
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Anita Sarma
University of California, Irvine
asarma@ics.uci.edu

André van der Hoek
University of California, Irvine
andre@ics.uci.edu

David F. Redmiles
University of California, Irvine
redmiles@ics.uci.edu

A Comprehensive Evaluation of Workspace Awareness
in Software Configuration Management Systems

June 2007

ISR Technical Report # UCI-ISR-07-2

Institute for Software Research
ICS2 217

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

A Comprehensive Evaluation of Workspace Awareness
in Software Configuration Management Systems

Anita Sarma, André van der Hoek, and David F. Redmiles
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3440

{asarma, andre, redmiles}@ics.uci.edu

ISR Technical Report # UCI-ISR-07-2
June 2007

Abstract

Workspace awareness has emerged as a new coordination paradigm in software configuration
management systems, enabling the early detection of potential conflicts by providing developers with
information of relevant, parallel activities. The focus of our particular research in workspace awareness
has been on detecting and mitigating both direct and indirect conflicts by unobtrusively sharing
information about ongoing code changes. In this paper, we discuss the results of a novel user experiment
that we designed as a broad and formative evaluation of workspace awareness, specifically focusing on
whether users detect conflicts as they arise and indeed act to mitigate the potential problems. Our results
affirm that workspace awareness is an effective solution that promotes active self-coordination among
users and furthermore leads to an improved end-product in terms of its quality.

A Comprehensive Evaluation of Workspace Awareness
in Software Configuration Management Systems

Anita Sarma, André van der Hoek, and David F. Redmiles
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3440

{asarma, andre, redmiles}@ics.uci.edu

ISR Technical Report # UCI-ISR-07-2
June 2007

Abstract

Workspace awareness has emerged as a new coor-

dination paradigm in software configuration manage-
ment systems, enabling the early detection of potential
conflicts by providing developers with information of
relevant, parallel activities. The focus of our particular
research in workspace awareness has been on detect-
ing and mitigating both direct and indirect conflicts by
unobtrusively sharing information about ongoing code
changes. In this paper, we discuss the results of a
novel user experiment that we designed as a broad and
formative evaluation of workspace awareness, specifi-
cally focusing on whether users detect conflicts as they
arise and indeed act to mitigate the potential prob-
lems. Our results affirm that workspace awareness is
an effective solution that promotes active self-
coordination among users and furthermore leads to an
improved end-product in terms of its quality.

1. Introduction

Software development is considered to be “multi-

person construction of multi-version software” [1]. As
in any team effort, coordination is an integral part of
software development. However, coordinating soft-
ware development activities is not an easy task, as it
typically involves complex interdependencies among
large numbers of artifacts, developers, and tightly-
coupled tasks. In addition, time pressures, parallel de-
velopment, and distributed teams intensify these chal-
lenges [2, 3].

While there are numerous different coordination so-
lutions available for use, Configuration Management
(CM) systems have become one of the most popular
and widely adopted tools in the software industry [4].

CM systems handle the situation of multiple develop-
ers working together on a common set of artifacts by
providing a central repository with well-defined access
and synchronization protocols. In a typical CM sce-
nario, developers check-out the required artifacts from
the central repository into their private workspaces
and, once their changes are complete, they synchronize
their changes with the repository.

Private workspaces are essential in allowing devel-
opers to work without interference from others’
changes, but they have the negative effect of hiding
knowledge of fellow team members’ activities As a
result of which developers cannot place their work in
the context of others’ changes. Conflicts are, thus, de-
tected only after developers finish their changes and
are ready to check-in. Furthermore, only Direct Con-
flicts – which arise due to changes to the same artifact
– are detected by CM systems. Indirect Conflicts –
which arise because of changes in one artifact affecting
concurrent changes in another artifact – remain unde-
tected until build testing or even after the deployment
phase. Conflict resolution at such late stages is expen-
sive and time consuming [3, 5].

One way to overcome this problem is to inform de-
velopers of other ongoing activities that are relevant to
the developer’s current tasks and the effects of these
activities on the local workspace. Developers can then
place their work in the context of others and self-
coordinate their actions. This concept has been imple-
mented through workspace awareness tools that en-
hance CM workspaces with awareness information [6].

However, thus far, there exists no concrete evidence
of such tools being effective in reducing the incidence
of conflicts in the project or promoting self-
coordination among developers. In this paper, we dis-
cuss the results of our evaluations of Palantír in aiding

the early detection of conflicts. Palantír is a workspace
awareness tool that informs developers of which arti-
facts are being concurrently changed by which other
developers, the size of the changes, and the impact of
those changes on the local workspace [5].

We evaluated Palantír by conducting two sets of
user experiments where subjects collaboratively solved
a given set of programming tasks (some of which con-
flicted with each other) in three-person teams. In both
experiments we observed that the experimental group,
which used the full functionality of Palantír, was better
in detecting conflicts earlier and produced a final prod-
uct with fewer unresolved indirect conflicts. This vali-
dates our hypothesis that workspace awareness pro-
motes self-coordination and leads to the production of
a higher quality end product in terms of the number of
unresolved conflicts.

The remainder of the paper is organized as follows.
In Section 2, we discuss background information on
workspace awareness tools. Section 3 briefly describes
Palantír. Section 4 discusses our user experiments and
their results. Section 5 presents our lessons learned
from the experiments with conclusions in Section 6.

2. Background

Awareness is characterized as “an understanding of

the activities of others, which provides a context for
your own activity” [7]. Awareness as a concept can be
applied to many different activities, but within the dis-
cipline of computer science it has been generally asso-
ciated with the field of computer-supported coopera-
tive work (CSCW). There, efforts have largely focused
on the use of awareness in coordination in group ac-
tivities (e.g., shared text editing, group decision mak-
ing). In the recent past, researchers have started inves-
tigating the concept of awareness in facilitating coor-
dination in software development.

One of the primary problems involving coordina-
tion in software development is the lack of understand-
ing of fellow team members’ activities and how these
changes affect the local workspace. Workspace aware-
ness aims to overcome this problem by informing de-
velopers of which artifacts are concurrently being
changed, which developers are making those changes,
and the effects of those changes on the local work-
space [6, 8].

Researchers have built many workspace awareness
tools [6]. BSCW [9] and Jazz [8] are workspace aware-
ness tools that provide information of which developer
is editing which artifact and the state of the artifacts to
the developers’ local workspace. While BSCW pro-
vides a web-based interface, Jazz is an Eclipse-
integrated collaborative development. In a similar fash-

ion, FASTDash [10] and the War Room Command
Console [11] publicly display the set of artifacts
checked-out in private workspaces and highlight arti-
facts that are opened for viewing or being concurrently
edited. All of these tools primarily support the early
detection of direct conflicts. To detect potential indi-
rect conflicts, developers have to manually interpret
the information of concurrent changes to artifacts
along with their knowledge of the software structure.

Automatic detection of indirect conflicts is less
straightforward and typically requires program analy-
sis. In addition to Palantír, only one other workspace
awareness tool performs semantic analysis to identify
the impact of concurrent changes. TUKAN [12] per-
forms program analysis on the copy of the software
stored in the repository to determine which artifacts are
semantically related and creates a semantic network of
artifacts. It then uses this network to determine if on-
going changes to artifacts in local workspaces affect
other artifacts in the graph, warning users with icons if
so.

There have been numerous studies on software de-
velopment practices which have identified that devel-
opers spend a large portion of their time understanding
team members’ activities. As per our knowledge, there
is no empirical evidence proving the effectiveness of
CM based workspace awareness tools.

3. Palantír

Palantír is a workspace awareness tool that comple-
ments CM workspaces by collecting, distributing, or-
ganizing, and presenting information of workspace
operations (both CM as well as editing operations).
Currently, Palantír is built as an Eclipse plug-in for
CVS and Subversion CM systems. An in-depth discus-
sion of Palantír can be found in our previous work [5].
Briefly, Palantír Workspace Wrappers collect and emit
events regarding relevant workspace activities. These
events are stored and distributed by a Palantír Server,
which also supports bootstrapping any new work-
spaces that developers may open to perform their
work. The Palantír Client pulls, stores, and organizes
the events, which are unobtrusively displayed to users.

Figure 1 shows a visualization provided by Palantír,
where we see a developer’s (Pete’s) view of his local
workspace. Palantír has altered the Eclipse interface in
two distinct places. Annotations in the package ex-
plorer view provide subtle awareness cues (inset of
Figure 1) and a new Eclipse view, the Impact View,
provides further details of changes causing indirect
conflicts (bottom of Figure 1). Palantír annotates re-
sources in the package explorer view with both graphi-
cal and textual items. In terms of graphics, two small

triangles indicate parallel changes to artifacts. The first
one, blue in color, may appear in the top left corner.
This triangle, visible on Address.java, Customer.java,
and Payment.java, indicates that there are ongoing
parallel changes to the artifact. The larger the triangle,
the greater are the changes. A small textual annotation,
to the right of the filename, details the size of these
changes and is based on the relative lines of code
changed. In our case, Address has been changed by
24%.

The second triangle, red in color, may appear in the
top right corner of each icon denoting an artifact. This
triangle is present on four artifacts: Address.java, Cus-
tomer.java, Payment.java, and CreditCard.java, and
indicates the presence of an indirect conflict. A small
textual annotation, to the right of the filename, helps
the developer distinguish whether the artifact is one
causing an indirect conflict (in which case it is labeled
with [I>>] to denote “outgoing impact”), is one that is
affected by an indirect conflict (in which case it is la-
beled with [I<<] to denote “incoming impact”), or is
one whose changes affect changes in other artifacts
and are affected by changes in other artifacts (in which
case both textual annotations are present).

The package explorer view is designed to be non-
obtrusive and only provides the information that is
necessary to draw the user’s attention. Further details
about the indirect conflict are presented through the
Palantír Impact View, when an artifact experiencing an
indirect conflict is selected in the package explorer.

In our example, Pete is investigating indirect con-
flicts affecting CreditCard.java. It turns out that an-
other developer (Ellen) has changed Address.java and

deleted a method that he began using. Since this
change is already committed to the CM repository and
is a predictable build conflict, this indirect conflict is
annotated with a mini icon of a “red bomb”. The sec-
ond line details a similar problem: deletion of a method
from Customer.java that Pete is currently using in his
implementation. This change is annotated with a mini
icon of a “yellow bomb”, because the changes are still
in Ellen’s workspace, but would create a build conflict
in the future should she commit them.

Figure 1. Palantír Visualization of Indirect Conflicts, With a Call-out of the Package Explorer.

Such information of ongoing changes allows Pete to
place his work in the context of Ellen’s changes and he
can take proactive measures, such as contacting Ellen
to discuss the logic and her timeline for completion of
her changes. Based on their conversation, Pete may,
for instance, decide to work on CreditCard.java later
after Ellen has completed all her changes.

4. User Experiments

Palantír is a workspace awareness tool that informs
developers of ongoing changes, giving them the oppor-
tunity to self-coordinate and produce software with
fewer conflicts. We conducted two sets of user ex-
periments to answer the following questions:

Q1. Do subjects notice awareness icons and under-
stand their significance?

Q2. Do subjects initiate coordination actions on notic-
ing the icons?

Q3. Do subjects in the experimental group detect con-
flicts earlier than subjects in the control group?

Q4. Does the experimental group resolve a larger num-
ber of conflicts successfully?

Q5. Is time-to-completion of the assignment lower for
the experimental group?

4.1. Experimental Design

The overall goal of the design was to mimic team

software development where conflicts would arise and
individuals take action to resolve them. However, the
distributed nature of the activity allowed the experi-
ments to be designed to test one subject at a time. Spe-
cifically, the experimental setup consisted of a subject
collaboratively solving a given set of programming
(Java) tasks in a three-person team, where the other
two team members were confederates – virtual entities
controlled by the research personnel and responsible
for introducing a given number of conflicts with the
subject’s tasks. Subjects could reach their team mem-
bers (confederates) via Instant Messaging. The use of
confederates ensured consistency in the type, number,
and timing of conflicts across experiments.

Subjects were undergraduate or graduate students
from the Computer Science department at UCI and
were familiar with the development environment
(Eclipse + CVS), but not with Palantír. Subjects were
given a brief tutorial of functionalities of both these
tools. Subjects were asked to “think aloud” and their
progress was observed by research personnel and re-
corded through screen capture software.

Subjects were randomly assigned to the control or
the experimental group. In both experiments, the ex-
perimental group used Palantír, while the conditions
for the control group differed and are discussed sepa-
rately for each experiment.

Experiment tasks. The software project contained
nineteen Java classes and approximately 500 lines of
code. As part of the experiment, subjects had to im-

plement a feature request that translated into a set of
twelve tasks. The tasks were designed so that some of
the changes by the subject conflicted with those of the
confederates’. Of the twelve tasks assigned to the sub-
ject, eight conflicted, namely four direct conflicts (DC)
and four indirect conflicts (IC). These conflicts were
further divided into three categories: (1) conflicts in-
troduced before the subject entered the task, (2) con-
flicts introduced during the task (while the subject was
performing the task), and (3) conflicts introduced after
the subject had already completed the task. These con-
flicts were randomly seeded throughout the tasks. Each
confederate was responsible for four conflicts, as well
as benign changes that did not affect the subject.

Figure 2. Experimental Results: (a) Conflict Resolution for Direct and Indirect Conflicts for Control
and Experimental Groups; (b) Time-to-Completion.

4.2. Experimental Findings

For each experiment, we analyzed: 1) detection and

resolution rates of conflicts, 2) actions taken by sub-
jects to self-coordinate, and 3) time-to-completion per
task (including conflict resolution where applicable).
Our experiment results show that the experimental
group was better in resolving a larger number of con-
flicts, especially indirect conflicts in the project.

4.2.1. Experiment I. We performed six individual
experiments (three each for the control and the ex-
perimental group). The experimental group used
Palantír, which provided them with warnings of poten-
tial direct and indirect conflicts, while the control
group used only Eclipse and CVS with no awareness
information.

The primary goal of our analysis was to determine
whether subjects detected (and resolved) potential con-
flicts and the time-to-completion for each task. There
were eight conflicts (four direct and four indirect) in-
troduced per subject. Figure 2(a) shows the results of
our analysis, as divided into four cases direct and indi-
rect conflicts (DC versus IC) for each condition group
(Control versus Experimental). For each case, then,
there were 12 seeded conflicts (4 conflicts and 3 sub-

jects). We found no distinction between detection and
resolution rates; subjects resolved all the conflicts that
they detected.

Case DC:C: When subjects were not provided with
any information of parallel activities they became
aware of direct conflicts when attempting to check-in
as notified via a merge conflict. We noticed that after
facing a merge conflict, subjects were more cautious
and sometimes contacted (IM) their team members to
ask about the files that they were changing to create a
context for their changes. One such IM communication
is “...what sets of methods are you implement-
ing?...Have you looked at [artifact name] yet? Just
wondering should I go about implementing….” Direct
conflicts that were introduced after the subject had
finished their task (1 conflict) or changes that were still
work-in progress by the confederates could not be de-
tected and therefore were left unresolved (1 conflict).

Case DC:E: The majority of the subjects detected
and resolved potential direct conflicts before they had
even completed their changes. Of the four conflicts,
one conflict was completely avoided (conflict intro-
duced before the subject started the task) and two de-
tected and resolved during the task. Additionally, one
subject resolved the conflict that was introduced after
the subject had finished their task and another that was
still work-in-progress (IM conversations). The other
two subjects did not resolve conflicts that were intro-
duced after their task or which were work-in-progress.

Case IC:C: Subjects did not detect the majority of
indirect conflicts; only one conflict was detected by all
subjects. This was because the same file that caused an
indirect conflict also caused a direct conflict. When
users updated their workspaces to resolve a merge con-
flict, they detected the indirect conflict due to a local
build failure. The other three indirect conflicts re-
mained undetected in the project.

Case IC:E: Subjects identified and resolved all in-
direct conflicts, except one subject who did not detect
two conflicts. One reason for the subject not detecting
one of the conflicts was that the warning icon on the
top right corner of the artifact was hidden behind a
“compilation error” icon in Eclipse, which the subject
did not resolve.

Time-to-completion: Figure 2(b) shows time-to-
completion for tasks that were designed to conflict.
The times show natural fluctuations caused by varia-
tions in the technical aptitude of subjects. However, for
conflict 5 (IC), we note a marked difference, with the
experimental group taking longer (three minute differ-
ence in the mean) than the control group. This anomaly
was because the changes causing this conflict were still
work-in-progress and the subjects spent time commu-
nicating with the confederate. The point to note is that,

although the experimental group took longer to com-
plete the task they proactively resolved the indirect
conflict. The control group did not detect the problem
in the code and never resolved it. Literature points out
that the resolution of conflicts later in the development
stage is much more expensive and time consuming
[13]. Since subjects in our experiments were not re-
quired to conduct integration testing, we cannot con-
clusively determine how much longer the control
group would have taken to resolve the problem. If we
subtract the time that the experimental group spent in
communications, we note that both groups become
more or less equal.

Discussion: The experiment questions can be an-
swered as follows:
Q1. Subjects in the experimental group noticed aware-

ness icons with a rate of 75% and understood their
significance. We found that subjects were not in-
clined to investigate (resolve) direct conflicts that
were introduced after they had completed their
tasks. This was primarily because in CM systems,
the developer who checks in second is responsible
for resolving conflicts.

Q2. Subjects in the experimental group always initi-
ated coordination actions once they noticed the
icons.

Q3. Subjects in the experimental group detected con-
flicts earlier (70.8% times, the other times they ei-
ther ignored the “after” direct conflict or they
missed the warning icons) compared to subjects in
the control group (only 4% times). Only one sub-
ject in the control group detected a direct conflict
early, because they were extra cautious and, be-
fore starting every task, they queried the reposi-
tory to ensure that they had the latest version. Al-
though the subject therefore detected the conflict
early, they had to spend extra effort in repeatedly
querying the repository.

Q4. Subjects in the experimental group resolved a lar-
ger number of conflicts (75%) than the control
group (37.5%). Since all direct conflicts were re-
solved at the latest during check-in time, the main
difference lies in the detection and resolution of
indirect conflicts. Indirect conflicts are usually
harder to detect and prove more expensive to re-
solve in real life settings. Early detection of such
conflicts is, therefore, particularly desirable.

Q5. Times to completion for subjects in both groups
were similar. However, the experimental group
produced a better quality end product with fewer
unresolved conflicts.

4.2.2. Experiment II. In this experiment our goal
was to determine the effectiveness of impact analysis
in aiding detection of indirect conflicts. Both condi-
tions used Palantír. We provided the control group
with only notifications of direct conflicts. The control
group subjects had to use their understanding of the
software structure (they were provided UML design
diagrams) to manually identify indirect conflicts. The
experimental group was provided with information of
concurrent changes to artifacts along with explicit
warnings of potential indirect conflicts.

In total, we performed eight individual experiments
(four each for the control and experimental group).The
total time to completion of the assignment was re-
stricted to one hour. The average number of tasks that
subjects completed within the time limit was eight. Our
analysis, therefore, considers these first eight tasks,
which included four conflicts (two direct and two indi-
rect). In particular we focused on the detection and
resolution rates of conflicts and the time-to-completion
of tasks. Figure 3(a) presents our analysis, as split into
four cases representing each kind of conflict for every
condition. Each case therefore had a total of 8 conflicts
(2 conflicts and 4 subjects).

Case DC:C: The majority of the subjects noticed
the warning icons; six out of eight conflicts were de-
tected. However, subjects did not immediately realize
that they could have avoided the conflict by communi-
cating with their team members (only one conflict was
avoided). “I had noticed the blue icons, but I was in
the train of thoughts… but after I ran into trouble, it
provided me an incentive to talk to my team member
and monitor the icons.” Similar to our previous ex-
periments, we found that subjects mainly monitored
for conflicts before starting a task and before commit-
ting their changes. Subjects largely ignored “after”
conflict warnings.

Case DC:E: Subjects showed similar results as in
the previous case since both groups had access to the
same functionality of Palantír (warnings of potential

direct conflicts). The difference was that all potential
conflicts were detected, of which two were avoided as
two subjects immediately understood the significance
of the problem and updated their workspace and/or
communicated with their team members. One of them
commented “…before I started working on it, Palantír
tells me that someone is changing it, so I went and
checked, saw that everything is there, so cool, task
completed and no conflicts”. Subjects did not resolve
conflicts that were introduced after they completed
their tasks.

Figure 3. Experimental Results: (a) Conflict Detection and Resolution for Direct and Indirect Con-
flicts for Control and Experimental Groups; (b) Time-to-Completion.

Case IC:C: We found that subjects had difficulty
detecting indirect conflicts (only three out of eight
were detected), despite providing them with informa-
tion of the changes that caused the conflict and UML
diagrams detailing dependency relations among arti-
facts. Only one subject could detect and resolve both
indirect conflicts, primarily because they proceeded
cautiously and continuously monitored concurrent ed-
iting warnings and frequently updated their workspace
“…because I am traumatized, I had past problems with
committing things without updating, so I always syn-
chronize my workspace before and after I finish a
task”. It is important to note that, though a step in the
right direction, the workspace synchronizations in and
of themselves were not sufficient. Frequent workspace
updates meant that subjects had to carefully examine
and update their code in response to parallel changes.

Case IC:E: Subjects identified and resolved all the
indirect conflicts and used both the Package Explorer
extension as well as the Impact View. A subject said:
“…the icons, those were very helpful to determine like
it was an impact…I found it really useful because I
could sort of anticipate that there would be conflict
just by looking, and …I could know what I needed to
do, so I could have time to prepare, or like I did, I con-
tacted him [confederate] directly to ask him what was
happening at that moment.” Subjects used different
strategies to avoid or resolve conflicts: they skipped
the task and came back to it, updated their workspace,

asked their team member to implement their tasks, or
coded the task with a place holder.

Time-to-completion: Figure 3(b) shows time-to-
completion for conflicting tasks. The times show mi-
nor variations caused by differences in the technical
aptitude of subjects. Similar to our previous experi-
ment set, the experimental group took longer to com-
plete one task with an indirect conflict (conflict 4),
which involved a work-in-progress task of the confed-
erate. It is important to note that, although the experi-
mental group took longer to complete the task, they
produced a higher quality code in terms of unresolved
conflicts.

Discussion: For direct conflicts, all of the measured
performance indicators for both the groups were the
same (within the statistical uncertainty). For indirect
conflicts we answer our experiment questions as:
Q1. Subjects noticed awareness clues with a rate of

100% and understood their significance. This high
success rate may be attributed to the fact that sub-
jects had already experienced instances of direct
conflicts and were more cautious.

Q2. Subjects initiated coordination actions on noticing
the icons in 100% of the cases. This corroborates
our previous experiment observations that when
subjects detect potential conflicts that affect them,
they always take measures to self-coordinate.

Q3. Subjects in the experimental group detected con-
flicts earlier (100%) than subjects in the control
group (37.5%). This demonstrates the fact that un-
derstanding the software structure and manually
placing concurrent changes in context to identify
indirect conflicts is a difficult task. The few con-
flicts that were detected were because some sub-
jects were extremely cautious and frequently up-
dated their workspaces (before embarking on a
task and before committing their changes).

Q4. Subjects in the experimental group resolved a lar-
ger number of conflicts (100%) than the control
group (37.5%). This once more proves the fact
that, although it is possible to use information on
direct conflicts and the software structure to look
for indirect conflicts, it is difficult to do so.

Q5. Time to completion of tasks for both groups was
more or less similar. The difference being that the
experimental group had resolved all the indirect
conflicts while the control group did not.

5. Lessons Learned

Our experiments qualitatively prove that the aware-
ness of parallel activities (especially information of
potential conflicts) promotes self-coordination among
developers and leads to an end product of higher qual-
ity. Next, we will conduct a larger set of experiments
to statistically validate our hypothesis, where we will
use a similar experimental design with minor, but im-
portant modifications (see Sections 5.2 and 5.3). We
specifically plan to use text-based assignments to re-
duce variances in time-to-completion per task due to
differences in technical aptitude [14].

5.1. Experiment Model Limitations

As is the case with any controlled experiment, our

experiments were performed in a semi-realistic setting.
Our subjects were undergraduate and graduate students
with limited real-life development experience and were
asked complete a given set of tasks in a limited time.
Subjects had no prior experience with Palantír and had
to learn its functionality as they performed their tasks.
In industrial settings, it is possible that subjects will be
more concerned about the quality of the code and be-
have accordingly.

We believe that the complexity of real life projects
will make the use of Palantír (or other workspace
awareness tools) considerably more beneficial than
that demonstrated in the experiments. Our experiments
involved a small project (nineteen classes), easy tasks,
and confederates readily available for conflict resolu-
tion. All of these factors are more difficult to deal with
in real life situations. However, in very large projects
the Palantír user interface may face scalability issues
when a large number of artifacts are changed fre-
quently. We still need to evaluate Palantír is such
situations, even though we have taken especial care to
make Palantír scalable and unobtrusive [5].

Finally, our “time to completion” data is inconclu-
sive because of the large variance in the subjects’ per-
formance due to their differences in technical capabili-
ties and the fact that subjects were not required to per-
form integration testing. The next set of experiments
will use text-based assignments and subjects will be
required to remove all inconsistencies from the project
at the end of the experiment.

5.2. Experimental Design Changes

We found that, although students had used CVS be-

fore, they had limited experience in resolving conflicts
through CVS. We also found that subjects had diffi-
culty interpreting the Impact View. To overcome these

issues, we will conduct a detailed tutorial on CVS us-
age and Palantír for our next experiments.

In our current experiments, we randomly assigned
subjects to the control or the experimental groups.
However, we found that subjects had marked differ-
ences in their technical backgrounds. In the future, we
will use stratified random assignment to ensure that
both groups have subjects with comparable technical
backgrounds [15].

Finally, based on our exit interviews we found that
many subjects were uncomfortable with the “think
aloud” process. Specifically, international students
faced an extra cognitive load to verbalize their thought
process in English. Our next experiments will not re-
quire the think aloud process.

5.3. Interface Design Changes

Our observations and interviews from the experi-

ments prompted us to make changes to the Package
Explorer extension. First, we will add textual informa-
tion about the identity of the developer editing the arti-
fact and the status of the change (work-in-progress or
checked-in) in the package explorer extension. Cur-
rently, Palantír only provides textual annotations about
the cumulative size of parallel changes to the artifact.
Users have to use either the CVS resource history view
or another Palantír visualization to find the specifics,
which users found cumbersome.

Second, we will change Palantír to only annotate ar-
tifacts with incoming impact. Information about the
artifact that is causing the indirect conflict can then be
obtained from the Palantír Impact View. In the current
version, artifacts causing an impact, as well as artifact
that are affected are annotated with graphical icons and
text. Subjects found two annotations for a single con-
flict confusing and had difficulty navigating the view.

6. Conclusions

Workspace awareness is a coordination strategy in
software engineering that relies on the presentation of
subtle visual cues embedded in the development editor
to inform developers of relevant parallel changes in
other workspaces. The goal is to enable developers to
become aware of parallel changes as they occur, so
that developers can place their work in the context of
others’ and self-coordinate.

We conducted two sets of user experiments to
evaluate the efficacy of Palantír, our workspace aware-
ness tool, in helping developers identify and resolve
conflicts. Our results clearly show that subjects moni-
tored the visual cues displayed, especially for artifacts
which they considered important. The majority of them

then took actions to self-coordinate. In fact, the ex-
perimental groups (where Palantír provided warnings
of indirect conflicts) resolved a much larger percentage
of indirect conflicts than the control groups (with no
warnings of indirect conflicts). Further, we found that
subjects were quite comfortable in filtering out infor-
mation (icons) that they felt as not important for their
tasks. Our results qualitatively prove that workspace
awareness prompts users to self-coordinate and lead to
an end product of higher quality (in terms of the num-
ber of indirect conflicts left unresolved in the project).
We are currently conducting a larger set of experi-
ments to statistically validate our findings.

7. Acknowledgments

We thank Suzanne Schaefer and Gerald Bortis for

their help in designing and conducting the experi-
ments. Effort partially funded by the National Science
Foundation under grant numbers CCR-0093489, IIS-
0205724, and IIS-0534775, as well as an IBM Eclipse
Innovation grant and an IBM Technology Fellowship.

8. References

[1] D.L. Parnas, Some Software Engineering Principles.
Infotech State of the Art Report on Structured Analysis and
Design, Infotech International, 1978: pp 10.
[2] I. Vessey and A.P. Sravanapudi, CASE Tools as Collabo-
rative Support Technologies, ACM CACM. 1995. p. 83-95.
[3] C.R.B. De Souza, et al. Sometimes You Need to See
Through Walls - A Field Study of Application Programming
Interfaces. CSCW. 2004. p. 63-71.
[4] J. Estublier, et al., Impact of Software Engineering Re-
search on the Practice of Software Configuration Manage-
ment. ACM TOSEM, 2005. 14(4): p. 1-48.
[5] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantír:
Raising Awareness among Configuration Management
Workspaces. ICSE. 2003. p. 444-454.
[6] M.-A.D. Storey, D. Cubranic, and D.M. German. On the
Use of Visualization to Support Awareness of Human Activi-
ties in Software Development: A Survey and a Framework.
ACM Symp. on Software Visualization. 2005. p.193-202.
[7] P. Dourish and V. Bellotti. Awareness and Coordination
in Shared Workspaces. CSCW. 1992. p. 107-114.
[8] L.-T. Cheng, et al., Building Collaboration into IDEs.
Edit ->Compile ->Run ->Debug ->Collaborate? ACM
Queue. 2003. p. 40-50.
[9] W. Appelt. WWW Based Collaboration with the BSCW
System. Conference on Current Trends in Theory and Infor-
matics. 1999. p. 66-78.
[10] J. Biehl, et al. FASTDash: A Visual Dashboard for Fos-
tering Awareness in Software Teams. Computer/Human In-
teraction (CHI 07). 2007. p. (to appear).
[11] C. O'Reilly, D. Bustard, and P. Morrow. The War Room
Command Console: Shared Visualizations for Inclusive
Team Coordination. ACM symposium on Software visuali-
zation. 2005. p. 57-65.

[12] T. Schümmer and J.M. Haake. Supporting Distributed
Software Development by Modes of Collaboration. ECSCW.
2001. p. 79-98.
[13] F.P. Brooks Jr., The Mythical Man-Month. Datamation,
1974. 20(12): p. 44-52.

[14] A.J. Jacko and A. Sears, The Human-Computer Interac-
tion Handbook: Fundamentals, Evolving Technologies, and
Emerging Applications. 1 ed. 2002: pp. 1296.
[15] W.R. Shadish, T.D. Cook, and D.T. Campbell, Experi-
mental and Quasi-Experimental Designs for Generalized
Causal Inference. 1 ed. 2001: pp. 623.

	UCI-ISR-07-2-cvr
	UCI-ISR-07-2
	UCI-ISR-07-2-cvr
	UCI-ISR-07-2-abs
	VL HCC 2007-24
	1. Introduction
	2. Background
	3. Palantír
	4. User Experiments
	4.1. Experimental Design
	4.2. Experimental Findings

	5. Lessons Learned
	5.1. Experiment Model Limitations
	5.2. Experimental Design Changes
	5.3. Interface Design Changes

	6. Conclusions
	7. Acknowledgments
	8. References

