an Oracle) analyzes the resulting hits
and decides on the N best hits for each query, where N is a number between 3 and 10.
A group of five expert Java developers were involved in collectively selecting the best
hits for each query. The following criteria were used to select the “Best Hits” from the
result set in the most systematic way possible:

1. Content corresponding to the search intent
2. Quality of the result in terms of completeness of the solution

We defined 10 control queries (see Fig. 3) to be run against an indexed code repos-
itory described above. The queries themselves were chosen to represent the various
intentions of searchers as much as possible. To this end, queries were formulated that
would be both indicative of a casual user, perhaps searching for an implementation of
a standard data structure (eg. a bounded buffer), as well as a more advanced user inter-
ested in implementations on a larger scale (eg. a complete ftp server).

Figure 3 shows all 10 control queries, the combination of keywords used for each
control query and the best hits as ranked by the human oracles. The ranks are indicated
by roman numerals. In total for the 10 control queries issued 57 search results were
selected as the best hits.

5.3 Ranking Schemes

Five ranking schemes were derived from the four heuristics described in Sec. 4, some
corresponding to combinations of the heuristics:

1. Baseline: this corresponds directly to Heuristic 1.
2. FQNs: this corresponds directly to Heuristic 2.
3. FQNs + coderank: this corresponds to a combination of Heuristics 2 and 4. Im-

plementing this ranking scheme involves combining Lucene-based TF-IDF scores
with the computed coderank (Heuristic 4) values to produce a total ordering of
results. To achieve this, search results are first placed in order of decreasing TF-
IDF score. Those ranked results are then partitioned into bins consisting of k re-
sults each, and each bin is in turn sorted based on coderank. The net effect is to
give precedence to highly relevant hits based on content, with coderank acting as a
secondary, popularity-based ranking refinement to reorder documents with similar
TF-IDF scores.

4. FQNs + right-hs boost: this is a combination between Heuristics 2 and 3, which em-
ploys Specificity (Heuristic 3) to improve the uniform TF-IDF approach of Heuris-
tic 2. The standard TF-IDF scheme is augmented to include explicit weights on
fields in the document index. Commonly referred to as field “boosting” in the text
retrieval domain, this approach allows search results with matching query terms in
specified fields to be given a higher score than results with matching query terms
in other fields. In this ranking scheme, results with query term matches in the right-
most part of the fully qualified name are given a higher score than results with
matching query terms in FQN positions further to the left. Because boosting is in-
tegrated into the TF-IDF scoring process (Lucene, in our case), it is not necessary
to bin the results for a secondary ranking pass.

5. All: the final ranking scheme corresponds to a combination of all (non-baseline)
ranking heuristics, i.e. it combines boosted TF-IDF on FQNs with coderank. In
this scheme, results are first ordered based on the boosted TF-IDF scores described
above; coderank is then applied in a second ranking pass using the binning tech-
nique described for scheme 3.

5.4 Comparison of Ranking Schemes

Finally, the different ranking schemes are compared with respect to the positions at
which they place these N best hits for each control query. A perfect ranking scheme
would place the N best hits for every query on the N top-most positions of the result
set.

6 Results

Ranking scheme Top 10 Top 20
1. Baseline (code-as-text) 30% 44%
2. FQNs 32% 42%
3. FQNs + coderank 40% 44%
4. FQNs + right-hs boost 63% 74%
5. FQNs + coderank + right-hs boost 67% 74%

Table 1. Recall of best hits within top positions – top 10 and top 20 positions shown.

Table 1 summarizes the results of our study. Figure 4 shows a visual representa-
tion of these results. The plot in Figure 4 displays the search results for each query,
highlighting the positions at which the best hits rank. The difference in search perfor-
mance of the ranking methods is visible upon informal observation: the improvements
correspond to having more best hits at the top. The major observations from Table 1
and Figure 4 are the following: (1) there is no noticeable difference between schemes 1
(baseline, full-text indexing) and 2 (FQNs only); and (2) the most noticeable improve-
ment with a single heuristic lies in the introduction of specificity (scheme 4). We expand
on these observations with more detailed data.

Figure 5 shows all the data from the study. The first detail to notice is the differ-
ences in query formulation between the baseline and the other schemes. For example,
the query for searching a bounded buffer implementation was formulated as “bound-
edbuffer* OR (bounded* AND buffer*)” for the baseline, and simply “bounded AND
buffer” in the other schemes. In the case of code-as-text, we have to formulate the
queries at that lower-level, almost as direct string match (case is ignored in Lucene), be-
cause no naming conventions are being considered. In general, for the baseline measure-
ments, code-as-text with Lucene, query (term) is formulated as (term*), query (term1

term2) is formulated as (term1term2 OR (term1* AND term2*)), etc. For all the other
schemes, and given that term unfolding is done during parsing and indexing accord-
ing to some basic Java naming guidelines, query (term) is simply (term), query (term1

term2) is (term1 AND term2), etc.
The two formulations don’t fully match, in the sense that they don’t retrieve the

exact same records. That is visible in columns marked as “A” in Figure 5, where the
number of hits for the baseline is different than for all the other schemes. For exam-
ple, for Q2 (quick sort), the baseline retrieves more than twice the results retrieved by

0

20

40

60

80

100

120

140

160

180

Q 1

Q 2

Q 3

Q 4

Q 5

Q 6

Q 7

Q 8

Q 9

Q 10

Baseline FQ Ns FQ Ns + coderank FQ Ns + right-hs boost FQ Ns + coderank +

 right-hs boost

H
it
 P
o
s
it
io
n

Fig. 4. Placement of best hits by the different ranking schemes.

!" #$%&'%()*+,*-'.(/%0122 ! !! !!! !3 3 3! 3!! 3!!! !4 4 !"#"$% !"#"$%

#5 6+$7"%"6$,,%&8*9/*:6+$7"%"8*;<=*6$,,%&8> ?@ 5ABB & ' () * ? ?

#C D$'0E(+&.8*9/*:D$'0E8*;<=*(+&.8> C@C 5ABB (+ $% &' CF CF CF GH HB ?F G H

#G "%I.J,'&(.(%1&0J8*9/*:"%I.J8*;<=*,'&(.8*;<=*(%1&0J8> 5HH BA@B $?C @K 5 5

#H &%L$21&%MI&%(('+78*9/*:&%L$21&8*;<=*%MI&%(('+78> KHF 5ABB &(H? HF B 5

#? .'0.10.+%8*9/*:.'08*;<=*.108*;<=*.+%8> 5C 5ABB $, + G G

#@ ,.I(%&N%&8*9/*:,.I8*;<=*(%&N%&8> 5F@ BAFB , &) &* HO 5 G

#K .0I(%&N%&8*9/*:.0I8*;<=*(%&N%&8> G?? BAOB $ ' &+ CK F5 F@ 5@? 5@? 5K? C G

#F &P'(%&N%&8*9/*:&P'8*;<=*(%&N%&8> CGK BAFB C? @5 OC O@ B B

#O 0J1.(%&N%&8*9/*:0J1.8*;<=*(%&N%&8> C5C 5ABB $ ' &(&' &* C? 5BO C ?

#5B ,.I02'%7.8*9/*:,.I8*;<=*02'%7.8> 5@K 5ABB H? @B 5CH 5C@ B B

Q+.12*%7.'.'%(*,&+P*.J%*R%(.*-'.(*01I.$&%"*'7*122*D$%&'%(*S'.J'7*<*I+('.'+7(*'7*.J%*&%($2.(** $) $'

-./011"234"536"!"789:"" %;&% %,))

#5 6+$7"%"*;<=*6$,,%& 5H5 5ABB * < @@ KF F? C C

#C D$'0E*;<=*(+&. 5CO 5ABB , + &$ &' &* GK GF HO @B F@ C ?

#G "%I.J*;<=*,'&(.*;<=*(%1&0J F@ 5ABB $ ' * ?K F@ G G

#H &%L$21&*;<=*%MI&%(('+7 5OG 5ABB &(C5 C@ B 5

#? .'0*;<=*.10*;<=*.+% 55F 5ABB , FB OF 5 5

#@ ,.I*;<=*(%&N%& KK 5ABB $ ($% HB ?5 C G

#K .0I*;<=*(%&N%& CB@ 5ABB , (< CO GB GG 5GH 5H5 5K? 5FK G C

#F &P'*;<=*(%&N%& 5@C 5ABB && HC @G 5BK 5CC B 5

#O 0J1.*;<=*(%&N%& 5H5 5ABB $ & $% H5 ?H KG KH G G

#5B ,.I*;<=*02'%7. CB5 5ABB , $% &+ HH C G

Q+.12*%7.'.'%(*,&+P*.J%*R%(.*-'.(*01I.$&%"*'7*122*D$%&'%(*S'.J'7*<*I+('.'+7(*'7*.J%*&%($2.(** $* $)

-./011"234"536"!"789:"" %;&, %,)$

#5 6+$7"%"*;<=*6$,,%& 5H5 5ABB $ & @5 @C F5 C C

#C D$'0E*;<=*(+&. 5CO 5ABB $ () $% &$ CH C? HG ?C FO H ?

#G "%I.J*;<=*,'&(.*;<=*(%1&0J F@ 5ABB $ (&& ?K F5 C G

#H &%L$21&*;<=*%MI&%(('+7 5OG 5ABB $ C5 CC 5 5

#? .'0*;<=*.10*;<=*.+% 55F 5ABB $ @5 F5 5 5

#@ ,.I*;<=*(%&N%& KK 5ABB , & + HB ?G G G

#K .0I*;<=*(%&N%& CB@ 5ABB $, ' C5 CH GB 5GF 5?@ 5K@ 5F5 G G

#F &P'*;<=*(%&N%& 5@C 5ABB $ HH @G 5BC 5CO 5 5

#O 0J1.*;<=*(%&N%& 5H5 5ABB , &) H5 HC @5 @C G G

#5B ,.I*;<=*02'%7. CB5 5ABB $, & H5 G G

Q+.12*%7.'.'%(*,&+P*.J%*R%(.*-'.(*01I.$&%"*'7*122*D$%&'%(*S'.J'7*<*I+('.'+7(*'7*.J%*&%($2.(** ,& $'

-./011"234"536"!"789:"" %;'% %,))

#5 6+$7"%"*;<=*6$,,%& 5H5 5ABB , & + < &$ H ?

#C D$'0E*;<=*(+&. 5CO 5ABB $ + * < && HC H? H@ @G FG H ?

#G "%I.J*;<=*,'&(.*;<=*(%1&0J F@ 5ABB , ' * CH ?C G G

#H &%L$21&*;<=*%MI&%(('+7 5OG 5ABB $ & (G G

#? .'0*;<=*.10*;<=*.+% 55F 5ABB , + * G G

#@ ,.I*;<=*(%&N%& KK 5ABB (* &$ HG ?G C G

#K .0I*;<=*(%&N%& CB@ 5ABB $, & ' + && &' 5G@ 5HG 5KK ? K

#F &P'*;<=*(%&N%& 5@C 5ABB $, H@ @@ 5BO C C

#O 0J1.*;<=*(%&N%& 5H5 5ABB $ & ' () * < K K

#5B ,.I*;<=*02'%7. CB5 5ABB & ' (&& G H

Q+.12*%7.'.'%(*,&+P*.J%*R%(.*-'.(*01I.$&%"*'7*122*D$%&'%(*S'.J'7*<*I+('.'+7(*'7*.J%*&%($2.(** &+)$

-./011"234"536"!"789:"" %;+& %,*)

#5 6+$7"%"*;<=*6$,,%& 5H5 5ABB $, & () ? ?

#C D$'0E*;<=*(+&. 5CO 5ABB $) * < &(H? ?B ?5 @5 FH H ?

#G "%I.J*;<=*,'&(.*;<=*(%1&0J F@ 5ABB $ (* CH H5 G G

#H &%L$21&*;<=*%MI&%(('+7 5OG 5ABB $, & G G

#? .'0*;<=*.10*;<=*.+% 55F 5ABB $ ' (G G

#@ ,.I*;<=*(%&N%& KK 5ABB & ') ?C ?? G G

#K .0I*;<=*(%&N%& CB@ 5ABB $, & ' + &$ &- 5GO 5?@ 5KF ? K

#F &P'*;<=*(%&N%& 5@C 5ABB $ &' HC @G 5BC 5 C

#O 0J1.*;<=*(%&N%& 5H5 5ABB $ & ' () * $% K K

#5B ,.I*;<=*02'%7. CB5 5ABB $, & + H H

Q+.12*%7.'.'%(*,&+P*.J%*R%(.*-'.(*01I.$&%"*'7*122*D$%&'%(*S'.J'7*<*I+('.'+7(*'7*.J%*&%($2.(** &*)$

-./011"234"536"!"789:"" %;+) %,*)

=

>
?
!
:"
@
"4
8A
B
9C
B
:"
D
3
3
:9

E
11

/17E(*,&+P*.J%*R%(.*-'.(

=
0
:.
18
F
.

>
?
!
:

>
?
!
:"
@
"/
3
G
.4
0
F
H

E I

Fig. 5. Calculation of Recall values for each ranking scheme within top N hits in the results

the other schemes. A close observation of the extra matches of the baseline showed
that the vast majority of the extra hits were noise – the words “quick sort” being men-
tioned in comments (e.g. a comment “We are using quick sort for sorting this list” over
the implementation of something else). Conversely, some queries in the baseline miss
some the identified best hits. For example, the formulation of Q3 (depth first search) in
the baseline missed two of the best hits. This was because of a limitation of Lucene,
which doesn’t allow wildcards in the beginning of terms – therefore missing hits such
as “spawn depthFirstSearch.”

In any case, the two different query formulations are close enough for the baseline to
have the similar total recall as the others: in the baseline measurements, only 5 out of 57
best hits were not retrieved. As such, it is valid to compare the baseline experiment with
the others, since (a) we are looking at where the schemes place the best hits, and 91%
of the identified best hits are retrieved by the baseline; and (b) the extra results provided
by the baseline are essentially noise, i.e. no new relevant results were identified there.

Columns marked as “B” in Figure 5 show the placement of the best hits in the search
results for each ranking scheme. For example, in the baseline, Q1 (bounded buffer), the
5 best hits were placed in positions 3, 4, 5, 7, and 8 of the list of 56 results.

Finally, columns marked “C” are used to compute the recall of best hits within the
first N positions. For example, in the baseline, Q2 (quick sort) there were 3 best hits
within the first 10 positions – namely in positions 5, 6, and 10 – and only one additional
best hit in the top 20 positions – the hit in position 15. All other were above position
20. The recall values within the top 10 and 20 positions for each ranking scheme were
calculated by adding the corresponding columns above and dividing that number by the
total number of best hits identified by the human oracles (57 – see Figure 3).

Given this data, we can draw the following conclusions:

– Comparison between indexing all code as text (baseline) and looking only at names
of code entities (FQNs only). One of the most interesting results of this study is
that the performance of schemes 1 and 2 is very similar. What this means is that
of all the text in source files, the names of the entities are the main source of ef-
fective information about functionality, and everything else is fairly irrelevant for
the search purposes. As noted above, using code-as-text often results in extra hits,
usually found in comments or in method bodies, that proved to be irrelevant for
the searches at hand. This result indicates that semantic search engines can safely
reduce the amount of indexed information by ignoring a large amount of textual
information.
A production engine where this result might be applicable is Google code search [6],
which treats code as text. For example, when searching for an http server imple-
mentation in Java using Google code search, we note that most of the good hits (i.e.
actual http server implementations) correspond to classes whose names include
“http” and “server.” The extra possible matches, which can be seen with queries
such as “http AND server lang:java,” are essentially noise, such as occurrences of
these words in comments (e.g. http//:...).
This observation has a qualitative explanation in the way that developers are taught
to name code entities. Careful naming has traditionally been considered a good

software practice, and it looks like developers are applying those guidelines [7] in
practice.
This also reflects our design decision of using FQNs as the name space to search.
We have observed that developers often rely on containment hierarchies to assign
semantics to the names they decide to give to a certain program entity. This has
some important consequences:
1. The exact name of the entity as it appears in its definition in the source code

text may not contain all the query terms a user will use to search for that en-
tity. For example, in Fig. 3 the second best hit for query Q6 (ftp + server)
is an entity named “org.mortbay.ftp.TestServer”. The simple name of this en-
tity is “TestServer”. Relying only on the simple name of this entity will not
associate the term “ftp” with it and thus it will not be found when a user
searches for “ftpserver.” A lookup in Google code search (“testserver ftp mort-
bay lang:java”) indicates that their engine is indexing this entity, but that it is
not retrieved on the query “ftp server.” In the total 57 best hits, there are 11 hits
that share this property. The 2nd best hit for Q7 and 2nd best hit for Q8 are two
noticeable ones.

2. Using FQNs as the meaningful names can boost the significance of an entity.
Since we are using TF-IDF measures for ranking, the frequency of occurrence
of the term effects the ranking. It can be seen that using FQN increases the fre-
quency of relevant terms in the name. For example, in Fig 3, the 3rd best hit for
query Q2 has the FQN “org.apache.commons. collections.buffer.BoundedFifoBuffer.”
Using the FQN makes the term “buffer” appear twice in the name. Twenty out
of 57 best hits share this property.

3. The prefix that gets appended to the exact name associates some meaningful
terms with the entity that reflects the hierarchic decomposition that the devel-
opers have encoded in the implementation. For example, in Fig. 3, the 1st
best hit for Q5 has a term “games” associated with it. A user who is searching
for “tic + tac + toe” probably might refine the query with an additional term
“game.”

These observations help us further to understand the effect of coderank and speci-
ficity in ranking search results.

– Effect of Code Rank (FQNs + coderank). Taking into account the popularity of code
entities, according to the sheer number of uses that they have, shows only a small
improvement over looking at FQNs only. Since we are counting all the references,
not just inter-project ones, we believe that the improvement is due to issues of
size: (1) larger projects tend to have classes with higher Code Rank, because they
have more intra-project references; and (2) larger projects usually have good code;
hence the improvement. This result somewhat challenges a previous result reported
by Inaoue et al. [8, 18, 19], in which they found strong benefits in using a similar
popularity-based technique. We will expand on this in the next section.

– Effect of specificity (FQNs + right-hs boost). This heuristic (specificity) is the one
that has the strongest positive effect on the results. In order to understand this, we
need to refer to our design decision of using FQNs. The use of FQNs as the names-
pace to search adds some relevant terms as discussed earlier, but, it also has the side
effect of associating less relevant terms, some merely noise, with the entities. Less

specific terms from the FQNs that usually are found towards the left (such as “org,”
“com,” “cern,” “apache” etc) do not tell much about the entity they are associated
with. In most of the cases, the hierarchic nature of the FQN namespace makes terms
in right part of the FQN more specific. By boosting the terms found at the rightmost
of the FQNs, the specificity heuristic avoids pulling irrelevant entities, that might
have the query term appearing somewhere to the left side of the FQN, to the top of
the results.
In short, taking into account the hierarchical decomposition of the program’s names-
pace enables the search method to place more relevant entities in the top positions
of the result set.

– Combinations. Overall, the ranking scheme that performed better was the one that
includes a combination of text-based, structure-based, and graph-based heuristics.
The individual contributions of the different heuristics, even if small, have an ad-
ditive effect. We believe that further improvements will be obtained by devising
additional heuristics that can then be combined, in a weighted manner, with the
ones described here.

7 Related Work

Our work builds on a large body of work from different parts of Computer Science and
Software Engineering.

7.1 Search Engines

General purpose search engines, such as Google, are live, in the sense that they have
the ability to constantly find information without the sources of that information having
to report or register it explicitly, or even know that they are being analyzed. That is
one of the goals of Sourcerer, and, as such, it diverges from traditional software man-
agement tools that operate over well-identified sets of source code that are collected
together through some external protocol. Google’s PageRank [20] was also the inspira-
tion behind our code rank algorithm, as it was for other work before ours. It is known
that Google evolved from that simple heuristic to include dozens of additional heuris-
tics pertaining to the structure of the web and of web documents. But general-purpose
search engines are unaware of the specificities of source code, treating those files as
any other text file on the web. Searching for source code in Google, for example, is not
easy, and Google, by itself, is incapable of supporting the source-code-specific search
features that we are developing.

Recent commercial work is bringing the capabilities of web search engines into
code search. Koders [2], Krugle [3], Codase [4], csourcesearch [5], and Google Code
Search [6] are the few prominent ones. All of these code search engines seem to be
crawling publicly available code in the Internet and are almost functionally equiva-
lent with features such as: allowing search for multiple languages, allowing search in
multiple fields in code (such as comments, definitions of entities), basic filtering mech-
anisms for results (based on types of entities, licenses) etc. Google code search has an

additional feature of allowing a regular expression search on the code. Regular expres-
sions can be quite powerful in expressing queries but, beyond this, Google code search
does not seem to implement any notion of structure-based search and ranking of results
incorporated so far. It still is a string-based regular expression match over a massive
collection of plain source code text.

While developing open source code search engines can, indeed, be done these days
with off-the-shelf software components and large amounts of disk space, the quality
of search results is a critical issue for which there are no well-known solutions. While
researching these systems, we found a variety of user interfaces to search and explore
open source code, but we were very often disappointed with the search results them-
selves. Those systems being proprietary, we were unable to make comparisons between
their ranking methods and ours. A bottom-line comparison of the results also didn’t
produce meaningful conclusions, because the datasets that those products operate on
are dramatically different from the dataset we used for our study.

Two projects have recently been described in the research literature that use vari-
ants of the PageRank technique to rank code, namely Spars-J and GRIDLE. Spars-
J [8, 18, 19] is the project closest to ours. Their Component Rank technique is a more
sophisticated variation of our code rank technique, in that it performs pre-processing on
the graph in order to cluster classes with similar (copy-and-paste) code. The reported
results of that work confirmed that it is possible to detect some notion of relevance of
a component (class) based solely on analyzing the dependency graph of those compo-
nents. However, when analyzing that work we found important questions that were left
unanswered. Specifically, it was unclear how the improvements shown by this graph-
based heuristic compared to other, simpler, heuristics for source code search. That was,
essentially, the question that we tried to answer in our work so far. According to the re-
sults obtained here, it seems that something as simple as focusing the search on class and
method names, and defining appropriate rules for weighting the parts of those names,
produces very good results, albeit using a different concept of relevance. Finally, it
seems that combining these two heuristics improves the results even further. The main
contribution of our work over Spars-J is, therefore, the realization that improvements on
the quality of search results require not just one, but a combination of several heuristics,
some graph-based, others not.

GRIDLE [25] is a search engine designed to find highly relevant classes from a
repository. The search results (classes) are ranked using a variant of PageRank algo-
rithm on the graph of class usage links. GRIDLE parses Javadoc documentation instead
of the source code to build the class graph. Thus it ignores more fine grained entities
and relations.

7.2 Software Engineering Tools

Modern software engineering tools are bringing more sophisticated search capabili-
ties into development environments extending their traditionally limited browsing and
searching capabilities [17, 22, 29, 24]. Of particular interest to this paper are the various
ranking techniques and the search space these tools use.

Prospector uses a simple heuristic to rank jungloids (code fragments) by length
[22]. Given a pair of classes (Tin, Tout) it searches the program graph and presents to

the user a ranked list of jungloids, each of which can produce class Tout given a class
Tin. Its ranking heuristic is conceptually elegant but too simple to rank the relevance
of search results in a large repository of programs where every search need not be for
getting Tout given Tin.

Stratchoma uses structural context from the code user is working on and automati-
cally formulates a query to retrieve code samples with similar context from a repository
[17]. A combination of several heuristics is used to retrieve the samples. The results
are ranked based on the highest number of structural relations contained in the results.
The search purpose Stratchoma fulfills is only one of the many possible scenarios pos-
sible. Nevertheless, the heuristics implemented in it are good candidates to employ in
searching for usage of framework classes.

JSearch [29] and JIRiss [24] are two other tools that employ Information Retrieval
(IR) techniques to code search. JSearch indexes source code using Lucene after extract-
ing interesting syntactic entities whereas JIRiss uses Latent Semantic Indexing [23].
Both these tools lack graph based techniques and thus are limited to their specific IR
specific ranking in presenting results.

XSnippet is a code assistant system that assists developers in finding relevant code
snippets [27]. Like Stratchoma it uses the developer’s current context to generate queries
and uses a graph-based model of the source code to mine relevant snippets in a code
repository. The snippets can be ranked according to four different types of ranking
heuristics. While XSnippet strengthens the claim that structure-based ranking is a sig-
nificant contributor to the usability of the returned results in searching for code snippets
in a repository, it suffers from two limitations. First, the types of queries are limited to
looking for solutions for object instantiations only. Second, the very nature of the snip-
pet mining algorithm requires the system to traverse the code graph in the repository
for each query. This restricts the use of the technique on any large scale repository like
Sourcerer.

7.3 Structure-based Source Code Search

Recent work as presented in [12, 31, 16, 14] captures the state-of-the art in using the
relational model and efficient representation (such as datalog) for practical extraction of
structurally related facts from source code bases. We are exploring ways to scale these
techniques to the level of Internet-scale code search using Sourcerer.

8 Conclusions

We have presented Sourcerer, a search engine for open source code search built that
extracts fine-grained structural information about source code. In the process of devel-
oping Sourcerer, we have been experimenting with several ranking heuristics, as well
as with assessment methodologies that can tell us whether those heuristics are useful or
not. In this paper, we described four such heuristics and showed their performance using
our assessment methodology. The first important result is the realization that most of
the semantic information is in the names of code entities. As such, source code search
engines can safely reduce the amount of information that needs to be indexed. Beyond

that, the heuristic that showed the highest improvement in relevance of search results
was one that includes a combination of text-based, structure-based, and graph-based
ranking methods. We believe that this will be true for future work in devising new
heuristics for ranking the results of open source code search: no single heuristic, not
even a single class of heuristics, will be enough.

So far we have been focusing on improving the search for implementations of func-
tionality, but we are well aware that this is not the only need that developers have with
respect to using open source code. We are working on leveraging the rich structural in-
formation that is stored on the database in order to provide new features such as uses of
classes and methods, how to use frameworks, change impact analysis, and determining
the smallest set of dependencies for a given source file. While none of these features
are new, we believe their impact will be much greater if they work on the whole col-
lection of open source projects on the Internet, without the developers having to follow
additional protocols for identification and indexing of projects, which is what happens
with current IDEs. As such our work is complementary to the work in IDEs, and there
is a good synergy between the two. We are currently working on integrating the search
capabilities of Sourcerer with Eclipse using a Web Service that exports the search facil-
ities as APIs.

A more general conclusion drawn from this work is the realization that if open
source code engines are to be developed in a friendly competitive manner, the com-
munity needs to come together to establish a benchmark against which the different
methods can be compared.

References

[1] Scrapheap Challenge Workshop, OOPSLA 2005.
http://www.postmodernprogramming.org/scrapheap/workshop.

[2] Koders web site. http://www.koders.com.
[3] Krugle web site. http://www.krugle.com.
[4] Codase web site. http://www.Codase.com.
[5] csourcesearch web site. http://csourcesearch.net/.
[6] Google Code Search. http://www.google.com/codesearch.
[7] Sun Microsystems. Code Conventions for the Java Programming Language,

http://java.sun.com/docs/codeconv/html/ CodeConvTOC.doc.html.
[8] SparsJ Search System. http://demo.spars.info/.
[9] Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Retrieval.

ACM Press / Addison-Wesley, 1999.
[10] R. Ian Bull, Andrew Trevors, Andrew J. Malton, and Michael W. Godfrey. Semantic grep:

Regular expressions + relational abstraction. In WC’02 9th Working Conference on Reverse
Engineering, pages 267– 276, 2002.

[11] Yih-Farn Chen, Michael Y. Nishimoto, and C. V. Ramamoorthy. The c information abstrac-
tion system. IEEE Trans. Softw. Eng., 16(3):325–334, 1990.

[12] Tal Cohen, Joseph (Yossi) Gil, and Itay Maman. Jtl: the java tools language. In OOP-
SLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 89–108, New York, NY, USA,
2006. ACM Press.

!"!#$%&'()

!""#$ "%&&#'(($))&!*+ ,(- ./)&!01212 3"-(& 36.#$!& 7#+$!*7 8($!8$ 6($&! !,&!1(4#&' 5$&(!1*8+1()*! 9#2!"%7!7! "((.*9(:&(7(!5(

!"(5 2-.)("!$(0*(0$*1(& ,,5;)%* ./)&!$(3"5 367%5 7#1!+295 8($,$&!2'(& 6,6715 !8!+(& 5$&(!116; 9&!6$#& "((.*9(:5&2

!"#&! 2-8!')(2#)("!5(<= ,*"5 *!,4 3"55(36#77(& 75'($2. 8($1!*7 6,605$%)*# &#>0>17&62 5$&*8+%7!$#& 9$<?;@ 2#2##8

!"5*1 2;6@)((6!&2 ,*7("%8'(& *"-(32!5 36#&$,#&4!&)(& 7$##7"!& 8($1(55(8+(& 6.!&1!2/ &6+02.!$05(&9(& 5$&%'$#& 9$)0>17)":))7%$*75

!225 2=3)(,(2$56/ ,*7(.!5.7(& *"5>8($ 322'*$ 36#5 7$5! 8($6#6 6.#(8*>315 &&)$##7"#> 5$&%$5"!2' 9$5%&9(/)":)(&"/

!22$5/82 2!3!>)(,#&(> ,*7(52!$2.(& *2!605(&9(& 32(65 36#4(&+&!6. 7%2*)*%1 8(5(&(# 6.#8# &559*(4(& 5$&%$5$(5$ 4!7$(&)":3)#

!2)(5*+8(& 2!7!1!&)(7!1"&(,*7(5*8' *2.!"#) 32,) 36&#!2$#& 7%2&!$*9(8($4#&'$##75 6.#$#!&2. &$02#1 5%"8($ 4!6*)()":#3"

!2(#6(&!$#& 2!1(75(/()(7*2#8 ,*8!7)(5$*8/ *2.!$7(32.!&1!8!+(& 365A7 7%82.$*1(8($4#&$.03!9! 6.#$#07*$. &$6)(1# 5%"5#8*2 4!61#8)":$#&A%(

!27#2!$#& 2!89!55$%)*#)(76.*"7%(,*8)27!55 *26&@8 32.!$5(&9(& 3&!*7 7%$5'# 8(>51 6.#$##&+ &$60$(>$0$B=@ 5%8>!217 4!6&(9*(4)*&(2$#&/:1*8!

!252&*6$4#&'5 2!&"#8,*9()(1($&*> ,*&5$27*(8$ *)(8$*$/ 32*) 3&!& 7%>#&02#8$&*" 8(>$1#2' 6.63&')" &%"/91 5%6(&,*2*(4!&6*8+ (>2!7*"%&

!2$*9(0315 2!&6*82.#)($!2. ,*$)(2#&!$#& *,#&1 327!557*" 3&!$(7>"=3 8,#6 6.67!")" &%26/2-@ 5%66#&$0'"!5(4!4 ,#&&(5$

!)* 2!5!8#9!)(9#8 ,7!5.3!9! *,>0$>054*$2. 327!$(3&), 1-2 8*2A 6.601!*7(& &92.!$ 5%&,&!4 4("!22$ "2(7

!(+*591 2!546)(9$*1($&!2'(& ,7!$4#&1 *'91 32#7#&+&*) 3&(67%+*8$(5$ 1<C@@ 8*8# 6.616; &98+#,$.(?'8+)1 598,#&1!$ 4("2!1!667($ "5,

!,60&(8)(&(& 2!$!6%7$,&!1(4')(4) ,7*8+ *7*-5A7 32#86##7 3&(96&# 1!).!9* 835 6.61/"*"7* 5-5 54+02&!,$(& 4("02!$ 2!2$%5

!+(7 2!$1)()*$)+.1%>03!9! ,77054 *1!+(!66 302#8$M(& 3&#"#$ 1!,&!0$##7'*$ 8#&$.5$!&""5 6.61/2.#&) 5;)!9 54+1!8 4("2#2'6*$ 2#11#85:!$$&*"%$(5

!+(8$2(77 2!D!&()+6, ,7#4&*)(& *1!+(1#9(& 32A-' 35!8(08($ 1!+*2$##7 8#57((65#,$4!&(6.61/525 5!"7(22 54*8+"(!8 4(")*!7(& 2#11#85:"(!8%$*75

!+&!+!$#& 2"->17)+%*$!& ,#()%5 *1+0"-(05#&$ 32$!" 352. 1!+1! 86.6 6.69*)(#6&# 5!,(3)"2 54*8+#52 4(")*2$ 2#11#85:"($4*>$

!3!> 225.).$174*8)#418+& ,##+## *103!9! 32&/6$,> 352* 1!*7,($2.(& 867!/(& 6.64#&7)6#&$!7 5!,, 547*8' 4(",(1 2#11#85:2.!*8

!320,#&0(27*65(2)2$7).9!8* ,#&1.!11(& *11!3(77!8 3)"2-3)"2 352701()*$#& 1!*7,4 8&7 6./5.%8 5!+ 5476, 4("3!""(& 2#11#85:27*

!7!8 2)')*!7%6 ,#&%1!8%5 *16!2$ 3)"2(>67#&(& 352#&('((6(& 1!*7&(1#9(& 8%'(2.!$ 6*=5#! 5!74!7*" 5/"$##7 4("7!/#%$ 2#11#85:2#)(2

!7,!A$*(8+*8(2)7*")*+*35*1 ,67%5 *16#&$4*D!&) 3)"2*16#&$(& 3526 1!&505*1 8%1"!$ 6*2$%&(0!667($ 5!13& 5/827!5$ 4("1#%8$/ 2#11#85:2#77(2$*#85

!1!D() 2)6.#$#*8)(>)*+*$!74#&'&##1 ,&!2!5 *15.(77 3)"27#++(& 35)(5*+8(& 1!$.=3 8%65 6*2$%&("##' 5!1%&!*0'!83* $="*0', 4("6&(5(8$(& 2#11#85:2#8,*+%&!$*#8

!11(8$#5 2(.8($)*66(& ,&!2$!7,!"&*2 *8,*8*$/6,1 3)",#&15 35)5* 1!$.(27*65(848$##75 6*8+.(!7$. 5!$;2 $!'#2#16*7(& 4("&(67!/ 2#11#85:)!(1#8

!8!016 2(7(5$3!9!)*&(2$#&/5/82 ,&!*) *8,#3(2$*#8 3)"1 353!""(& 1!$.6*>(7 #!*!&2 6*8'&!2##8 5")!(1#8 $!07*" 4("$.(1(2#11#85:)"26

!8!5$!2*! 2(8$%")*5')#1 ,&!1(&) *8$(&1(DD# 3)(0%5!+(5 351!8 1!9(&*2' #!*'(67(& 6*6(- 52.(1!2&!47(& $!8'2#1"!$ 4(8"#D.% 2#11#85:)"%$*75

!8!$.(1! 2,1>*1+!$(4!/5)*5$&*"%$())85 ,&!1(4#&'!$+ *8$6!51+! 3),#&%1 351"2#8, 1",%DD*$ #!5*5+!1(6*52(5 52*17 $!&! 4(A%(5$ 2#11#85:)*+(5$(&

!8!>!+#&! 2.!*8)*$!0#$,&((!&2 *89#*2(> 3)*8+ 35866 1"1)#$8($ #",%8!(6*5)81#8 52#3! $!5'$&!2'E 4.!7(05A7,*7$(& 2#11#85:)*52#9(&/

!8+5$ 2.!*8()#6$*#85)*90)(9 ,&((""5 *6)%16 3)#2,*7$(& 35#!65(&9(& 1"##$6 #"*> 6*$$&!*8(& 52&*"(54 $!55(7 4*"5 2#11#85:(7

!8*1*> 2.!&$,!2$#&/)*/0D#8*8+ ,&((,#&%15 *6+&!" 3)#$5 3562#8$K 1)(9*8, #"*>0,&!1(4#&' 6*>(52$5 $!5$(4*2'(05%,, 2#11#85:(1!*7

!8*5 2.!&$6!&$)3)#2 ,&((1($!7 *6#8/ 3)&;) 356*1 1)1 #"3(2$"%*7)(& 637$(77! 5))B $!>+((' 4*,(2#11#85:,*7(%67#!)

!88#$!$*# 2.!$*83!9!)7"##' ,&((5(&9(& *6& 3)&!4 356158 1())*> #"3(2$2!89!5 67!&6("% 5)$&!,,*2 $!>1!)!) 4*+5 2#11#85:.$$627*(8$

!8$ 2.(18#16!&5()1!"2# ,&(($$5 *&2!66(8)(& 3)&!4*8+ 35A7"%*7)(& 1()*!2.(5$ #"5(&9!$*#8 67!$(!% 5(2%&(04("1!*7 $!>#+(8 4*'*266 2#11#85:*)

!8$*,*&(4!77 2.*7)&(80505.#6)1), ,&((4("2.!$ *562 3)9" 35A76!&5(& 1()*!,&!1(#2*C6/ 67)#2 5(()7*8+ $"%+ 4*5'((2#11#85:*#

!8$56-6 2.*62.!$)1D ,&(>67#&(*56.(&(5 3()6#*8$ 35$*16/ 1()7!8(#2$($ 67(>#8(5(.& $27&(!)7*8(4*$7 2#11#85:3(77/

!#(1%)!$!7#++*8 2.#&)2!5$)#"7($,&##) *561!8 3((+ 35$/> 1(1#&!8)! #,,*2(01!8!+(& 67#6 5(7,$(5$ $26"(.#7)(& 4838 2#11#85:3(>7

!#3!9! 2.%5)#2# ,%8!1"#74!61!*7 *5/5- 3((66(2$ 359!7*)!$#& 1(1#&*D(04#&)5 #,,05/82 67#$7*" 5(8)1!*703*7$(& $(!10!55*5$!8$ 4#&'#&)(&5 2#11#85:3>6!$.

!667(2#11!8)(& 2*82)#+4##) ,%8267#$$(& *$%8(5!8/4.(&(3(8! 3592 1(1#&/38)* #++2!&$#8 67%' 5(8)$&!6 $(!5(1(4#4(!6#85 2#11#85:7!8+

!69*5*#8 2*8$(&)#'56(2$,%82$*#8!73 *931%) 3(67! 359(2$#& 1(#4 #.7! 67%$#5$!$%5 5(67%5 $() 46.#$#1!&'($ 2#11#85:7!%82.(&

!&!8(!,&!1(4#&' 23#5)#7 ,%8$##5. 3-)2+ 3(&$ 359+ 1(&) #3"2 674*81!2&# 5(&97($56/ $(.! 4593)"2 2#11#85:7#++*8+

!&!&! 27*=3)#1*8+# ,9,&!1(4#&' 3-((!)!6$(&5 3($(3591- 1(55!+(*$ #3#" 61** 5,)) $(78($#9(&.$$6 4$$ 2#11#85:1!$.

!&"!$ 27*2')#8%$,>706(2$ 3-1(,5 3(9(8$ 354*'* 1($!2#&($(> #7*$(>$ 617*"5 5,73$5($(&1*8!$#& 44"#$! 2#11#85:1#)(7(&

!&"&(27*6"#!&)$#)")&!4 +!7!6!+# 3-1(5!,(3(>(2%$#& 35>17)#2 1($!)!$!1!8!+(& #1(68> 5,%$*75 $(5*3!9! 446#&$7($ 2#11#85:8($

!&2.*9(02&!47(& 27*>17)&!454, +!7(8! 3-1(4#&)17 3(>6 35/8#6$*2 1($!,*7(1!8 #1(+!2.!$ 6#2'($"##' 5.!1($(>*)#27($ 4>3!9! 2#11#85:6*6(7*8(

!&*5(21%56.*8>)&(!1"#>> +!77(#8 3-5 3(>$&!2$#& 3$"&6+ 1($!5 #1*8*$ 6#7(6#5 5.!8*)#1 $(>$"(8)(& >B@2#8$M(& 2#11#85:6##7

!&0(5$"() 2#"&!)&*8'1*>(& +!1("#&+ 3=&25 3,!2()"2 3$(5$2!5(1($!982 #18*+(8(6#8)52%1 5.*,$ $,8 >!+(8$> 2#11#85:6&*1*$*9(5

!5!0!$7 2#22.!&+(8)!8)5(8) +!8*1%5 3!""(&"(!85 3,*+%&(3$(>5/8$. 1.6$(5$(& #18*.(76 6#&$!"7#+ 5.*,$-*8+&(5 $.(! >"(7=*(2#11#85:6&#>/

!5)8 2#,,((1%))"#>1A +!8/1()55.- 3!2** 3,*8 3$.%1"5 1*!1(>6&(55 #87*8(2#16*7(& 6#&$!70(8+*8(5*! $.(!&$"(!$ >"#8(2#11#85:9!7*)!$#&

!51-27!55 2#+%8*$/)5; +!8D%! 3!2'2(55 3,7*+.$7#+ 3$*)/ 1*2!""(& ##04*)+($5 6#&$(27(5*(+(4(" $.(,*>- >"&7!6* 2#11#85:9,5

!56(2$3=8($"(!8 2#7!8)(&)5!1!8 +!&2.*9(& 3!2#11! 3,&() 3$*1($&!2'(& 1*25*1'*$ #62*#8 6#&$7($%8*$ 5*+85$&(!1 $.(#6(8(&6 >"&72#&((25

!55(2#7$)56&# +!$! 3!)#& 3,&((2.!&$ 3$'*8$(& 1*)*02#!2. #6(8-)6&#$ 66$5 5*'.(& $.#6 >"-(& .*9(1*8)

!5$(&,!> 2#1*2&(!)(&)%"1!8 +!$1!8 30!0+0! 3,&(()(5*+8(& 3$&!*85 1*)*A%*2',*> #6(8!22(55 6&!/! 5*7(82($.#%$ >"%5 .$$62#16#8(8$5

!5$&#!7+#&*$.15 2#1*25,($2.(&)%2'$!*7 +!$$1!$. 3!+(8$5 3+!"7 3$&((1!6 1*+.$/2!7 #6(8!8$*9*&%5 6&(5(8$*8+>17 5*1!56 $.%8)(&8#$(>2=3 31($(&

!5$&#*8,# 2#1*29*(4(&)%*8(+!D(77(3!+#&#"#$5 3+!1(5 3%))* 1*3!7 #6(8"85 6&*9!$(!22(55#& 5*1+(!& $*+(&%8*$ >)2 #&#

!$!7' 2#1*$!$%52#11#8)%'("#$ +22*&2 3!*9*(4(& 3+!8$$ 3%*6*$(& 1*77("9 #6(82!6 6&#"#8#6.6 5*17#2 $*3)& >)6&#, 6#*

!$23 2#16,&!1(4#&')%8+!5/82 +215 3!3%' 3+7!)(3%'(> 1*7752&*6$ #6(8(,1 6(55)!5. 5*167(0*85*)($*'(54*8+ >)9& &(+(>6

!%2$*#81!+(2#167!$)/8!1*2092 +)/8$(>$ 3!7+#&*$.1 3+8%67#$ 3%8)# 1*6*$!8D! #6(8,(1 6#+ 5*167(*89#*2(5 $*1((8$&/ >(8#8""5 57*)(:5(&9(&

!%$##6(82!5 2#1$#&3-1((C>- +("#&! 3!7*+8(& 3+&!""(& 3%8+ 17!8+ #6(8,7#401!+ 6&#+)#48 5*167(0&(A%(5$ $*1($#4#&' >+(8 57*)(:4(")!927*(8$

!9!8$+!&)(2#8$(> (!&%$*75 +()2#1,*7$(& 3!7*8+# 3+&!6.$ 3%8*1()*! 172Ȫ#&)5 #6(8,#&(2!5$ 6#+67%52+ 5*167($&!2'(& $*8*()2!& >+70$#03#+7 $!+7*"5

!9(&8*!5#2 2#8$((!5$(& +(8(> 3!1!$# 3+%!&) 3%&6(11*$($./5 #6(8.!&)4!&(6&#$(+(0)#2+(8 5*1%7!$ $*62#8B >+A7 $!6(5$&/

!9*)" 2#89 (!5/!22(6$ +(83 3!10)!A 3+9 3%5(2!5(11*>01#)(#6(8* 6&#$(*8;)6&*8$ 5*1%7()%,+ $*$%7%5 >*2(5)' $#12!$

!4(5%1- 2##' (!5/2#16*7(+(#!6* 3!1#) 3.7*" 3%5$3#%&8!7 111/5A7 #6(8*616 6&#$(*81%5*2 5*8!>($7!)1*8 >*8+ $%&"*8(

!>*50455(2#66(&2#&((!5/0)(9 +(#&!6$#& 3!16(& 3.#1(8($ 3%> 11#6(8+&!6. #6(83!22 6-(& 5*82 $17*+.$ >7($9*(4 9(7#2*$/

!D!%$#6*7#$ 2#&!5 (!5/6(&5*5$(82(+(#$*,,03!* 3!8*55!&/ 3.#8(/ 3927*,,#&) 115 #6(83+&#%6 65. 5*8# $167 >753)"2 7(8/!

!D4(" 2#&"!(&6 (!$##7 +,) 3!8*$#& 3.#$)&!4 39()! 1#"*7("%))/ #6(8315 65&($6(2$5 536$ $#!5$52&*6$ >17-)"0(!* 7%2(8(:.!)##6

"-",&!1(4#&' 2#&"!$&!2(("!/"*))(&$##7 +.#5$7*8' 3!8# 3*" 39(8)*8+ 1#"*> #6(87!"(7 6%7+! 535 $#8(&1($(& >17+&!6. 7%2(8(:7%2(8(

"="-(& 2#&8%2#6*! ("3!9! +3!7 3!8% 3*11 39*5%!7*D(& 1#"7#++(&- #6(87(!&8*8+15 69#*2(57(!, $#&8(# >17&62 7%2(8(:8%$2.

"!"(72.!$ 2#%5.((2!7 +3$!6* 3!61 3*165 39*D 1#27 #6(81($*> 694*'*5/5$(1 57+") $#%2."!5(>1756#&$5 1!9(8

"!"(7,*2.(267!" (2)5!*8$(&,!2(+7*2#16&(55 3!&5/82 3*8>@@ 39$(78($ 1#)(27*65(#6(8#6!2 64$5 57*1)#+ $#%2.+&!6. >1754*8+&(8)(& !>*5-

"!2'%7*8% 261!'((2.#-+!8$$ +7/6.()*$ 3!5! 3*65* 304!5$(1#)(7=7!8+ #6(8#&" 6/3)"2 57%&&() $&!2'67%5 >179#1*$(& 2#11#85:!>*#1

"!86&#)15 2&!2'7("!2' (27*65(+17=3 3!5(8 33"#> 34("9*(45 1#,*56 #6(8A%!5!& 6/3$, 51!77"(($&!85,#&1054, >15, 2#11#85:8(($.*

"!&"(2%(2&(!$(0+()2#1 (27*65(4*8!16 +1#) 3!5*1 3'2 34#&)5 1#7(9#79(#6(8&2$ 6/7*"62!6 51!&$+!77(&/ $&!>%* >8!65$(& 2#11#85:6#7*2/

"!&2#)(=3 2&*2'($2!+((2#7#5*1 +8!6 3!51*8 37*"0!6* 34%&,7 1#7/")(8%1 #6(856%$8*' 6/6+6 51!&$$!"7($&(()7 >65$#&1 2#11#85:$261#8

"!5.(& 2&*56/ (2#8, +8%2%7! 3!51*8(+!1(37#++(&0$##7 3>6+ 1#85$(&3#%&8!7 #6(8$!65 6/&!5%8 51*8+ $&((5!6 >A$!9 2#11#85:>1752.(1!

"!5*27()+(& 27$(5$ (,6 +8%6#+3!9! 3!51*806!&5(& 31)5/82 3/7#+ 1##)/$%8(5 #6(80$!5 6/$.*! 51$6.!8)7(& $&*#$ >A%($D!7 3!>1(

"!$*8# 2&/6$&7 (*+.$"!77 +8%&!8$ 3!56(&)(5*+8 31()*!7*"&!&/ '!11'!7! 1##8"#%82(#6(8$*2'($ A!0)*5$&* 58!+7(6%55 $$$8 >&!$(3%))*

""07*8'2.(2'(& 2&/6$/ (3(+8%&7 3!56(&*8$(7 31(1#&*D('!4! 1#5!*A%(#6(89#) A)6!&5(& 58166&#>/ $%8(#7#+/ >5,! 1%5(

"(!89!7*)!$#& 25=@B29((3622 +8%0$& 3!56(&6!7 31*""-(& '2.!$ 1#$#37 #6(84!&5 A7#& 5816D $%8(6*!8# >051*7(5 6%"52&*"(

"(!%$/0.!*&018+ 25(&9!667($ ('56#5 +8%$56 3!$(8+*8(31*2& '(88*51!8!+(& 1#%5($&!25 #6(84*&(A15- 58#&$!7(&$1#8 $%67(56!2(>5# 5!8)(5.!B

"()*!&/ 25,!> (7=3 +&!,> 3!$# 31#7)&!4 '(&8(7!8!7/D(& 1#9*($.(A%(#6(84#&'"(82. A8)16; 58%&$ $%&"#+65 >55(&9(& 5!8)(5.!-

"(("7("&#> 256 (75(,#&*, +&!6.7!" 3!9!-1/5A7 316;&(8!1(& '*,%6)#48 1#D7*8'(& #6(8>!9! A#1 5#7*)5*1 $%&A%!D >$!6* 52#%$

"('!,,(25&(5#%&2(5 (74 +&((8 3!9!!"2 3167!/(& '*5+" 1#D$&!85 #&!)%16 A052&*6$*8+ 5#18*,%+* $4(!'1!5$(&-' >$.(!$(& 5#!6

"(82.1!&'5A7 255->57,# (1!$+*8(+&(17*8 3!9!"!5(<= 3152$5 '7!55*(16;2#9(& #&"+!$(A%(&*() 5#8*! $47#+ >%7=3 45*,

"(#D*6 2593)"2 (1%<?@- +&*)'*$ 3!9!2!72 315+ '1(1#&*D(16;)" #(A%(&/9*(4(& 5#8*21!*7 $4#)!/ >9*"5 45&,

"(&5(&' 259$#5A7 (1%" +&#!" 3!9!2!$ 3158 '8#2''8#2' 16;*8,# #5!08($ A%*2',*> 5#8#+&!1 %2!1 >4)" 455=3

"($#,,*2(2$"3!9! (6#*8$ +%"(& 3!9!2#1 31%7$* '#"3(2$5 16;05(&9(& #50#.*# A%*DD(& 5#%&2($!62&1 %*2 /!"!/ >17&62

",&(2$"4*8;- (A(1%6!2' +%(55 3!9!2#11#85 31%$*7 '$8(, 16;$!+ #5$.&(!)5 &!"*8.!5. 56!2(1!66(& %*1!0,&!1(4#&' /!36 >17"(!85

"*(0+67 2%6#,3!9! (5*+ +%*$!&$%8(& 3!9!2#85#7(31>1#8*$#& '%1!5/ 16(+F!%)*#(82 #$4+ &!2(55 56!2(04!&5 %3!2 /!'4! >17+&!6.*25:2#11#85

"*,, 295+&!" (56(&!8$# +%1"# 3!9!)"5.(77 382! '%&%1*> 16>3 #%#55 &!))##1 56!+#"* %3+&!)(& /!48- >17+&!6.*25:,#6

"*8>17 2951!*7 (55(8$*!7"%)+($ +%5* 3!9!))7*" 38(&9('%$$$6(2. 1&26=3 #>9*6 &!1"7(56*'(0$(5$0+(8 %71>179*(4 D!8)*

"*#27*65(2959*(4 ($(&8!7&(!715 +9, 3!9!)*,, 38(55%57*" 7!27 1&55 6-60&!)*# &!8)5(&9*2(56*802.*&65 %8*2#)(&(4&*$(& D!$&((>

"*#(&! 294 (%2!$!7#+%(.!15!1 3!9!(1!*75(&9(& 38(5!2' 7!#(153)"26&#>/ 6;5 &"04;-1#) 56#' %8*52.()%7(& D!9!7@@@@

"*#1($&*25)' 24(" (%7(&05#7%$*#85 .!8D*.(76(& 3!9!,7*+.$5*1 38($$##7 7!D/C7()+(& 1$#5*0&* 6!0"#$ &217 56&*8+*(%&*A!=3 D("()((

"*&1!*7 2/709*(4(& (9*7,#>(.!6.!D!&) 3!9!.1# 38(> 7!D/0> 1%7$*1($.#)08($ 6!2'($02) &26!665 56&*8+5*)(%55&6 D(*$7*8(

"*$2."%&8)-@! (9#2#16 ."#&8 3!9!*)1(, 38*#5#2'($ 72!72 1%82.'*8 6!71)*567!/ &26$%$#&*!7 56&*$(-) %$,0> D($!)"

"32&%82.(&)-&01!6 (9#7!" .(!&5!/ 3!9!7)!6 381 7)"2 1%527(6!102%(2!$ &2>$##75 564&!66(& %%*($ D,#$4

"7*D(5$);((09#79(.(2!$(3!9!1%) 38#$(5 7)67!/(& 1%5(6!6(&27*65 &)A767%5 5A73(6 9!*85$!77 D+2

"7#35#1)!,,#)*7&(67*2! (9#79# .(7*!8$# 3!9!67#$ 38#$*,/ 7(2$2#11 19*6 6!&!77(7 &(!2$*#87!" 5A71*8%5 9!8!$*1(& D*16&#

"7%(1!&*8()!*7/6!+((4#&'"##' .(&1(5315 3!9!67%+*8 3#(6!*8$ 7()#5 1452&*6$ 6!&,%1"!77 &(!)5(A 5A701*8%5 9!&5.! D$(167!$(5

"1*2!72)!*1#8*8 (>2(7%$*75 .*"(&8!$(3!9!65*#87*8' 3#(A 7(+!2/-7*8%> 1/2#&(6! &(!7,2 5A767%567%5 9"#>3 D9$1

"165(A)!*5/ (>2(7>57&(6#&$.*"(&8!$(5!167(3!9!&2> 3#(5816 7,+!66 1/5A7("' 6!&$*27(&(!7*$/ &(!7$*1(2#11 5A76&#,*7(& 9(8%59*(4

"8($%$*75)!7 (>(A7*" .*6(&+!$(3!9!52&*6$##75 3#.88/9#8 7*")*2$ 1/5$(& 6!55'(/6(& &(!5#8 5A##7(& 9(&)!8$*%1

"8,0,#&03!9!)!#(>!167(5 (>.!%5$0%5 .*6# 3!9!52&*6$D*6 3#6(86.#8(7*2(85(1!8!+(& 1/$(>$&(6#&$ 6!554#&)'((6(& &(2(*6$$&!2'(& 5A%*&&(705A7 9(&$#

"#2!7(8)!&)!#1()+((>6(2$3 .7F&)15 3!9!5*+8 3#6$ 7*2A0,#&4!&)(& 1/$.5*1 6!$!8+ &(2#+8*D(& 5&1226 9(>6

"#*7(&067!$()!$!!22(55 (>6(85(055 .#1(&1> 3!9!5$(65 3#& 7*7/6!) 1/>)1 6!$1%5 &(2%&&!82(55.4("6&#>/ 9.5$&!*8

"#8D#)!$!5.!&((>6&(55*#8=3 .#1(&%8 3!9!$(5$ 3#&!5$!$ 7*1*1 80!"7(6!$5/5$(1 &()1#8) 557(>67#&(& 9*&$*+(>02#11

"##')")"-)" (>56*1*8!$#& .#$(72!7*,#&8*! 3!9!%87*1*$() 3#&*77!5 7*8(!+((9#79(& 8!$.!8 62(1% &(+(7(2$#&(5 5$!'(#%$ 9*&$%!7)"

"#&+02!7(8)!&)"=#"-(& (>/1(8 .#$5.(($ 3!9%3!9% 3#55# 7*6*)*! 8!$*9(2!77 6()&# &(7!>() 5$!&$+!$(& 9*&$%!7/#%

"#$6-@@=)"!66"%*7)(& (/(.6"$2 3!DD7*" 3#$* 7*$$7*56 8!$%&! 6((&5*1 &(1#$(- 5$!$(9*5%!7)"52&*6$

"67%5)#$8($)"!$5#7 (/(5&!/ .&)!+0!8!7/D(& 3"2) 3#%&8(/5!$ 7*> 8!9*06(2$ 6(88/7(8)(& &(6(!$*$ 5$!$(=3 9*5%!76#5$+&(5

"643)"2#88(2$*#8 ,!2($5 .520*15* 3"(+*88(& 3#%$7##'"!& 71)" 822 6(88/06*82.(& &(67!/(& 5$)8($ 9*5%!7>17()*$#&

"&*2'59*(4(&)"5A7->17 ,!*&)3 .$2#11%8*2!$#& 3"(7 36!2'*$ 7#,*1# 8(1#- 6(8(&(6#&$&(+(8+*8(5$*'*4(" 9*$!6!)

"0"!+)"%8*$,!56(& .$17-6#6; 3"*77*8+ 36!%7 7#+*2!77#/ 8(#)(5' 6(&701)?07#+*8 &($*8! 5$&!2(9*9!

"5244(!5(7)">1702#&(,!5$&*> .$17-5A7 3"1!8!+(*$ 36) 7#+*$(5$ 8(#8D*6 6(&5*!81#D*77! &($%&81/6*2$%&(5$&!8)D 93)"2

"%&8"!"/"%&8)2, ,!$(.92-@@; 3"#$&!2(36,#6 7#+5.!&' 8(6!7*9#*2(6(&5#8!7!22(55 &(%5(5$&!$! 9165)

*('+%#,-./('0.-'1(#%/'()%&2%,

Fig. 6. List of all 1555 projects used in assessing ranking schemes

[13] Anthony Cox, Charles Clarke, and Susan Sim. A model independent source code repos-
itory. In CASCON ’99: Proceedings of the 1999 conference of the Centre for Advanced
Studies on Collaborative research, page 1. IBM Press, 1999.

[14] Michael Eichberg, Mira Mezini, Klaus Ostermann, and Thorsten Schafer. Xirc: A kernel
for cross-artifact information engineering in software development environments. In WCRE
’04: Proceedings of the 11th Working Conference on Reverse Engineering (WCRE’04),
pages 182–191, Washington, DC, USA, 2004. IEEE Computer Society.

[15] Joseph (Yossi) Gil and Itay Maman. Micro patterns in java code. In OOPSLA ’05: Proceed-
ings of the 20th annual ACM SIGPLAN conference on Object oriented programming sys-
tems languages and applications, pages 97–116, New York, NY, USA, 2005. ACM Press.

[16] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Codequest: Scalable source code
queries with datalog. In Proceedings of the 2006 European Conference on Object-Oriented
Programming (to appear), July 2006.

[17] Reid Holmes and Gail C. Murphy. Using structural context to recommend source code
examples. In ICSE ’05: Proceedings of the 27th international conference on Software
engineering, pages 117–125, New York, NY, USA, 2005. ACM Press.

[18] Katsuro Inoue, Reishi Yokomori, Hikaru Fujiwara, Tetsuo Yamamoto, Makoto Matsushita,
and Shinji Kusumoto. Component rank: relative significance rank for software compo-
nent search. In ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, pages 14–24, Washington, DC, USA, 2003. IEEE Computer Society.

[19] Katsuro Inoue, Reishi Yokomori, Tetsuo Yamamoto, and Shinji Kusumoto. Ranking sig-
nificance of software components based on use relations. IEEE Transactions on Software
Engineering, 31(3):213–225, 2005.

[20] Rajeev Motwani Lawrence Page, Sergey Brin and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Stanford Digital Library working paper SIDL-WP-
1999-0120 of 11/11/1999 (see: http://dbpubs.stanford.edu/pub/1999-66).

[21] Mark A. Linton. Implementing relational views of programs. In SDE 1: Proceedings of
the first ACM SIGSOFT/SIGPLAN software engineering symposium on Practical software
development environments, pages 132–140, New York, NY, USA, 1984. ACM Press.

[22] David Mandelin, Lin Xu, Rastislav Bodı́k, and Doug Kimelman. Jungloid mining: helping
to navigate the api jungle. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, pages 48–61, New York, NY, USA,
2005. ACM Press.

[23] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan Maletic. An information
retrieval approach to concept location in source code. In Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE 2004), pages 214–223, November 2004.

[24] Denys Poshyvanyk, Andrian Marcus, and Yubo Dong. Jiriss - an eclipse plug-in for source
code exploration. icpc, 0:252–255, 2006.

[25] Diego Puppin and Fabrizio Silvestri. The social network of java classes. In Hisham Haddad,
editor, SAC, pages 1409–1413. ACM, 2006.

[26] Eric S Raymond. The catheral and the bazaar. http://www.catb.org
/∼esr/writings/cathedral-bazaar/cathedral-bazaar/.

[27] Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: mining for sample code. In OOP-
SLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 413–430, New York, NY, USA,
2006. ACM Press.

[28] Susan Elliott Sim, Charles L. A. Clarke, and Richard C. Holt. Archetypal source code
searches: A survey of software developers and maintainers. In IWPC, page 180, 1998.

[29] Renuka Sindhgatta. Using an information retrieval system to retrieve source code samples.
In Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa, editors, ICSE, pages 905–
908. ACM, 2006.

[30] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. An examina-
tion of software engineering work practices. In CASCON ’97: Proceedings of the 1997
conference of the Centre for Advanced Studies on Collaborative research, page 21. IBM
Press, 1997.

[31] Kris De Volder. JQuery: A generic code browser with a declarative configuration language.
In PADL, pages 88–102, 2006.

	UCI-ISR-07-8-cvr
	UCI-ISR-07-8-abstract
	UCI-ISR-07-8-body

