
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Lihua Xu 	
University of California, Irvine
lihuax@ics.uci.edu		

	
Debra J. Richardson 				
University of California, Irvine	
djr@ics.uci.edu			

Hadar Ziv
University of California, Irvine	
ziv@ics.uci.edu

A Survey of Software Architecture
Decision-Making Techniques

December 2007

ISR Technical Report # UCI-ISR-07-10

Institute for Software Research
ICS2 217

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

 1

A Survey of Software Architecture Decision-Making

Techniques

Lihua Xu, Debra J. Richardson, and Hadar Ziv

Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3425

{lihuax, djr, ziv} @ics.uci.edu

ISR Technical Report # UCI-ISR-07-10

December 2007

Abstract: Software quality attributes describe both the specific criteria related to how the

system is built (e.g. cost, development time), and qualitative constraints on various attributes of

functions or services that the system should provide (e.g. performance, usability, reliability).

These requirements concern not only the customers for whom the system is produced but

ultimately every stakeholder involved with the software. Unlike functional requirements relating

to the common services a system should provide, and on which stakeholders must agree, quality

requirements1 usually differs from system to system, from stakeholder to stakeholder. These

quality attributes can only be “satisficed” [CNYM00a], rather than “accomplished” or “satisfied”,

since design decisions can contribute only partially towards or against a particular quality

attribute of the system. Moreover, these quality attributes are often inter-connected, whether in

agreement or in conflict, with each other. Hence, reaching an agreed understanding of these

qualities attributes, and finding the optimal balance among them instead of studying a single one

in isolation, are crucial in achieving a high quality software product.

 Software architecture sets the boundary of systematic reasoning about various quality

attributes that are relevant to the system domain. A high-quality software architecture facilitates

the development of a high quality software system. Designing such architecture usually involves

a set of interdependent design decisions that contribute to quality attributes differently; the

architect must not only iteratively explore different design alternatives for each design decision,

but also consider the interplay among them and balance the myriad tradeoffs from conflicting

quality attributes. This explorative process is an incremental decision making process in which

the architect evaluates the design alternatives with respect to the quality attributes, and reaches an

optimized design that fulfills stakeholders’ requirements.

 To inform these design decisions, software engineers propose architecture analysis techniques

to analyze each design alternative, compare them, and understand their differences. This survey

studies existing architecture analysis approaches that address all required quality attributes of the

system, from the perspective of how they support an explorative design process with regard to the

quality attributes. In particular, the survey explores the approaches from five perspectives: the

support for gathering requirements from multiple stakeholders and resolve conflicts; the support

for modeling architecture and quality attributes and identify design decisions involved in the

architecture; the support for analyzing and comparing design alternatives for each design

decision; the support for considering all design decisions and their interdependencies; and the

automated support for the process.

1
 Quality requirements and quality attributes are interchangeable in this paper.

 1

A Survey of Software Architecture Decision-Making

Techniques

Lihua Xu, Debra J. Richardson, and Hadar Ziv

Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3425

{lihuax, djr, ziv} @ics.uci.edu

ISR Technical Report # UCI-ISR-07-10

December 2007

Abstract: Software quality attributes describe both the specific criteria related to how the

system is built (e.g. cost, development time), and qualitative constraints on various attributes of

functions or services that the system should provide (e.g. performance, usability, reliability).

These requirements concern not only the customers for whom the system is produced but

ultimately every stakeholder involved with the software. Unlike functional requirements relating

to the common services a system should provide, and on which stakeholders must agree, quality

requirements1 usually differs from system to system, from stakeholder to stakeholder. These

quality attributes can only be “satisficed” [CNYM00a], rather than “accomplished” or “satisfied”,

since design decisions can contribute only partially towards or against a particular quality

attribute of the system. Moreover, these quality attributes are often inter-connected, whether in

agreement or in conflict, with each other. Hence, reaching an agreed understanding of these

qualities attributes, and finding the optimal balance among them instead of studying a single one

in isolation, are crucial in achieving a high quality software product.

 Software architecture sets the boundary of systematic reasoning about various quality

attributes that are relevant to the system domain. A high-quality software architecture facilitates

the development of a high quality software system. Designing such architecture usually involves

a set of interdependent design decisions that contribute to quality attributes differently; the

architect must not only iteratively explore different design alternatives for each design decision,

but also consider the interplay among them and balance the myriad tradeoffs from conflicting

quality attributes. This explorative process is an incremental decision making process in which

the architect evaluates the design alternatives with respect to the quality attributes, and reaches an

optimized design that fulfills stakeholders’ requirements.

 To inform these design decisions, software engineers propose architecture analysis techniques

to analyze each design alternative, compare them, and understand their differences. This survey

studies existing architecture analysis approaches that address all required quality attributes of the

system, from the perspective of how they support an explorative design process with regard to the

quality attributes. In particular, the survey explores the approaches from five perspectives: the

support for gathering requirements from multiple stakeholders and resolve conflicts; the support

for modeling architecture and quality attributes and identify design decisions involved in the

architecture; the support for analyzing and comparing design alternatives for each design

decision; the support for considering all design decisions and their interdependencies; and the

automated support for the process.

1
 Quality requirements and quality attributes are interchangeable in this paper.

 2

Abstract:... 1
1 Introduction... 3
2 Software Architecture Analysis and Our Evaluation Framework ... 5

2.1 Requirements Determination.. 8
2.1.1 Requirements Determination Evaluation Criteria.. 8

2.2 Design Elicitation.. 9
2.2.1 Design Elicitation Evaluation Criteria.. 10

2.3 Analysis of Alternatives.. 11
2.3.1 Analysis of Alternatives Evaluation Criteria ... 11

2.4 Architecture Quality Assurance ... 12
2.4.1 Architecture Quality Assurance Evaluation Criteria ... 12

2.5 Automation .. 13
2.5.1 Automation Evaluation Framework.. 13

3 Survey of Software Architecture Analysis Approaches... 15
3.1 SAAM/ ATAM.. 16

3.1.1 Applying the Evaluation Framework.. 16
3.2 Cost Benefit Analysis Method (CBAM) ... 19

3.2.1 Applying the Analysis Framework ... 19
3.3 WinCBAM... 21

3.3.1 Applying the Analysis Framework ... 21
3.4 SAAM for Evolution and Reusability (SAAMER) .. 23

3.4.1 Applying the Analysis Framework ... 23
3.5 Scenario-based Software Architecture Reengineering (SSAR) ... 25

3.5.1 Applying the Analysis Framework ... 25
3.6 Non-functional Requirement Framework (NFR Framework).. 27

3.6.1 Applying the Evaluation Framework.. 27
3.7 Applying Analytical Hierarchy Process to Software Architecture Decisions (SAHP) 29

3.7.1 Applying the Analysis Framework ... 29
3.8 ArchDesigner... 31

3.8.1 Applying the Analysis Framework ... 31
3.9 AHP with Tradeoff and Sensitivity Analysis (AHPTS) ... 33

3.9.1 Applying the Evaluation Framework.. 33
4 Comparing Surveyed Approaches ... 36
5 Conclusions and Research Recommendations ... 46
6 References ... 48

 3

1 Introduction

Software quality attributes describe both the specific criteria related to how the system is built

(e.g. cost, development time), and qualitative constraints on various attributes of functions or

services that the system should provide (e.g. performance, usability, reliability). These

requirements concern not only the customers for whom the system is produced but ultimately

every stakeholder involved with the software. Unlike functional requirements relating to the

common services a system should provide, the meaning of quality attributes differ from

stakeholders to stakeholders -- that is, different stakeholders might have different understanding

or expectation of the system with regards to specific quality attributes, e.g., the user and the

security officer have different expectations over the system’s security. Also unlike functional

requirements on which stakeholders must agree, quality requirements usually conflict with each

other -- that is, addressing one quality attribute usually leads to sacrificing others, e.g., real-time

vs. reusability, flexibility vs. efficiency, reliability vs. flexibility, etc. Hence, reaching an agreed

understanding of these qualities attributes and finding the right balance of quality attributes is

crucial in achieving successful software products. One must identify the conflicts among desired

quality attributes and work out a balance of attribute satisfaction [BE03a].

 As software systems become more and more complex, addressing these quality attributes

from a high-level design description has been receiving more and more attention. For instance,

Parnas [Par72] introduced the concept of modularization and information hiding to improve

system flexibility and comprehensibility; Perry and Wolf [PW92] further defined the notion of

software architecture as involving descriptions of the elements from which systems are built,

interactions among those elements, patterns that guide their composition, and constraints on these

patterns. In general, a particular software architecture is defined as a collection of components

that encapsulate the logic of computation, connectors that facilitate the communication among

components, and their configuration. Software architecture provides high-level abstractions for

representing the structure and key properties of a software system. Both the scientific and

industrial communities have recognized that software architectures set the boundaries for the

software qualities of the resulting system [BE03a].

 To predict the quality of a software architecture design, different software architecture

analysis techniques can be used to identify and verify potential risks that the quality requirements

introduced to the design. There has been several attempts to understand these architecture

analysis techniques that focus on how the technique assesses the potential of an architecture to

deliver a system capable of fulfilling required quality attributes and to identify any potential risks

[BE03b, BZJ04, DN02].

 Designing a high quality software architecture is an explorative process to find an optimal

combination that fulfills stakeholders’ requirements. This explorative process is an incremental

decision-making process in which an architect identifies several design alternatives addressing

certain requirements of the system, evaluates them, balances the tradeoffs aroused with

conflicting quality attributes, and reaches an optimized design that fulfills all stakeholders’

requirements with minimum sacrifices. The software architecture design embodies functional

design decisions and a collection of architecture design decisions that correspond to multiple

quality requirements. These design decisions have a crucial influence on the success of any

software project. It is necessary to have a structured way to understand the tradeoffs among

different design alternatives in terms of the quality requirements, so that the developed software

systems are more suitable for the problem at hand.

 With the concentration on how they support the explorative design process, this survey

studies existing architecture analysis approaches that evaluates architecture design alternatives

with regards to multiple quality attributes to find the best fit. In particular, the survey explores the

 4

approaches from five perspectives: the support for gathering requirements from multiple

stakeholders and resolve conflicts; the support for modeling architecture and quality attributes

and identify design decisions involved in the architecture; the support for analyzing and

comparing design alternatives for each design decision; the support for considering all design

decisions and their interdependencies; and the automated support for the process.

 Although various software quality research communities have proposed their own analysis

methods to ensure that specific quality attributes are addresses independently, such as real-time

analysis [Kl93], reliability analysis [Ly96], and performance analysis [SW93], they are outside

the scope of this survey. We argue that in real systems, quality attributes inter-connect and any

design decision may involve tradeoffs among conflicting quality attributes. It is the conflicts

among these quality attributes made the decision-making difficult. This survey evaluates

architecture analysis approaches that support and balance systematic reasoning about all required

quality attributes, instead of studying a specific quality attribute in isolation.

 The remainder of this survey is organized as follows: Section 2 describes the software

architecture decision-making framework. Our framework involves four critical phases,

requirement determination, design elicitation, analysis of alternatives and architecture quality

assurance. For each phase, we identify several interesting criteria that we want to understand and

assess the studied approaches. After applying the evaluation framework and studying each

approach in isolation in Section 3, we compare the evaluated results in Section 4, and draw

conclusions and research recommendations in Section 5.

 5

2 Software Architecture Analysis and Our Evaluation

Framework
Architecting software is a complex design activity. It involves making decisions about a number

of inter-dependent design choices that relate to a range of requirement concerns. Each decision

requires selecting among a number of alternatives, each of which impacts various quality

attributes in different ways. An important aspect of making decision is being able to understand

the consequences of architecture design decisions with respect to the quality attributes. Software

architecture analysis could provide the rationale and insight for determining which design

alternative fits the overall system best with the maximized support for the quality attributes. The

analysis should not only reveal requirements conflicts and incomplete design descriptions from a

particular stakeholders perspective, but also establish a balance between the inter-connected

quality attributes as a way to measure and achieve better quality. The quality of a system is

measured by the satisfaction of a large amount of requirements originating from different

stakeholders.

 To understand the problem, we introduce a motivating example. Consider a hypothetical chat

system, the architecture of which consists of a server and several client components (see Figure

1). In this system, the server component routes messages between the clients.

Figure 1. The Chat System Architecture

 To illustrate the problem of designing a system with conflicting quality requirements,

consider the following quality-attribute requirements: security, usability, and performance with

their stakeholders: the security officer, and the end users.

• The security officer cares about the system’s security. The security officer wants the system

to be as secure as possible, not allowing unexpected users to either read or understand the

messages sent around the system. Available design choices include authentication (a1),

encryption (a2), or incorporating both into the system (a3); Incorporating authentication

would require that clients are authenticated by the server before sending messages to other

clients in the system. This helps enforce security by preventing unauthorized users from

participating. Incorporating encryption into the system ensures that text messages sent by a

client can only be read by intended recipients.

• The end user’s interest concentrates on system’s responsiveness. They expect to receive a

response or deliver the status of a sent message in a bounded amount of time. Available

design decisions are: bind the computation time after the user sent the message, time out after

the bounded amount of time has passed, show the user a delivery failure message, and discard

the message directly (b1); ask user whether to re-send or discard the message instead of

discarding it directly (b2).

 6

• The end users also care about the system’s usability; they wish the system to be as easy to use

as possible. Available mechanisms are to have the login window popup every time the

computer starts (c1) or even to have the computer always be logged in until the user manually

logs out (c2).

 These quality-attribute requirements exhibit several problems:

 First, the actual meaning of a quality attribute is hard to define, i.e., all three mechanisms (a1,

a2, and a3) satisfy the security requirement to a certain extent; the notion of whether the system’s

security requirements have been met is thus open-ended. The stakeholders need to have a clear

understanding of these unquantifiable quality attributes.

 Second, the quality attributes conflict. For example, introducing encryption into the system

will undoubtedly reduce its responsiveness. When conflicts happen, the stakeholders need to

agree on the relative importance of these conflicting quality attributes to measure the support by

the design alternative provided to the system as a whole.

 Third, each design alternative makes different contributions to the related quality attributes,

either conflicting or supporting. For example, as far as end user’s concern, mechanism having the

login window popup every time the computer starts (c1) provides less usability to the system than

having the computer always logged in until the user manually logs out (c2). However, c2

decreases the system’s security, thus this mechanism exhibits conflicts among usability and

security requirements; On the other hand, c1 not only made the system easier to use

(automatically popup the login window instead of having the user to do it manually), but also

forced some level of security by only allowing certified users to be logged in. This mechanism

exhibits a synergistic relationship between the usability and security requirements. It is important

for the designer to understand how these different design alternatives support the related quality

attributes.

 Fourth, software architecture design involves many design decisions. In our illustrative

example, we consider three design decisions; security, responsiveness, and usability. As

mentioned, they have interdependencies and choosing one alternative would undoubtedly affect

the others. The architect must decide which combination of design alternatives to choose in order

to address all requirements. The art of balancing the tradeoff among design decisions from

conflicting quality requirements is essential in this process.

 To address these problems, different software architecture analysis techniques have been

proposed to evaluate the impact of design alternatives with regards to quality attributes. To better

understand these software architecture analysis techniques, we propose to view the analysis

process as these following phases (as shown in Figure 2):

1. Requirements Elicitation: Based on multiple stakeholders’ needs and insights, quality

attributes are collected and determined. Stakeholders should then reach a common

understanding of quality attributes so that they have an agreement on what should be

expected from the system. Relative importance on the conflicting goals should also be

reached so that it is agreed certain quality attributes should receive more attention when

conflicts happen. Going back to our example, the required quality attributes, security,

responsiveness, and usability were determined in this phase. The concrete meaning for each

one should be established and agreed among the stakeholders, as well as their relative

importance, so that the stakeholders understand how much they should expect the system to

be secure, or responsible, or usable.

2. Architectural Design: Architecture design involves a set of design decisions. The designer

should capture each design decision as independent unit that specifically targets a portion of

the system quality requirements, so that it is easier than having to design the architecture with

related quality attributes all together. The designer should also identify multiple design

alternatives that satisfy the related quality attributes in different ways. As we showed in the

example, having determined the required quality attributes, the designer decides to take

satisfying each quality attribute as design decisions, and generates possible mechanisms for

 7

each of them, such as introducing authentication or encryption to provide the system with

certain level of security.

3. Design Alternative Analysis: For each design decision, every identified design alternative will

be evaluated and compared in terms of their contribution or effect to related quality attributes.

Because each design alternative impacts the quality attributes in different ways and the

quality attributes themselves have relative importance, the designer should identify the

tradeoffs among these design alternatives, measured by their contribution to the system

quality. Thus, it helps to understand the consequences of each selection. Meanwhile, system

requirements change from time to time. When the relative importance of quality attributes

changes, there is a chance that the tradeoffs among the design alternatives change as well.

The designer should acknowledge the information on whether and where any change during

the decision-making process would result in the change of selection.

4. Overall Architectural Analysis: using the analysis result gathered from each design decision

and the relationships among the different design decisions, the designer can make the design

decisions that reflect the best interest of all quality attributes. Evaluating and comparing the

mechanisms in isolation is not enough because of the inter-relationships among the design

decisions, as discussed in our example, choosing c2 might be an obvious selection if only

considering usability requirement, but it jeopardizes the security requirement; if user would

like to compromise usability to security requirements, choosing c1 would be a good option,

but then, the system’s responsiveness is in jeopardy. The designer needs to take into account

all the related design decisions and quality attributes in order to balance the conflicts and find

a good architecture design.

 At following sections, we will describe each phase in detail, with our evaluation framework.

Figure 2. Software Architecture Decision Making Framework

 8

2.1 Requirements Elicitation

During the requirements elicitation phase, the relevant quality attributes must be collected from

various stakeholders and requirements consensus should be reached. Different stakeholders tend

to have different views on the importance of various quality requirements for a system, partly

because they experience the target system from different perspective and partly because they have

conflicting goals for the target system. It is important to reach an agreement that certain quality

attributes are more important than the others, so that when situations, such as a design alternative

shows positive contribution to one quality attribute with negative effects on the other, happen,

one can always determine how to measure the system support provided by this design alternative.

 Although very important for achieving a successful software system, dealing with quality

attributes are not yet very well understood. Some quality attributes lack an agreement on means

for measuring the support provided by a particular architecture design alternative. We refer to

these quality attributes as unquantifiable. For instance, the meaning for a system being “secure”

or “usable” or “highly reliable” changes from system to system, from stakeholder to stakeholder.

In order to evaluate an architecture design with regards to quality attributes, one needs a precise

characterization of each quality attribute, that is, being able to understand an architecture design

from the perspective of the quality attribute requires an understanding of how to measure or

observe the quality attribute and an understanding of how various types of architecture decisions

impact this measure. Therefore, during requirements determination phase, it is necessary to have

support for reaching consensus among stakeholders of the unquantifiable quality attributes, so

that stakeholders agree upon means for measuring the provided support for them.

2.1.1 Requirements Elicitation Evaluation Criteria

Having discussed the important activities involved, two important questions should be examined

during this requirements determination phase: who provides the required quality attributes and

how is consensus reached among stakeholders. The stakeholders’ requirements consensus are

two-folded: agreed upon means of measuring the unquantifiable quality attributes and relative

importance of quality attributes resulting from conflicting goals and priorities. Hence, we present

the requirements elicitation evaluation criteria as following.

 As shown in Table 1, the first concern regarding this phase is who identifies the quality

attributes that are used to evaluate design alternatives. There are two different approaches to the

problem: (1) the quality attributes can be identified at design time, based on the design decisions;

or (2) the quality attributes can be identified from stakeholders.

 The second concern regarding requirements elicitation is how to understand unquantifiable

quality attributes. The method could support stakeholders to establish a common understanding

for specific quality attributes in the context of the target system, or provide no such support.

 The third concern is how the method prioritizes the conflicting goals. The approach could

provide a quantitative, qualitative method, or no support to the issue.

 9

Table 1. Requirements determination Evaluation Criteria

2.2 Architectural Design

As discussed earlier, architecture design and evaluation are conceptually tightly related, but often

performed separately in software architecture design tools. This separation causes uncertainty in

architecture decision-making progress, limits the success of architecture design, and could lead to

wasted effort and substantial re-work later in the development life cycle. Integrating both

techniques into the decision-making process helps to appropriately consider and evaluate

architecture alternatives.

 Software architecture analysis could be performed at any phase during architecture

development, e.g., before the architecture is fully developed, maintenance phase, architecture

evolution and so forth. We also understand that different methods are optimized to achieve

different evaluation goals, e.g., the analysis technique could concentrate on the design product

(verify whether the final design meets the requirements) rather than the design process (support

the decision-making process). It is worth noting that methods who do not perform well in our

evaluation may simply because it targets on different objective. Hence, it is necessary to

explicitly define and understand the development phase when the studied approaches apply so

that the approach could get fair adjustment.

 A precise and well-documented definition of software architecture is very important for any

software architecture analysis to be performed successfully [BLF96, KBAW96, BZJ04]. An

appropriate notation and abstract level to capture the architecture helps stakeholders communicate

when evaluating a specific design alternative. Similar reasons apply to quality attributes; after

reaching the common understanding during requirements determination phase, an appropriate

representation regarding that agreement, such as concrete tasks that the system should perform to

support the quality attributes, or quantified measurement on how much support has the system

provide to satisfy a quality attribute, should be captured before the analysis.

 Nevertheless, each architecture design involves a set of design decisions. As mentioned,

making design decisions for the system as a whole is a very complex problem. The decision-

making problem could become much easier if software engineers carefully divide the problem

R e q u i r e m e n t s d e t e r m i n a t i o n

 10

into several sub-problems, each of which deals with one part of the system property that is easy to

tackle and identify possible solutions. Therefore, the design decisions involved in the architecture

design should be identified during this phase.

2.2.1 Architectural Design Evaluation Criteria

As said, quality attributes and architecture should be modeled, and the design decisions should be

determined during the architectural design phase. We identify three important questions to

examine while studying the approaches with respect to this phase: when does the architecture

evaluation happen? what model is the evaluation based on? And how are the design decisions

identified? Corresponding to the questions, Table 2 identifies the architectural design evaluation

criteria.

 The first concern regarding this phase is which architecture development phase does the

analysis technique target. Early Evaluation need not wait until architecture is fully specified. The

analysis and decision-making can happen at any stage during the architecture development

process to examine the design alternatives. Late Evaluation is a form of evaluating an existing

architecture. The architecture analysis and decision making take place after the architecture is

fully designed.

 The second concern regarding architectural design is the modeled artifacts that the evaluation

based on. It could involve the architecture, or quality attributes, or both.

 The third concern is how the method helps to identify the design decisions. Either the

approach provide guidance on determining the design decisions involved in architecture design,

or the identification is un-supported .

Table 2. Design Elicitation Evaluation Criteria

 11

2.3 Design Alternative Analysis

For each design decision involved in software architecture, one needs to evaluate different

alternatives with regards to multiple quality attributes. The ultimate goal of this evaluation is to

choose an appropriate alternative that optimizes support to quality attributes. One common way to

make this decision is to rank the design alternatives with regard to how they satisfice the quality

attributes. During our evaluation, we will examine the source and type of design alternative

comparison.

 Tradeoff analysis helps designer understand the exact consequences of the chosen design

alternative with respect to related quality attributes. Sensitivity analysis evaluates how the design

decision could be changed due to any change during the decision making process. We will also

examine how the approaches support them.

2.3.1 Design Alternative Analysis Evaluation Criteria

The design alternatives should be analyzed and compared with respect to related quality

attributes, for each design decision. It is important to understand who analyzes design alternatives

in terms of their support to quality attributes (the source of comparison) and how are the design

alternatives compared. In regards to the latter question, we will evaluate the approached from

three perspectives: the type of the comparison (either qualitative or quantitative); the support to

tradeoff analysis; and the support to sensitivity analysis. Table 3 shows our design alternative

analysis evaluation criteria accordingly.

 The first concern regarding this phase is who analyzes the support provided by the design

alternatives. Human-based measurement takes the stakeholders’ perception as the source of

comparison; and Machine-based measurement utilizes mathematical models or other analysis

techniques to help a designer quantify the support. The second category concerns the type of

comparison used by each approach when they compare and rank the design alternatives.

Qualitative techniques compare the architecture analysis techniques qualitatively; Quantitative

techniques quantify each design alternatives in terms of how they support the quality attributes.

 The third concern is how the method supports tradeoff analysis. The approach could provide

low, medium or high guidance; or tradeoff analysis is not supported in the approach. High

guidance is provided if the approach identifies tradeoff points [KKC00], which are design

decisions that influence multiple quality attributes that potentially conflict with each other, along

with their relative rankings with respect to quality attributes, and relationships between design

alternatives in terms of tradeoffs; Medium guidance is provided if the approach identifies tradeoff

points along with their relative rankings; Low guidance is provided if the approach identifies

tradeoff points.

 The fourth concern is how the method deals with sensitivity. The approach could identify

sensitivity points [KKC00], provide sensitivity analysis, or not support it. Sensitivity Points are

critical properties that influence a particular quality attribute, they serve as “yellow flags” when

trying to understand achievement of a quality requirement; Sensitivity Analysis is provided if the

method helps designer reach an understanding of whether any change on the sensitivity points or

other intermediate decisions during the decision-making process would effect the outcome.

 12

Table 3. Design Alternative Analysis Evaluation Criteria

2.4 Overall Architectural Analysis

Software architecture involves a collection of design decisions that respond to multiple quality

attributes. Reaching an architecture design requires systematically determining the combination

of the design decisions, that is, not only considering each individual design decision in isolation,

selecting the design alternative that best matches stakeholders’ preferences on associated quality

attributes, but also need to consider the inter-dependencies among design decisions. The interplay

among design decisions usually influences the selection because the chosen design alternative

might have negative effects to certain quality attributes that are related to other design decisions.

 Also because of the inter-relationships among design decisions, one should be able to relate

the quality attributes to the related architecture elements, so that if a design decision is made, one

needs to be able to identify the sacrificed quality attributes, and related to the design decision that

are targeted to address them.

2.4.1 Overall Architectural Analysis Evaluation Criteria

During overall architectural analysis phase, the inter-relationships among design decisions need

to be considered in order to reach a final design. The important questions to be examined are:

how is the interplay among design decisions considered? And what is the output result? The

criteria is shown in Table 4.

 The first concern regarding this phase is whether the relationships among the stakeholders are

considered during the decision-making process. The second concern is whether the method

provides support to map the quality attributes with architecture elements, No Guidance represents

 13

that the method claims to relate the quality attributes to architecture elements, without any

specific guidance on how the mapping is achieved; Guidance represents that the method provides

specific support of relating the quality attributes to architecture elements.

 The third concern is the output result of the method. The approach could output the priority

list of the design alternatives in terms of how well they support the quality attributes, or provide

related information of how well each design alternative supports the quality attributes.

Table 4. Overall Architectural Analysis Evaluation Criteria

2.5 Automation

Software architecture design and analysis is a knowledge intensive process, sometimes the design

decisions made even rely on implicit assumptions and arbitrary judgments. Automating these

approaches and methods, capturing and managing these technical knowledge, and rationale of the

design decisions could greatly improve the architecture development process.

 Some approaches adapt other techniques as part of the evaluation methodology; in order to

perform the analysis method and decrease the designers’ workload of switching among several

tools, these adapted techniques should also be integrated into the toolset. The following section

consists evaluating the architecture analysis methods with respect to their automated support.

2.5.1 Automation Evaluation Framework

Considering the automation support provided by each examined approach, it is important to

understand what is the level of automation provided by the approach and what information is

persistent? The criteria are shown as in Table 2.

 The first concern is the level of automation. Unsupported represents that there is no

automation available to support the method; Low represents that only a small portion of the

method has been automated, or the only automated portion of the method is the adapted technique

-- that is, the method authors’ themselves did not develop any automated tool, but they adapted

 14

others’ technique, which is automated; Medium represents that part of the method has been

automated, and the automation tool for adapted techniques is not yet integrated with the rest of

the method -- that is, if one is to use the method with the automated tool, he has to switch

between at least two tools, one for the adapted technique and the others for the rest of the method;

High represents that the method has automation support as a whole toolset.

 The second concern regarding automation is information persistence. The method could

provide knowledge base for capturing the intermediate results during the decision making

process, outputs the final results, or provide no support in this regard.

Table 5. Automation Evaluation Criteria

 15

3 Survey of Software Architecture Analysis Approaches
A number of methods have been developed to help designers make better decisions during the

architecture design phase. The architecture analysis approaches specifically studied in this survey

are: Scenario-based Architecture Analysis Method (SAAM) [Bar02, Ka96, KBAW96],

Architecture Tradeoff Analysis Method (ATAM) [Bar02, HKC00, KCW00, KKC00], Cost

Benefit Analysis Method (CBAM) [KAK01], WinCBAM [BBHL94, BI96, GB01, KIC05],

SAAM for Evolution and Reusability (SAAMER) [LBKK97], Scenario-based Software

Architecture Reengineering (SSAR) [BB98, BB99, BLBV04], Non-functional Requirement

Framework (NFR Framework) [CGY03, CNY94, CNY95a, CNY95b, CNYM00a, GY01,

MCN92], Applying Analytical Hierarchy Process to Software Architecture Decisions (SAHP)

[SWLM02, SWLM03], ArchDesigner [AG+05], and Tradeoff Analysis and Sensitivity Analysis

for AHP related Analysis Methods (AHPTS) [ZAGJ05].

 It is worth noting that the Software Engineering Institute (SEI), CMU has played a notable

role in software architecture analysis research, and majority of the existing methods are related to

their work. Among the studied methods, SAAM, ATAM, and CBAM are directly from their

institute, WinCBAM is a cooperated work between two groups, and SAAMER adapted SAAM

for analysis. Although it seems too many “SEI-related” techniques are being studied in our

survey, we tried to focus on studying the ideas and evaluating the existing techniques from the

perspective of how they support the explorative decision making process in architecture design.

We also grouped SAAM and ATAM as one method to be studied, as they deliver the similar

ideas. For the different concentrations of SAAM and ATAM, we differentiated them so that

readers understand the contributions are coming from the two separate approaches.

 Next, we are going to evaluate the methods using our evaluation framework described in

previous sessions.

 16

3.1 SAAM/ ATAM

Software Architecture Analysis Method (SAAM) provides a method of describing and analyzing

a software architecture to show that it satisfies certain properties. The researchers concluded that

various architecture descriptions do not use a common vocabulary, which makes it difficult to

compare the new architectures with existing ones, hence, the method defines three perspectives

for understating and describing architectures – functionality, structure, and allocation, to form a

common level of understanding for comparing different architectures. The main activities

involved in the SAAM are:

1. Characterize a canonical functional partitioning for the domain

2. Map the functional partitioning onto the architecture’s structural decomposition

3. Choose a set of quality attributes with which to assess the architecture

4. Choose a set of concrete tasks which test the desired quality attributes

5. Evaluate the degree to which each architecture provides support for each task

 ATAM is a risk identification method that provides software architects with a framework for

understanding the technical tradeoffs and risks they face as they make design decisions. In an

ATAM analysis, an external team facilitates meetings between stakeholders during which

scenarios representing the quality attributes of the system are developed, prioritized, and analyzed

against the architecture approaches chosen for the system. The results of the analysis are

expressed as risks (a potentially problematic architecture decision), sensitivity points (a property

of one or more components and/or relationships that is critical for achieving a particular quality

attribute response), and tradeoffs (a property that affects and is a sensitivity point for more than

one attribute).

3.1.1 Applying the Evaluation Framework

Method SAAM/ ATAM:

• identifies the quality attributes based on stakeholders’ needs.

 Stakeholders’ meetings are held to gather the set of important quality attributes with which to

 evaluate the architecture.

• provides support for unquantifiable quality attributes.

 Scenario representations are used to capture the concrete task and desired response for the

 target system regarding the specific unquantifiable quality attributes. Furthermore, ATAM

 provides a characterization framework and uses utility trees for guiding stakeholders’ reach a

 measurable or observable point of view for the unquantifiable quality attributes.

• provides no support to help reach a consensus if different stakeholders have conflicting

goals.

 When conflicting interests between different stakeholders appears, negotiation or aggregation

 is used to obtain a final result. However, it’s the stakeholders themselves, without support

 from the method, which conducts the negotiation or aggregation.

• evaluates the architecture after it is developed.

 Although the quality attributes could be identified before the architecture is fully developed,

 the analysis itself happens until the architecture is developed, but before the implementation

 starts.

• both architecture and the quality attributes are being modeled before the analysis.

 SAAM defines three perspectives for describing the architectures, so that the prioritized

 quality attributes representation can be mapped onto the architecture representation; quality

 attributes are represented as scenarios.

• provides no support for identifying the design decisions.

 There is no mentioning of how the considered design decisions are identified.

• uses human-based measurement to measure the provided support for quality attributes.

 17

 The method evaluate the degree to which each architecture provides support for each task of

 quality attributes by taking the opinions or experienced knowledge from stakeholders.

• uses qualitative method to compare the design alternatives.

 Based on developers’ experiences and previous knowledge, the designer compares the design

 alternatives qualitatively after applying each scenario that represents the quality attributes to

 the design alternatives.

• provides low guidance on tradeoff analysis.

 ATAM identifies tradeoff points but provides no guidance on the exact consequences of the

 chosen design alternative in terms of the tradeoffs being made for the conflicting quality

 attributes.

• Identifies sensitivity points.

 Sensitivity points, which are the properties of the architecture elements that are critical for

 achieving a particular quality attribute response, are identified during ATAM process. The

 result of the method on this category serves as yellow flags that remind designer or analyst to

 focus attention when dealing with related quality attributes.

• provides no consideration of the relationships among the design decisions

 Although the method identifies tradeoff points and sensitivity points that imply the

 relationship among the design decisions, it does not provide guidance or support for

 designers to embrace the relationship during the decision making process.

• provides low guidance on relating the quality attributes to architecture elements.

 During the step of identifying tradeoff points and sensitivity points, the mapping of quality

 attributes to architecture elements are performed, though the method itself does not provide

 specific support on how the mapping could be achieved.

• provides no guidance on quality attribute optimization.

 The method’s goal is to identify the places where interested quality attributes are affected by

 architecture design decisions so that the designer should focus their attention on such

 decisions in subsequent analysis.

• Low Automation.

 SAAM is partially supported by tool SAAMTOOL.

• No information persistence mechanism.

 18

Requirements Elicitation

Identifying QA

Understanding

Unquantifiable QA

Prioritizing

Conflicting Goals

SAAM/

ATAM
Stakeholder-based Supported Unsupported

Architectural Design

Development Phase Modeled Artifacts Identifying Design Decisions

Architecture (SAAM) SAAM/

ATAM
Late Evaluation

Quality Attributes (ATAM)
Unsupported

Design Alternative Analysis

 Design Alternative

Analysis

Design Alternatives

Comparison
Tradeoff Analysis Sensitivity

SAAM/

ATAM
Human-based Qualitative Low Sensitivity Points

Overall Architectural Analysis

Context Mapping QA Optimization

SAAM/

ATAM
Independent No Guidance Unsupported

Automation

Automated Tool Information Persistence

SAAM/

ATAM
Low Unsupported

Table 6. Evaluating SAAM/ ATAM

 Table 6 provides the graphical representation of applying the evaluation frameworks to

method SAAM/ ATAM.

 19

3.2 Cost Benefit Analysis Method (CBAM)

The SEI Cost Benefit Analysis Method (CBAM) is a method for architecture-based economic

analysis of software-intensive systems. With the purpose of improving existing architecture

design, it helps software architects to choose architecture alternatives by considering the return on

investment and economic tradeoffs of these alternatives. The CBAM takes the analysis result

from ATAM and associate priorities, costs and benefits with architecture decisions as additional

attributes to be considered during the software architecture maintenance phase.

 The CBAM consists of six steps:

• Firstly, it chooses scenarios and architecture strategies from the list output of ATAM. CBAM

select a set of desired improvements to the system, possible affected portions of the existing

architecture, and architecture strategies that describe the change to existing architecture

design;

• Secondly, each of the stakeholders assigns a number (quality attribute score) to each quality

attribute so that these scores total 100.

• Thirdly, it quantifies the architecture strategies’ benefits. Stakeholders rank each architecture

strategy in terms of its contribution to each quality attribute on a scale of -1 to +1, the benefit

of each architecture strategy is then computed using the formula:

.

• Fourthly, it quantifies the expected cost of implementing each architecture strategy that

results in the expected benefit.

• Fifthly, it calculates a desirability by which the desired architecture strategies can be

compared. By taking mean values of benefit and cost, the desirability is the unit benefit/cost.

• Finally, with all these scores, and uncertainty for each of them considered, CBAM can help

architect make the strategic roadmap for software design.

 The CBAM guides system engineers and other stakeholders to determine the costs and

benefits associated with the architecture decisions that result in the system’s qualities. Given this

information, the stakeholders can then reflect upon and choose among the potential architecture

decisions.

3.2.1 Applying the Analysis Framework

Method CBAM (Table 7):

• identifies the quality attributes based on stakeholders’ needs.

 The method selects a set of desired improvements to the system (quality attributes), from

 ATAM results, whose quality attributes are gathered from stakeholder meetings.

• provides no support to deal with the unquantifiable quality attributes.

 The method chooses the intended quality attributes from ATAM, where the quality attributes

 have already represented as scenarios to capture the desired improvements to the system.

• provides quantifying support to help reach a consensus if different stakeholders have

conflicting interests over the system.

 Each of the stakeholders gets a chance to express their interests over the system, by assigning

 a number as quality attribute score to each quality attribute, and each of these numbers are

 considered while quantifying each alternative’s benefit.

• evaluates the architecture after it is developed.

 Purpose of the method is to improve the existing architecture design.

• No artifact is required to be modeled before the analysis.

 20

 Although the CBAM takes the analysis result from ATAM, where the quality attributes are

 represented as scenarios and architecture is fully developed, the method itself does not

 support to model either software architecture or quality attributes before the analysis.

• provides no support for identifying the design decisions.

 There is no mentioning of how the considered design decisions are identified.

• uses human-based measurement to measure the provided support for quality attributes.

 The method quantifies the provided support to quality attributes by taking stakeholders’

 opinions.

• uses quantitative method to compare the design alternatives.

 The method quantifies priorities, costs and benefits, which are associated with architecture

 decisions as additional attributes to be considered during the software architecture

 maintenance phase.

• provides medium guidance on tradeoff analysis.

 The method quantifies design alternatives’ benefits to each quality attribute, which in turn,

 provides tradeoff information on the relative ranking of how well each quality attribute is

 being supported by the design alternative.

• provides no guidance on sensitivity analysis.

• provides no consideration of the relationships among the design decisions

• provides no guidance on relating the quality attributes to architecture elements.

• provides both make decisions and informs designer on quality attribute optimization.

 The CBAM is a decision framework. It aids designers in the elicitation and documentation

 of costs, benefits, and uncertainty and gives them a rational process for making choices

 among competing options.

• No automation

Requirements Elicitation

Identifying QA

Understanding

Unquantifiable QA

Prioritizing

Conflicting Goals

CBAM Stakeholder-based Unsupported Quantitative

Architectural Design

Development Phase Modeled Artifacts Identifying Design Decisions

CBAM Late Evaluation Unsupported Unsupported

Design Alternative Analysis

 Design Alternative

Analysis

Design Alternatives

Comparison
Tradeoff Analysis Sensitivity

CBAM Human-based Quantitative Medium Unsupported

Overall Architectural Analysis

Context Mapping QA Optimization

CBAM Independent Unsupported
Priority List &

Decision-Making Information

Automation

Automated Tool Information Persistence

CBAM Unsupported Unsupported

Table 7. Evaluating CBAM

 21

3.3 WinCBAM

WinCBAM [BBHL94, GB01, KIC05] is a decision-support method that integrates WinWin [ref]

techniques with CBAM techniques to help stakeholders negotiate their conflict requirements by

systematically evaluating software architecture alternatives as concrete conflict resolution

options; hence, the stakeholders can iteratively explore, evaluate and negotiate design alternatives

to reach agreement at the design stage.

 The method attempts to interleave the steps of CBAM with the steps of the WinWin process

in a way that mirrors and augments the natural question-and-answer process that is at the heart of

requirements negotiation. During the process, stakeholders begin by entering their win

conditions; if a conflict among stakeholders’ win condition is identified, an issue schema is

composed, summarizing the conflict and the win conditions it involves; for each issue,

stakeholders explore architecture strategies as conflict-resolution options; since there are often

tradeoffs among win conditions that need to be balanced, CBAM provides a means to balance

these tradeoffs. CBAM is proposed here as a means to supplement the WinWin process of

systematically evaluating and negotiating software architecture alternatives (as conflict-resolution

options) by eliciting stakeholders’ benefits and costs.

3.3.1 Applying the Analysis Framework

Method WinCBAM (Table 8):

• identifies the quality attributes based on stakeholders.

 The stakeholders explicit their objectives, win conditions, and the conflicting goals, as the

 system’s requirements.

• provides support for the unquantifiable quality attributes.

 The win conditions that the stakeholders elicited usually represents their goal and

 measurement of the quality attributes. Moreover, the method also provides quality attribute

 criteria to provide a means of understanding the quality attribute and a target by which to

 measure the relative merit of the proposed architecture design alternatives.

• provides quantitative support to help reach a consensus if different stakeholders have

contradictory opinions.

 The method’s goal is to help stakeholders’ to negotiate with each other, by quantifying the

 architecture alternatives as conflict resolution options using CBAM.

• evaluates the architecture before it is developed.

 The method starts from requirements phase and the architecture development happens during

 the requirement negotiation.

• No artifact is being modeled before the analysis.

 Although the win conditions gathered from stakeholders are representations of the quality

 attributes, the method itself does not provide any formal format to capture them, the win

 conditions are just representations of what the stakeholders’ objectives are.

• provides no support for identifying the design decisions.

 The considered design decisions could be identified from the architects’ experiences, from

 previous experiences, or design patterns, etc; the method does not provide support for

 identifying them.

• uses human-based measurement to measure the provided support for quality attributes.

 The method quantifies the provided support according to stakeholders’ opinions.

• uses quantitative method to compare the design alternatives.

 CBAM is used in the method to quantify and compare the design alternatives.

• provides medium guidance on tradeoff analysis.

 The method integrates CBAM to provide tradeoff analysis over the conflicting requirements.

• provides no guidance on sensitivity analysis.

 22

• provides no consideration of the relationships among the design decisions

• provides no guidance on relating the quality attributes to architecture elements.

• provides informs designer with the quality attributes optimization.

 The WinCBAM is not a decision-making tool. It is a decision-support tool, helping to

 structure and focus the discussion of requirements by showing the participants the

 implications of their requirements, in terms of their realization as architecture designs.

• Low Automation support.

 The WinWin method is automated as a negotiation tool that is a Unix workstation-based

 groupware support system that allows stakeholders to enter win conditions, explore their

 interactions, and negotiate mutual agreements on the specifics of the new project being

 contracted. But the CBAM method is not yet automated.

• No information persistence mechanism is considered in the method.

Requirements Elicitation

Identifying QA

Understanding

Unquantifiable QA

Prioritizing

Conflicting Goals

WinCBAM Stakeholder-based Supported Quantitative

Architectural Design

Development Phase Modeled Artifacts Identifying Design Decisions

WinCBAM Early Evaluation Unsupported Unsupported

Design Alternative Analysis

 Design Alternative

Analysis

Design Alternatives

Comparison

Tradeoff

Analysis
Sensitivity

WinCBAM Human-based Quantitative Medium Unsupported

Overall Architectural Analysis

Context Mapping QA Optimization

WinCBAM Independent Unsupported Decision-Making Information

Automation

Automated Tool Information Persistence

WinCBAM Low Unsupported

Table 8. Evaluating WinCBAM

 23

3.4 SAAM for Evolution and Reusability (SAAMER)

SAAMER developed a modeling technique, with which SAAM applies, to ensure the rigor

required for ensuring that the stakeholder objectives are explicitly addressed and traced. It

consists of a framework for modeling various types of relevant information and a set of

architecture views for reengineering, analyzing, and comparing software architectures.

 Once the related information is gathered, it is then aligned across information categories

during the modeling phase, a framework is used to model different types of information, namely,

stakeholder information, architecture information, quality information, and scenarios. Both the

breadth and depth of the analysis are taken into account: the breadth aspect ensures that each

attribute is at least considered from the perspective of each stakeholder; the depth aspect deals

with the levels of abstraction at which the stakeholder objectives are represented and analyzed.

 SAAM is adopted during analysis phase and extended with sets of architecture views, e.g.,

static view, map view, dynamic view, and resource view, to provide different perspectives in

understanding and analyzing the software systems. Explicit scenarios are mapped onto the

architecture for analyze the quality attributes.

3.4.1 Applying the Analysis Framework

Method SAAMER (Table 9):

• identifies the quality attributes based on stakeholders.

 A number of explicit scenarios are developed based on stakeholder and architecture

 objectives, where the scenarios are narratives that describe use cases of a system.

• provides guidance for the unquantifiable quality attributes.

 In order to better understand the system and its target quality attributes, elicitation questions

 are prepared for each objective and are used in interviewing domain subject experts.

• provides no support to help reach a consensus if different stakeholders have contradictory

opinions.

• evaluates the architecture after it is developed.

 The method’s goal is to assess an existing architecture for project evolution or reuse in a

 future project in the same problem domain or product line.

• Both architecture and the quality attributes are being modeled before the analysis.

 Architectural views are used to represent the software architecture and scenarios are used to

 capture the stakeholders’ requirements on quality attributes.

• provides no support for identifying the design decisions.

• uses human-based measurement to measure the provided support for quality attributes.

 SAAM is adopted and SAAM uses human-based measurement.

• uses qualitative method to compare the design alternatives.

 SAAM is adopted and extended with architecture views.

• provides no guidance on tradeoff analysis.

• provides no guidance on sensitivity analysis.

• provides no consideration of the relationships among the design decisions

• provides high guidance on relating the quality attributes to architecture elements.

Architecture map views relate the functionality with the components. Explicit scenarios are

mapped onto architecture, not necessary architecture components, but rather architecture

impact by the scenario, for analyzing quality attributes.

• informs designer with the quality attributes optimization.

 The method’s result is to drive architecture development, make recommendations, locate

 “hot spots” in the architecture and enumerate strategies for their mitigation, identify common

 referent models.

 24

• Low Automation support.

 Only SAAM, the adapted technique, is automated.

• No information persistence mechanism is considered in the method.

Requirements Elicitation

Identifying QA

Understanding

Unquantifiable QA

Prioritizing

Conflicting Goals

SAAMER Stakeholder-based Supported Unsupported

Architectural Design

Development Phase Modeled Artifacts Identifying Design Decisions

SAAMER Late Evaluation
Architecture &

Quality Attributes
Unsupported

Design Alternative Analysis

 Design Alternative

Analysis

Design Alternatives

Comparison

Tradeoff

Analysis
Sensitivity

SAAMER Human-based Qualitative Unsupported Unsupported

Overall Architectural Analysis

Context Mapping QA Optimization

SAAMER Independent Guidance Decision-making information

Automation

Automated Tool Information Persistence

SAAMER Low Unsupported

Table 9. Evaluating SAAMER

 25

3.5 Scenario-based Software Architecture Reengineering (SSAR)

SSAR [BB98, BB99, BLBV04] proposes to use four different approaches to assess quality

attributes in software architecture level: Scenario-based evaluation, Simulation, Mathematical

Modeling, and Experience-based reasoning. For each quality attribute, the engineer can select the

most suitable approach for analysis.

o Scenario-based analysis: A set of scenarios is developed that concretizes the actual meaning

of the attribute; each individual scenario defines a context for the architecture. The

performance of the architecture in that context for this quality attribute is assessed by

analysis; the result from each analysis of the architecture and scenario are then summarized

into an overall result, e.g., the number of accepted scenarios versus the number not accepted.

o Simulation: the main components of the architecture are implemented and other components

are simulated resulting in an executable system.

o Mathematical modeling: Evaluate especially operation related software qualities with existing

mathematical models or metrics from various research communities, e.g., high-performance

computing, reliability, real-time systems, etc.

o Experience-based reasoning: Experienced software engineers provide valuable insights that

may prove extremely helpful in avoiding bad design decisions and finding issues that need

further analysis.

 Scenario-based evaluation is the major method to be used, during which the un-satisfied

quality attributes are identified and mapped onto the architecture, one at a time. In this mapping, a

determination must be made by the architects as to what changes are necessary to satisfy the

scenario. Changes to the architecture are performed as architecture transformations. Each

transformation leads to a new version of the architecture that has the same functionality, but

different values for its quality attributes.

3.5.1 Applying the Analysis Framework

Method SSAR (Table 10):

• identifies the quality attributes based on stakeholders.

 The quality attributes are identified based on the requirements.

• provides support for the unquantifiable quality attributes.

 A set of scenarios is developed that concretizes the actual meaning of the quality attribute

 during scenario-based evaluation.

• provides no support to help reach a consensus if different stakeholders have contradictory

opinions.

• evaluates the architecture after it is developed.

 The method’s goal is to improve an architecture based on the quality attributes.

• Both architecture and the quality attributes are being modeled before the analysis.

 For scenario-based evaluation, the quality attributes are modeled as scenarios; for simulation,

 the architecture is modeled as executable.

• provides no support for identifying the design decisions.

• uses machine-based measurement to evaluate the provided support to quality attributes.

 One of the four different analysis approaches is mathematical model that utilities existing

 mathematical models or metrics to evaluate especially operation related software qualities.

• uses qualitative and quantitative method to compare the design alternatives.

 The method consists four different approaches for assessing quality attributes: scenario-based

 evaluation and experience-based reasoning use qualitative method, while simulation and

 mathematical modeling use quantitative method.

• provides no support for conflict detection among required quality attributes.

 26

• provides no guidance on tradeoff analysis.

• provides no guidance on sensitivity analysis.

• provides no consideration of the relationships among the design decisions

 The quality attributes are dealt with one at a time.

• provides Low guidance on relating the quality attributes to architecture elements.

 After the evaluation, the un-met quality attributes are mapped on the architecture elements to

 identify the most prominent deficiency and transform the architecture to remove the

 deficiency.

• provides no support to quality attributes optimization.

• No automation.

Requirements Elicitation

Identifying QA

Understanding

Unquantifiable QA

Prioritizing

Conflicting Goals

SSAR Stakeholder-based Supported Unsupported

Architectural Design

 Development

Phase
Modeled Artifacts

Identifying Design

Decisions

SSAR Late Evaluation
Architecture (Simulation) &

Quality Attributes (Scenario-based evaluation)
Unsupported

Design Alternative Analysis

 Design Alternative

Analysis

Design Alternatives

Comparison
Tradeoff Analysis Sensitivity

SSAR Machine-based
Qualitative &

Quantitative
Unsupported Unsupported

Overall Architectural Analysis

Context Mapping QA Optimization

SSAR Independent No Guidance Unsupported

Automation

Automated Tool Information Persistence

SSAR Unsupported Unsupported

Table 10. Evaluating SSAR

 27

3.6 Non-functional Requirement Framework (NFR Framework)

Goal satisfaction analysis between different designs in the NFR Framework [MCN92, CNY94,

CNY95a, CNY95b, CNYM00, GY01] serves to systematically guide selection among

architecture design alternatives. During the design process, Nonfunctional requirements are

represented as goals, and their related knowledge is codified into methods and correlation rules.

Methods are used to facilitate decomposition and achievement of goals, and argumentation of

design decisions. Correlation rules are used to analyze the tradeoffs among design alternatives, to

guide selection among alternatives, and to help detect goal conflicts.

 A design alternative can positively or negatively contribute to NFRs. These contributions are

modeled in the goal graph to reflect the tradeoffs made locally towards the immediate goals.

Throughout the goal graph expansion process, the evaluation procedure propagates the effect of

each design decision from offspring to parents. Therefore, the NFR Framework provides a way of

clarifying and consolidating the tradeoffs of design alternatives considering multiple quality

attributes simultaneously.

3.6.1 Applying the Evaluation Framework

Method NFR Framework:

• identifies the quality attributes based on stakeholders’ needs.

 The quality attributes are gathered, decomposed, and evaluated based on stakeholders’ point

 of view.

• provides support for unquantifiable quality attributes.

 The NFR Framework clarifies and decomposes the quality attributes either on its sort or on its

 parameter, such as decomposing Modifiability[System] on its parameter would result three

 offspring goals: Modifiability[Process], Modifiability[Data Rep], and

 Modifiability[Function]; and Modifiability[Function] can be further decomposed on its sort

 to Extensibility[Function], Updatability[Function], and Deletability[Function].

• provides no support to help reach a consensus if different stakeholders have conflicting

goals.

 The method helps designer to detect and visualize the conflicting goals among different

 stakeholders, without any support to reach a consensus.

• evaluates the architecture before it is developed.

 The method should be used in early architecture design phase.

• No artifacts are being modeled before the analysis.

 Although the quality attributes are decomposed, the method does not specific require

 modeling technique to represent them.

• provides no support for identifying the design decisions.

• uses human-based measurement to measure the provided support for quality attributes.

 The method evaluate the degree to which each architecture provides support for each quality

 attributes by taking the opinions or experienced knowledge from stakeholders.

• uses qualitative method to compare the design alternatives.

 The method defines “satisficing” a quality attribute as satisfying the quality attribute within a

 limit, and the contribution to these quality attributes are defined as “strongly positive

 satisficing”, “weak positive satisficing”, “weak negative satisficing”, and “strong negative

 satisficing”. All these contribution to the quality attributes are considered when assessing the

 degree of goal achievement by each design alternative.

• provides low guidance on tradeoff analysis.

 When design alternatives have both “positive satisficing” and “negative satisficing”

 contribution to different quality attributes, the tradeoff points are identified.

 28

• provides no guidance on sensitivity analysis.

• provides no consideration of the relationships among the design decisions

• provides no guidance on relating the quality attributes to architecture elements.

• provides no guidance on quality attribute optimization.

• No Automation.

• No information persistence.

Requirements Elicitation

Identifying QA

Understanding

Unquantifiable QA

Prioritizing

Conflicting Goals

NFR Framework Stakeholder-based Supported Unsupported

Architectural Design

Development Phase Modeled Artifacts

Identifying Design

Decisions

NFR Framework Early Evaluation Unsupported Unsupported

Design Alternative Analysis

 Design Alternative

Analysis

Design Alternatives

Comparison

Tradeoff

Analysis
Sensitivity

NFR

Framework
Human-based Qualitative Low Unsupported

Overall Architectural Analysis

Context Mapping QA Optimization

NFR Framework Independent Unsupported Unsupported

Automation

Automated Tool Information Persistence

NFR Framework Unsupported Unsupported

Table 11. Evaluating NFR Framework

 Table 11 provides the graphical representation of applying the evaluation frameworks to

method NFR Framework.

 29

3.7 Applying Analytical Hierarchy Process to Software Architecture

Decisions (SAHP)

Svahnberg et al. formed a quantitative approach that supports the comparison of candidate

architectures using Analytical Hierarchy Process (SAHP) [SWLM02, SWLM03]. This method

provides a structured way of eliciting stakeholders’ preferences for desired quality attributes and

helping them gain quantified understanding of the benefits and liabilities of different architecture

candidates. It produces a Framework for Quality Attribute (FQA) to capture architecture ranking

according to their ability to meet particular quality attribute, and a Framework for Architecture

Structures (FAS) to obtain quality attribute rankings for each architecture. Together with the

prioritized quality attributes for the target system, the method is able to help designer find the best

candidate design alternative for the decision. The method also provides confidence levels on the

final ranking by providing a Framework for Variance Calculation (FVC).

The detailed process of applying SAHP is as following:

1. Identify potential software architecture candidates and key quality attributes.

2. Create method framework, FQA and FAS.

3. Prioritize the quality attributes for the software system to be developed

4. Identify which software architecture candidate best fits the list of prioritized quality attributes

5. Determine the uncertainty in the identification

6. Discuss the individual frameworks, the synthesized prioritized list of quality attributes and

the recommended software architecture candidate to reach a consensus.

3.7.1 Applying the Analysis Framework

Method SAHP (Table 12):

• identifies the quality attributes based on design.

 Although the quality attributes are gathered from stakeholders, the method actually identifies

 the design alternatives first and then derive the related quality attribute to evaluate.

• provides no support for the unquantifiable quality attributes.

 The method does not deal with how to reach a common understanding of the unquantifiable

 quality attributes under the context of the target system.

• provides quantifying support to help reach a consensus if different stakeholders have

conflicting interest over the system.

 Every stakeholder is asked to give their pair-wise comparisons to prioritize the quality

 attributes, and the final prioritized quality attributes list is reached by taking the median value

 of each stakeholder’s opinion.

• evaluates the architecture both before and after it is developed.

 The method can be used anytime during the software architecture development phase.

• No artifact is being modeled before the analysis.

 Although the architecture is developed before the analysis, the analysis itself does not require

 the architecture to be modeled, it could be any design decision that is irrelevant to the

 architecture structure.

• provides no support for identifying the design decisions.

• uses human-based measurement to measure the provided support for quality attributes.

 The method quantifies the provided support to quality attributes by taking stakeholders’

 opinions.

• uses quantitative method to compare the design alternatives.

 AHP method is used to create vectors signifying the relative support for different quality

 attributes within design alternatives (FAS), the relative ranking of how well different

 architecture alternatives support different quality attributes (FQA), and the prioritized quality

 attributes. All these vectors help the designer to compare the design alternatives.

 30

• provides medium guidance on tradeoff analysis.

 The method uses pair-wise comparison to create FQA, which quantifies and prioritizes the

 relative ranking of how well each architecture alternative support different quality attributes.

• provides no guidance on sensitivity analysis.

• provides no consideration of the relationships among the design decisions

• provides no guidance on relating the quality attributes to architecture elements.

• Outputs priority list for optimizing the architecture support to quality attributes.

 Each design alternative is weighted in terms of how much they support quality attributes and

 how important those quality attributes are, and the design alternative that has the highest

 value is identified as the final design.

• Low Automation.

 Among all the techniques and steps involved in applying the method, only AHP is automated

 in tool Expert Choice.

• No Information Persistence mechanism considered in the method.

Requirements Elicitation

Identifying QA

Understanding

Unquantifiable QA

Prioritizing

Conflicting Goals

SAHP Design-based Unsupported Quantitative

Architectural Design

Development Phase Modeled Artifacts Identifying Design Decisions

SAHP Early & Late Evaluation Unsupported Unsupported

Design Alternative Analysis

 Design Alternative

Analysis

Design Alternatives

Comparison
Tradeoff Analysis Sensitivity

SAHP Human-based Quantitative Medium Unsupported

Overall Architectural Analysis

Context Mapping QA Optimization

SAHP Independent Unsupported Priority List

Automation

Automated Tool Information Persistence

SAHP Low Unsupported

Table 12. Evaluating SAHP

 31

3.8 ArchDesigner

In Al-Naeem et al. (2005) [AG+05], researchers have proposed ArchDesigner, a systematic

quality-driven approach, for optimizing the software architecture design comprised of multiple

inter-dependent design decisions. ArchDesigner improves upon previous approaches, which

evaluate and select among given coarse-grained software architectures, such as CBAM, SAHP,

with guidance on how to arrive at these architecture alternatives. The authors argue that since the

number of candidate software architectures can be very large, it is difficult, often impossible task,

to analyze all candidates, ArchDesigner is proposed to evaluate and select among candidate

software architectures in a fine-grained fashion.

 Design alternatives were divided into different groups, each of which represents a design

decision. For a particular design decision, potential design alternatives are evaluated across a set

of quality attributes associated with that design decision. AHP, with inputs as design alternatives

for that design decision, their relative support for associated quality attributes, and preferences on

associated quality attributes provided by different stakeholders, was applied to compute value

scores for its potential alternative solutions. ArchDesigner then formulates the optimization

equations so as to maximize the values associated with selected alternatives, subject to stated

constraints (such as time and cost) and the inter-dependencies among design decisions.

3.8.1 Applying the Analysis Framework

Method ArchDesigner (Table 13):

• identifies the quality attributes based on design.

 Although the quality attributes are gathered from stakeholders, the method actually identifies

 the design alternatives first and then derive the related quality attribute to evaluate.

• provides no support for the unquantifiable quality attributes.

 The method does not deal with how to reach a common understanding of the unquantifiable

 quality attributes under the context of the target system.

• provides quantifying support to help reach a consensus if different stakeholders have

conflicting interest over the system.

 Every stakeholder is asked to give their pair-wise comparisons to prioritize the quality

 attributes, and the final prioritized quality attributes list is reached by taking the median value

 of each stakeholder’s opinion.

• evaluates the architecture before it is developed.

 The fact that the method breaks down the architecture design into a set of design decisions to

 make and considers the inter-dependence among these design decisions when consolidating

 the decision made the method more suitable for assisting designer while the architecture is

 under development.

• No artifact is being modeled before the analysis.

 The analysis does not require the architecture to be modeled; it could be any design decision

 that is irrelevant to the architecture structure.

• provides guidance for identifying the design decisions.

 Since the number of architecture candidates could be large, in order to help stakeholders

 arriving at a suitable software architecture solution, the method breaks down the architecture

 design into a set of design decisions and optimizes the software architecture design comprised

 of these inter-dependent design decisions.

• uses human-based measurement to measure the provided support for quality attributes.

 The method quantifies the provided support to quality attributes by taking stakeholders’

 opinions.

• uses quantitative method to compare the design alternatives.

 32

 The method uses AHP to compute value score of each design alternative as the degree to

 which an alternative satisfies the desired quality attributes.

• provides medium guidance on tradeoff analysis.

 The method quantifies and prioritizes the relative ranking of how well each architecture

 alternative support different quality attributes.

• provides no guidance on sensitivity analysis.

• considers inter-dependent relationships among the design decisions

 Optimization techniques, particularly Integer Programming, are used to make sure that the

 selection of any design alternative should maintain the dependencies and obey the global

 constraints of the system.

• provides no guidance on relating the quality attributes to architecture elements.

• Outputs priority list for optimizing the architecture support to quality attributes.

 Each design alternative is weighted in terms of how much they support quality attributes and

 how important those quality attributes are, and the design alternative, which has the highest

 value without violating the inter-dependence relationships and global constraints, is identified

 as the final design.

• Low Automation.

 Among all the techniques and steps involved in applying the method, only AHP is automated

 in tool Expert Choice.

• No Information Persistence mechanism considered in the method.

Requirements Elicitation

Identifying QA

Understanding

Unquantifiable QA

Prioritizing

Conflicting Goals

ArchDesigner Design-based Unsupported Quantitative

Architectural Design

Development Phase Modeled Artifacts Identifying Design Decisions

ArchDesigner Early Evaluation Unsupported Guidance

Design Alternative Analysis

 Design Alternative

Analysis

Design Alternatives

Comparison

Tradeoff

Analysis
Sensitivity

ArchDesigner Human-based Quantitative Medium Unsupported

Overall Architectural Analysis

Context Mapping QA Optimization

ArchDesigner Independent Unsupported Priority List

Automation

Automated Tool Information Persistence

ArchDesigner Low Unsupported

Table 13. Evaluating ArchDesigner

 33

3.9 AHP with Tradeoff and Sensitivity Analysis (AHPTS)

Zhu et al. provides crucial additional in-depth tradeoff and sensitivity analysis on top of a

standard AHP (AHPTS) [ZAGJ05]; In addition to a ranking, the method provides the designer

with tradeoff analysis results that shows the exact consequences of the chosen design alternatives

in terms of the key tradeoffs being made and the extent of these tradeoffs when compared to

tradeoffs implied by other alternatives, and sensitivity analysis information that shows whether

slightly different intermediate decisions on previous pair-comparisons or priority weights could

change the outcome.

 AHPTS provides mechanisms to analyze tradeoffs for design alternatives both with and

without quality attribute weights. It utilizes the two-dimensional sensitivity diagram in Expert

Choice where any two chosen quality attributes represent the x and y axis and each design

alternative’s contributions to these two quality attributes are plotted. The area in the diagram is

then divided into four quadrants that in turn divide the relative size of the tradeoff into four

groups. Therefore, design alternatives falling into the upper left and bottom right quadrant

indicate the relatively important tradeoffs being made if the design alternative is chose. The size

of the tradeoff is indicated by the extent a point is positioned towards the upper left or bottom

right corner. Design alternatives falling into the bottom left quadrant indicate both quality

attributes are negatively affected. Design alternatives falling into the upper right indicates both

quality attributes are positively affected. The results for a selected design alternative can be

documented as part of the design rationales and consequences for future analysis and evolution in

subsequent development phases, and it could help stakeholders to focus on the project-wide

important tradeoffs.

 For sensitivity analysis, AHPTS utilizes gradient diagram in Expert Choice, each of which is

designed for each quality attribute. The vertical line represents the priority weight of the quality

attribute and is read from x axis; the priorities for the design alternatives are read from y axis.

They are determined by the intersection of the alternative’s line with the quality attribute

(vertical) priority line. As the vertical line moves along the x axis by changing its priority weight,

the intersections with the horizontal lines represents the new priority of the design alternative read

from y axis. When the vertical line meets an intersection of two design alternatives, the final

ranking of the two alternatives will be altered. So if the value of the distance between the current

vertical line and the intersection of two design alternatives is the smallest number, then the weight

for this quality attribute or the relative weight of design alternatives is the most sensitive and

critical decisions. Hence, if architects and stakeholders are not interested in the most sensitive

points, they can examine the diagrams visually to inspect any intersections which are relatively

close to the current priority. If two lines denoting design decisions never cross, this means that no

matter how the quality attributes are weighted, the ranking of the design alternative will never

change.

3.9.1 Applying the Evaluation Framework

Method AHPTS (Table 14):

• identifies the quality attributes based on design.

 Although the quality attributes are gathered from stakeholders, AHPTS identifies the design

 alternatives first and then derive the related quality attribute to evaluate.

• provides no support for the unquantifiable quality attributes.

 The method does not deal with how to reach a common understanding of the unquantifiable

 quality attributes under the context of the target system.

• provides quantifying support to help reach a consensus if different stakeholders have

conflicting interest over the system.

 34

 The method built upon AHP related techniques, where every stakeholder is asked to give

 their pair-wise comparisons to prioritize the quality attributes, and the final prioritized quality

 attributes list is reached by taking the median value of each stakeholder’s opinion.

• evaluates the architecture both before and after it is developed.

 The method concentrates on tradeoff analysis and sensitivity analysis, which made the

 method suitable for using during or after the architecture design.

• No artifact is being modeled before the analysis.

 The analysis does not require the architecture to be modeled; it could be any design decision

 that is irrelevant to the architecture structure.

• provides no guidance for identifying the design decisions.

• uses human-based measurement to measure the provided support for quality attributes.

 The method quantifies the provided support to quality attributes by taking stakeholders’

 opinions.

• uses quantitative method to compare the design alternatives.

 The method uses AHP to compute value score of each design alternative as the degree to

 which an alternative satisfies the desired quality attributes.

• provides high guidance on tradeoff analysis.

 The method quantifies and prioritizes the relative ranking of how well each architecture

 alternative support different quality attributes, provides visualization of the tradeoffs and their

 relative sizes among the design alternatives.

• provides sensitivity analysis.

 One of the goals of the work is to deal with changing quality priority. The most sensitive

 critical decisions are obtained by looking for the smallest change that will alter a final

 alternative ranking. The change value can be an indicator of architecture sensitivity.

• considers no relationships among the design decisions

 AHPTS does not focus on the inter-dependent relationships among the design decisions.

• provides no guidance on relating the quality attributes to architecture elements.

• Outputs priority list and decision-making information for optimizing the architecture

support to quality attributes.

 Other than normal AHP result, which is the relative ranking of the design alternatives, the

 method enriches it by making design consequences explicit and indicates the architecture

 sensitivity of whether changing a quality attribute’s priority will alter the final ranking of the

 design alternatives.

• Medium Automation.

 The tradeoff and sensitivity analysis techniques are integrated with Expert Choice, which is

 the automated tool for AHP techniques. The analysis technique is not yet integrated with

 design techniques that should also be involved in the decision making process.

• No Information Persistence mechanism considered in the method.

 35

Requirements Elicitation

Identifying QA

Understanding

Unquantifiable QA

Prioritizing

Conflicting Goals

AHPTS Design-based Unsupported Quantitative

Architectural Design

Development Phase Modeled Artifacts Identifying Design Decisions

AHPTS Early & Late Evaluation Unsupported Unsupported

Design Alternative Analysis

 Design Alternative

Analysis

Design Alternatives

Comparison
Tradeoff Analysis Sensitivity

AHPTS Human-based Quantitative High Sensitivity Analysis

Overall Architectural Analysis

Context Mapping QA Optimization

AHPTS Independent Unsupported Priority List & Decision-Making Information

Automation

Automated Tool Information Persistence

AHPTS Medium Unsupported

Table 14. Evaluating AHPTS

 36

4 Comparing Surveyed Approaches
After evaluating each approach in isolation, we combined the evaluation results together as

shown in Table 15, and compared those approaches with respect to different properties of the

evaluation framework. Tables 16-21 and their descriptions will illustrate our interesting

observations:

 Table 15 shows the evaluation results of all the studied approaches, to clearly visualize the

results, we use “-“ to represent Unsupported in each category:

Architectural Design

Development Phase Modeled Artifacts

Identifying Design

Decisions

SAAM

/ATAM
Late Evaluation

Architecture &

Quality Attributes
-

CBAM Late Evaluation - -

WinCBAM Early Evaluation - -

SAAMER Late Evaluation Architecture &

Quality Attributes

-

SSAR Late Evaluation Architecture &

Quality Attributes

-

NFR

Framework

Early Evaluation - -

SAHP Early & Late Evaluation - -

ArchDesigner Early Evaluation - Guidance

AHPTS Early & Late Evaluation - -

 Requirements Elicitation

 Identifying QA Unquantifiable QA Conflicting Goals

SAAM / ATAM Stakeholder-based Supported -

CBAM Stakeholder-based - Quantitative

WinCBAM Stakeholder-based Supported Quantitative

SAAMER Stakeholder-based Supported -

SSAR Stakeholder-based Supported -

NFR Framework Stakeholder-based Supported -

SAHP Design-based - Quantitative

ArchDesigner Design-based - Quantitative

AHPTS Design-based - Quantitative

 37

Analysis of Alternatives

Measure

Alternatives

Compare

Alternatives

Tradeoff

Analysis
Sensitivity

SAAM/

ATAM
Human-based Qualitative Low

Sensitivity

Points

CBAM Human-based Quantitative Medium -

WinCBAM Human-based Quantitative Medium -

SAAMER Human-based Qualitative - -

SSAR Machine-based
Qualitative &

Quantitative
- -

NFR

Framework
Human-based Qualitative Low -

SAHP Human-based Quantitative Medium -

ArchDesigner Human-based Quantitative Medium -

AHPTS Human-based Quantitative High
Sensitivity

Analysis

Architecture Quality Assurance

Context Mapping QA Optimization

SAAM / ATAM Independent No Guidance -

CBAM Independent -
Priority List &

Decision-making Information

WinCBAM Independent - Decision-making Information

SAAMER Independent Guidance Decision-making Information

SSAR Independent No Guidance -

NFR Framework Independent - -

SAHP Independent - Priority List

ArchDesigner Dependence Relationships - Priority List

AHPTS Independent -
Priority List &

Decision-making Information

 38

Automation

Automated Tool Information Persistence

SAAM / ATAM Low -

CBAM - -

WinCBAM Low -

SAAMER Low -

SSAR - -

NFR Framework - -

SAHP Low -

ArchDesigner Low -

AHPTS Medium -

Table 15. Evaluation Results

Next, we’ll examine and compare the evaluation results with respect to related categories across

criteria.

 39

Table 16 examines how the studied approaches support for reaching consensus on the

requirements. As discussed, quality attributes, especially unquantifiable ones, are usually hard to

measure. To precisely evaluate the design alternatives with respect to quality attributes,

stakeholders should reach an agreement on understanding the concrete tasks or meanings

expected from the system qualities early in the analysis process. One particular design alternative

usually impact more than one quality attributes, in conflict or in synergistic ways. It is necessary

for stakeholders to also agree on the relative importance among the quality attributes so that the

designer knows what to concentrate when conflict exists. Therefore, we compared each

approach’s evaluation results with regard to two properties, Understanding Unquantifiable

Quality Attributes and Prioritizing Conflicting Goals, to examine how they support for reaching

consensus on the requirements.

Requirements Elicitation

 Understanding

Unquantifiable QA

Prioritizing Conflicting

Goals

SAAM/

ATAM
Support -

CBAM - Quantitative

WinCBAM Support Quantitative

SAAMER Support -

SSAR Support -

NFR

Framework
Support -

SAHP - Quantitative

ArchDesigner - Quantitative

AHPTS - Quantitative

Table 16. Reaching Consensus on Requirements

Limited support for reaching consensus on the requirements: As shown in Table 16, Only

WinCBAM provides support to both unquantifiable quality attributes and conflicting goals.

WinCBAM provides requirements negotiation to identify issues/ conflicts among stakeholders,

generates design options to resolve these issues, evaluate each option with regard to the quality

attributes, and finally reaches an agreement. As mentioned earlier, the designer should get

information on the required quality attributes, upon which the design alternatives could b e

compared, during requirements determination phase. The unquantifiable nature of quality

attributes made their actual meanings differ from system to system, from stakeholder to

stakeholder. Without an established understanding of the actual meaning of these quality

attributes, it is impossible to compare the design alternatives meaningfully. Also, different

stakeholders have different goals over the system, and satisfying one usually has to sacrifice the

others. It is also impossible to meaningfully compare the design alternatives if conflicting goals

are involved. Therefore, the analysis technique should provide support for reaching consensus on

both meaning of unquantifiable quality attributes and relative importance of conflicting goals.

 40

Table 17 examines how the studied approaches utilize the quality attributes identified in

Requirements Eliciation phase. Ideally, the quality attributes that guide the architecture analysis

should be identified from stakeholders, representing their expectations of system services or

functions. To ensure that all of stakeholders’ requirements are considered, represented and met in

the final software architecture design, the set of identified quality attributes must all be utilized;

that is, in order to help stakeholders arriving a suitable software architecture solution that

addresses all the required quality attributes, the designer needs to break down the architecture

design into a set of design decisions with respect to these quality attributes, so the architecture

design that is comprised of these inter-connected design decisions can be optimized with regard

to stakeholders’ requirements. Therefore, we compare each approach’s evaluation results with

regard to two properties, Identifying Quality Attributes and Identifying Design Decisions, to

examine how they utilize the identified quality attributes.

Requirements Elicitation Architectural Design

Identifying QA Identifying Design Decisions

SAAM/

ATAM
Stakeholder-based -

CBAM Stakeholder-based -

WinCBAM Stakeholder-based -

SAAMER Stakeholder-based -

SSAR Stakeholder-based -

NFR

Framework
Stakeholder-based -

SAHP Design-based -

ArchDesigner Design-based Guidance

AHPTS Design-based -

Table 17. Identified Quality Attributes

No support to make sure that all of the identified quality attributes are considered during the

process (Table 17): During the study, we noticed that although some approaches (SAAM/ATAM,

CBAM, WinCBAM, SAAMER, SSAR, NFR Framework) claim that they identify the quality

attributes from stakeholders, it is unclear whether the whole set of identified quality attributes are

actually being considered, or the approach utilizes part of the identified quality attributes that are

influenced by the design decisions that identified without structured guidance. These approaches

provide no support on determining the design decisions under consideration, and they provide no

other mechanism to ensure that all the required quality attributes are being considered in the

decision-making process. On the other hand, ArchDesigner breaks down the architecture design

into a set of design decisions. But the method provides no mechanism to collect quality attributes

from stakeholders. The quality attributes that considered by the method are the ones that

influenced by the design decisions, there is no ensure whether all stakeholders’ requirements are

met.

 41

Table 18 examines how the studied approaches support for the inter-relationships among the

design decisions involved in the architecture design. As discussed, in order to arrive a suitable

software architecture solution that addresses all the required quality attributes, the designer needs

to break down the architecture design into a set of design decisions with respect to these quality

attributes. These design decisions inter-connect with each other because multiple design decisions

could influence the same quality attributes in different ways, and this could alter the decision.

Having the mapping relationships among quality attributes and architectural elements clearly

identified helps designer make a global selection easier, especially when the chosen design

alternative have negative affects to certain quality attributes that are related to other design

decisions.

Architecture Quality Assurance

 Context Mapping

SAAM/

ATAM
Independent No Guidance

CBAM Independent -

WinCBAM Independent -

SAAMER Independent Guidance

SSAR Independent No Guidance

NFR Framework Independent -

SAHP Independent -

ArchDesigner Dependence Relationship -

AHPTS Independent -

Table 18. Multiple Design Decisions

Limited support for considering the multiple design decisions involved in the architecture

design: ArchDesigner provides support to consider the inter-dependence relationship among

design decisions, however, there is no mapping to relate the influenced quality attributes with

architecture elements, and ultimately other design decisions that also have influences to the same

quality attributes. As mentioned, reaching an architecture design requires to systematically

determining the combination of the design decisions. An ideal architecture decision-making

technique should consider and support both the inter-dependence relationships among design

decisions and the mapping relationships among quality attributes and architectural elements.

 42

Table 19 examines the evaluation results regarding modeled artifacts criterion.

Design Elicitation

Modeled Artifacts

SAAM/

ATAM
SA QA

CBAM - -

WinCBAM - -

SAAMER SA QA

SSAR SA QA

NFR

Framework
- -

SAHP - -

ArchDesigner - -

AHPTS - -

Table 19. Modeled Artifacts

Limited support for modeling both the architecture and the quality attributes: Two approaches,

SAAMER and SAAR, provide explicit modeling mechanism for represent both the architecture

and quality attributes. Although method SAAM/ ATAM showed as provide modeling both

artifacts, SAAM is the method that actually provides modeling mechanism for architectures and

ATAM is the method models quality attributes. To make a design decision in software

architecture that fulfills stakeholders’ requirements, an agreed representation of the architecture

should be reached so the stakeholders have a common understanding of the abstraction level of

the architectural elements that support the required quality attributes. Same reason applies to

quality attributes; the quality attributes should be represented so the stakeholders’ have an

agreement on the actual meaning and expectation of them. Therefore, an ideal architecture

decision-making technique should model both the architecture and quality attributes.

 43

Table 20 examines the evaluation results in Analysis of Alternatives criteria.

Analysis of Alternatives

Measure

Alternatives

Compare

Alternatives

Tradeoff

Analysis
Sensitivity

SAAM/

ATAM
Human-based Qualitative Low

Sensitivity

Points

CBAM Human-based Quantitative Medium -

WinCBAM Human-based Quantitative Medium -

SAAMER Human-based Qualitative - -

SSAR Machine-based
Qualitative &

Quantitative
- -

NFR

Framework
Human-based Qualitative Low -

SAHP Human-based Quantitative Medium -

ArchDesigner Human-based Quantitative Medium -

AHPTS Human-based Quantitative High
Sensitivity

Analysis

Table 20. Analysis of Alternatives

Limited support for measuring the provided support of quality attributes: Only one approach,

SSAR, allows designer to use mathematical models or metrics from various quality attribute

community to evaluate the support provided by the design alternative; other approaches ask

stakeholders’ opinion or uses experienced knowledge to measure the provided support of the

quality attributes. Human’s opinions are inconsistent, and prone to faults. Structured reasoning or

analysis techniques could help eliminate the incorrect measuring for design alternatives.

Qualitative measurement vs. Quantitative measurement: Different approaches choose to use

different measurement when comes to compare the unquantifiable quality attributes. It is difficult

to say whether qualitative measurement is better than quantitative measurement, or vice versa,

because of different nature of different quality attributes. Only one method, SSAR, provides both

measurements to deal with these different quality attributes.

Limited support for tradeoff analysis: Although most approaches provide some level of tradeoff

analysis, there is still limited information provided by the tradeoff analysis. For instance, method

ATAM identifies tradeoff points as architecture elements affecting different quality attributes

simultaneously, however, when a tradeoff decision needs to be made, ATAM leaves the decision

process largely to requirement negotiation; CBAM, which all potential design alternatives are

linked to their benefits through a response-utility function and value analysis is performed to

determine the best candidate, and AHP related multi-criteria decision making techniques, such as

SAHP, ArchDesigner, and AHPTS, which derive weighted priorities from pair-wise qualitative

comparisons, provides more formal quantitative methods than informal negotiation. However,

only AHPTS not only quantifies and prioritizes the relative ranking of how well each architecture

 44

alternative support different quality attributes, the visualization of the tradeoffs and their relative

sizes among the design alternatives are also provided, so that the designer could choose design

alternatives based on the related information provided by tradeoff analysis.

Limited support for sensitivity analysis: There is even less support considered for sensitivity

analysis, method ATAM identifies sensitivity points and leaves sensitivity analysis to the

designer; only one method, AHPTS, provides high level sensitivity analysis during the decision-

making process. While making the architecture design decisions, it is possible that the

intermediate data could change over time. For instance, usability was considered to be the most

important quality attribute in the system, so the chosen design alternative are more likely to

provide more usability to the system while sacrificing the other quality attributes; it is possible

that stakeholders realized later that security should be paid more attention than usability, then the

chosen design alternative might not be the best fit for the system any more. Sensitivity analysis

could provide design with such information that if the relative importance among quality

attributes altered, whether the related design decision should be changed accordingly.

 45

Table 21 examines the evaluation results for automated support provided by each approach.

Automation

Automated Tool Information Persistence

SAAM/

ATAM
Low -

CBAM - -

WinCBAM Low -

SAAMER Low -

SSAR - -

NFR

Framework
- -

SAHP Low -

ArchDesigner Low -

AHPTS Medium -

Table 21. Automation Support

Limited tool support: There is only two techniques being automated; SAAM techniques has an

automated tool, SAAMTOOL, which partially support the evaluation process, and Expert Choice

is a commercial tool that automated the AHP process for decision makers. Ideally, the approach

should automate and integrate related decision-making activities into a toolset, such as design

activities, analysis techniques, etc, so that the architecture explorative design process is

supported.

No Information Persistence Mechanism: Surprisingly, there is no approach provide

mechanism to manage the historic data during the decision making process. A number of tedious

tasks, as collecting, documenting, managing the historic information, etc, exist during the

architecture decision-making process. They serve as design rationales that are invaluable to future

designs. Tools that capture the design artifacts should also provide features to capture this

information.

 46

5 Conclusions and Research Recommendations

A high quality software architecture substantially increases the likelihood of building a high

quality software system. In working toward a higher-quality architecture, the software designer

must take into account not only the functional capabilities required of the system, but also the

quality requirements from various stakeholders; One needs to identify design alternatives for each

design decision; evaluate them and find a best fit for the system. This survey studied existing

architecture analysis techniques from the perspective of their support to the architecture decision-

making process. We choose these representative approaches to study because they evaluate

architecture alternatives with respect to all required quality attributes to select a best-fit

architecture, instead of focusing on a single quality attribute.

 As discussed in Section 4, the survey shows that existing approaches still lack in several

important ways and could benefit from improvements in those key areas. Following is our list of

research recommendations that could contribute to these improvements.

o Appropriate representation of both quality attributes and architecture.

 The quality attributes, as stated, are too vague to be directly evaluated, e.g. the actual

meaning or measurement of quality attribute “flexibility” varies among systems that involve

different stakeholders. Each architecture design could embody some decisions that restrict

flexibility. Thus, the system can hardly say “flexible”, unless it meant appropriately flexible with

respect to an anticipated set of uses within, within a limit. As we observed, most of studied

approaches use scenarios to represent the expected system quality attributes, these scenarios serve

as both illustrations of the specific aspect or particular instantiations of the quality attributes, and

contracts among stakeholders that they agreed on the limit that the quality attributes should be

satisfied.

 The architecture analysis techniques are intended to support the architecture decision-making

process and verify that the designed architecture is actually able to support the required quality

attributes, hence, a valid representation of architecture could help stakeholders have a clear

description of it that exposes its main features and the quality attributes. However, as we

observed, only two approaches, SAAMER and SAAR, provide representations for both

architecture and quality attributes. SAAMER uses a set of architecture views to provide different

perspectives in understanding and analyzing the software system architectures; and SSAR

provides four different analysis methods, among which scenario-based analysis uses scenarios to

represent the quality attributes and simulation represents architectures as executables.

 Therefore, we recommend that appropriate representation of both quality attributes and

architecture should be maintained before the architecture analysis, to build a solid understanding

and background for various stakeholders.

o Mechanism to ensure that all of the identified quality attributes are being considered.

 Quality attributes usually interfere with each other, either conflicting or supporting. These

quality attributes are usually gathered from various stakeholders, representing different interests

of various parties. It is not appropriate to concentrate on some quality attributes while ignoring

others without careful investigation. Thus, the software architecture, on which the software

development is based, should not only provide the required functions and services of the system,

but also consider the required quality attributes, balance their conflicts, and find a best fit

architecture that satisfies the required quality attributes. Hence, mechanism to ensure that all of

the identified quality attributes are being considered during the architecture decision-making

process, such as using quality attributes to guide the identification of design decisions, is

 47

necessary to make sure the design architecture indeed meets the whole set of requirements that

are gathered from various stakeholders.

 An architecture design involves multiple design decisions that target on different quality

attributes or functions. As Al-Naeem et al. [AG+05] suggested, a good architecture design

alternative for a design decision should not only meet its local requirements (the requirements for

optimizing the design decision by itself), but also its global requirements (the constraints in the

system). Utilizing the required quality attributes to guide the identification of design decisions,

and optimizing them with regards to constraints from inter-connected design decisions could help

ensure that all required quality attributes are considered. This optimization requires mapping

relationships among quality attributes and architectural elements, so that the influenced artifacts

could be traced across design decisions.

o Support for analyzing design alternatives and detecting conflict quality attributes.

 As we observed, most of the approaches relies on stakeholders’ opinions to analyze the

provided support by design alternatives, and it also relies on stakeholders to find conflicts among

their goals. However, human opinions are prone to faults; even worse, the stakeholders

themselves sometimes do not even know how much support a design alternative could give to the

quality attributes, and do not know the conflicts exist until they see how the design alternatives

work. Therefore, the architecture analysis technique should also provide support to measure the

provided support by design alternatives, and detect conflicts among quality attributes.

o Support for both qualitative and quantitative analysis.

 As mentioned in Section 4, both qualitative and quantitative analysis have their benefits and

weaknesses when analyzing different quality attributes. An ideal approach should incorporate

both analysis techniques to provide accurate evaluation.

o Support for tradeoff analysis and sensitivity analysis.

 In order to make an appropriate selection of the design alternatives, and fully understand the

consequences of the selection, the designer needs to be informed with the tradeoffs among design

alternatives, as well as the sensitivity points and indications of the architecture sensitivity whether

change in sensitivity points will alter the final ranking of the design alternatives.

o Integrated automation support.

 As discussed earlier, architecture design and evaluation are conceptually tightly related, but

often performed separately in software architecture design tools. This separation causes

uncertainty in architecture decision-making progress, limits the success of architecture design,

and could lead to wasted effort and substantial re-work later in the development life cycle.

Integrating both techniques into the decision-making process is needed to appropriately consider

and evaluate architecture alternatives.

 Most of the studied approaches do not provide enough automation support for the analysis

techniques, not to mention that none of the approach integrates the analysis technique with the

design environment to support the architecture decision-making process. In order to increase the

confidence of the analysis result, the analysis techniques should be automated. Designing a

software architecture requires exploring and managing a lot of design alternatives, revisiting and

utilizing evaluation data, and finally reaching a best fit design to satisfy the involved quality

attributes. During this process, a lot of tedious tasks are involved, automating the process could

save the designer much energy and time. Traditionally, there exist a lot of design environment

that help to design the system. We suggest that the automation support should integrate the

analysis technique with the design environment so that the architecture explorative design process

could be well supported, and mechanism should be provided to help designer to manage the

historic data during the process.

 48

6 References

[AB03] AY. Ababutain, AGR. Bullen, Multicriteria decision-making model for selection

of build-operate-transfer tall road proposals in the public sector, Transportation

Research Record (1848): 1-9, 2003.

[ABE02] O. Aldawud, A. Bader and T. Elrad, Weaving with Statecharts, Aspect-Oriented

Modeling with UML workshop at the 1st International Conference on Aspect-

Oriented Software Development, April 2002.

[AG+05] T. Al-Naeem, I. Gorton, M.A. Babar, F. Rabhi, and B. Benatallah, “A quality-

driven systematic approach for architecting distributed software applications”,

Proceedings of the 27th International Conference on Software Engineering

(ICSE), St. Louis, USA, 2005.

[Ale77] C. Alexander, A Pattern Language: Towns, Buildings, Construction, Oxford

University Press, 1977.

[Ale79] C. Alexander, The Timeless Way of Building, Oxford University Press, 1979.

[Bar02] M. Barbacci, “SEI Architecture Analysis Techniques and When to Use Them”,

technical report, CMU/SEI-2002-TN-005.

[BB98] P. Bengtsson, J. Bosch, “Scenario Based Software Architecture Reengineering”,

5th International Conference of Software Reuse (ICSR), 1998.

[BB99] P. Bengtsson, J. Bosch, “Architecture Level Prediction of Software

Maintenance,” Proceedings of 3rd European Conference on Software

Engineering Maintenance and Reengineering, 1999.

[BBHL94] B. Boehm, P. Bose, E. Horowitz, M. J. Lee, “Software Requirements as

Negotiated Win Conditions”, Proceedings Intl. Conference on Requirements

Engineering, IEEE April 1994.

[BCK03] L. Bass, P. Clements, and R. Kazman, “Software Architecture in Practice”,

Addison-Wesley, 2003.

[BCK98] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.

Addison-Wesley, 1998.

[BE03a] M.R. Barbacci, R. Ellison, et al, Quality-attribute Attribute Workshops (QAW),

Technical Report, CMU/SEI-2003-TR-016.

[BE03b] R. Bahsoon and W. Emmerich, “Evaluating software architectures: development,

stability and evolution”, ACS/IEEE International Conference on Computer

Systems and Applications, Tunis, Tunisia, July 14-18, 2003.

[BI96] Barry Boehm, and Hoh In, Identifying Quality-attribute-Requirement Conflict.

IEEE Software, 1996.

[BLBV04] P. Bengtsson, N. Lassing, J. Bosch, and H.V. Vliet, “Architecture-Level

Modifiability Analysis”, Journal of Systems and Software, vol. 69, 2004.

[BLF96] S. Bot, C.H. Lung, and M. Farrell, “A Stakeholder-Centric Software Architecture

Analysis Approach”, Proceedings of the 1st International Software Architecture

Workshop (ISAW), 1996, pp. 152-154.

[BZJ04] M.A. Babar, L. Zhu, R. Jeffery, “A Framework for Classifying and Comparing

Software Architecture Analysis Methods”, Proceedings of the 2004 Australian

Software Engineering Conference (ASWEC’2004), 2004.

[CBB+03] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J.

Stafford, Documenting Software Architectures: Views and Beyond. 25th

International Conference on Software Engineering (ICSE'03), 2003.

[CGY03] Lawrence Chung, D. Gross, and Eric Yu, Architecture Design to Meet

Stakeholder Requirements, From Software Requirements to Architectures

Workshop (STRAW), May 2003.

 49

[CNY94] L. Chung, B. A. Nixon and E. Yu, "Using Quality Requirements to

Systematically Develop Quality Software,” Proc., 4th International Conference

on Software Quality, McLean, VA, U.S.A. Oct. 3-5, 1994.

[CNY95a] L. Chung and B. Nixon and E. Yu, "Using Non-Functional Requirements to

Systematically Support Change,” Proc., IEEE 2nd International Symposium on

Requirements Engineering, York, England, March 27-29, 1995., pp. 132-139.

[CNY95b] L. Chung, B. Nixon and E. Yu, "Using Non-Functional Requirements to

Systematically Select Among Alternatives in Architecture Design,” Proc., 1st

International Workshop on Architectures for Software Systems, Seattle, April 24-

28, 1995., pp. 31-43.

[CNYM00a] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Quality-

attribute Requirements in Software Engineering. Springer, 2000.

[CNYM00b] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos, “Non-Functional Requirements in

Software Engineering”, Kluwer Academic Publishers, 2000. ISBN 0-7923-8666-

3.

[DN02] Liliana Dobrica, and Eila Niemela, A Survey on Software Architecture Analysis

Methods. IEEE Transactions on Software Engineering, vol. 28, No. 7, July 2002.

[Fox06] C. Fox, Introduction to Software Engineering Design: Processes, Principles and

Patterns with UML2. Addison Wesley, 2006.

[GB01] P. Grunbacher, B. Boehm, “EasyWinWin: a groupware-supported methodology

for requirements negotiation”, Proceedings of the 8th European Software

Engineering Conference held jointly with 9th ACM SIGSOFT international

symposium on Foundations of Software Engineering, Austria, 2001.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison Wesley, 1995.

[GMNS04] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Formal

Reasoning Techniques for Goal Models”, Journal on Data Semantics 1: 1-20,

2004.

[GY01] D. Gross, E. Yu, “From Non-Functional Requirements to Design through

Patterns”, Requirements Engineering. Springer-Verlag. 6(2001) 1: 18-36.

[HK94] Raimo P. Hämäläinen and Eero Kettunen, On-line Group Decision Support by

HIPRE 3+ Group Link, Proceedings of the Third International Symposium on

the Analytic Hierarchy Process, Washington, D.C., July 11-13, 1994.

[HKC00] Rick Hazman, Mark Klein, Paul Clements, “ATAM: Method for Architecture

Analysis”, CMU/SEI-2000-TR-004, Software Engineering Institute, Carnegie

Mellon University, 2000.

[IMP01] P. Inverardi, H. Muccini and P. Pelliccione. Automated Check of Architecture

Models Consistency using SPIN. IEEE Proc. Automated Software Engineering

conference (ASE’01), 2001.

[JW98] D. Jennings and S. Wattam, “Decision Making: an Integrated Approach”,

London, Washington D.C., Financial Times Pitman Pub, 1998.

[Ka96] R. Kazman, “Tool Support for Architecture Analysis and Design”, Proceedings

of the 2nd International Software Architecture Workshop, San Francisco,

California, 1996.

[KAK01] R. Kazman, J. Asundi, and M. Klein, Quantifying the Costs and Benefits of

Architecture Decisions, Proceedings of the 23rd International Conference on

Software Engineering (ICSE 23), (Toronto, Canada), May 2001, 297-306.

[KBAW96] Kazman, R., Bass, L., Abowd, G., Webb, M., "SAAM: A Method for Analyzing

the Properties of Software Architectures", Proceedings of ICSE 16, Sorrento,

Italy, May 1994, 81-90.

 50

[KCW00] R. Kazman, S.J. Carriere, and S.G. Woods, Toward a Discipline of Scenario-

Based Architecture Engineering, Annals of Software Engineering, vol. 9, 2000.

[KIC05] R. Kazman, H. In, H. Chen, “From Requirements Negotiation to Software

Architecture Decisions”, Information and Software Technology, Vol. 47, Issue 8,

June 2005.

[KK99] M. Klein and R. Kazman, “Attribute-based Architecture Styles”, Tech. Report,

CMU/SEI-99-TR-022, Software Engineering Institute, Carnegie Mellon

University.

[KKC00] R. Kazman, M. Klein, and P. Clements, ATAM: Method for Architecture

Evaluation, Technical Report, CMU/SEI-2000-TR-004.

[KKC04] Donald L. Keefer, Craig W. Kirkwood, James L. Corner, Perspective on

Decision Analysis Applications, Decision Analysis, vol. 1(1), 2004

[Kl93] M.H. Klein, et al., “A practitioner’s Handbook for Real-time Analysis: Guide to

Rate Monotonic Analysis for Real-time Systems”, Kluwer Academic, 1993.

[KR76] Ralph Keeney and Howard Raiffa, Decisions with Multiple Objectives:

Preferences and Value Tradeoffs. New York: Wiley

[Kru95] P.B. Krutchen, “The 4+1 View Model of Architecture”, IEEE Software, pp.42-

50. Nov.1995.

[Lam03] A. van Lamsweerde, From System Goals to Software Architecture, SFM 2003.

[LBKK97] C. Lung, S. Bot, K. Kalaichelvan, and R. Kazman, “An Approach to Software

Architecture Analysis for Evolution and Reusability”, Proceedings CASCON’97,

Nov. 1997.

[LK95] D.C. Luckham, J.J. Kenney, et al. Specification and Analysis of System

Architecture Using Rapide. IEEE Transactions on Software Engineering. 21(4),

p. 336-355, April, 1995.

[LL02] P. Leviakangas, J. Lahesmaa, Profitability evaluation of intelligent Transport

System Investments, Journal of Transportation Engineering-ASCE 128(3): 276-

286, May-Jun 2002.

[LTW99] V.S. Lai, R.P. Trueblood, B.K. Wong, Software Selection: a Case Study of the

Application of the Analytical Hierarchy Process to the Selection of a Multimedia

Authoring System, Information & Management, Vol 36, Nov. 4, 1999.

[Ly96] M.R. Lyu, ed. “Handbook of Software Reliability Engineering”, McGraw-Hill

and IEEE Computer Society: New York, 1996.

[Mat00] Mattingly, Stephen P., Decision Theory for Performance Evaluation of New

Technologies Incorporating Institutional Issues: Application to Traffic Control

Implementation, PhD Dissertation, University of California, Irvine, CA.

[MCN92] J.Mylopoulos, L. Chung, and B. Nixon, "Representing and Using Non-Functional

Requirements: A process-Oriented Approach";, IEEE Transactions on Software

Engineering, Special Issue on Knowledge Representation and Reasoning in

Software Development, 18(6), June 1992, pp. 483-497.

[MDR04] H. Muccini, M. Dias, and D.J. Richardson, Systematic Testing of Software

Architectures in the C2 Style, 7th International Conference on Fundamental

Approaches to Software Engineering (FASE 2004), Springer, 2004.

[Min92] H. Min, Selection of Software: The Analytic Hierarchy Process, International

Journal of Physical Distribution & Logistic Management, 1992.

[MJM+99] Moore, James E., II, R. Jayakrishnan, Michael G. McNally and C. Arthur

MacCarley with Hsi-Hwa Hu, Steve Mattingly, Seongkil Cho and James Roldan.

Evaluation of the Anaheim Advanced Traffic Control System Field Operational

Test: Introduction and Task A: Evaluation of SCOOT Performance. Final report

to Federal Highway Administration, California PATH Research Report UCB-

ITS-PRR-99-26, July 1999.

 51

[MJM00a] S.G. Mattingly, R. Jayakrishnan, and M.G. McNally, Determining The Overall

Value of Implemented New Technology in Transportation: Integrated Multiple

Objective-Attribute Methodology, Transportation Research Record No. 1739,

2000.

[MJM00b] Stephen P. Mattingly, R. Jayakrishnan, Michael G. McNally (2000), Decision

Theory for the Performance Evaluation of a New Traffic Control System,

Proceedings of the International Conference on Decision Making in Urban and

Civil Engineering, Lyon, France, Nov 2000.

[MMM+99] McNally, Michael G., James E. Moore, II, C. Arthur MacCarley and R.

Jayakrishnan, Steve Mattingly, James Roldan, Hsi-Hwa Hu and Seongkil Cho.

Evaluation of the Anaheim Advanced Traffic Control System Field Operational

Test: Task B: Assessment of Institutional Issues. Final report to Federal Highway

Administration, California PATH Research Report UCB-ITS-PRR-99-27, July

1999

[NWC04] R.L. Nord, W.G. Wood, P.C. Clements, “Integrating the quality attribute

workshop and the Attribute-Driven Design Method”, technical report, CMU/SEI-

2004-TN-017.

[Par72] D. Parnas. On the criteria to be Used in Decomposing Systems into Modules.

Comm. ACM, vol. 15, no. 12, pp. 1053-1058, 1972.

[PW92] Dewayne E. Perry, and Alexander L. Wolf. Foundations for the Study of

Software Architecture. ACM Software Engineering Notes 17(4): 40-52, 1992.

[PZJ07] Ji Young Park, Yu Zhang, R. Jayakrishnan, Conceptual Framework with Real-

Time Distributed Vehicle Data for Traffic Control, Paper 07-3399, Proc.

Transportation Research Board Annual Meeting, Washington DC, 2007

[Saa82] T.L. Saaty, Decision Making for Leaders: The analytical hierarchy process for

decisions in a complex world, Wadsworth, Belmont, CA, 1982.

[SW93] C.U. Smith and L.G. Williams, “Software Performance Engineering: A Case

Study Including Performance Comparison with Design Alternatives”, IEEE

Transactions on Software Engineering, 1993. 19(7).

[SWLM02] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson, “A Method for

Understanding Quality Attributes in Software Architecture Structures”,

SEKE’02, July 15-19, 2002, Italy.

[SWLM03] Mikael Svahnberg, Glaes Wohlin, Lars Lundberrg, and Michael Mattsson, “A

Quality-Driven Decision-Support Method for Identifying Software Architecture

Candidates”, International Journal of Software Engineering and Knowledge

Engineering, Vol. 13, No. 5, 2003.

[UCKM04] Sebastian Uchitel, Robert Chatley, Jeff Kramer and Jeff Magee, System

Architecture: the Context for Scenario-based Model Synthesis, SIGSOFT

2004/FSE12, Newport Beach, CA.

[VDR00] Marlon Vieira, Marcio Dias, and Debra Richardson, Analyzing Software

Architectures with Argus-I. Proceedings of the International Conference on

Software Engineering (ICSE 2000). p. 758-761, Limerick, Ireland, June 4-11,

2000.

[WG94] Wesseling, J A M and Gabor, A, Decision Modelling with HIPRE 3 Plus: The

Amsterdam Airport Case, Computational Economics, Springer, vol. 7(2), pages

147-54

[XHH+06] L. Xu, S.A. Hendrickson, E. Hettwer, H. Ziv, A. van der Hoek, and D.J.

Richardson, Towards Supporting the Architecture Design Process through

Evaluation of Design Alternatives, Second International Workshop on the Role

of Software Architecture for Testing and Analysis, July 2006, pages 38–44.

 52

[XZAR06] Lihua Xu, Hadar Ziv, Thomas A. Alspaugh and Debra J. Richardson, An

architecture pattern for quality-attribute dependability requirements, Journal of

Systems and Software, October 2006, Volume 79, issue 10, Special Issue on

Architecting Dependable Sytems.

[ZAGJ05] Liming Zhu, Aybuke Aurum, Ian Gorton, and Ross Jeffery, “Tradeoff and

Sensitivity Analysis in Software Architecture Evaluation Using Analytical

Hierarchy Process”, Software Quality Journal , 13, 357-375, 2005.

[ZMR+07] Yu Zhang, James E. Marca, Craig Rindt, R. Jayakrishnan, Michael G. McNally,

Efficient Path and Subpath Storage Data Structures for Network Travel Analysis

with Route Behavioral Elements, Paper 07-3029, Proc. Transportation Research

Board Annual Meeting, Washington DC, 2007.

	UCI-ISR-07-10-cvr
	survey_abstract
	survey

