
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Justin R. Erenkrantz   
University of California, Irvine          
jerenkra@ics.uci.edu               
   

Architectural Styles of Extensible REST-based 
Applications

August 2006

ISR Technical Report # UCI-ISR-06-12

Institute for Software Research
ICS2 110

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu



 

 

 

Architectural Styles of Extensible REST-based 
Applications 

 
Justin R. Erenkrantz 

Institute for Software Research 
University of California, Irvine 

Irvine, CA 92697-3425 
jerenkra@ics.uci.edu 

 
ISR Technical Report # UCI-ISR-06-12 

 
August 2006 

 
Abstract:  

 

At the beginning of the World Wide Web (WWW or Web), there was no 
clear set of principles to guide the decisions being made by 
developers and architects. In these early days, a cacophony emerged 
without a clear direction to guide the evolution of the Web. If there 
was any direction during the inception of the Web, it was a weak focus 
on how communication might occur between machines on the Web and the 
content that was to be transferred. Within a matter of a few years, 
scalability and other design concerns threatened the future of the 
early Web - this led to the introduction of REpresentation State 
Transfer architectural style (REST). The REST style imposed 
constraints on the exchange of communication over the Web and provided 
guidance for further modifications to the underlying protocols. The 
introduction of REST, through the HTTP/1.1 protocol, restored order to 
the Web by articulating the necessary constraints required for 
participation. 
 
In this survey, we will characterize any environment that is governed 
by REST constraints to be in a RESTful world. Obviously, the largest 
example of the RESTful world is that of the Web with almost 75 million 
websites existing today and many more daily users. Yet, to this day, 
people are still struggling with how to write applications and 
architectures that adhere to the constraints of the REST architectural 
style. Consequently, it is all too common to see programs falling into 
a trap of ignoring and compromising the REST principles. These traps 
can jeopardize the beneficial induced properties dictated by the REST 
style - which could ultimately reintroduce the problems that REST was 
specifically imposed to address. 
 



 

 

The existing Web infrastructure, and especially important components 
of that infrastructure like Apache, Mozilla, and others, can inform us 
about how to implement other RESTful components; indeed, examining the 
architectures of these tools and the infrastructure as a whole is key. 
With the rich history of the Web, we now have over ten years of 
real-world architectural evolution from which to base our 
examinations. Our aim in this survey is to classify the evolution, 
supported by real software architectures and frameworks, and to 
indicate insights and techniques useful for developing applications as 
a whole - that is, complete configurations of RESTful nodes that 
together form RESTful software applications without compromising the 
beneficial properties of REST.  
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Architectural Styles of Extensible 
REST-based Applications

Justin R. Erenkrantz

This paper is a survey of past and current 
architectural styles used in applications that 
take part in the RESTful world.
At the beginning of the World Wide Web (WWW or Web), there was no clear set of 
principles to guide the decisions being made by developers and architects.  In these 
early days, a cacophony emerged without a clear direction to guide the evolution of the 
Web.  If there was any direction during the inception of the Web, it was a weak focus on 
how communication might occur between machines on the Web and the content that 
was to be transferred.  Within a matter of a few years, scalability and other design con-
cerns threatened the future of the early Web - this led to the introduction of Representa-
tional State Transfer architectural style (REST) [Fielding 2000, #36].  The REST style 
imposed constraints on the exchange of communication over the Web and provided 
guidance for further modifications to the underlying protocols.  The introduction of 
REST, through the HTTP/1.1 protocol, restored order to the Web by articulating the nec-
essary constraints required for participation.

In this survey, we will characterize any environment that is governed by REST con-
straints to be in a “RESTful world.” Obviously, the largest example of the RESTful 
world is that of the Web with almost 75 million websites existing today and many more 
daily users[Netcraft 2005, #107].  Yet, to this day, people are still struggling with how to 
write applications and architectures that adhere to the constraints of the REST architec-
tural style.  Consequently, it is all too common to see programs falling into a trap of 
ignoring and compromising the REST principles.  These traps can jeopardize the benefi-
cial induced properties dictated by the REST style - which could ultimately reintroduce 
the problems that REST was specifically imposed to address.

Looking to the REST architectural style for answers on how to construct RESTful appli-
cations leads to an ultimately unfulfilling experience.  The REST architectural style pur-
posely provides little-to-no guidance as to how to build such nodes in a principled 
manner.  Other architectural styles, like C2[Taylor, Medvidovic 1996, #135] and 
PACE[Suryanarayana, Erenkrantz 2004, #134], and practical Web frameworks, like 
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Axis[The Apache Software Foundation 2005, #146] and Ruby on Rails[Hibbs 2005, 
#53], specifically constrain how an application is built.  However, these particular styles 
and frameworks do not provide much guidance for interactions with other architectures.  
Viewed from this perspective, we can separate these architectural styles in two catego-
ries: internal and external architectural styles.  An external architectural style, like 
REST, will govern the interaction between two independent sub-architectures, while an 
internal architectural style, like PACE, governs how an architecture will respond to the 
constraints imposed by an external architecture.

The larger research question is what is the relationship between an external architecture 
and an internal architecture?  That is, how do the constraints placed on the network and 
interaction between nodes affect the constraints placed on individual nodes and vice 
versa?  Are there particular internal architectural styles that are a 'good' fit for an exter-
nal architecture?  Correspondingly, are there 'poor' matches?  What are the tradeoffs in 
selecting, say, a RESTful network architecture and combining it with an internal pipe-
and-filter architecture?  Are induced properties sacrificed in trying to make this combi-
nation work?

The existing Web infrastructure, and especially important components of that infrastruc-
ture like Apache, Mozilla, and others, can inform us about how to implement other 
RESTful components; indeed, examining the architectures of these tools and the infra-
structure as a whole is key. With the rich history of the Web, we now have over ten years 
of real-world architectural evolution from which to base our examinations.  Our aim in 
this survey is to classify the evolution, supported by real software architectures and 
frameworks, and to indicate insights and techniques useful for developing applications 
as a whole—that is, complete configurations of RESTful nodes that together form 
RESTful software applications without compromising the beneficial properties of 
REST.

Software Architecture and Frameworks

An architectural style is a set of design guidelines, principles, and constraints that dic-
tate how components can be composed, behave, and communicate [Shaw and Garlan 
1996, #125]. Architectural styles help to induce desirable qualities over software sys-
tems that conform to those styles. Many of the most well-known architectural styles, 
such as pipe-and-filter, client-server, and blackboard styles provide relatively few prin-
ciples and constraints; as one might expect, they also induce relatively few good soft-
ware qualities. However, there are other architectural styles, such as PACE, that are 
much more significant. These include comprehensive constraints and guidelines, pro-
vide knowledge about when and where these styles are applicable, how to apply the 
style, and supply technological frameworks and tools to facilitate constructing applica-
tions in the style.  As we will discuss later, the REST style provides such constraints and 
guidelines for external architectures.

An architecture framework is software that helps to bridge the gap between a specific 
architectural style (or family of styles) and an implementation platform (e.g., program-
ming language, core set of libraries, or operating system). This makes it easier for appli-
2 Architectural Styles of Extensible REST-based Applications
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cation developers to correctly (and compatibly) implement applications in a particular 
architectural style. For example, it could be said that the stdio package is an architec-
ture framework for the pipe-and-filter style in the C programming language, since it pro-
vides the language with distinguished stream constructs (in, out, and err), as well as 
methods for interacting with those streams that are consistent with the rules of the pipe-
and-filter style. 

Architecture frameworks (even for the same style/implementation platform) can vary 
widely in the amount of support they provide to developers. This is a natural tradeoff: 
frameworks may provide little support but be very lightweight, or be heavyweight and 
complex but provide many services.

Software Architecture in the World Wide Web

It is essential to understand the intimate relationship between the architectural style, 
architecture instances, and actual system implementations. In the context of the modern 
Web, some of the key participants are:

• REST - the principal architectural style

• HTTP/1.1 - an architectural instance of REST

• Apache HTTP Server - a system implementation of an HTTP/1.1 server

• Mozilla - a system implementation of an HTTP/1.1 user agent

• libWWW - an architectural framework providing useful services for implementing 
RESTful clients

Next, we will examine the REST architectural style and the constraints that it imposes 
on the RESTful HTTP/1.1 protocol.  After introducing REST and HTTP/1.1, we will 
begin selecting systems to survey.

Representational State Transfer

The Representational State Transfer (REST) architectural style minimizes latency and 
network communication while maximizing the independence and scalability of compo-
nent implementations. Instead of focusing on the semantics of components, REST 
places constraints on the communication between components.  REST enables the cach-
ing and reuse of previous interactions, dynamic substitutability of components, and pro-
cessing of actions by intermediaries - thereby meeting the needs of an Internet-scale 
distributed hypermedia system. A summary of the domain properties, REST constraints, 
and REST-induced behavior is presented in Table 1 on page 4.

The first edition of REST was developed between October 1994 and August 1995, pri-
marily as a means for communicating Web concepts while developing the HTTP/1.0 
specification and the initial HTTP/1.1 proposal. It was iteratively improved over the 
next five years and applied to various revisions and extensions of the Web protocol stan-
Architectural Styles of Extensible REST-based Applications 3
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dards. The name “Representational State Transfer” is intended to evoke an image of 
how a well-designed Web application may behave: a network of Web pages forms a vir-
tual state machine, allowing a user to progress through the application by selecting a 
link or submitting a short data-entry form, with each action resulting in a transition to 
the next state of the application by transferring a representation of that state to the user.

In writing RESTful applications, it is essential to understand that all REST interactions 
are stateless. That is, each request contains all of the information necessary for a con-
nector to understand the request, independent of any requests that may have preceded it. 
This restriction accomplishes four functions: 1) it removes any need for the connectors 

TABLE 1. Summary of REST constraints in terms of domain and induced properties

Domain Property REST-imposed Constraint REST-induced Benefit/Property

A user is interested in some hyper-
media document stored externally

User Agent represents User

Origin Server has hypermedia docs

User Agent initiates pull-based request from 
an Origin Server

Requests from User Agent have a clearly asso-
ciated response from an Origin Server

Hypermedia documents can have 
many formats

Metadata describing representa-
tion presented with document

User Agent can render documents appropri-
ately based on metadata

Many independent hypermedia ori-
gin servers

Define a set of common operations 
with well-defined semantics (Exten-
sible methods)

User Agent can talk to any Origin Server

A document may have multiple 
valid depictions with differing meta-
data

Distinction between abstract 
resource & transferred representa-
tion

Metadata can be sent by user agent 
that indicates preferences (Internal 
transformation)

User Agent can request resource and receive 
an appropriate representation based on pre-
sented metadata

One-to-many relationship between a resource 
and representation

Hypermedia documents are usually 
organized hierarchically +

uniquely identified servers

Resources explicitly requested by 
name

User Agent can ‘bookmark’ a location and 
return to it later

Origin Server controls own 
namespace

Origin Server can replace backend and persist 
identical namespace

Origin Server may not be able to 
receive inbound connections from 
the world

User Agent may not be able to make 
outbound connections to the world

Gateway node (Origin Servers) Even if direct paths are not available between 
two nodes, indirect paths may be available 
through REST intermediaries

Proxy node (User Agents)

No assumption of persistent connec-
tion or routing; Hop-by-hop only

Any state must be explicitly trans-
ferred in each message

Gateway and Proxy nodes treat routing of each 
message independently (packet-switched)

Duplicate copies of Origin Servers may be 
deployed

Common hypermedia operations do 
not change the content +

Documents may change over time

REST nodes may need to handle 
large amounts of traffic or otherwise 
optimize network bandwidth

Idempotent methods Ability to reuse a representation

Cacheability components intro-
duced

Each node can independently have a local 
cache of documents; cache can re-serve repre-
sentations

Expiration control data can be pre-
sented with a representation

Mechanism to locally expire cached content

Control data presented in requests to 
indicate current cached version

Mechanism to cheaply re-validate ‘stale’ con-
tent in the cache
4 Architectural Styles of Extensible REST-based Applications
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to retain application state between requests, thus reducing consumption of physical 
resources and improving scalability; 2) it allows interactions to be processed in parallel 
without requiring that the processing mechanism understand the interaction semantics; 
3) it allows an intermediary to view and understand a request in isolation, which may be 
necessary when services are dynamically rearranged; and, 4) it forces all of the informa-
tion that might factor into the reusability of a cached response to be present in each 
request.

Another important contribution of REST is the layer of indirection between abstract 
resources and concrete representations. The key abstraction of information in REST is a 
resource. Any information that can be named can be a resource: a document or image, a 
temporal service (e.g. “today’s weather in Los Angeles”), a collection of other 

FIGURE 1. REST style derivation diagram (From [Fielding 2000, #36])

FIGURE 2. Process view of a REST-based architecture at one instance of time 
(From [Fielding and Taylor 2002, #37])
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resources, a moniker for a non-virtual object (e.g. a person), and so on. A resource is a 
conceptual mapping to a set of entities, not the entity that corresponds to the mapping at 
any particular point in time. In turn, REST components perform actions on a resource 
by using a representation to capture the current or intended state of that resource and 
transferring that representation between components. A representation is a sequence of 
bytes, plus representation metadata to describe those bytes. 

As characterized in Figure 1, REST is derived from a number of specific constraints. 
The relevant base styles from which REST were derived include Replicated Repository 
(RR), Cache ($), Client-Server (CS), Layered System (LS), Stateless (S), Virtual 
Machine (VM), Code on Demand (COD), and Uniform Interface (U). Furthermore, 
REST defines a series of connector types that identify each node in the overall architec-
ture: client, server, cache, resolver, and tunnel. As depicted in Figure 2, in a typical 
REST interaction on the modern Web, a user agent (web browser) requests a representa-
tion of a resource from an origin server, which may pass through caching proxies before 
ultimately being delivered.

HTTP/1.1 and the Modern Web

The Hypertext Transfer Protocol (HTTP) has a special role in the Web architecture as 
both the primary application-level protocol for communication between Web compo-
nents and the only protocol designed specifically for the transfer of resource representa-
tions. REST was used to identify problems with the existing HTTP implementations, 
specify an interoperable subset of that protocol as HTTP/1.0 [Berners-Lee, Fielding 
1996, #12], analyze proposed extensions for HTTP/1.1 [Fielding, Gettys 1999, #31], 
and provide motivating rationale for deploying HTTP/1.1.

The key problem areas in HTTP that were identified by REST include planning for the 
deployment of new protocol versions, separating message parsing from HTTP seman-
tics and the underlying transport layer (TCP), distinguishing between authoritative and 
non-authoritative responses, fine-grained control of caching, and various aspects of the 
protocol that failed to be self-descriptive. REST has also been used to model the perfor-
mance of Web applications based on HTTP and anticipate the impact of such extensions 
as persistent connections and content negotiation. Finally, REST has been used to limit 
the scope of standardized HTTP extensions to those that fit within the architectural 
model, rather than allowing the applications that misuse HTTP to influence the standard 
equally.

REST MISMATCHES IN 

HTTP EXTENSIONS

HTTP/1.1 as it is used on the Web today (taking into account third-party extensions 
deployed outside the standards process and concessions made for backward compatibil-
ity with HTTP/1.0) does not conform entirely to the REST style. Applications that sup-
port HTTP/1.1 consequently must make allowances for these non-RESTful 
characteristics of the Web to remain compatible and interoperable with the substantial 
base of legacy applications already deployed. While complete details of these mis-
matches are out of scope, it is useful to examine a representative example of how the 
Web is not 100% RESTful (for more details, please see [Fielding 2000, #36, Fielding 
and Taylor 2002, #37]).
6 Architectural Styles of Extensible REST-based Applications
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Perhaps the most pervasive example of the non-RESTfulness of the Web is the use of 
Cookies for client-side state management. In this case, an inappropriate extension has 
been made to the protocol to support features that contradict the desired properties of 
the generic REST interface [Kristol and Montulli 1997, #63]. Cookie interaction fails to 
match REST’s model of application state, often resulting in confusion for the typical 
browser application. The same functionality should have been accomplished via anony-
mous authentication and true client-side state. Cookies also violate REST because they 
allow data to be passed without sufficiently identifying its semantics, thus becoming a 
concern for both security and privacy. 

Selecting Appropriate RESTful Applications

Our primary criteria in selecting systems is that such systems must participate in the 
RESTful world.  Due to the ubiquitous deployment of the World Wide Web, there are 
plenty of RESTful systems that are available to examine.  Furthermore, one of our stated 
goals is to examine how the constraints of a REST-governed external architecture as 
represented by its protocol affects the internal architecture of a system.  In order to 
achieve this goal, our examined architectures should reside as close to the protocol as 
possible - this can best be achieved by directly implementing the HTTP/1.1 protocol.

REST also defines specific classifications of nodes that can participate in the RESTful 
world.  We will limit our discussion to origin servers, user agents, and frameworks.  As 
we will discuss, some origin servers can also fulfill the responsibilities of a proxy or 
gateway node.  With respect to the specific selections we make, we will attempt to 
choose a representative sample of the broad range of RESTful systems that are avail-
able.

Our focus on architectures will look at their extensibility characteristics - that is, the 
constraints it imposes on modifications to its architecture.  The reason for selecting 
architectures that explicitly support extensiblity is predicated on the diverse nature of 
the RESTful world.  The particular location in the ecosystem of the RESTful world we 
will examine is an important one: complete RESTful applications are built on top of 
these architectures.  These architectures we will survey provide the glue by interfacing 
with the larger RESTful world through protocol implementations and passing along the 
constraints of the RESTful world on to its extensions to form complete applications.

A vast range of applications have emerged that use the WWW in innovative ways - 
ranging from electronic-commerce sites to collaborative news sites.  The specific con-
tent requirements often differ for each individual application.  Instead of constructing an 
origin server or user agent from scratch each time for every desired modification, these 
applications can take advantage of pre-existing architectures if they provide suitable 
extensibility mechanisms.  Therefore, those architectures which support extensibility 
have a definitive advantage over static architectures in the RESTful world.

While our principal focus is on applications directly implement a REST-governed proto-
col and offer extensibility capabilities, we will also present a brief discussion of:

• Server-side scripting languages (such as CGI, PHP, JSP)
Architectural Styles of Extensible REST-based Applications 7
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• Client-side scripting languages (such as JavaScript)

• HTML forms

• Protocols on top of HTTP (such as SOAP, XML RPC)

• HTML frameworks (such as Servlets, Struts, Ruby on Rails)

to discuss how they can further encourage conflicts and collisions with REST.  However, 
these applications traditionally build on top of the systems that we will select to survey 
in detail.  With these systems, there is an additional level of indirection with regards to 
REST as they are necessarily constrained by the architectures of which they are a 
smaller part.

Framework Constraint Prism

In order to highlight the relevant material, our architectural examination will separate 
the architecture into the following broad characteristics: portability, run-time architec-
ture, internal extensibility, external extensibility, and the influence of specific REST 
constraints.  A diagram showing the relationships of these characteristics for RESTful 
architectures is shown in Figure 3 on page 8.  These characteristics are derived from the 
direct decisions made by the system’s architects.  We will define the border of our archi-
tecture by identifying where an architect has direct influence over the architecture and 
where control of the architecture is ceded to others.  As a part of a larger RESTful 
world, these architectures must operate with other independent architectures through a 
REST-governed protocol.  These architectures can also be integrated by external archi-
tects into a larger architecture to incorporate the functionality provided by the system.  

FIGURE 3. RESTful Architectural Constraint Prism
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Content developers and extension designers can influence the system, but this work is 
largely limited to following the constraints established by the original architects.

Portability. We will define portability as the indirect limitations and constraints upon 
the overall system architecture with respect to its environment.  These may include the 
choice of programming languages to implement with, operating systems that the system 
will execute on, and user interface toolkits.  As we will discuss, each of these choices 
can introduce constraints for robustness, scalability, and security.  They may affect the 
degree to which the system can conform to the environment in which it must operate.  
However, these choices are typically not directly related to the functionality of the sys-
tem.  These serve as the base platform characteristics.

Run-time architecture. In contrast to portability, run-time architecture will be defined 
as the specific direct limitations and constraints that the architecture represents with 
respect to the problem domain.  Such constraints can include how the system parallel-
izes, whether it is asynchronous, and what protocol features and protocols it supports.  
These constraints are generally decided independently of any constraints defined as 
Portability.  By building on top of these run-time architecture constraints, a system will  
present characteristics that govern what features it will ultimately be able to support.

Internal Extensibility. We will define internal extensibility as the ability to permit 
modification through explicit introduction of architectural-level components.  This char-
acterizes the scope of changes that can be made by third-party developers in specific 
programming languages. The critical characteristic here is what functionality does the 
architecture provide to developers to modify the behavior of the system.  For a user 
agent, new toolbars can be installed locally through specific extensions.  These toolbars 
can change the behavior of the program via the internal extensibility mechanisms.  Or, 
perhaps, new protocols can be introduced.

External Extensibility. Similarly to internal extensibility, we will define the external 
kind as those changes that can be effected without the introduction of architectural-level 
components.  This classifies what behavior can be passed through to the user without 
altering the architecture.  Each of these specific external extensibility mechanisms can 
be viewed on a cost-benefit scale: how much access is provided at what cost?  For an 
origin server, a scripting language like PHP can be viewed as an external extensibility 
component.  A PHP developer can create a script that alters the behavior of the system 
without any knowledge of the architecture inside the system.  Typically, RESTful sys-
tems in the same area (such as user agents) will share external extensibility mechanisms.

Integration.  Integration defines the ability of an architecture to participate as part of a 
larger architecture.  Some architectures that we will examine are intended to run only by 
themselves.  However, other architectures offer the additional capability to be reused as 
part of a larger whole through a set of programming languages.  These architectures 
may provide control ranging from simply integrating a user agent inside another appli-
cation to creating a different type of server entirely.

REST Constraints. The final broad characteristic we will leverage is to examine the 
degree to which the architecture constrains its extensions to follow REST-derived con-
straints.  A more detailed discussion of these constraints follows.
Architectural Styles of Extensible REST-based Applications 9
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REST Constraints

We earlier presented a summary of the domain properties, REST constraints, and 
induced behavior in Table 1 on page 4.  In our subsequent analysis, we will specifically 
examine the behavior derived from these architectures to see how they deal with these 
REST constraints as listed in Table 2 on page 10.

Architectural Characteristic Matrix

A matrix summarizing all of the architectural characteristics of these selected systems is 
presented as an addendum to this paper.

Origin Servers

In the REST world, Fielding defines an origin server as:

An origin server uses a server connector to govern the namespace for a requested 
resource. It is the definitive source for representations of its resources and must be the 
ultimate recipient of any request that intends to modify the value of its resources. Each 
origin server provides a generic interface to its services as a resource hierarchy. The 
resource implementation details are hidden behind the interface.[Fielding 2000, #36, 

5.2.3]

In common usage on the web, this is characterized by an HTTP server.  Figure 4 on 
page 11 presents a timeline of market share as determined by Netcraft’s Web Server 
Survey ([Netcraft 2005, #107]) for the three origin servers we will now discuss:

TABLE 2. REST Architectural Constraints

Constraint Assessing Degrees of Conformance to Constraint

Representation Metadata How much control, for both requests and responses, does 
the architecture permit over representation metadata?

Extensible Methods How much flexibility is offered to redefine or add meth-
ods within the architecture?

Resource/representation 
separation

How well does the architecture treat the divide between 
requests for a resource and resulting representations?

Internal Transformation How conducive is the architecture to permitting repre-
sentation transformations inside the system?

Proxy How does the architecture enable the use of proxies and 
gateways?

Statefulness How much control does the architecture provide to con-
trol statefulness?

Cacheability In what ways does the architecture support cache com-
ponents?
10 Architectural Styles of Extensible REST-based Applications
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• NCSA HTTP Server

• Apache HTTP Server

• Microsoft Internet Information Services

NCSA HTTP SERVER One of the early origin servers for the Web was produced at the National Center for 
Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Cham-
paign[Kwan, McGrath 1995, #64].   The name for this Web server was NCSA HTTPd 
(httpd) and it was released to the public domain for all to use at no cost.  httpd was ini-
tially designed and developed by Rob McCool and others.  After McCool left to join 
Netscape in 1994, NCSA development largely ceased with a few later ultimately unsuc-
cessful efforts by NCSA to restart development around httpd.

NCSA ARCHITECTURE Run-time architecture. The d in HTTPd refers to the Unix concept of a daemon.  The 
word daemon has a long tradition in the Unix operating environment to mean a long-
running process that assists the user.  Therefore, HTTPd stands for “HTTP daemon” - 
meaning that the server responds to incoming HTTP traffic by generating the proper 
responses to the users without any direct intervention by the server administrator.

Upon initial execution, the httpd process would start listening for incoming HTTP traf-
fic.  As new HTTP requests arrived, this listening process would spawn two identical 
copies - in Unix parlance, the parent forked a child.  One process (the parent process) 
would resume listening for more HTTP requests.  The other instance (the child) would 
process the just-received incoming connection and generate the response.  After that one 
response was served back to the client, this child process would close the socket and ter-
minate.

This particular interaction model is particularly suited for a web server due to the repet-
itive nature of HTTP requests.  Each resource on an HTTP server can be requested by 

FIGURE 4. Origin Server Timeline with Netcraft Market Share Data from [Netcraft 2005, #107]
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independent clients a large number of times and possibly in parallel.  If the resource has 
not changed (retrieving a page is a read-only operation), then the representations served 
for each one of these requests should be identical as any state will be explicit in the 
request exchange.  (HTTP labels methods having this behavior as idempotent.)  This 
attribute allows one server process to independently handle any incoming requests with-
out having to coordinate with other server instances.

However, due to the uneven nature of Web traffic, it does not make sense to dedicate one 
server instance to a particular ‘part’ of the server’s namespace[Katz, Butler 1994, #58].  
If the namespace were divided as such and a large burst of activity were to come in on 
one portion of the namespace, this could present significant bottlenecks - as that one 
process would be tied up serving all of the requests for that dedicated namespace.  
Therefore, httpd’s run-time architecture allows all instances to respond to any part of the 
namespace independently.  In addition to parallelizing on a single machine, this archi-
tecture also allows for replicated instances of httpd to work across multiple machines by 
the use of round-robin DNS entries and networked file systems[Katz, Butler 1994, #58, 
Kwan, McGrath 1995, #64].

Portability. httpd was written in the C language and the implementation was solely tar-
geted towards Unix-derived platforms.  Therefore, it had no intrinsic concept of porta-
bility outside of C and Unix systems.  Yet, even Unix-derived platforms differ from each 
other greatly and httpd utilized language preprocessor macros for each flavor of the 
operating system that was explicitly supported.  Additionally, the administrator had to 
hand-modify the build system in order to indicate which operating system httpd was 
being built on. Therefore, in comparison to modern-day servers, the portability of the 
original NCSA httpd server was quite restricted.

Internal Extensibility. While the code base behind httpd was relatively small, there 
was no clear mechanisms for extending the internal operations of the server.  For exam-
ple, most of the code relied upon global variables without any dedicated structures or 
objects.  Therefore, if you wanted to support extensions to the protocol, there was no 
level of abstraction through which to effect these changes.

External Extensibility. Even without an internal extensibility layer, httpd did provide 
an effective external extensibility mechanism - the Common Gateway Interface 
(CGI)[Coar and Robinson 1999, #20].  The only other mechanism to produce a repre-
sentation for a resource with httpd was to deliver static files off the file system.  CGI was 
placed as an alternative to static files by allowing external dynamic execution of pro-
grams to produce output that a specific client will then receive.  We will explore CGI 
more completely in “Common Gateway Interface (CGI)” on page 50.

With CGI, we begin to see a constraint of the external architecture peeking through: 
HTTP mandates synchronous responses.  While the CGI program was processing the 
request to generate a response, the requestor would be ‘on hold’ until the script com-
pletes. During the exection of the script, NCSA warned that “the user will just be staring 
at their browser waiting for something to happen.”[National Center for Supercomputing 
Applications 1995, #103]  Therefore, CGI script authors were advised to hold the execu-
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tion time of their scripts at a minimum so that it did not cause the user on the other end 
to wait too long for a response.

Lessons Learned. Run-time architecture featuring parallel identical processes is well-
suited for HTTP servers; extensibility focused on ‘end user’ extensibility instead of 
‘developer’ extensibility; some characteristics of HTTP introduce very specific and oth-
erwise awkward features to CGI.

APACHE HTTP SERVER The Apache Project formed in February 1995 to resume active development of NCSA’s 
popular but abandoned httpd.  The goal of this new project was to incorporate bug fixes 
and new features. Besides important social innovations in distributed and open-source 
software development [Fielding 1999, #35, Mockus, Fielding 2000, #95], one of the 
keys to Apache’s long-term success can be attributed to the sustained proliferation of 
third-party modules (now totalling over 300) around the core product.  (This author is a 
contributor to the Apache HTTP Server.)

As shown in Figure 4 on page 11, The Apache HTTP Server is currently the most popu-
lar HTTP server used today. The various versions and derivatives of Apache collectively 
account for around 70% of the servers in use today [Netcraft 2005, #107], and has been 
the market leader for over nine years [The Apache Software Foundation 2004, #143]. 
The long-term mission of the Apache HTTP Server Project is to “provide a secure, effi-
cient and extensible server that provides HTTP services in sync with the current HTTP 
standards.” [The Apache Software Foundation 2004, #142]

Due to its lineage from NCSA httpd codebase, there are a lot of surface similarities 
between the two codebases.  In stark contrast to NCSA httpd however, the internals of 
the Apache HTTP Server are characterized by an extremely modularized design with 
almost all aspects of functionality available to be altered without modifying the core 
code.  We will consider two snapshots of Apache’s architecture: the ‘initial’ Apache 
architecture comprising all releases through the 1.3 series and the current release series 
(2.x and beyond).

INITIAL APACHE

ARCHITECTURE

With the split of Apache from NCSA, there was a concerted change to make the inter-
nals of the new server much more extensible.  Instead of relying upon custom ad hoc 
modifications to the codebase, the intention was to allow third-parties to add modules at 
build-time and run-time that modified Apache’s behavior. These changes were balanced 

TABLE 3. REST Architectural Constraints: NCSA httpd

Constraint Imposed Behavior

Representation Metadata Explicit global values for each header value

Extensible Methods Only through CGI’s REQUEST_METHOD environment

Resource/Representation No structure for requests or responses

Internal Transformation None

Proxy No, could not serve as a proxy

Statefulness No explicit session management

Cacheability No
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by a strong effort to be end-user backwards compatible with NCSA httpd to ease the 
effort in migrating to Apache.

The principal mechanisms behind this rearchitecture were introduced in the “Shambala” 
fork by Robert S. Thau.  These changes were merged into the mainline Apache codebase 
to become Apache 0.8.0 release in July 1995.  These modifications formed the architec-
tural basis of all future Apache releases.  An exposition of the rationales for these deci-
sions were put forth in a paper by Thau[Thau 1996, #137].  We will now summarize 
these rationales and their impact on the Apache architecture.  A summary depiction of 
Apache’s architecture, as produced by The Apache Modeling Project, is presented in 
Figure 5 on page 14[Gröne, Knöpfel 2002, #46, Gröne, Knöpfel 2004, #47].  Hassan 
and Holt present another description of Apache’s architecture in Figure 6 on 
page 15[Hassan and Holt 2000, #52].

Run-time Architecture. As with NCSA httpd, early versions of Apache rely upon fork-
ing to handle incoming requests.  However, Apache introduced the ability to reuse chil-
dren via a “prefork” mechanism and to run these children at a low-privilege level.  On 
Unix platforms, the cost of starting up a new process is relatively high.  With NCSA 
httpd, every incoming connection would spawn a fresh process which caused a delay as 
the operating environment launched this new process.  Instead, Apache starts (“pre-
forks”) a configured number of children ahead of time and each process would take 
turns handling incoming requests.  By having the servers initialized ahead of time, this 
allows a better response time and for spare capacity to be held in reserve.  Any spare 
servers would be idle waiting for incoming requests and the process initialization costs 
can be amortized.

FIGURE 5. Apache HTTP Server Internal Architecture (From [Gröne, Knöpfel 
2004, #47] Figure 4.6)
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In this preforking architecture, there is a parent process that keeps an eye on the children 
that are running.  This parent is responsible for spawning or reaping children processes 
as needed.  If all of the children are active and there is still space for new children, it will 
create a new child.  On the other hand, if too many children are idle, it will remove some 
children from operation.  While the parent process usually executes as a privileged user, 
it does not directly service any incoming requests from the users.  Instead, the children 
that interact with clients are executed as an unprivileged user.  This means that the attack 
surfaces for security attacks is minimized - however, there have been security exploits 
on certain operating systems that will elevate a unprivileged user to a privileged user.

Portability. The core implementation language of Apache is unchanged from httpd, so 
it is still written in C.  While Unix is still the main target platform for Apache, later 
releases of Apache 1.x added support for Windows, OS/2, and Netware.  While reamin-
ing in C, Shambala took advantage of some constraints enforced by the programming 
language and turned it into a substantial performance advantage.

One of the defining characteristics of C is that it requires explicit allocation (malloc) and 
deallocation of memory (free).  These memory operations are rather expensive, so a 
pool-based allocation system was introduced in Shambala[Thau 1995, #136, The 
Apache Software Foundation 2003, #141].  This opportunity for efficiency is only avail-
able due to the well-defined lifecycle of HTTP traffic.  In Apache, needed memory 
chunks are allocated from the operating system as part of normal operation during a 
request through malloc invocations.  Normally, Apache would have to return all of the 
allocated memory back to the operating system through explicit invocations of free.  If 
the each allocation was not explicitly freed, then memory leaks could occur.  Over the 

FIGURE 6. Apache HTTP Server Internal Architecture (From [Grosskurth and 
Godfrey 2005, #50])
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lifetime of a server process with constant traffic and memory leaks, this could eventually 
overload the memory capabilities of the system.

With the new pool system introduced in Shambala, when a response is completed, the 
allocated memory is instead added to a internal free-list maintained by Apache.  On sub-
sequent requests to the same process, the memory on the free-list can be reused instead 
of allocating more memory from the operating system.  In practice, after a few requests 
are served, no more memory allocation is required from the operating system - previ-
ously allocated memory can suffice for subsequent runs.  This pool model also has a 
large benefit for both internal and external developers.  Since Apache tracks the memory 
itself, there is far less opportunity for memory leaks which impair the memory footprint 
of Apache.  This can permit developers to not have to worry about detecting memory 
leaks in their modules as the pool system automatically tracks all allocations.  In com-
parison to languages that offer intrinsic garbage collection (such as Java), there is no 
substantial performance penalty incurred for maintaining this list.  Actually, in perfor-
mance tests, this pool reuse system is a significant structural advantage of Apache that 
allows it to fare well against other HTTP servers[Gaudet 1997, #41].

Internal Extensibility. As discussed earlier, NCSA’s architecture relied heavily upon 
CGI programs to produce content or alter the server’s behavior.  The CGI system suffers 
a severe drawback in that it is largely decoupled from the web server.  This indepen-
dence from the server comes at a steep cost as there is no clean mechanism to share con-
figuration information between the web server and CGI application.  This can create 
challenges for the content developer as their application becomes more complex by 
enforcing such a strict separation.  Additionally, there are also performance implications 
with using CGI programs in that their process lifetime is only that of a particular 
request.  Techniques like FastCGI can avert this performance issue by attempting to 
reuse a script interpreter across multiple connections[Brown 1996, #16]. However, this 
can introduce compatibility problems when global variables are used in CGI programs 
that are not correctly reset after each request.

Therefore, Apache specifically allowed for extensibility internally by exposing fixed 
points at which a third-party can interface in-process with the web server.  Apache’s ini-
tial extensibility phases, called hooks, included:

• URI to filename translation

• several phases involved with access control

• determining the MIME type of the resulting representation

• actually sending data back to the client

• logging the request

Each of these play a critical part in the functionality of the web server, but they can be 
logically independent.  For example, the MIME type of a representation (which is con-
tent-specific) would not typically indicate a relationship as to how the server should log 
the request (which is usually server-specific). However, if there is a relationship, then a 
module can still hook into all needed phases and coordinate execution.  Besides allow-
ing dynamic behavioral modification through hooks, Apache has an internally extensi-
ble configuration syntax which allows dynamic registration of new commands with 
module-specific directives.
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The drawbacks of this internal extensibility mechanism is that all of the modules run at 
the same privilege level and share the same address space.  Consequently, there are no 
barriers preventing a malicious module from compromising the integrity of the system.  
A poorly written Apache module could expose a security vulnerability that could cause 
the server to crash.  However, Apache’s run-time architecture limits the effects of a bad 
module to only the specific process handling the request.  Other children that are servic-
ing a request are not affected if any other child dies through a software fault.

External Extensibility. Scripting languages such as PHP and JSPs are accomodated as 
handlers within Apache.  These are specific modules that register for the handler hook 
and can deliver content for a specific resource.  These handlers can be associated 
through content types or file extensions among other mechanisms.  Therefore, in the 
case of PHP, its handler is responsible for converting the PHP script into usable HTML 
representations.  The main advantage of having these scripts use a handler over a CGI 
mechanism is that there is no inter-process communication overhead required.  Addi-
tionally, the scripting languages can take advantage of more Apache-specific features 
than what are available only through CGI.

REST Constraints. Apache represents an improvement over the NCSA httpd in con-
straining the extensions to follow the REST style.  There is a clear separation between 
data and metadata with dedicated metadata structures.  There is also less usage of global 
variables through dedicated request structures.  However, Apache does not enforce a 
clear separation between the resource and representation as they share the same data 
structure (request_rec).  A proxy component was added in later versions of Apache 1.3.  
However, these modules had significant implementation and design problems that 
resulted in its removal from later releases - limiting Apache’s effectiveness as a proxy/
gateway.  As we will discuss in the following section, improving these modules was a 
factor behind some subsequent architectural changes.

Lessons Learned. Optimizations created based on language-choice and domain-specific 
constraints; Run-time architecture modified to better suit the underlying platform; Mod-
ularity and internal extensibility heavily stressed through hooks and discrete separated 
dynamic modules; External extensibility through scripting languages; improvements in 
maintaining REST constraints.

APACHE 2.X ARCHITECTURE The Apache HTTP Server 2.0 has redesigned the popular Apache HTTP Server by 
incorporating feedback from the development and user community. While remaining 

TABLE 4. REST Architectural Constraints: Early Apache HTTP Server

Constraint Imposed Behavior

Representation Metadata Headers are in a hash-table structure; can be merged

Extensible Methods Yes, through a dedicated request field

Resource/Representation Response and request are coupled in the same structure

Internal Transformation None

Proxy Present in early versions of 1.3, but removed due to problems

Statefulness No explicit session management

Cacheability None
Architectural Styles of Extensible REST-based Applications 17



Origin Servers
faithful in spirit to the initial design of the 1.3 series server, the 2.0 series does break 
compatibility with the previous version in several areas.

Resolved design issues. Thau identified a number of design shortcomings of Apache in 
[Thau 1996, #137] - all of these issues have been resolved in Apache 2.x.  The first issue 
raised is that Apache did not have a protocol API.  The protocol code was refactored in 
2.x and now has modules that implement FTP, SMTP, and NNTP in a clear and princi-
pled approach.  Secondly, Thau indicated that it was hard to customize existing mod-
ules.  This has been addressed by the introduction of the provider API, first introduced 
in mod_dav.  Several other modules (such as authorization and caching modules) have 
since been broken down to use this provider API to easily alter their operation.  Thirdly, 
Thau identified that the order dependencies of hooks were problematic.  There is now a 
different hook registration system that allows explicit ordering of hooks (including pre-
decessors and successors).  Finally, Thau identified the lack of hooks that conform to 
system startup and teardown.  These have now been added.

Portability and Run-time Architecture. 2.0 introduces a new portability layer called 
the Apache Portable Runtime that provides a “predictable and consistent interface to 
underlying platform-specific implementations.”[The Apache Portable Runtime Project 
2004, #140]  The path to APR was, however, not a straight line.  After the introduction 
of support for Netware, Windows, and even more Unix variants in Apache 1.3, a consen-
sus emerged that a comprehensive portability strategy had to evolve to support more 
platforms in a cleaner way.  There were initially two concurrent strategies: porting 
Apache to Mozilla’s new runtime layer (NSPR) and the introduction of the Multi-Pro-
cessing Modules (MPM).

These two approaches were noticably different: one (NSPR) would replace all of the 
platform specific code out of Apache and move all of it into a portability layer.  A move 
to a new portability layer, such as NSPR, would necessitate a rewrite of the entire code 
base to use the primatives supported by the portability layer.  In return, all of the con-
cerns about supporting a new operating system would be off-loaded to the portability 
layer.

The other approach would isolate all of the “complicated” platform-specific code into a 
new policy layer within Apache - called the MPM.  The rest of the code would rely upon 
standard ANSI C semantics.  The MPM would specify the policy for handling the 
incoming connections: the default policy would be the prefork strategy initially intro-
duced with Shambala and discussed earlier.  Other policies would include a worker 
strategy that leveraged a hybrid process-thread approach, a mpm_winnt strategy that 
worked only on Windows platforms, and a mpm_netware module for Netware systems.  
The goal of the MPM design was that the process or thread management code these 
threads would be restricted to these policy modules.  This containment was based on the 
belief that the difficult portability aspects could be constrained to the MPM modules 
alone.

These branches evolved in parallel until the group forced a decision over the adoption of 
the NSPR modules.  The key argument against NSPR was not a technical one - but, 
rather, a social one - the developers did not agree with the licensing terms presented by 
NSPR.  An attempt to resolve these concerns were inconclusive - therefore, the develop-
ers started their own portability layer based on the code that was already present in 
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Apache 1.3.  This code formed the basis for the Apache Portable Runtime (APR) layer 
first present in 2.0.  However, the MPM components were also ultimately integrated into 
the new APR branch.  Therefore, even though the strategies seemed at odds initially, 
both strategies were eventually merged.  The code was rewritten on top of a new porta-
bility layer and a policy layer was introduced to abstract the process management code.  
Through the MPM system, a number of strategies have been experimented with - 
including a policy that supports asynchronous writes introduced in the recent 2.2 
release[The Apache HTTP Server Project 2005, #138].

Internal Extensibility. A recurring issue that was raised by developers throughout the 
1.3 series was that it was hard to layer and combine functionality between modules. If a 
developer wanted to extend how REST representations are generated in the Apache han-
dlers, code had to be duplicated between modules. Therefore, a major advance in the 2.0 
release was the addition of a layering system for data to allow principled composition of 
features and resource representation transformations (e.g., on-the-fly compression and 
dynamic page generation). Compatibly integrating this system while maintaining as 
much backward compatibility as possible was a key development challenge.

Another issue with the 2.0 series was the evolution of the mod_proxy code, which 
allows a standard Apache httpd server instance to act as a proxy. Since Apache’s original 
design intended it to act as an HTTP server, the prevailing design assumptions through-
out the code is that the system is an HTTP server not an HTTP client. However, when a 
proxy requests a page from an upstream origin server, it acts as a client in the REST 
architecture. The concept of input and output from the architecture perspective became 
switched with a proxy.  This presented a number of mismatches between mod_proxy 
and the rest of the httpd architecture that required design compromises to compensate.

Integration. A set of extensions to the Apache HTTP Server allow the core server func-
tionality to be integrated into a larger and different architecture.  Through modules such 
as mod_perl and mod_python, new applications around the core Apache HTTP Server 
architecture can be constructed.  For example, the Perl-based qpsmtpd SMTP mail 
server can leverage the features of Apache through mod_perl[Sergeant 2005, #123].  
This arrangement offloads all of the connection management and network socket code 
from Perl to the httpd’s C core, but any extensions to qpsmtpd can be maintained in Perl.

Lessons learned. Portability concerns led to a new portability layer and new run-time 
architecture policy layer; the absence of an internally extensible RESTful representation 

TABLE 5. REST Architectural Constraints: Apache HTTP Server

Constraint Imposed Behavior

Representation Metadata Headers are in a hash-table structure; can be merged

Extensible Methods Yes, through dedicated request field

Resource/Representation Response and request are coupled in the same structure

Internal Transformation 2.0 adds filter support; 2.2 permits more complicated chains

Proxy Can serve as a proxy in 2.0; load-balancing support in 2.2

Statefulness No explicit session management

Cacheability Production-quality in 2.2 release
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required the shoe-horning of filters; early design assumptions of where a node fits in the 
overall REST architecture challenged as the system evolves; use in different server-
based applications.

MICROSOFT INTERNET 

INFORMATION SERVER (IIS)

Microsoft first released their HTTP server named Internet Information Server (IIS) in 
February, 1996.  This initial version of IIS was only available on Windows NT 3.51. 
Over time, it was updated to work on newer releases of the Windows platform.  The 
early releases of IIS featured basic HTTP and FTP serving support.  Over time, more 
features and extensibility models were added.  At the same time, however, many secu-
rity vulnerabilities were exposed in IIS servers.  This led to a number of prevalent 
worms, such as Code Red, on the Internet that spread through the vulnerabilities in 
IIS[Cook 2005, #21, Moore, Shannon 2002, #96].

IIS 6.0, first included with Windows 2003 Server, was the beginning of a security-cen-
tric architectural rewrite for Microsoft’s server products.  At this point, Microsoft also 
renamed IIS to stand for “Internet Information Services.”  After numerous security vul-
nerabilities had to be fixed, Microsoft engineered a number of modifications to the IIS 
architecture with an eye towards security.  Besides being no longer installed by default, 
IIS 6.0 offers a number of features focused on forcing administrator to make security-
conscious decisions about their server.

Portability. From the outset, IIS was only intended to operate on Microsoft’s Windows 
platforms.  Therefore, it can take extreme advantage of Windows-specific functionality 
that are only available on that platform.  However, this means that portability to other 
operating systems is not feasible with the IIS architecture.  One distinction that is chal-
lenged with IIS 6.0 is the separation between the kernel mode and user mode in the 
operating system.

A new kernel-mode driver called http.sys, running at the highest privileges inside the 
Windows kernel, was introduced that takes over a portion of the HTTP functionality 
from the traditional user-mode applications[Microsoft Corporation #71, Wang 2005, 
#152].  The goal of this new driver was to “to increase Web server throughput and scal-
ability of multiprocessor computers, thereby significantly increasing the following: the 
number of sites a single IIS 6.0 server can host; the number of concurrently-active 
worker processes.”[Microsoft Corporation #72]

Run-time architecture. IIS presents the administrator with two run-time architectural 
models to chose from.  Depicted in Figure 7 on page 21 is the IIS 5.0 isolation mode 
architectural model.  This legacy model is targeted towards “applications developed for 
older versions of IIS that are determined to be incompatible with worker process isola-
tion mode.” [Microsoft Corporation #73]  The downfall of this architectural model is 
that all instances share the same process - one fault could jeopardize the reliability of the 
server.  This architectural fault led to numerous reliability problems[Peiris 2003, #116, 
Web Host Industry Review 2001, #153].

To increase reliability, IIS 6.0 introduces a new run-time architectural option called 
Worker Process Isolation Mode, depicted in Figure 8 on page 21.  This model defines a 
collection of application pools that are assigned to a specific web site - a fault in one 
website will only jeopardize the application pool it resides in.[Microsoft Corporation 
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FIGURE 7. Internet Information Services (IIS5 Compatibility Mode) (From 
[Microsoft Corporation #74])

FIGURE 8. Internet Information Services 6.0 Architecture (From [Microsoft 
Corporation #74])
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#75]  These pools register with the kernel-mode HTTP driver for a particular namespace 
and incoming requests for that namespace is then forwarded to the appropriate user-
space process to generate a response.[Smith 2004, #127]

Internal Extensibility. ISAPI is the code name given to Microsoft’s Internet Server API 
specification, which debuted with the initial release of IIS. Microsoft claims that they 
initially positioned ISAPI to compete with CGI - however it differs substantially from 
CGI.  ISAP modules would be executed inside the server process not outside the server 
process like CGI[Schmidt 1996, #122].  ISAPI modules are required to be compiled as 
Windows DLLs and explicitly inserted into the server configuration.  Therefore, even 
with Microsoft’s initial characterization as ISAPI as a competitor to CGI, we will char-
acterize ISAPI as an internal extensibility mechanism instead of an external extensibil-
ity mechanism.

ISAPI offers two dimensions of access: extensions and filters.  ISAPI extensions must 
be explicitly registered for a configured URI namespace[Microsoft Corporation #76].  
For convenience, specific file types can also be associated with an ISAPI extension - 
files bearing an .asp extension can be mapped to the ASP.dll extension. In this manner, 
extensions are like CGI applications as they create a virtual namespace under its own 
control; however, extensions offers far more control while introducing more security 
risks than CGI applications.  As we will discuss in the following section, ISAPI exten-
sions presented significant source disclosure risks.

ISAPI filters, instead of being explicitly requested, are explicitly configured for a spe-
cific site.  A filter is set up for a specific virtual host and is then executed on every 
request for that virtual host.  The filter can then transform the incoming and outbound 
data before it is processed by other filters or extensions.  In addition, filters can perform 
a number of other tasks, including:[Microsoft Corporation #77]

• Control which physical file gets mapped to the URL

• Control the user name and password used with anonymous or basic authentication

• Run processing when a connection with the client is closed

• Perform special logging or traffic analysis

• Perform custom authentication

While the range of functionality offered through filters is similar to that offered by 
Apache HTTP Server’s hooks, Microsoft recommends that “the work performed by 
ISAPI filters [be] minimized”[Microsoft Corporation #78].  This is because every filter 
is executed on each request which can introduce substantial invocation overhead if it is 
not needed on every request.

Also, as part of the new Worker Process Isolation mode in IIS 6.0, ISAPI Extensions 
and Filters are now relegated to the individual process space of the specific application 
pool.  Since errors in the kernel-mode driver can cause stability problems, it is protected 
from any external modifications.  Yet, this directly constrains what operations can be 
performed by the ISAPI filters.  Previously, raw data filters had the ability to access the 
underlying connection stream to introduce modifications into the data stream.  With the 
new kernel-mode code handling the brunt of the protocol interactions, all of this is 
required to be handled by the http.sys driver directly.  Therefore, any applications that 
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require raw data access must use the lower-security IIS 5.0 isolation mode and bypass 
the HTTP kernel driver.

External Extensibility. IIS 3.0 introduced Active Server Pages (ASP) and is classified 
as a server-side scripting language.  As discussed before, the implementation of ASPs in 
IIS are handled by an ISAPI extension.  Numerous security issues discovered with IIS 
over the years permitted the source code of these ASPs to be disclosed through bypass-
ing these extensions.  This presented a number of security risks as sensitive information 
(such as database usernames and passwords) were often stored inside the ASP files 
under the assumption that the client would never see the source behind these ASP files.  
Eventually, most ASP content developers began to understand that various vulnerabili-
ties would occur which would disclose the source of their files and consequently limited 
the amount of sensitive information in the ASP files themselves.

While IIS 6.0 retains support for ASPs, CGIs, WebDAV, and other server-side technolo-
gies, they must now be explicitly enabled by the site administrator.  Only static content 
will be served by default.  This action is now required “to help minimize the attack sur-
face of the server.”[Microsoft Corporation #79]  Any requests to these inactive services, 
even if they are otherwise installed, will result in an HTTP error being returned to the 
user.

Lessons Learned. Lack of separation in run-time architecture presented serious security 
risks; Installing and activating unnecessary components by default can be dangerous; 
Security constraints can restrict range of functionality that can be provided.

User Agents

Fielding defines a user agent in the REST world as:

A user agent uses a client connector to initiate a request and becomes the ultimate recip-
ient of the response. The most common example is a Web browser, which provides 
access to information services and renders service responses according to the applica-
tion needs.[Fielding 2000, #36, 5.2.3]

TABLE 6. REST Architectural Constraints: IIS

Constraint Imposed Behavior

Representation Metadata Request: Fetch request header with ‘:’
Response: Add headers with manual delimiting[Microsoft 
Corporation 2004, #90]

Extensible Methods HTTP processing by the kernel prevents this with IIS 6.0

Resource/Representation Extensions Response object not clearly defined

Internal Transformation Filters are defined for an entire site
IIS 6.0 further reduces filter flexibility for security

Proxy None

Statefulness ASP session information hides state from ISAPI modules

Cacheability Added in IIS 6.0
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Grosskurth and Godfrey used automated architectural recovery processes to define a ref-
erence architecture for web browsers depicted as Figure 9 on page 24[Grosskurth and 
Godfrey 2005, #50].  Besides producing a reference architecture, they also presented a 
timeline that covers the early history of web browsers as depicted in Figure 10 on 
page 24.  In an earlier work, Grosskurth and Echihabi extracted software architectures 
for several other web browsers[Grosskurth and Echihabi 2004, #49].  For the web 
browsers that they extracted an architecture for and are discussed here, we will present 
their architecture diagrams as well.  However, it should be noted that these architectural 
diagrams are relatively high-level and tell us little about the behavior of the system 
along the prism dimensions we introduced earlier.

FIGURE 9. Web Browser Reference Architecture (From [Grosskurth and Godfrey 
2005, #50])

FIGURE 10. Web Browser Timeline (From [Grosskurth and Godfrey 2005, #50])
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MOSAIC AND DESCENDANTS The migration from text-based browsers to graphical browsers allowed the content on 
the World Wide Web to evolve from hypertext to hypermedia.  One of the earliest suc-
cessful graphical web browsers was NCSA Mosaic which started development in 
1993[National Center for Supercomputing Applications 2002, #106].  Like httpd, 
Mosaic was developed at the National Center for Supercomputing Applications (NCSA) 
at the University of Illinois at Urbana-Champaign. The ability to render images, and 
hence, richer documents, over the World Wide Web was critical in facilitating an explo-
sive growth in web traffic[Kwan, McGrath 1995, #64].

MOSAIC ARCHITECTURE Compared to web browsers today, Mosaic was highly restricted as to what content it 
could render internally.  Mosaic was initially restricted to supporting only the Hyper-
Text Markup Language (HTML), the Graphics Interchange Format (GIF) format, and 
the XPixMap image format (XPM).

Portability. There were several versions of Mosaic that were distributed by NCSA: 
ones for Windows, Macintosh and the various Unix platforms.  While they shared the 
same brand name, they did not share a common architecture.  Each one was written 
independently and had separate release cycles.  By far the most popular version during 
this time was Mosaic for X Windows (X Windows being the standard windowing sys-
tem on Unix platforms).  Therefore, we will restrict the following architecture discus-
sions to Mosaic for X Windows.

Run-time architecture. Since Mosaic was an X Windows program, its architecture fol-
lowed the constraints of X: a single process generated and responded to user events.  
New windows could be created which would request a URL and render the response 
within the window.  Mosaic did support other protocols, including FTP and Gopher, that 
could be accessed through the URL syntax.

External Extensibility. In each HTTP response, there is usually an associated metadata 
field called Content-type.  The presence of this metadata allowed programs such as 
Mosaic to determine how to best render the received representation.  If Mosaic could 
render the content-type natively (such as for HTML, GIF, or XPM), it would display the 
content inside of the browser window.  However, if it was not one of the types that it 
supported, Mosaic relied upon helper applications to render the document.

However, this setup had a significant drawback: these helper applications were truly 
external to Mosaic[Schatz and Hardin 1994, #121].  Mosaic would download the repre-
sentation locally to disk and pass the local file information to the specified application.  
The viewer would then execute independently and render the content separately in its 
own window space.  Thus, a critical aspect of hypermedia was lost: all navigation capa-
bilities stopped once the helper application was launched.

Internal Extensibility and Integration. To help address the loss of navigation through 
unknown media types, an experimental Common Client Interface (CCI) was first 
released with Mosaic 2.5 for X Windows in late 1995[National Center for Supercomput-
ing Applications 1995, #102, Schatz and Hardin 1994, #121].  By this time, most of the 
original Mosaic development team had left to start Netscape, which among other com-
petitors, started their own internal extensibility efforts.  There were also serious inherent 
security problems with CCI - any incoming connection to the CCI TCP port would 
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allow the user to control the browser without any authentication.  Therefore, there was 
little practical adoption of CCI.

CCI allowed for external applications to send instructions to Mosaic: such as navigating 
to a particular page.  One such CCI-enabled application was X Web Teach which 
allowed a teacher to browse websites with student Mosaic instances automatically navi-
gating to the same sites.[Braverman 1994, #15]  Other work with CCI would allow con-
trol of the user interface within Mosaic[Newmarch 1995, #110].  Notably, CCI did not 
allow for drawing of unknown media types within the Mosaic windows.

Lessons Learned. Internal rendering of types facilitate hypermedia, but the lack of tight 
integration for unknown media types present a difficulty in persisting the hypermedia 
experience.

EARLY NETSCAPE

NAVIGATOR  ARCHITECTURE

Even though little code was shared between NCSA Mosaic and the new Netscape Navi-
gator, the key designers behind the two browsers were constant.  Similar to what tran-
spired with NCSA httpd and Apache HTTP Server, a large percentage of the user base 
quickly migrated from the depleted NCSA project to a viable comptetitor - in this case, 
Netscape Navigator.  There was, however, one notable difference between the server 
administrator’s transition to Apache: Netscape, unlike NCSA Mosaic, was only avail-
able for a fee.  However, until its competitors became viable alternatives and undercut 
its prices by giving their browsers away, Netscape had acquired over an 80% market 
share by the summer of 1995[Wilson 2003, #155]  It should also be pointed out that the 
internal codename for Netscape Navigator was Mozilla - which would ultimately resur-
face later.

Given a chance to re-examine past architectural decisions based on their Mosaic design 
experiences, the team decided to address several issues that were unresolved with 
NCSA Mosaic.  Among the key architectural changes were the introduction of more 
current HTML support, Java applets, JavaScript, Cookies, and the introduction of a cli-
ent-side plug-in system to internally incorporate the concept of helper applications.

Portability. Like NCSA Mosaic, Navigator was written in C with versions of Navigator 
available for Unix, Macintosh, Windows, and other platforms.  During this time, Java 
emerged on the scene with its “write once, run anywhere” promises.  Navigator was one 
of the first non-Sun browsers to incorporate applet support - which allowed Java appli-
cations to run inside of the browser[Gosling and Yellin 1996, #44].

TABLE 7. REST Architectural Constraints: Mosaic

Constraint Imposed Behavior

Representation Metadata None

Extensible Methods No

Resource/Representation Content went straight from parser to user’s window

Internal Transformation External viewers only

Proxy Can pass requests to a proxy

Statefulness No state management issues

Cacheability Partially: some features didn’t work ‘right’ with the cache
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As an object-oriented language with integrated memory management and the promises 
of pure portability, the Netscape developers initially found Java an attractive lan-
guage.[Zawinski 2000, #158]  Therefore, Netscape started the process of rewriting Nav-
igator in Java under the codename of “Xena” (the press labeled this effort  “Javigator”).  
Jamie Zawinski, one of the lead Navigator developers, has commented, “I think C is a 
pretty crummy language. I would like to write the same kinds of programs in a better 
language.”[Zawinski 2000, #158]  Unsurprisingly, however, the promises and reality of 
Java were far apart: the portability, efficiency, and confusing mix of concepts caused 
serious problems.  Zawinski eventually concluded, “I'm back to hacking in C, since it's 
the still only way to ship portable programs.”[Zawinski 2000, #158]  Given these techni-
cal problems, Netscape management later cancelled the Java porting effort and only 
released incomplete portions of the Mail client under the code name Grendel[Zawinski 
1998, #157].

Internal Extensibility. One of the significant advances introduced with Navigator was 
the addition of a plug-in architecture.  Developers could now write dynamically-loaded 
plugins to handle specific content-types and render them inside of the browser - instead 
of requiring an external application.  For example, a user who wanted to view a Quick-
Time movie inside of their browser only needed to install a QuickTime plug-in for 
Netscape.  Additionally, if the content type being viewed supported links (such as a 
movie trailer pointing to a website for more information), the plug-ins could further the 
hypermedia context by directing the browser to fetch that URL.  True two-way interac-
tion between the browser and its plugins was achieved.

Plug-ins inside of Netscape can perform the following tasks[Oeschger 2002, #113]:

• draw into a part of a browser window

• receive keyboard and mouse events

• obtain data from the network using URLs

• add hyperlinks or hotspots that link to new URLs

• draw into sections on an HTML page

• communicate with JavaScript/DOM from native code

These plug-ins would be compiled into native code by the developer and distributed to 
the users for installation.  To maintain backwards compatibility and promote their own 
adoption rates, most current web browsers still support loading these original Netscape 
plug-ins.

External Extensibility. Netscape also introduced a number of ways for content design-
ers to influence the behavior of the browser above what could be achieved with simple 
HTML.  The first of these was the introduction of JavaScript[Netscape 1996, #108].  
JavaScript is a client-side scripting language that allows content developers, through 
special HTML tags, to control the behavior of the browser when viewing that specific 
HTML page.  We will discuss JavaScript more completely in “JavaScript” on page 52.

The other key feature that Netscape Navigator introduced was cookies.[Kristol and 
Montulli 1997, #63, Netscape 1999, #109]  As discussed previously in “REST Mis-
matches in HTTP Extensions” on page 6, cookies are one of the most pervasive exam-
ples of non-RESTfulness on the Web.  Cookies allow a server to provide an opaque 
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token to the client as a meta-data field.  The client can then save this cookie and then 
present that same opaque token to the same server in any subsequent requests.  Since the 
server issued the “cookie” in the first place, it can then determine the client that is mak-
ing the request.  Numerous security implications have been discovered through the 
improper use of cookies, but their usage still remains prevalent today.

Lessons Learned. Attempts at porting the web browser to Java failed; Internal extensi-
bility greatly enhanced through client-side plugins; external extensibility enhanced with 
introduction of JavaScript; Statefulness REST constraints violated with the introduction 
of cookies.

NETSCAPE 6.0 / MOZILLA

ARCHITECTURE

After the success of Netscape 4 and the failure of their Java rewrite, the developers 
behind Netscape decided to rewrite the codebase from scratch.  This caused the release 
of Netscape 6.0 to be delayed until April 2000.  One commentator criticized this deci-
sion[Spolsky 2000, #128]:

Netscape 6.0 is finally going into its first public beta. There never was a version 5.0. The 
last major release, version 4.0, was released almost three years ago. Three years is an 
awfully long time in the Internet world. During this time, Netscape sat by, helplessly, as 
their market share plummeted.
It's a bit smarmy of me to criticize them for waiting so long between releases. They 
didn't do it on purpose, now, did they?
They did it by making the single worst strategic mistake that any software company can 
make:
They decided to rewrite the code from scratch.

This period was one of large social turmoil for the project as Netscape was purchased by 
America Online and the Mozilla Foundation was started[Markham 2005, #68].  The 
codebase that eventually formed the basis of Netscape 6.0 was first open-sourced under 
the Mozilla moniker in 1998.  Since the opening of the Mozilla codebase, all subsequent 
Netscape releases were derived to some degree from the Mozilla codebase.

Architecture Recovery Process. As part of the TAXFORM project, Godfrey and Lee 
reconstructed the software architecture behind Mozilla Milestone 9 through an auto-
mated architectural recovery process[Godfrey and Lee 2000, #42].  Milestone 9 was 
first released to the public in August 26, 1999 and represented a web browser, mail cli-

TABLE 8. REST Architectural Constraints: Early Netscape

Constraint Imposed Behavior

Representation Metadata Requests: Meta-data represented as content[Oeschger 2002, 
#113]
Responses: Content-type is the vector for determining viewer

Extensible Methods Only POST and GET methods were supported

Resource/Representation Plug-ins could transform based on representation type

Internal Transformation Content could dynamically change through plug-ins

Proxy Can pass requests to a proxy

Statefulness Introduction of Cookies conflicts with REST

Cacheability Yes
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ent, news reader, and chat engine in one integrated application[Mozilla Foundation 
2002, #100].  Mozilla’s aim with Milestone 9 was to introduce a new networking layer 
called Necko[Mozilla Foundation 2001, #99].  The Mozilla developers justified Necko 
because “Mozilla’s current networking library is in a sorry state” and the old layer “was 
designed for a radically different non-threaded world.”[Harris and Potts 1999, #51]

Godfrey and Lee’s recovered architecture diagram for Mozilla Milestone 9 is presented 
in Figure 11 on page 29. A breakdown of Mozilla’s architectural systems is presented 
Table 9 on page 29. While Godfrey and Lee also provided the number of lines of code 
for each architectural division, we exclude that number here.

Portability. At this point in time, the complete Mozilla codebase consisted of over 
7,400 source files and over two million lines of code in a combination of C and 
C++[Godfrey and Lee 2000, #42]. To place the cost of portability in perspective, God-
frey determined that only 20% of the C files and 60% of the C++ files were actually 
required to operate on the Linux operating system.  To ease the difficulties associated 

FIGURE 11. Mozilla Milestone 9 Architecture (From [Godfrey and Lee 2000, #42])

TABLE 9. Mozilla Architecture Breakdown (From [Godfrey and Lee 2000, #42])

Name Description
Associated 
Subsystems

Associated  
Files

HTMLPres HTML layout engine 47 1401

HTMLParser HTML Parser 8 93

ImageLib Image processing library 5 48

JavaScript JavaScript engine 4 134

Network Networking code 13 142

StdLib System include files (i.e., “.h” files) 12 250

Tools Major subtools (e.g., mail and news readers) 47 791

UserInterface User interface code (widgets, etc.) 32 378

Utility Programming utilities (e.g., string libraries) 4 60

nsprpub Platform independent layer 5 123

xpcom Cross platform COM-like interface 23 224
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with the recovery process, Godfrey therefore eliminated the code that was not required 
on Linux.  Therefore, their analysis did not consider how 80% of the C code or 40% of 
the C++ code fit into rest of the overall architecture.  We believe that removing these 
codes understated the true impact of portability for Mozilla.

Analysis of Mozilla’s Architecture. Godfrey summarized their architectural observa-
tions about Mozilla that “either its architecture has decayed significantly in its relatively 
short lifetime, or it was not carefully architected in the first place”[Godfrey and Lee 
2000, #42].  As can be seen in the figure, the recovered architecture indicates a “near-
complete graph in terms of the dependencies between the different [Mozilla] sub-
systems.”  Their recovered architecture indicated a dependency upon the network layer 
by the image processing layer.  They concluded that  “the architectural coherence of 
Mozilla to be significantly worse than that of other large open source systems whose 
software architectures we have examined in detail.”

It is compelling to compare this rather harsh architectural assessment with that of Bren-
dan Eich, one of the Netscape developers and co-founders of the Mozilla project, who 
remarked in November, 2005[Eich 2005, #24]:

Some paths were long, for instance the reset in late 1998 around Gecko, XPCOM, and 
... XPFE. This was a mistake in commercial software terms, but it was inevitable given 
Netscape management politics of the time, and more to the point, it was necessary for 
Mozilla's long-term success. By resetting around Gecko, we opened up vast new terri-
tory in the codebase and the project for newcomers to homestead.

Godfrey and Lee used an underlying codebase for the architectural recovery which 
included these precise modifications that Eich credits for Mozilla’s “long-term success.”  
Therefore, we must question either the validity of the developer’s informal assessment 
or the faithfulness of reconstructed architecture.  This leads to an interesting line of 
questioning: Were these changes really in the codebase and detectable by the fact 
extractors?  If they were present, did they have any measurable architectural impact at 
this point in time?  If the architectural coherence is “significantly worse” than compara-
ble systems, what does this indicate for the future?  Given the conflicting nature of the 
architectural assessments, it is imperative to continue to trace the evolution of the 
Mozilla codebase with an eye towards its architecture.

Lessons Learned. Need for complete architectural rewrite due to decay allowed compet-
itors to overtake it in the market; challenges in understanding recovered software archi-
tecture in context of evolving systems.
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CURRENT MOZILLA

ARCHITECTURE

In 2004, Grosskurth and Echihabi returned to Mozilla to assess the architecture’s 
progress[Grosskurth and Echihabi 2004, #48].  By this time, Mozilla had launched a 
spinoff product called Firefox.  Firefox differed from Mozilla in that only delivered web 
browsing functionality without any mail-reading functionality.  Most of the resulting 
discussion of the current Mozilla architecture applies to Firefox as well.

Grosskurth and Echihabi’s resulting concrete architecture is presented in Figure 12 on 
page 31.  They also fit this recovered Mozilla architecture into a reference architecture 
for web browsers as presented in Figure 13 on page 32. Finally, we present an architec-
ture diagram created by a manual process and was presented as part of a book on devel-
oping applications with Mozilla in Figure 14 on page 32[McFarlane 2003, #69].

Grosskurth’s architectural recovery techniques were similar in nature to the analysis 
conducted by Godfrey and Lee in 2000.  Therefore, the two sets of resulting architec-
tures can be compared with relative ease. Even though the code size did not increase 

FIGURE 12. Mozilla Concrete Architecture - circa 2004 (From [Grosskurth and 
Echihabi 2004, #48])
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substantially, the striking difference between the two architectural snapshots is that the 
complex graph of intra-module dependencies has now been eliminated. The cyclical 
dependencies that caused Godfrey and Lee to label Mozilla as an exemplar of architec-
tural decay is no longer.

FIGURE 13. Mozilla Architecture (From [Grosskurth and Echihabi 2004, #49] 
Figure 8)

FIGURE 14. Mozilla Architecture (From [McFarlane 2003, #69])
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Grosskurth and Echihabi also termed the Mozilla architecture as a modified pipe-and-
filter system.  However, we believe that this is an over-simplistic classification of 
Mozilla’s architecture.  Features of Mozilla’s architecture, specifically the networking 
layer, do indeed exhibit the characteristics of a pipe-and-filter system[Saksena 2001, 
#120].  However, the higher-level portions of Mozilla, which include the renderer and 
interfaces, have characteristics closer to an event-driven architecture than a pipe-and-fil-
ter architecture.[Larsson 1999, #65]

Internal Extensibility. One of the defining characteristics of this new architectural 
model is the breakdown of components via Cross Platform Component Object Model 
(XPCOM)[Turner and Oeschger 2003, #148].  While XPCOM’s design is inspired by 
Microsoft’s COM system, XPCOM only operates within the Mozilla architecture rather 
than across an operating system[Parrish 2001, #115].  Building upon XPCOM with user 
interface extensions like XPFE[Trudelle 1999, #147], Mozilla now offers third-parties 
the ability to customize all facets of the system dynamically.  This has created a wealth 
of third-party extensions that modify Mozilla’s behavior in a variety of mechanisms.  
New protocols can also be added through XPCOM[Rosenberg 2004, #119].

Even with this new model, Mozilla still supports Netscape plug-ins.  Yet, there is also a 
hidden cost for backwards-compatibility inside the Mozilla architecture for this support. 
The previous Unix-based plug-ins were based on the Motif Xt library, while new plug-
ins are built on top of the GTK+ library[Grosskurth and Echihabi 2004, #48].  There-
fore, run-time emulation is performed with these legacy modules by dynamically trans-
lating Motif calls to GTK+.

Portability. Like all of its architectural predecessors, Mozilla is still written in C and 
C++.  However, JavaScript has been introduced as a critical part of Mozilla: almost all 
Mozilla extensions can now be written in JavaScript via XPCOM[Bandhauer 1999, 
#10].  Therefore, extension developers no longer need to write their extensions in C, but 
instead can access the full flexibility of Mozilla’s interfaces through XPCOM and Java-
Script.

Additionally, Mozilla has built up the Netscape Portability Runtime (NSPR)[Mozilla 
Foundation 2000, #98].  This layer abstracts all of the non-user-interface differences 
between the different platforms that Mozilla supports.  It should be noted that when 
developing Apache HTTP Server 2.0, the Apache developers approached the Mozilla 
developers about using NSPR for their base portability layer as well.  However, licens-
ing differences between these groups caused the construction of the Apache Portable 
Runtime components which is now used by Apache HTTP Server and several other 
projects.

Integration. Through the Gecko engine, other applications can import the functionality 
of Mozilla into their own applications[Evans 2002, #28].  Gecko is described as:

the browser engine, networking, parsers, content models, chrome and the other technol-
ogies that Mozilla and other applications are built from. In other words, all the stuff 
which is not application specific.[Mozilla Foundation 2004, #101]

While applications embedding Gecko have a fine-grained behavior over browsing, it is 
rather inflexible in its approach in that it forces the application to fit the mold of a web 
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browser[Lock 2002, #67].  Therefore, Gecko-derived applications tend to be variants on 
Mozilla but are not functionally much different than Mozilla.

Lessons Learned. Significant effort to clean up architecture; Internal extensibility pro-
vided via JavaScript and C++; distinct rendering engine permits integration by third par-
ties but isn’t sufficiently powerful to permit different kinds of applications

MICROSOFT INTERNET 

EXPLORER

Microsoft’s Internet Explorer can trace its lineage back to the NCSA Mosaic codebase.  
To bootstrap their delivery of a web browser, Microsoft initially licensed the code for a 
web browser from a company called Spyglass.  Spyglass, in turn, was the commercial 
variant of NCSA Mosaic for Windows-based platforms.  However, in the years since the 
first release of Internet Explorer, the corresponding code base and architecture greatly 
evolved to the point where it now has little architectural similarity with the original 
Mosaic architecture.

After Internet Explorer 6 was released, Microsoft disbanded the IE development team.  
Around this same time, a slew of security vulnerabilities were discovered that presented 
extreme risks to their users. Besides limiting the responsiveness to security reports, this 
absence in the market also led to an opening for other competitors to innovate.  Given 
these criticisms and advances made by competitors, Microsoft has recently reformed the 
Internet Explorer team to focus on a new release of Internet Explorer 7 set to coincide 
with the next major Windows release of Windows Vista currently slated for late 2006.  
One of the stated goals of this new version is to revamp Internet Explorer’s architectural 
approach to better support security. Therefore, we will examine the current state of the 
Internet Explorer architecture and look towards the architecture that has been disclosed 
for the upcoming Internet Explorer 7.

INTERNET EXPLORER

ARCHITECTURE

Due to Internet Explorer’s closed-source nature, the lack of access to source code pre-
sents a difficulty to recover a detailed and accurate software architecture representation.  
However, we can rely upon publicly available architectural information made available 
by Microsoft.  One such source, presented in Figure 15 on page 35, is a public architec-
tural description of Microsoft Internet Explorer for Windows CE available on the 
Microsoft Developer Network (MSDN) website.[Microsoft Corporation 2005, #92]  
Another source for architectural information about Internet Explorer is contained within 
recent presentations given by Microsoft’s Internet Explorer development team discuss-

TABLE 10. REST Architectural Constraints: Mozilla and Firefox

Constraint Imposed Behavior

Representation Metadata Visitor pattern on nsIHttpChannel object allows examination 
of metadata for requests and responses

Extensible Methods Yes

Resource/Representation Extensions can now operate on more than just Content-Type

Internal Transformation Changes can occur even without embed tags

Proxy Can pass requests to a proxy

Statefulness Cache can now handle multiple representations over time 
which alleviates the negative stateful impact of Cookies

Cacheability Yes
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FIGURE 15. Microsoft Internet Explorer for Windows CE (From [Microsoft 
Corporation 2005, #92])

FIGURE 16. Microsoft Internet Explorer Architecture (Adapted from [Chor 2005, 
#18])
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ing the impact of security on IE’s architecture.[Chor 2005, #18] This particular architec-
tural representation of Internet Explorer is reproduced in Figure 16 on page 35.

Portability. Besides the ubiquitous Windows versions, there have been versions of 
Internet Explorer released on a variety of non-Microsoft operating systems, including 
Mac OS, Solaris, HP-UX, and a variety of handheld devices.  However, as alternatives 
emerged, these non-Windows platforms have quietly had their support dropped in recent 
years[Microsoft Corporation 2005, #93].  Additionally, the code base behind these ver-
sions of Internet Explorer was often independent of the code base for the main Win-
dows-based version.  Therefore, while the Internet Explorer brand name was shared 
across implementations, behind the scenes, there was usually little in common.  For our 
purposes, we will only consider the Windows-based architectures of Internet Explorer.

Internal Extensibility. With Internet Explorer 4.0, Microsoft introduced a set of Pow-
erToys that allowed developers to produce extensions to Internet Explorer.  These exten-
sions were contained in an HTML file which Internet Explorer would execute to alter its 
behavior.  Example modifications that were supported was controlling the zoom factor 
of an image, listing all of the links on a page, and displaying information about the cur-
rent page.[Microsoft Corporation #80]

In Internet Explorer 5.0, this functionality was broadened to allow modification by 
COM objects and events[BowmanSoft 2001, #14].  At the same time, the feature set was 
renamed to Web Accessories.  One facet of modification was through “bands” which 
dedicate a region of the Internet Explorer window to a third-party extension[Microsoft 
Corporation #81].  These bands can display any desired information in this region 
through any programming language that supports COM objects and events.  New down-
load managers, toolbar buttons, and menu items can be added through Web Accesso-
ries[Microsoft Corporation #82, Microsoft Corporation #83, Microsoft Corporation 
#84]

However, Web Accessories only have access to relatively high-level and coarse-grained 
user-centric events.  A plug-in that wishes to examine the complete HTTP headers for a 
response must install a custom proxy.  This proxy must then interface with the WinInet 
layer to capture the HTTP stream and relay it externally to the Web Accessory plug-in.  
An example of such a system, Fiddler, is provided by Microsoft[Lawrence 2005, #66].

Through the URLmon component, developers can also register an asynchronous plug-
gable protocol to register a new protocol or MIME filter[Microsoft Corporation #85].  
When a resource is requested, Internet Explorer will use the provided URL scheme 
(such as http or ftp) to look up which module defines the protocol interactions.  The 
request is then handed off and the module initates the proper protocol.  Besides raw pro-
tocols, filters can be registered that will be invoked whenever a representation’s mime-
type matches, which allows for custom internal transformations of the representation 
before the user will see the result.

Integration. Through a COM object called WebBrowser, any Windows application can 
import the functionality of Internet Explorer[Microsoft Corporation #86].  All of the 
browsing and parsing functionality is then handled internally by Internet Explorer.  
Additional customizations can be introduced through Browser Helper Objects, which 
allow a developer to customize the look and feel of the browser[Esposito 1999, #27].
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External Extensibility and Run-time Architecture. The run-time architecture of 
Internet Explorer is presented in Figure 16 on page 35.  The external extensibility items 
that are supported are in the “page rendering” layer via the MSHTML components.  In 
addition to the other mechanisms (such as JavaScript through the Script Engine compo-
nent) that IE supports, the key addition with IE is support for ActiveX con-
trols.[Microsoft Corporation #87]  Internet Explorer can act as a container for these 
COM objects and content developers can request their inclusion through special HTML 
tags.   When requested and if it is installed on the client machine, an ActiveX control 
will appear as part of the returned page.  It should be noted that until Internet Explorer 
6.0, ActiveX controls would automatically be downloaded and installed without asking 
permission from the user[Microsoft Corporation 2004, #91].  This presented serious 
security risks.

These security concerns with ActiveX arise from the fact that these controls can perform 
any action on the computer that the current user can perform.[Microsoft Corporation 
#88]  One defensive mechanism that was introduced is that a control developer can mark 
a control as “safe for scripting.”  If an ActiveX control isn’t marked as safe for scripting, 
it can not be executed by Internet Explorer.  Unfortunately, most developers do not have 
enough knowledge about when to mark a control as safe for scripting or not.  Microsoft 
themselves allowed Internet Explorer to be scripted by external sites until IE 
6.0[Microsoft Corporation #89].  Even with these opt-in measures available, as we will 
discuss next with Internet Explorer 7, the lack of privilege separation in Internet 
Explorer 6 and earlier still present significant opportunities for malicious attacks that 
can compromise the system.

INTERNET EXPLORER 7
ARCHITECTURE

Faced with the deluge of security vulnerabilities, Microsoft has embarked on a rewrite 
of Internet Explorer focused on introducing a security-centric architecture to the next 
release of Internet Explorer to be shipped with the upcoming Windows Vista release cur-
rently expected in the second half of 2006.

Internet Explorer’s current Group Program Manager, Tony Chor, admits that “compati-
bility and features trumped security” in previous versions of Internet Explorer[Chor 
2005, #18].  The main problems identified were that various architectural flaws and defi-
ciencies combined to lead to the poor security measures of Internet Explorer.  Among 
those identified was that Internet Explorer led users to be confused about the impact of 
certain choices, architectural vulnerabilities were exposed allowing malicious code to 
be installed, and attacks on the extensibility features present in Internet Explorer.  To 
rectify this situation going forward, this new version introduces a revised architectural 
model aimed at improving the security characteristics of IE.

The core of Internet Explorer 7’s redesigned architecture will rely upon a new feature in 
Windows Vista called user account protection (UAP).  This new operating system fea-
ture segregates the normal day-to-day operation of the user with the administrative func-
tions.  This divide prevents a process from being able to perform malicious activities 
without explicit authorization.  Microsoft claims that “the goal of UAP is to enable the 
use of the Windows security architecture as originally designed in Microsoft Windows 
NT 3.1 to protect the system so that the these [threat] scenarios are blocked.”[Microsoft 
Corporation 2005, #94]
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IE7 will now run at this lower “privilege mode.”  This implies that the IE process will  
be prevented from writing outside a set of specified directories or communicating with 
other higher-privilege processes[Silbey 2005, #126]  If a requested operation (such as 
saving a file) would violate the privilege, the new Windows Vista system will provide 
the user with the ability to block the operation from completing or explicitly allow the 
operation.  Certain high-risk sequences, such as installing an ActiveX control, will 
require administrator rights.

In order to maintain compatibility with previous extensions, the exposed ActiveX inter-
faces will remain the same.  However, any commands that require additional privileges 
will be stopped and explicit authorization will be requested along with a description of 
the command that is being attempted.

Lessons Learned. Again, a lack of separation in run-time architecture presented serious 
security risks; portability strategies mandating independent implementations for each 
platform may lead to maintenance concerns that force eventual product withdrawal; 
appropriately combining with operating system security capabilities can improve over-
all security.

KONQUEROR Konqueror from the K Desktop Environment project (KDE) is one of the few user 
agents that can not trace its heritage to the NCSA Mosaic codebase. Instead, Konqueror 
evolved from the file manager for the KDE environment.  The Konqueror name itself is 
a subtle reference to the other browsers.  The KDE developers explain it thusly:

After the Navigator and the Explorer comes the Conqueror; it's spelled with a K to show 
that it's part of KDE. The name change also moves away from “kfm” (the KDE file 
manager, Konqueror's predecessor) which represented only file management.[KDE e.V. 
2005, #60]

Konqueror’s architecture, as extracted by Grosskurth and Echihabi, is presented in 
Figure 17 on page 39.

Portability. All KDE components are written in C++ with window management duties 
delegated to the QT library.  Befitting Konqueror’s heritage as the file manager on the 
KDE desktop, it is an intrinsic part of the KDE environment and relies heavily upon the 
services provided by other KDE components.  Therefore, Konqueror can not truly be 
viewed as a stand-alone application, but rather as a fundamental part of a desktop envi-

TABLE 11. REST Architectural Constraints: Internet Explorer

Constraint Imposed Behavior

Representation Metadata Event triggered before navigation to view outbound headers
If want to view headers, use a separate proxy server

Extensible Methods No

Resource/Representation Extensions can only operate on content-type

Internal Transformation MIME filters can be registered as protocol handlers

Proxy Security zones allows proxy requests on a zone basis

Statefulness Limited control over cache for state considerations

Cacheability Yes
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ronment.  This limits the portability of Konqueror in that it will operate on any system 
that supports KDE, but due to the large dependency chain, the Konqueror application as 
a whole can not easily be considered separately from KDE.

Run-time architecture and External Extensibility. The application called Konqueror 
is just a relatively thin layer on top of other KDE components.  One of Konqueror’s 
main dependencies is upon the khtml engine which handles the rendering of any 
returned representation (such as for HTML, JavaScript, and CSS).  Through a Kon-
qeuror plugin and operating system emulation, Konqueror can also support ActiveX 
controls.[KDE e.V. 2001, #59]  khtml is also responsible for directly interfacing with 
the networking layer (kio) - therefore, the Konqueror application never directly inter-
faces with the networking layer.  As we will discuss later with Safari, khtml represents 
the most important functional component of Konqueror.

Internal Extensibility. Konqueror’s main extensibility mechanism is through KDE’s 
KParts component framework[Faure 2000, #29].  Through KParts, a developer can ren-
der  media elements inside the Konqueror window[Granroth 2000, #45].  However, 
KParts only really supports embedding of an application inside of a Konqueror window.  
KParts does not specifically permit a developer to alter the look and feel of the Kon-
queror application.

If extensions to the underlying protocol are desired, new protocols can be added through 
KDE’s networking layer.  All protocols that are supported by Konqueror are handled 
through ioslaves.  The KDE input/output layer understands the concepts of URLs and 
can delegate protocol handling to registered modules.  However, there is no mechanism 

FIGURE 17. Konqueror Architecture (From [Grosskurth and Echihabi 2004, #49] 
Figure 12)
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to extend a specific URL handler - therefore, any extensions to a protocol would have to 
be handled through a completely separate kioslave mechanism.

Lessons Learned. Evolution from a different application; tight integration with other 
layers of platform offers compartmentalization, but it blurs the distinction between an 
application and the platform it is on top of.

SAFARI In 2003, Apple announced the Safari Web Browser for their Macintosh OS X platform.  
Until this time, the prevailing browser on Mac OS X was Microsoft’s Internet Explorer 
for Macintosh.  In the words of one expert on CSS, with Internet Explorer for Macin-
tosh, “the port (of Internet Explorer) to OS X has gone horribly wrong, and I've written 
5.2 off.”[Koch 2004, #62].  Therefore, Apple decided to produce their own browser; but 
instead of writing the browser from scratch, they decided to examine other alternatives.

TABLE 12. REST Architectural Constraints: Konqueror

Constraint Imposed Behavior

Representation Metadata Konqueror itself does not have access to any metadata

KHTML and kio do to varying extents

Extensible Methods New URL scheme would be required

Resource/Representation KHTML modifications based upon content-type

Internal Transformation kio layer has concept of filter transformations

Proxy Can pass requests through the kio layer

Statefulness Explicit state support

Cacheability Yes, handled by the KHTML and kio layer

FIGURE 18. Safari Architecture (From [Grosskurth and Echihabi 2004, #49] 
Figure 14)
40 Architectural Styles of Extensible REST-based Applications



User Agents
Run-time architecture. As seen in Safari’s architecture, as extracted by Grosskurth and 
Echihabi and presented in Figure 18 on page 40, Safari is based upon Konqueror’s 
KHTML rendering engine and KJS JavaScript engine.  Apple’s development manager 
explained their choice to the KDE community as follows:

The number one goal for developing Safari was to create the fastest web browser on 
Mac OS X.  When we were evaluating technologies over a year ago, KHTML and KJS 
stood out.  Not only were they the basis of an excellent modern and standards compliant 
web browser, they were also less than 140,000 lines of code.  The size of your code and 
ease of development within that code made it a better choice for us than other open 
source projects.  Your clean design was also a plus.  And the small size of your code is a 
significant reason for our winning startup performance.[Melton 2003, #70]

Since a number of developers on Apple’s Safari team had previously worked for 
Netscape on Mozilla, the implied questions that quickly arose focused on why Apple 
did not choose Mozilla for their engine instead.  Many viewed this as an attack on 
Mozilla[Festa 2003, #30].  A Mozilla contributor, Christopher Blizzard, dismissed those 
claims as follows:

First of all, I don't think that we should be having the Safari vs. Mozilla/Chimera dis-
cussion at all. It takes our eyes off of the real prize (Internet Explorer) and that which 
we all should be worried about. I mean, if you control the browser, you control the 
Internet. It sounds kooky, but it's true. When we squabble amongst ourselves it doesn't 
do us any good.
That being said, I do have a few things to say about the fact that Apple is going this 
alone. First, it's great that they decided to choose an open source solution, even if it isn't 
Mozilla. If they manage to engage the KHTML community and get well integrated with 
them then they have the chance to enjoy the fruits of that relationship, like as we have 
with the Mozilla project. ...
Now, is our layout engine huge and ungainly and hard to understand? Yes. Yes it is. And, 
at least to some degree it's important to understand that Mozilla's layout engine has 
warts because the web has warts. It's an imperfect place and that leads to imperfect 
code. Remember that while KHTML is a good bit smaller than our layout engine, it also 
doesn't render a lot of sites anywhere near as well as Mozilla does. Over time, they are 
going to have to add many of the same warts to KHTML as we have to our layout 
engine. They might be able to do so in a more clean way, but they will still be 
there.[Blizzard 2003, #13]

Portability. Safari extracted the KHTML and KJS code from KDE and used that as the 
base rendering engines for their web browser.  The main consequence of this is that the 
rendering characteristics of Safari and Konqueror are largely the same because they use 
the same rendering components.  However, this extraction did not change the implemen-
tation language of the KDE components (which was originally in C++), therefore Safari 
relies upon a wide mix of programming languages to achieve its tasks: ranging from C, 
C++, Objective-C, and Objective-C++.

All of the code in KHTML that depends on the KDE component foundation had to be 
changed to work on Mac OS X’s foundation instead.  For example, all of the windowing 
primatives based on QT in KHTML had to be adapted to Mac OS X’s Cocoa interfaces.  
According to one Mozilla developer, Safari “also took one of the most complex and 
effort-intensive parts of Gecko (Mozilla’s rendering engine), the view manager, to add 
to KHTML, because Gecko's worked so well.”[Baker 2003, #9, Shaver 2003, #124]
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Internal Extensibility. Safari supports two kinds of extensibility mechanisms: 
Netscape-compatible plug-ins and WebKit[Apple Computer Inc. 2005, #3].  To ease the 
transition for prospective users and developers, plug-ins designed against the Netscape 
plug-in interface will work with Safari without any source modification.  The end-user 
only needs to receive a Mac OS X-compiled version of the Netscape plug-in from the 
developer.  Recent versions of Safari also offer custom extensions to the Netscape plug-
in architecture to support scripting functions[Apple Computer Inc. 2005, #4]

On top of support for Netscape plug-ins, Safari also offers a set of extensions in Objec-
tive-C called WebKit[Apple Computer Inc. 2005, #5, Apple Computer Inc. 2005, #6].  
Extensions written for WebKit allows use of Apple’s bundled development tools for 
easy construction.[Apple Computer Inc. 2005, #7]  Since most of Apple’s Mac OS X 
extensions are already written in Objective C, the learning curve for the WebKit frame-
work is not high for developers who are already familiar with Apple’s extension frame-
works.  Therefore, WebKit’s target audience is squarely those who are already familiar 
with Apple’s frameworks not those who are interested in just the web browsing func-
tionality.

Integration. By leveraging the WebKit interface, applications on Mac OS X can reuse 
the services provided by Safari.  Dashboard, a new widget system introduced in Mac OS 
X 10.4, uses the WebKit engine for retrieving dynamic content and rendering the items 
on the user’s screen.[Apple Computer Inc. 2005, #8] Contrary to statements which have 
stated otherwise, the iTunes player on Mac OS X does not use WebKit.[Hyatt 2004, 
#56]  Since WebKit would not likely be available on other platforms due to its extreme 
dependency on Mac OS X services, this would preclude iTunes from using WebKit 
because a major platform target for iTunes is Windows.

Lessons Learned. Possible to take generic, portable code and make it optimized for only 
one platform; OS’s native framework system allows any application to integrate a web 
browser; applications that use WebKit only work on that OS though.

Libraries and Frameworks

The origin servers and user agents we have examined so far provide a complete usable 
system aimed at either content providers and interested end-users.  However, not all 

TABLE 13. REST Architectural Constraints: Safari

Constraint Imposed Behavior

Representation Metadata Dictionary of all header fields for HTTP objects

Extensible Methods Like KDE, new URL schemes required to extend methods

Resource/Representation Response and Request have defined objects

Internal Transformation Modifications of returned HTML content through DOM

Proxy Can pass requests to a proxy

Statefulness Each application can define a policy for accepting cookies

Cacheability Yes, on a per-application basis
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RESTful applications fit the mold of an HTTP server or web browser.  Some applica-
tions which take part of the RESTful part follow a completely different interaction para-
digm.  To serve these needs, a collection of RESTful frameworks have emerged to 
provide the structural necessitities for these applications.  Again, we will limit ourselves 
to the criteria presented in “Selecting Appropriate RESTful Applications” on page 7.

One notable characteristic of this classification of systems is that most of the systems 
described here do not provide support for external extensibility mechanisms.  Interpreta-
tion of HTML, JavaScript, and CSS are typically associated with the role of web brows-
ers.  Therefore, developers looking to integrate web browsing into their application will 
tend to integrate one of the user agent architectures instead of using one of these frame-
works.

LIBWWW Having been around in some form since 1992, one of the oldest frameworks for design-

ing and constructing HTTP applications is libwww1 [Aas 2004, #1, Fielding 1998, #32, 
Kahan 2003, #57]. libwww has been used to design and develop a variety of HTTP cli-
ent applications, such as the Amaya web browser [Vatton 2004, #151]. 

Portability and Run-time Architecture. libwww is written in C and has been explic-
itly ported to Unix, Windows, and Macintosh platforms.  However, there is no portabil-
ity layer - so all developers using libwww must explicitly handle platform differences 
themselves.  While not directly supporting threads, libwww is built upon an event loop 
model[Nielsen 1999, #111].  An application can register its own event loop that will be 
called whenever an event is triggered.  Through this event loop and non-blocking net-
working performance, libwww can handle multiple connections simultaneously.

Internal Extensibility. There have been conflicting descriptions about the underlying 
architecture of libwww. One popular description of the architecture of W3C’s libwww 
can be found in Chapter 7 of Bass [Bass, Clements 1998, #11]. Here, the architecture of 
libwww is divided into five layers: application, access, stream, core, and generic utili-
ties. They also claim that libwww can be utilized to construct both server and client-side 
HTTP applications. Finally, they present the following lessons that can be learned from 
libwww: 1) Formalized APIs are required; 2) A layered architectural style must be 
adopted; 3) An open-ended set of features must be supported; 4) Applications should be 
thread-safe.

However, the original designers of libwww have presented their architecture as a “Coke 
Machine” architecture [Frystyk Nielsen 1999, #39]. This view of the architecture pro-
vides designers with a wide range of functionality, in no particular ordering, that can be 
used to construct a RESTful application. Furthermore, while libwww could theoreti-
cally be used to write server applications, the stated intent is for W3C’s libwww to be a 
“highly modular, general-purpose client side Web API written in C.” [Kahan 2003, #57] 
Hence, the express focus of libwww is therefore on helping to develop HTTP clients not 
servers. The initial positioning as an HTTP client framework introduces fundamental 

1. This name is shared by at least two unrelated libraries; we refer to the W3C’s C-based libwww.
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assumptions throughout the framework that raise serious challenges when designing 
applications with libwww for other REST connector types.

Lessons Learned. Providing a framework that is not inherently coupled to a web 
browser is feasible; however, interface is too limited to use it for any other REST node.

CURL cURL (“client for URLs”) is an open-source project focused on facilitating the retrieval 
or transmission of content with a wide range of protocols through URLs[Stenberg 2006, 
#132].  Two sub-projects are distributed as part of Project cURL: libcurl, a C library, and 
curl, a command-line program built on top of libcurl.  Since the curl command-line pro-
gram is a thin wrapper on top of libcurl, we will focus principally on the attributes of 
libcurl.  libcurl provides support for a number of protocols, including FTP, HTTP, TEL-
NET, and LDAP and is available on most currently available operating systems.

As of this writing, the main author behind cURL is currently embarking on a ‘high per-
formance’ version of cURL, called hiper, that will add HTTP Pipelining and a greater 
degree of parallelism [Stenberg 2005, #131].

Portability. libcurl is written in C and has been ported to almost all modern operating 
systems today.  Additionally, libcurl also has a number of bindings to over 30 different 
languages available (such as Java, Python, Perl, Lisp, and Visual Basic).  Therefore, a 
developer can leverage libcurl in their preferred programing language.  This process is 
helped by the fact that almost all programming languages provide some mechanism for 
interacting with C libraries.  However, these bindings are not uniform in the functional-
ity provided.  Each language binding provides a range of libcurl’s functionality.  Some 
of these bindings export only the minimal functionality of libcurl (such as the easy inter-
faces), while other bindings provide the complete functionality of libcurl to that particu-
lar language.

Run-time Architecture. libcurl offers two interfaces for developers: an easy interface 
and the multi interface.  With the easy interface, a developer can simply provide a URL 
and the response will be emitted to the end-user’s screen by default.  With the multi 
interface, a number of requests can be handled simultaneously by libcurl.  However, the 
libcurl design specifically requires that any application using the multi interface manage 
any threads and network connections independently.  Therefore, if a developer wishes to 
multiplex across different connections in a threading environment, they must manage 
the asynchronous communication without libcurl’s assistance.  This greatly increases 

TABLE 14. REST Architectural Constraints: libwww

Constraint Imposed Behavior

Representation Metadata Restricted set of headers that can be set or fetched

Extensible Methods Yes

Resource/Representation Separate request and response structures

Internal Transformation Filter mechanisms to morph content with chaining

Proxy Can pass requests to a proxy

Statefulness Cookies can be handled through extension mechanisms

Cacheability Yes
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the burden on developers attempting to use libcurl; therefore, most libcurl extensions 
tend to shy away from the multi interface.

Internal Extensibility. A developer can extend the functionality of libcurl through the 
use of options.  These options are in the form of key-value pairs that are set by the appli-
cation before the communication process with the server begins.  At specific well-
defined points in time, libcurl will examine its options to determine if and how its 
behavior should be altered.  For example, a callback function can be provided that will 
be invoked whenever libcurl wants to write the response to a request.  By default, libcurl 
will write to the user’s screen; by replacing that option with a callback to a developer-
defined function, the application can process the response in memory or other tasks as 
desired.

Importability. The main application that uses libcurl is the curl command-line client 
itself.  curl provides users with the ability to tranfer files through URLs and supports all 
of the underlying protocols that libcurl supports.  A selection of applications that use 
libcurl include[Stenberg 2006, #133]:

• clamav -  a GPL anti-virus toolkit for UNIX

• git - Linux source code repository tool

• gnupg - Complete and free replacement for PGP

• libmsn - C++ library for Microsoft's MSN Messenger service

• OpenOffice - a multiplatform and multilingual office suite

None of these applications would be viewed as traditional RESTful applications like a 
web server or browser, but each of them incorporates RESTful functionality through lib-
curl.

Lessons Learned. Truly different applications from a web browser can be created on top 
of a RESTful framework; providing support for a vast range of languages can increase 
penetration; multiple interfaces allow for a gentle learning curve.

HTTPCLIENT /

HTTP COMPONENTS

The Apache Software Foundation’s Jakarta Commons HTTPClient library is a Java-
based HTTP client framework.  HTTPClient focuses on “providing an efficient, up-to-

TABLE 15. REST Architectural Constraints: libcurl

Constraint Imposed Behavior

Representation Metadata Requests: Private linked list; can add headers
Responses: Metadata combined with data stream

Extensible Methods Yes

Resource/Representation Lack of separation between the resource being requested and 
the returned representation

Internal Transformation Option mechanism allows only one level of chaining

Proxy Can pass requests to a proxy

Statefulness Explicit support for setting, preserving, or ignoring cookies

Cacheability No
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date, and feature-rich package implementing the client side of the most recent HTTP 
standards and recommendations.”[The Apache Software Foundation 2005, #144] Note 
that, as of this writing, the project is preparing to be renamed to “Jakarta HTTP Compo-
nents.”

Portability. HTTPClient is written in the Java programming language, therefore it 
requires a Java Virtual Machine (JVM) to operate.  While Java does provide a simple 
HTTP client interface in its standard class libraries, it is not easily extensible and does 
not support a wide-range of features.  Therefore, HTTPClient focuses on offering a 
more complete range of features compared to the built-in Java interfaces.  An overview 
of replacement Java HTTP client frameworks are available at [Oakland Software Incor-
porated 2005, #112].

Run-time Architecture. HTTPClient will attempt to reuse connections via HTTP 
Keep-Alive’s wherever possible via connection pooling strategies.  Therefore, HTTP-
Client requires that developers explicitly release a connection after it is done to return it 
to the connection pool.  If the connection is still viable and has been released while 
another request is conveyed to the same server, it will reuse the open connection.  
HTTPClient can also support multiple concurrent connections through its MultiThread-
edHttpConnectionManager class.  Each connection is allocated to a specific thread with 
the manager class being responsible for multi-plexing the active connections efficiently 
across threads.

Internal Extensibility. Since HTTPClient is written in Java, it is also written in an 
object-oriented manner.  Therefore, any core HTTPClient class can be extended and 
replaced to alter its functionality.  For instance, HTTP methods are introduced by 
extending the primitive method classes.  HTTPClient also supports a wide-range of 
authentication mechanisms through this same object-oriented extensibility mechanisms. 
HTTPClient also supports altering its protocol compliance through the use of a prefer-
ence model.

Importability. Due to the choice of Java, most usage of HTTPClient is restricted to 
Java applications.  Still, a broad range of applications have emerged using HTTPClient.  
The following is a selection of applications which have been written on top of HTTPCli-
ent[The Apache Software Foundation 2005, #145]:

• Jakarta Slide - a content repository and content management framework

• Jakarta Cactus - a simple test framework for unit testing server-side Java code

• LimeWire - a peer-to-peer Gnutella client

• Dolphin - a Java-based Web browser

• Mercury SiteScope - a monitoring program for URLs and lots more

TABLE 16. REST Architectural Constraints: HTTPClient

Constraint Imposed Behavior

Representation Metadata Metadata fields part of request and response objects

Extensible Methods Yes

Resource/Representation Separates request and response streams as discrete objects
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Lessons Learned. Possible to construct RESTful frameworks in Java; however, applica-
tions using HTTPClient are realistically limited to only those applications written in 
Java.

NEON neon differs from the other client frameworks mentioned so far in that it is focused on 
supporting a specific extension to HTTP: WebDAV[Orton 2005, #114].  Web Distrib-
uted Authoring and Versioning (WebDAV) is an official extension of HTTP which facil-
itates multiple authors collaboratively editing REST resources[Clemm, Amsden 2002, 
#19, Goland, Whitehead 1999, #43, Whitehead and Wiggins 1998, #154].  Therefore, in 
addition to basic HTTP client functionality, neon offers a number of features that are of 
specific interest to WebDAV clients.

Portability. The neon library is written in the C programming language which does not 
have explicit memory management support.  Therefore, neon does offer some memory 
management capabilities on top of the standard C libraries.  neon can be configured in a 
special memory-leak detection mode which tracks all allocations to the source files 
where the allocation was initially made.  Still, all memory allocations must be explicitly 
deallocated or leaks will occur.

Since neon is not built on top of an explicit portability layer, it must therefore handle all 
of the differences between platforms itself.  neon offers support for Windows explicitly.  
Unix-based platforms are supported through GNU autoconf, which facilitates  auto-dis-
covery of most features of platform.[Free Software Foundation 2005, #38]  Addition-
ally, bindings to the Perl language are available for neon.

Internal Extensibility. Like libcurl, neon offers two levels of interfaces: a simple inter-
face and a low-level interface.  Most developers can leverage the simple interfaces to 
perform basic HTTP client tasks.  These simple interfaces wrap a more intrinsic inter-
faces which help shields the user from unnecessary complexities.  If more complicated 
client operations are required, the lower-level interfaces are available for use.

Extensibility with neon occurs through passing callbacks pointers that are then invoked 
at certain points in time during the response lifecycle.  With WebDAV methods, many of 
the responses are often XML-based.  To provide assistance to applications interacting 
with WebDAV,. neon offers the ability to give callback functions that are invoked during 
the XML parsing stage.  This allows the application not to have to deal with the parsing 
themselves while retaining the ability to see the parsed data.

Run-time architecture. neon presents a synchronous network-blocking run-time archi-
tecture.  When a user requests a URL from neon, control will not be returned until the 
response has been completely handled by the registered handlers and readers.  In addi-

Internal Transformation Extensible object model allows for one level of chaining

Proxy Can pass requests to a proxy

Statefulness Explicit support for setting, preserving, or ignoring cookies

Cacheability No

TABLE 16. REST Architectural Constraints: HTTPClient

Constraint Imposed Behavior
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tion to these readers, neon offers the ability to receive notifications at certain connec-
tion-level events (such as when a connection is established).  At this time, neon does not 
support handling multiple connections at the same time.

Importability. Due to neon’s focus on incorporating WebDAV-friendly features, appli-
cations that take advantage of WebDAV are the target audience.  Since WebDAV is an 
extension to HTTP, neon can also perform HTTP tasks as well[Stenberg 2003, #130].  
Applications that use neon include:

• Litmus - a WebDAV server test suite

• Subversion - a version control system that is a compelling replacement for CVS 
which uses WebDAV

• davfs2 - WebDAV Linux File System

Lessons Learned. A RESTful framework that focuses on providing support for an 
HTTP extension (in this case, WebDAV) is possible and desired for those applications 
that use these extensions.

SERF Serf is an HTTP client framework that is inspired by the Apache HTTP Server’s 
design[Stein and Erenkrantz 2004, #129].  Serf was designed by some of the principal 
architects of Apache HTTP Server.  (This author is one of those architects behind serf.)  
One of serf’s principal goals was to explore the question of whether a REST-centric 
framework written for an origin server can also apply to a client.  Due to these goals, 
serf shares a lot of conceptual ideas with the Apache HTTP Server.  Besides transporting 
these ideas to a client, Serf also takes the opportunity to rethink some of the design deci-
sions made by the Apache HTTP Server.

Portability. Serf is written in C on top of the Apache Portable Runtime (APR) portabil-
ity layer.  This is the same portability layer currently used by Apache HTTP Server.  
Therefore, the cost of portability are shared with a much larger project that already has 
an established portability layer.  Additionally, serf uses the same pool-based memory 
management model used by Apache HTTP Server.  Therefore, serf’s memory model is 
similar to that of Apache HTTP Server’s.

Internal Extensibility. The key extensibility concept in serf is that of buckets.  These 
buckets represent data streams which can have transformations applied to them dynami-

TABLE 17. REST Architectural Constraints: neon

Constraint Imposed Behavior

Representation Metadata Request: Add metadata fields to request structure

Response: Register callbacks for specific metadata names

Extensible Methods Yes

Resource/Representation Separate request and response structures

Internal Transformation Explicit function to support a representation transformation

Proxy Can pass requests to a proxy

Statefulness Cookie support either enabled or disabled by developer

Cacheability No
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cally and in a specific order.  This name can trace its origins through Apache HTTP 
Server[Woolley 2002, #156] and, from there, back to the libwww-ada95 library[Field-
ing 1998, #33].  In turn, this layering concept is related to Unix STREAMS[Ritchie 
1984, #118].

Serf’s usage of buckets has more in common with the Onions system of libwww-ada95 
than with Apache HTTP Server’s bucket brigade model. The description of Onions 
described its model as:

A good network interface should be constructed using a layered paradigm in order to 
maximize portability and extensibility (changing of underlying layers without affecting 
the interface), but at the same time must avoid the performance cost of multiple data 
copies between buffers, uncached DNS lookups, poor connection management, etc.  
Onions are layered, but none of the layers are wasted in preparing a meal.[Fielding 
1998, #34]

However, Onions was only implemented as an abstract layer without any actual client 
implementations completed.  Apache HTTP Server 2.x implemented a complete system 
around their bucket brigade system and serf based its initial bucket types on the choices 
represented in Apache HTTP Server.  Therefore, serf represents a fusion of the concepts 
behind Onions and the concrete contributions of Apache HTTP Server.

Run-time architecture. Serf is designed to perform non-blocking network connections 
- this means that, at no time, do serf buckets wait to write or read data on the network.  
Therefore, the buckets can only process the immediately available data.  This decision 
was made to allow serf to handle more connections in parallel than other synchronous 
(network-blocking) frameworks.  If no data is available to be written or read on any 
active connection, serf will leverage platform-specific optimizations to wait until such 
data is available (such as polling).  Therefore, serf can gracefully scale up to handling 
large numbers of network connections in parallel as it will only be active when data is 
immediately available.

This decision to support asynchronous network behavior comes at a cost of extra com-
plexity in writing buckets for serf.  This complexity is related to the fact the bucket can 
not wait for the next chunk of data - only the connection management code can perform 
these wait operations.  In order to address this concern, serf buckets must be written fol-
lowing the behavior of a finite-state machine.  If enough data is not available to proceed 
to the next stage, then the bucket must indicate that it can not proceed further.  After all 
connections reach this exhausted state, the connection manager will then enter the wait-
ing state until more data is received.

Importability. At this point, no specific applications exist which use serf.  A simple 
program which fetches resources using serf is available.  There is also a proof-of-con-
cept threading spidering program that uses serf’s parallelization and pipelining capabili-
ties.  Plans are currently in place to integrate Subversion with serf.  The rationale behind 
this integration is that Subversion has introduced a number of custom WebDAV methods 
for performance reasons because neon does not support HTTP pipelining[Erenkrantz 
2005, #26].  We believe that that serf can resolve these performance problems and 
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remove the need for custom methods solely for performance reasons[Roy’s post about 
REPORT considered harmful].

Lessons Learned. Possible to reuse portability layers from a RESTful server (Apache 
HTTP Server) in a RESTful framework; asynchronous behavior places additional con-
straints on developers; transformations through STREAM-like interfaces increases flex-
ibility in transformations

Constructing RESTful Application Architectures

Even in the presence of these systems that have been described so far, these architec-
tures do not fully describe all RESTful applications.  Fully-functional REST applica-
tions, like electronic-commerce web sites, leverage these architectures already 
described to build a larger application.  However, the fact that particular internal archi-
tectural constraints foster the benefits provided by REST does not imply that an applica-
tion building upon that style could never violate the REST principles.  We will now 
examine a few technologies that are commonly used to build RESTful applications and 
how they interact with the REST constraints.

COMMON GATEWAY 

INTERFACE (CGI)

NCSA described a prototypical Common Gateway Interface (CGI) application as:

For example, let's say that you wanted to “hook up” your Unix database to the World 
Wide Web, to allow people from all over the world to query it. Basically, you need to 
create a CGI program that the Web daemon will execute to transmit information to the 
database engine, and receive the results back again and display them to the client. This 
is an example of a gateway, and this is where CGI, currently version 1.1, got its ori-
gins.[National Center for Supercomputing Applications 1995, #103]

A CGI program can be written in any compiled programming language (e.g. C, Java, 
etc.) or can be interpreted through a scripting language (e.g. Unix shell, Perl, Python, 
TCL, etc.). The only requirement is that the CGI must be executable on the underlying 
platform.  When a CGI program is invoked by httpd, the CGI program can rely on four 
ways to transfer information from the CGI program and the webserver and vice versa:

• Environment variables: determine the metadata sent via the HTTP request

TABLE 18. REST Architectural Constraints: serf

Constraint Imposed Behavior

Representation Metadata Requests: Add metadata fields to request bucket

Responses: Retrieve metadata bucket chain from response

Extensible Methods Yes

Resource/Representation Explicit response and request buckets

Internal Transformation Multiple transformations can be applied independently

Proxy Can pass requests to a proxy

Statefulness No cookie support

Cacheability No
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• Command line: determine if there are any server-specific arguments

• Standard input: receive request bodies from the client (such as through POSTs)

• Standard output: Set the metadata and data that would be returned to the client

Example CGI Applications. Deployment of CGI was common by 1994 and documen-
tation relating to CGI was included in the NCSA HTTPd documentation.[National Cen-
ter for Supercomputing Applications 1995, #104] The NCSA HTTPd 1.3 release 
included a number of example CGI scripts. One example included in NCSA HTTPd 1.3 
was an order form for Jimmy John’s submarine shop located in Champaign, Illinois 
(cgi-src/jj.c). Upon initial entry to the submarine shop site, an order form was dynami-
cally presented to the user listing all of the ordering options: subs, slims, sides, and pop. 
The user would then submit an HTML form for validation.  The jj CGI script would 
then validate the submitted form to ensure that the name, address, phone, and a valid 
item order was placed correctly. After validation, orders were then submitted via an 
email to FAX gateway for further processing.

REST Constraints. We begin to see a constraint of the external architecture peeking 
through with CGI: HTTP mandates synchronous responses.  Therefore, while the CGI 
program was processing the request to generate a response, the requestor would be ‘on 
hold’ until the script completes. During the exection of the script, NCSA warned that 
“the user will just be staring at their browser waiting for something to happen.”[National 
Center for Supercomputing Applications 1995, #103]  Therefore, CGI script authors 
were advised to make the execution of their scripts short so that it did not cause the user 
on the other end to wait too long for the response.

CGI introduced clear support for two REST constraints: extensible methods and 
namespace control.  Although, CGI was most commonly used with the GET and POST 
HTTP methods, other methods could be indicated through the passed 
REQUEST_METHOD environment variable.  This allows the CGI script to respond to 
new methods as they are generated by the client.

Additionally, CGI scripts could define an arbitrary virtual namespace under its own con-
trol.  This was achieved by the PATH_INFO environment variable. NCSA’s CGI docs 
describe PATH_INFO as:

The extra path information, as given by the client. In other words, scripts can be 
accessed by their virtual pathname, followed by extra information at the end of this 
path. The extra information is sent as PATH_INFO. This information should be decoded 
by the server if it comes from a URL before it is passed to the CGI script.

For example, if a CGI program is nominally located at /cgi-bin/my-app, then a request 
to /cgi-bin/my-app/this/is/the/path/info, would execute the my-app CGI program and the 
PATH_INFO environment variable would be set to “/this/is/the/path/info”.  This pre-
sents the appearance of a namespace that the CGI script can respond to appropriately.

HTML FORMS A browser supporting HTML forms allows a content developer to allow the end-user to 
fill out fields on a web page and submit these values back to the server.  Without forms, 
the interaction a user could have with a site was relatively limited as they could not 
specify any input to be submitted to the server other than the selection of a hyperlink.  A 
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simple example of an HTML form as it would appear to a user as shown in Figure 19 on 
page 52.

As shown above, there are two key HTML tags in an HTML form: form and input.  The 
form tag declares to the browser that a form should be displayed.  Within the form tag, 
the method attribute indicates whether a GET or POST method should be used when the 
form is submitted and the action attribute specifies what URL the method should be per-
formed on.  The input tag defines all of the fields in the form. The type attribute  indi-
cates the format of the data field.  A special type attribute is the “SUBMIT” field which 
indicates that when this button is selected, the entire form is submitted to the server.

Deployment. NCSA Mosaic for X 2.0, released in November 1993, was one of the first 
browsers to support FORM tags.[Andreessen 1993, #2, National Center for Supercom-
puting Applications 1999, #105]  A specification of forms was first included in HTML+ 
announced in November 1993 as well[Raggett 1993, #117].  Almost all browsers after 
that point included HTML forms support and form usage remains a cornerstone of web-
sites to this day.

REST Constraints. Forms have a particular interaction within the REST semantics.  
For a “GET” action form, the data is submitted appended to the specified URL as a 
query string using the GET HTTP method.  In the example above, if a user typed ‘John’  
into the ‘first’ field and ‘Smith’ into the ‘last’ field and chose to submit the form, the 
corresponding GET request would look like:

http://www.example.com/cgi-bin/post-query?first=John&last=Smith

However, if the action specified a “POST”, that same form would be submitted to the 
http://www.example.com/cgi-bin/post-query resource with the following request body:

first=John&last=Smith

Limitations in early browsers limited the amount of data that could be appended to a 
GET query string; therefore, usage of forms gravitated towards POST forms instead of 
GET.  Depending upon the meaning of form submissions (specifically whether or not it 
changed the underlying resource), this could be an incorrect usage of the POST method.

JAVASCRIPT As discussed in “Early Netscape Navigator Architecture” on page 26, JavaScript was 
first introduced with Netscape Navigator in 1995.  JavaScript is a client-side interpreted 
scripting language that allowed content developers, through special HTML tags, to con-

<FORM METHOD="POST" ACTION="http://www.example.com/cgi-bin/post-query"> 
First Name: <INPUT NAME="first"><br/>
Last Name: <INPUT NAME="last"><br/>
To submit the query, press this button: <INPUT TYPE="submit" VALUE="Submit">.
 </FORM>

FIGURE 19. Form Browser Example (HTML snippet and screenshot)
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trol the behavior of the browser.[Champeon 2001, #17]  Therefore, it differs from 
server-side scripting languages like PHP in that it is executed within the context of the 
user agent - not that of the origin server.  However, the content developer still remains in 
control of the script.  After the success of Navigator, almost all browsers subsequently 
introduced JavaScript support.  Additionally, the JavaScript language is now an ECMA 
standard.[Eich and Clary 2003, #22]  As mentioned with “Current Mozilla Architecture” 
on page 31, JavaScript as a language provides the core extensibility language for 
Mozilla Firefox extensions.

Brendan Eich, the initial implementor of JavaScript at Netscape, relates the beginning of 
JavaScript, “I hacked the JS prototype in ~1 week in May [1995]...And it showed!  Mis-
takes were frozen early”[Eich 2005, #23]  This new scripting language was originally 
called “Mocha”, but was later renamed to “JavaScript” due to marketing influences 
between Netscape and Sun.  While JavaScript’s syntax was loosely modeled after the 
Java programming language, the relationship was only superficial.  The object model of 
JavaScript was inspired more by HyperCard than Java and was tailored to the specific 
minimal needs of a content designer attempting to control the browser.  JavaScript 
would be embedded inside of the HTML representations and a JavaScript-aware 
browser could then interpret these embedded scripts on the client-side.

More recently, sites are now using asynchronous JavaScript mechanisms and other 
browser technologies (under the collective moniker AJAX) to create richer web-centric 
applications.[Garrett 2005, #40]  Earlier works such as KnowNow’s JavaScript-based 
micro-servers presaged this later work.[Khare and Taylor 2004, #61, Udell 2001, #149]  
However, these AJAX applications only take advantage of the services already provided 
by modern browsers.  Therefore, they are relying squarely upon the RESTful extensibil-
ity mechanisms provided by the current generation of user agents.

Discussion

Through our examination of these RESTful architectures, a clear pattern emerges that 
can describe the progress made over the last ten years as viewed through our framework 
prisms.  These evolutionary stages are:

• External Extensibility - Attract end-users

• Internal Extensibility - Attract developers

• Portability - Expand the reach of the underlying architecture

• Run-time Architecture - Improve performance and lessen security vulnerabilities

At each stage, we can clearly see how the constraints set forth by REST interacted with 
the decisions made by architects to improve their systems.

EXTERNAL EXTENSIBILITY As we have seen, initially, RESTful applications (although it wasn’t termed as such 
then) featured extensibility only through external modifications that were not part of the 
internal architecture.  There were very few changes that could be made architecturally to 
NCSA httpd and Mosaic.  In a hypermedia domain, as was the initial target of the 
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WWW’s creators, being able to support various types of content is critically important.  
Instead of just supporting delivery of static files, NCSA httpd introduced CGI to allow 
different forms of content to be dynamically generated and delivered to the client.  This 
concept has evolved to other scripting languages such as PHP, JSP, and ASP which offer 
more specialized features meant for constructing Web-enabled content.

Similarly, NCSA Mosaic introduced the concept of helper applications in order to per-
mit the user to view a broad spectrum of media types.  This allowed formats that Mosaic 
did not natively understand to be viewed by an external application.  However, by hav-
ing such a sharp divide between these helper applications and the user agent, the brows-
ing experience suffered a severe blow since the concept of having links between content 
was lost.  Netscape Navigator repaired this problem by introducing internal content 
plug-ins which could render specific media types inside the browser window and main-
tain the complete hypermedia experience.

These initial choices represented the priorities of the communities at that time.  At the 
early stages of the WWW, the main goal was to attract end-users - not architects.  This 
goal predictably led to architectures focused on interfacing with external applications.  
As these capabilities were utilized by a wider community, more people became inter-
ested in how to change the behavior of the architecture dynamically.  The need for more 
expressive and powerful architectures became understood.

INTERNAL EXTENSIBILITY Once this critical mass of users was reached, businesses started to investigate how they 
could leverage the WWW for their own purposes.  Due to their experiences with the ini-
tial basic hypermedia content, they began to understand more about what they could 
conceptually achieve with the WWW.  Eventually, electronic-commerce and other richer 
Web-enabled application were conceived.  This led to a boom of interest around the core 
infrastructure providing this framework.  However, the architectures present at that time 
were not flexible enough to address their individual needs for this next generation of 
websites.

These assessments led to either radical rewrites (Apache with its Shambala fork, 
Mozilla with XPCOM) or new code bases (NCSA Mosaic to Netscape Navigator) that 
greatly improved the extensibility of the overall system compared to their predecessors.  
Those architectures, such as NCSA httpd, that did not have these extensibility character-
istics faced marginalization over time and have largely disappeared from use.

The defining characteristic of these new architectures is that they focused heavily on 
extensibility by allowing extension designers to alter the behavior of the system dynam-
ically without altering the original implementation.  Instead of providing a monolithic 
architecture that aimed to achieve every conceivable task, these architectures provided 
for a minimal core that could be extended through well-defined mechanisms.  In the 
case of Apache, almost all functionality bundled with the server is not built into the core, 
but rather through its own extensibility mechanisms (hooks and filters).  Over time, a 
strong community of external extension designers emerged that modified Apache to suit 
their needs.  Without this minimal and extensible core, the diverse range of Apache 
modules would not have been possible.
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PORTABILITY For those architectures that did not explicitly target a single platform (as Microsoft’s IIS 
and Internet Explorer did), the next challenge was how to support a broad range of plat-
forms without sacrificing performance or other beneficial characteristics.  This work led 
to the production of two platform abstraction layers: APR with Apache HTTP Server 
and NSPR with Mozilla.  Notably, these abstraction layers are characterized by provid-
ing optimizations on platforms where they are available.  This is in contrast to the “least 
common denominator” approach taken by other portability layers and programming 
languages.

Additionally, while some ultimately aborted efforts were undertaken to rewrite these 
RESTful architectures in a “better” programming language such as Java, the top choices 
remain C and C++.  By using C directly, as seen with cURL, a number of bindings to 
other languages can be provided which allow extension developers to enhance the archi-
tecture in the language of their choice.

Even though most of our surveyed systems are written in C or C++, most have incorpo-
rated special features to help deal with supposed shortcomings of C - specifically with 
regards to memory management.   In some instances, these features take advantage of 
the RESTful protocol constraints.  For example, the Apache HTTP Server takes extreme 
advantage of the defined RESTful processing flow in its memory management model.  
Instead of tying itself to a non-deterministic garbage collector (such as offered by Java), 
Apache’s memory model ties allocations to the life span of an HTTP response.  This 
offers a predictable memory model that makes it easier for developers to code modules 
with Apache, not suffer from memory leaks, and offer significant performance advan-
tages.

RUN-TIME ARCHITECTURE After the previous three dimensions were addressed, we often see a return to the initial 
run-time architecture decisions.  By this time, the systems have usually had a lot of real-
world experience to provide substantial feedback as to how the run-time architecture 
could be improved.  RESTful protocols through its mandated explicit stateful interac-
tions imply that the ideal run-time architecture does not need to exhibit complex coordi-
nation capabilities - each interaction can be handled independently and in parallel.  Even 
with this beneficial characteristic, the scalability of the architecture can strain the under-
lying operating environment with certain types of workloads.  Therefore, threading or 
asynchronous network behavior is introduced to the architecture.  However, the cost of 
adding threading or asynchronous behavior after the system has been deployed is 
extremely prohibitive.

We see the negative effects of this with the jump from Apache HTTP Server 1.3 to 2.0 
through the introduction of threading with the MPM policy layer.  As part of the transi-
tion from 1.3 to 2.0, extension developers had to make their modules thread-safe.  Many 
Apache modules were not written with thread-safety in mind and hence have not been 
updated to the new versions of Apache due to the additional complexity in making the 
code thread-safe.  Retrofiting in threads was also painful for the Mozilla architecture as 
early Mozilla builds had to introduce a new networking layer so that the network layer 
would be multi-threading.  Therefore, if high-performance workloads are ultimately 
desired from a RESTful system, threading and asynchronous network access should be 
essential anticipated qualities from the beginning of the architectural design.
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Scalability is not the only reason to reconsider the run-time architecture of these REST-
ful systems.  As seen with IIS 6.0 and the forthcoming Internet Explorer 7, poor early 
architectural decisions about the run-time architecture can impact the security of the 
system by not providing enough barriers against malicious behaviors.

IMPACT OF SECURITY ON

RESTFUL ARCHITECTURES

In the provenance of a RESTful world, extensibility can not remain unchecked.  Due to 
the proliferation and ubiquitous nature of the WWW today, these RESTful architectures 
are constantly under attack by malicious entities.  Worms like Code Red, which specifi-
cally attacked Microsoft’s IIS, caused two noticeable reactions: a slight drop in market 
share of the affected product and a new security-centric architecture release.  Microsoft 
reacted to the attacks by redesigning IIS to focus on security at the expense of extensi-
bility.  Microsoft is also redesigning Internet Explorer in similar ways for an upcoming 
versions of Windows to combat its poor security reputation.

Therefore, from an architectural perspective in this domain, we can view security as the 
imposition of constraints on extensibility.  For these RESTful systems, the minimal core 
architecture is generally trusted to be secure - however, extensions or content are no 
longer as trusted as they once were.  A fence has been erected between the core of the 
RESTful architecture and its components. The absence of this fence came at an extreme 
price to those people who had their systems compromised due to faults that a sound 
architecture could have prevented.

While the link between security and extensibility is real, it is however not quite as strong 
as Microsoft claims with their Internet Information Services 6 and Internet Explorer 7 
rearchitectures.  They may be over-emphasizing the importance of security due to their 
own past poor attitudes towards security.  Other competitors, such as Apache HTTP 
Server and Mozilla, have an arguably better long-term reputation towards security than 
Microsoft.  While these projects haven’t been free of security vulnerabilities either, 
large-scale attacks haven’t occurred against their products.

The reason for these lack of attacks can’t be attributed to poor market share alone: 
Apache HTTP Server currently has a 2-to-1 advantage over IIS according to Net-
craft[Netcraft 2005, #107].  Mozilla Firefox has made improvements in its market share 
in the last year by trying to capitalize on the security problems with Internet Explorer in 
the minds of the consumers.  A commentator recently compared Firefox’s security with 
Internet Explorer’s and remarked:

I ask only that the vendor be responsible and fix the security vulnerabilities, especially 
the critical ones, in a timely fashion. Microsoft isn't one of those vendors. According to 
Secunia, Internet Explorer 6.x has several unpatched, critical security vulnerabilities 
dating back to 2003 (the first year Secunia offered its own security alerts). And this 
month, Microsoft arrogantly decided not to issue any security patches--none.[Vamosi 
2005, #150]

FUTURE DIRECTIONS: REST 

CONSTRAINTS

The obvious question that remains is what should be the architectural focus going for-
ward for these RESTful architectures.  We believe that the next evolutionary stage to 
emerge is going to be specifically centered on addressing these REST constraints that 
we have highlighted.  None of the surveyed systems offer a perfect fit with the REST 
constraints we outlined.  To lend further credence to this argument, we are beginning to 
see hints of progress on precisely this front.  The recent release of Apache HTTP Server 
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2.2 focused heavily on three areas: improving control over filters - an integral part of 
supporting internal transformations, a more scalable proxy, and a production-quality 
cache mechanism.[The Apache HTTP Server Project 2005, #139]  The recent release of 
Firefox 1.5 introduces a revised cache system that offers better stateful characteris-
tics.[Mozilla Corporation 2005, #97]

IMPACT OF MARKET SHARE 

ON FUTURE ADOPTION

The architectures that remain ten years hence have evolved to facilitate exposure of the 
core interfaces to support both rapid internal and third-party modifications.  While it is 
not impossible to introduce new RESTful origin servers or user agents today, there is a 
definite gravity effect in place that prevents new products from capturing large amounts 
of market share for HTTP servers and browsers.  On the other hand, frameworks for 
RESTful applications that are not traditional servers and browsers have not yet reached 
a point where there is a compelling universal choice.  Each RESTful framework that we 
examined serves a slightly different clientele with its own set of architectural tradeoffs. 
Therefore, we believe there remains an opportunity for introducing a set of RESTful 
frameworks that are targeted towards these different REST applications.

LESSONS FOR FUTURE 

RESTFUL FRAMEWORKS

While libraries like libwww, cURL, and others can serve as architecture frameworks for 
the REST style, we believe that these frameworks focus too heavily on acting as HTTP 
protocol implementations and provide too few services to be effective in developing 
complete end-to-end RESTful applications. In contrast, we envision a family of frame-
works that focus generically on the construction of RESTful applications from the per-
spective of all the various participants: servers, proxies, caches, and clients. 
Furthermore, an ideal framework will focus deeply on the REST constraints, such as 
state management and protocol extensibility, that have largely been ignored by other 
frameworks, but are among the most difficult parts of REST implementations to “get 
right.”

To assist future RESTful framework developers, Table 19 on page 57 summarizes the 
lessons that we believe are important for future architects to incorporate in future archi-
tectural framework decisions based on collective past experiences.

TABLE 19. Lessons for Future RESTful Architects

Prism Lesson

REST
Constraints

Tying the architecture to one REST node type impacts future flexibility
Early familiarity with these constraints can prevent later conflicts

External
Extensibility

Provide same services at a minimum as other systems; If not designing a 
typical web server or client, may not be as important

Integration Provide multiple interfaces to balance the learning curve and power
Allow external architects fine-grained control over integration options

Internal
Extensibility

Provide a minimal core architecture; the rest should be modular
Provide appropriate hooks to allow developers to alter your behavior
Support multiple representation transformations through filter chains
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