
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Justin R. Erenkrantz
University of California, Irvine
jerenkra@ics.uci.edu

Architectural Styles of Extensible REST-based
Applications

August 2006

ISR Technical Report # UCI-ISR-06-12

Institute for Software Research
ICS2 110

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Architectural Styles of Extensible REST-based
Applications

Justin R. Erenkrantz

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
jerenkra@ics.uci.edu

ISR Technical Report # UCI-ISR-06-12

August 2006

Abstract:

At the beginning of the World Wide Web (WWW or Web), there was no
clear set of principles to guide the decisions being made by
developers and architects. In these early days, a cacophony emerged
without a clear direction to guide the evolution of the Web. If there
was any direction during the inception of the Web, it was a weak focus
on how communication might occur between machines on the Web and the
content that was to be transferred. Within a matter of a few years,
scalability and other design concerns threatened the future of the
early Web - this led to the introduction of REpresentation State
Transfer architectural style (REST). The REST style imposed
constraints on the exchange of communication over the Web and provided
guidance for further modifications to the underlying protocols. The
introduction of REST, through the HTTP/1.1 protocol, restored order to
the Web by articulating the necessary constraints required for
participation.

In this survey, we will characterize any environment that is governed
by REST constraints to be in a RESTful world. Obviously, the largest
example of the RESTful world is that of the Web with almost 75 million
websites existing today and many more daily users. Yet, to this day,
people are still struggling with how to write applications and
architectures that adhere to the constraints of the REST architectural
style. Consequently, it is all too common to see programs falling into
a trap of ignoring and compromising the REST principles. These traps
can jeopardize the beneficial induced properties dictated by the REST
style - which could ultimately reintroduce the problems that REST was
specifically imposed to address.

The existing Web infrastructure, and especially important components
of that infrastructure like Apache, Mozilla, and others, can inform us
about how to implement other RESTful components; indeed, examining the
architectures of these tools and the infrastructure as a whole is key.
With the rich history of the Web, we now have over ten years of
real-world architectural evolution from which to base our
examinations. Our aim in this survey is to classify the evolution,
supported by real software architectures and frameworks, and to
indicate insights and techniques useful for developing applications as
a whole - that is, complete configurations of RESTful nodes that
together form RESTful software applications without compromising the
beneficial properties of REST.

ISR Technical Report #UCI-ISR-06-12

August 2006

Architectural Styles of Extensible
REST-based Applications

Justin R. Erenkrantz

This paper is a survey of past and current
architectural styles used in applications that
take part in the RESTful world.
At the beginning of the World Wide Web (WWW or Web), there was no clear set of
principles to guide the decisions being made by developers and architects. In these
early days, a cacophony emerged without a clear direction to guide the evolution of the
Web. If there was any direction during the inception of the Web, it was a weak focus on
how communication might occur between machines on the Web and the content that
was to be transferred. Within a matter of a few years, scalability and other design con-
cerns threatened the future of the early Web - this led to the introduction of Representa-
tional State Transfer architectural style (REST) [Fielding 2000, #36]. The REST style
imposed constraints on the exchange of communication over the Web and provided
guidance for further modifications to the underlying protocols. The introduction of
REST, through the HTTP/1.1 protocol, restored order to the Web by articulating the nec-
essary constraints required for participation.

In this survey, we will characterize any environment that is governed by REST con-
straints to be in a “RESTful world.” Obviously, the largest example of the RESTful
world is that of the Web with almost 75 million websites existing today and many more
daily users[Netcraft 2005, #107]. Yet, to this day, people are still struggling with how to
write applications and architectures that adhere to the constraints of the REST architec-
tural style. Consequently, it is all too common to see programs falling into a trap of
ignoring and compromising the REST principles. These traps can jeopardize the benefi-
cial induced properties dictated by the REST style - which could ultimately reintroduce
the problems that REST was specifically imposed to address.

Looking to the REST architectural style for answers on how to construct RESTful appli-
cations leads to an ultimately unfulfilling experience. The REST architectural style pur-
posely provides little-to-no guidance as to how to build such nodes in a principled
manner. Other architectural styles, like C2[Taylor, Medvidovic 1996, #135] and
PACE[Suryanarayana, Erenkrantz 2004, #134], and practical Web frameworks, like
1

Software Architecture and Frameworks

Axis[The Apache Software Foundation 2005, #146] and Ruby on Rails[Hibbs 2005,
#53], specifically constrain how an application is built. However, these particular styles
and frameworks do not provide much guidance for interactions with other architectures.
Viewed from this perspective, we can separate these architectural styles in two catego-
ries: internal and external architectural styles. An external architectural style, like
REST, will govern the interaction between two independent sub-architectures, while an
internal architectural style, like PACE, governs how an architecture will respond to the
constraints imposed by an external architecture.

The larger research question is what is the relationship between an external architecture
and an internal architecture? That is, how do the constraints placed on the network and
interaction between nodes affect the constraints placed on individual nodes and vice
versa? Are there particular internal architectural styles that are a 'good' fit for an exter-
nal architecture? Correspondingly, are there 'poor' matches? What are the tradeoffs in
selecting, say, a RESTful network architecture and combining it with an internal pipe-
and-filter architecture? Are induced properties sacrificed in trying to make this combi-
nation work?

The existing Web infrastructure, and especially important components of that infrastruc-
ture like Apache, Mozilla, and others, can inform us about how to implement other
RESTful components; indeed, examining the architectures of these tools and the infra-
structure as a whole is key. With the rich history of the Web, we now have over ten years
of real-world architectural evolution from which to base our examinations. Our aim in
this survey is to classify the evolution, supported by real software architectures and
frameworks, and to indicate insights and techniques useful for developing applications
as a whole—that is, complete configurations of RESTful nodes that together form
RESTful software applications without compromising the beneficial properties of
REST.

Software Architecture and Frameworks

An architectural style is a set of design guidelines, principles, and constraints that dic-
tate how components can be composed, behave, and communicate [Shaw and Garlan
1996, #125]. Architectural styles help to induce desirable qualities over software sys-
tems that conform to those styles. Many of the most well-known architectural styles,
such as pipe-and-filter, client-server, and blackboard styles provide relatively few prin-
ciples and constraints; as one might expect, they also induce relatively few good soft-
ware qualities. However, there are other architectural styles, such as PACE, that are
much more significant. These include comprehensive constraints and guidelines, pro-
vide knowledge about when and where these styles are applicable, how to apply the
style, and supply technological frameworks and tools to facilitate constructing applica-
tions in the style. As we will discuss later, the REST style provides such constraints and
guidelines for external architectures.

An architecture framework is software that helps to bridge the gap between a specific
architectural style (or family of styles) and an implementation platform (e.g., program-
ming language, core set of libraries, or operating system). This makes it easier for appli-
2 Architectural Styles of Extensible REST-based Applications

Software Architecture in the World Wide Web

cation developers to correctly (and compatibly) implement applications in a particular
architectural style. For example, it could be said that the stdio package is an architec-
ture framework for the pipe-and-filter style in the C programming language, since it pro-
vides the language with distinguished stream constructs (in, out, and err), as well as
methods for interacting with those streams that are consistent with the rules of the pipe-
and-filter style.

Architecture frameworks (even for the same style/implementation platform) can vary
widely in the amount of support they provide to developers. This is a natural tradeoff:
frameworks may provide little support but be very lightweight, or be heavyweight and
complex but provide many services.

Software Architecture in the World Wide Web

It is essential to understand the intimate relationship between the architectural style,
architecture instances, and actual system implementations. In the context of the modern
Web, some of the key participants are:

• REST - the principal architectural style

• HTTP/1.1 - an architectural instance of REST

• Apache HTTP Server - a system implementation of an HTTP/1.1 server

• Mozilla - a system implementation of an HTTP/1.1 user agent

• libWWW - an architectural framework providing useful services for implementing
RESTful clients

Next, we will examine the REST architectural style and the constraints that it imposes
on the RESTful HTTP/1.1 protocol. After introducing REST and HTTP/1.1, we will
begin selecting systems to survey.

Representational State Transfer

The Representational State Transfer (REST) architectural style minimizes latency and
network communication while maximizing the independence and scalability of compo-
nent implementations. Instead of focusing on the semantics of components, REST
places constraints on the communication between components. REST enables the cach-
ing and reuse of previous interactions, dynamic substitutability of components, and pro-
cessing of actions by intermediaries - thereby meeting the needs of an Internet-scale
distributed hypermedia system. A summary of the domain properties, REST constraints,
and REST-induced behavior is presented in Table 1 on page 4.

The first edition of REST was developed between October 1994 and August 1995, pri-
marily as a means for communicating Web concepts while developing the HTTP/1.0
specification and the initial HTTP/1.1 proposal. It was iteratively improved over the
next five years and applied to various revisions and extensions of the Web protocol stan-
Architectural Styles of Extensible REST-based Applications 3

Representational State Transfer

dards. The name “Representational State Transfer” is intended to evoke an image of
how a well-designed Web application may behave: a network of Web pages forms a vir-
tual state machine, allowing a user to progress through the application by selecting a
link or submitting a short data-entry form, with each action resulting in a transition to
the next state of the application by transferring a representation of that state to the user.

In writing RESTful applications, it is essential to understand that all REST interactions
are stateless. That is, each request contains all of the information necessary for a con-
nector to understand the request, independent of any requests that may have preceded it.
This restriction accomplishes four functions: 1) it removes any need for the connectors

TABLE 1. Summary of REST constraints in terms of domain and induced properties

Domain Property REST-imposed Constraint REST-induced Benefit/Property

A user is interested in some hyper-
media document stored externally

User Agent represents User

Origin Server has hypermedia docs

User Agent initiates pull-based request from
an Origin Server

Requests from User Agent have a clearly asso-
ciated response from an Origin Server

Hypermedia documents can have
many formats

Metadata describing representa-
tion presented with document

User Agent can render documents appropri-
ately based on metadata

Many independent hypermedia ori-
gin servers

Define a set of common operations
with well-defined semantics (Exten-
sible methods)

User Agent can talk to any Origin Server

A document may have multiple
valid depictions with differing meta-
data

Distinction between abstract
resource & transferred representa-
tion

Metadata can be sent by user agent
that indicates preferences (Internal
transformation)

User Agent can request resource and receive
an appropriate representation based on pre-
sented metadata

One-to-many relationship between a resource
and representation

Hypermedia documents are usually
organized hierarchically +

uniquely identified servers

Resources explicitly requested by
name

User Agent can ‘bookmark’ a location and
return to it later

Origin Server controls own
namespace

Origin Server can replace backend and persist
identical namespace

Origin Server may not be able to
receive inbound connections from
the world

User Agent may not be able to make
outbound connections to the world

Gateway node (Origin Servers) Even if direct paths are not available between
two nodes, indirect paths may be available
through REST intermediaries

Proxy node (User Agents)

No assumption of persistent connec-
tion or routing; Hop-by-hop only

Any state must be explicitly trans-
ferred in each message

Gateway and Proxy nodes treat routing of each
message independently (packet-switched)

Duplicate copies of Origin Servers may be
deployed

Common hypermedia operations do
not change the content +

Documents may change over time

REST nodes may need to handle
large amounts of traffic or otherwise
optimize network bandwidth

Idempotent methods Ability to reuse a representation

Cacheability components intro-
duced

Each node can independently have a local
cache of documents; cache can re-serve repre-
sentations

Expiration control data can be pre-
sented with a representation

Mechanism to locally expire cached content

Control data presented in requests to
indicate current cached version

Mechanism to cheaply re-validate ‘stale’ con-
tent in the cache
4 Architectural Styles of Extensible REST-based Applications

Representational State Transfer

to retain application state between requests, thus reducing consumption of physical
resources and improving scalability; 2) it allows interactions to be processed in parallel
without requiring that the processing mechanism understand the interaction semantics;
3) it allows an intermediary to view and understand a request in isolation, which may be
necessary when services are dynamically rearranged; and, 4) it forces all of the informa-
tion that might factor into the reusability of a cached response to be present in each
request.

Another important contribution of REST is the layer of indirection between abstract
resources and concrete representations. The key abstraction of information in REST is a
resource. Any information that can be named can be a resource: a document or image, a
temporal service (e.g. “today’s weather in Los Angeles”), a collection of other

FIGURE 1. REST style derivation diagram (From [Fielding 2000, #36])

FIGURE 2. Process view of a REST-based architecture at one instance of time
(From [Fielding and Taylor 2002, #37])

$ $Client+Cache:Client Connector: Server Connector: Server+Cache:

$ $

Origin Servers

User Agent

$$

DNS

$DNS

Proxy

Proxy Gateway

wais

http

orb

http

http

http http

a

b

c

Architectural Styles of Extensible REST-based Applications 5

HTTP/1.1 and the Modern Web

resources, a moniker for a non-virtual object (e.g. a person), and so on. A resource is a
conceptual mapping to a set of entities, not the entity that corresponds to the mapping at
any particular point in time. In turn, REST components perform actions on a resource
by using a representation to capture the current or intended state of that resource and
transferring that representation between components. A representation is a sequence of
bytes, plus representation metadata to describe those bytes.

As characterized in Figure 1, REST is derived from a number of specific constraints.
The relevant base styles from which REST were derived include Replicated Repository
(RR), Cache ($), Client-Server (CS), Layered System (LS), Stateless (S), Virtual
Machine (VM), Code on Demand (COD), and Uniform Interface (U). Furthermore,
REST defines a series of connector types that identify each node in the overall architec-
ture: client, server, cache, resolver, and tunnel. As depicted in Figure 2, in a typical
REST interaction on the modern Web, a user agent (web browser) requests a representa-
tion of a resource from an origin server, which may pass through caching proxies before
ultimately being delivered.

HTTP/1.1 and the Modern Web

The Hypertext Transfer Protocol (HTTP) has a special role in the Web architecture as
both the primary application-level protocol for communication between Web compo-
nents and the only protocol designed specifically for the transfer of resource representa-
tions. REST was used to identify problems with the existing HTTP implementations,
specify an interoperable subset of that protocol as HTTP/1.0 [Berners-Lee, Fielding
1996, #12], analyze proposed extensions for HTTP/1.1 [Fielding, Gettys 1999, #31],
and provide motivating rationale for deploying HTTP/1.1.

The key problem areas in HTTP that were identified by REST include planning for the
deployment of new protocol versions, separating message parsing from HTTP seman-
tics and the underlying transport layer (TCP), distinguishing between authoritative and
non-authoritative responses, fine-grained control of caching, and various aspects of the
protocol that failed to be self-descriptive. REST has also been used to model the perfor-
mance of Web applications based on HTTP and anticipate the impact of such extensions
as persistent connections and content negotiation. Finally, REST has been used to limit
the scope of standardized HTTP extensions to those that fit within the architectural
model, rather than allowing the applications that misuse HTTP to influence the standard
equally.

REST MISMATCHES IN

HTTP EXTENSIONS

HTTP/1.1 as it is used on the Web today (taking into account third-party extensions
deployed outside the standards process and concessions made for backward compatibil-
ity with HTTP/1.0) does not conform entirely to the REST style. Applications that sup-
port HTTP/1.1 consequently must make allowances for these non-RESTful
characteristics of the Web to remain compatible and interoperable with the substantial
base of legacy applications already deployed. While complete details of these mis-
matches are out of scope, it is useful to examine a representative example of how the
Web is not 100% RESTful (for more details, please see [Fielding 2000, #36, Fielding
and Taylor 2002, #37]).
6 Architectural Styles of Extensible REST-based Applications

Selecting Appropriate RESTful Applications

Perhaps the most pervasive example of the non-RESTfulness of the Web is the use of
Cookies for client-side state management. In this case, an inappropriate extension has
been made to the protocol to support features that contradict the desired properties of
the generic REST interface [Kristol and Montulli 1997, #63]. Cookie interaction fails to
match REST’s model of application state, often resulting in confusion for the typical
browser application. The same functionality should have been accomplished via anony-
mous authentication and true client-side state. Cookies also violate REST because they
allow data to be passed without sufficiently identifying its semantics, thus becoming a
concern for both security and privacy.

Selecting Appropriate RESTful Applications

Our primary criteria in selecting systems is that such systems must participate in the
RESTful world. Due to the ubiquitous deployment of the World Wide Web, there are
plenty of RESTful systems that are available to examine. Furthermore, one of our stated
goals is to examine how the constraints of a REST-governed external architecture as
represented by its protocol affects the internal architecture of a system. In order to
achieve this goal, our examined architectures should reside as close to the protocol as
possible - this can best be achieved by directly implementing the HTTP/1.1 protocol.

REST also defines specific classifications of nodes that can participate in the RESTful
world. We will limit our discussion to origin servers, user agents, and frameworks. As
we will discuss, some origin servers can also fulfill the responsibilities of a proxy or
gateway node. With respect to the specific selections we make, we will attempt to
choose a representative sample of the broad range of RESTful systems that are avail-
able.

Our focus on architectures will look at their extensibility characteristics - that is, the
constraints it imposes on modifications to its architecture. The reason for selecting
architectures that explicitly support extensiblity is predicated on the diverse nature of
the RESTful world. The particular location in the ecosystem of the RESTful world we
will examine is an important one: complete RESTful applications are built on top of
these architectures. These architectures we will survey provide the glue by interfacing
with the larger RESTful world through protocol implementations and passing along the
constraints of the RESTful world on to its extensions to form complete applications.

A vast range of applications have emerged that use the WWW in innovative ways -
ranging from electronic-commerce sites to collaborative news sites. The specific con-
tent requirements often differ for each individual application. Instead of constructing an
origin server or user agent from scratch each time for every desired modification, these
applications can take advantage of pre-existing architectures if they provide suitable
extensibility mechanisms. Therefore, those architectures which support extensibility
have a definitive advantage over static architectures in the RESTful world.

While our principal focus is on applications directly implement a REST-governed proto-
col and offer extensibility capabilities, we will also present a brief discussion of:

• Server-side scripting languages (such as CGI, PHP, JSP)
Architectural Styles of Extensible REST-based Applications 7

Framework Constraint Prism

• Client-side scripting languages (such as JavaScript)

• HTML forms

• Protocols on top of HTTP (such as SOAP, XML RPC)

• HTML frameworks (such as Servlets, Struts, Ruby on Rails)

to discuss how they can further encourage conflicts and collisions with REST. However,
these applications traditionally build on top of the systems that we will select to survey
in detail. With these systems, there is an additional level of indirection with regards to
REST as they are necessarily constrained by the architectures of which they are a
smaller part.

Framework Constraint Prism

In order to highlight the relevant material, our architectural examination will separate
the architecture into the following broad characteristics: portability, run-time architec-
ture, internal extensibility, external extensibility, and the influence of specific REST
constraints. A diagram showing the relationships of these characteristics for RESTful
architectures is shown in Figure 3 on page 8. These characteristics are derived from the
direct decisions made by the system’s architects. We will define the border of our archi-
tecture by identifying where an architect has direct influence over the architecture and
where control of the architecture is ceded to others. As a part of a larger RESTful
world, these architectures must operate with other independent architectures through a
REST-governed protocol. These architectures can also be integrated by external archi-
tects into a larger architecture to incorporate the functionality provided by the system.

FIGURE 3. RESTful Architectural Constraint Prism

Software
Architecture

Run-time
Architecture

Internal
Extensibility

Extension
Designers

External
Extensibility

Content
Developers

Portability

Architects

Integration into a larger
Software Architecture

External
Architects

Architectural Boundaries

REST-governed Protocol
8 Architectural Styles of Extensible REST-based Applications

Framework Constraint Prism

Content developers and extension designers can influence the system, but this work is
largely limited to following the constraints established by the original architects.

Portability. We will define portability as the indirect limitations and constraints upon
the overall system architecture with respect to its environment. These may include the
choice of programming languages to implement with, operating systems that the system
will execute on, and user interface toolkits. As we will discuss, each of these choices
can introduce constraints for robustness, scalability, and security. They may affect the
degree to which the system can conform to the environment in which it must operate.
However, these choices are typically not directly related to the functionality of the sys-
tem. These serve as the base platform characteristics.

Run-time architecture. In contrast to portability, run-time architecture will be defined
as the specific direct limitations and constraints that the architecture represents with
respect to the problem domain. Such constraints can include how the system parallel-
izes, whether it is asynchronous, and what protocol features and protocols it supports.
These constraints are generally decided independently of any constraints defined as
Portability. By building on top of these run-time architecture constraints, a system will
present characteristics that govern what features it will ultimately be able to support.

Internal Extensibility. We will define internal extensibility as the ability to permit
modification through explicit introduction of architectural-level components. This char-
acterizes the scope of changes that can be made by third-party developers in specific
programming languages. The critical characteristic here is what functionality does the
architecture provide to developers to modify the behavior of the system. For a user
agent, new toolbars can be installed locally through specific extensions. These toolbars
can change the behavior of the program via the internal extensibility mechanisms. Or,
perhaps, new protocols can be introduced.

External Extensibility. Similarly to internal extensibility, we will define the external
kind as those changes that can be effected without the introduction of architectural-level
components. This classifies what behavior can be passed through to the user without
altering the architecture. Each of these specific external extensibility mechanisms can
be viewed on a cost-benefit scale: how much access is provided at what cost? For an
origin server, a scripting language like PHP can be viewed as an external extensibility
component. A PHP developer can create a script that alters the behavior of the system
without any knowledge of the architecture inside the system. Typically, RESTful sys-
tems in the same area (such as user agents) will share external extensibility mechanisms.

Integration. Integration defines the ability of an architecture to participate as part of a
larger architecture. Some architectures that we will examine are intended to run only by
themselves. However, other architectures offer the additional capability to be reused as
part of a larger whole through a set of programming languages. These architectures
may provide control ranging from simply integrating a user agent inside another appli-
cation to creating a different type of server entirely.

REST Constraints. The final broad characteristic we will leverage is to examine the
degree to which the architecture constrains its extensions to follow REST-derived con-
straints. A more detailed discussion of these constraints follows.
Architectural Styles of Extensible REST-based Applications 9

REST Constraints

REST Constraints

We earlier presented a summary of the domain properties, REST constraints, and
induced behavior in Table 1 on page 4. In our subsequent analysis, we will specifically
examine the behavior derived from these architectures to see how they deal with these
REST constraints as listed in Table 2 on page 10.

Architectural Characteristic Matrix

A matrix summarizing all of the architectural characteristics of these selected systems is
presented as an addendum to this paper.

Origin Servers

In the REST world, Fielding defines an origin server as:

An origin server uses a server connector to govern the namespace for a requested
resource. It is the definitive source for representations of its resources and must be the
ultimate recipient of any request that intends to modify the value of its resources. Each
origin server provides a generic interface to its services as a resource hierarchy. The
resource implementation details are hidden behind the interface.[Fielding 2000, #36,

5.2.3]

In common usage on the web, this is characterized by an HTTP server. Figure 4 on
page 11 presents a timeline of market share as determined by Netcraft’s Web Server
Survey ([Netcraft 2005, #107]) for the three origin servers we will now discuss:

TABLE 2. REST Architectural Constraints

Constraint Assessing Degrees of Conformance to Constraint

Representation Metadata How much control, for both requests and responses, does
the architecture permit over representation metadata?

Extensible Methods How much flexibility is offered to redefine or add meth-
ods within the architecture?

Resource/representation
separation

How well does the architecture treat the divide between
requests for a resource and resulting representations?

Internal Transformation How conducive is the architecture to permitting repre-
sentation transformations inside the system?

Proxy How does the architecture enable the use of proxies and
gateways?

Statefulness How much control does the architecture provide to con-
trol statefulness?

Cacheability In what ways does the architecture support cache com-
ponents?
10 Architectural Styles of Extensible REST-based Applications

Origin Servers

• NCSA HTTP Server

• Apache HTTP Server

• Microsoft Internet Information Services

NCSA HTTP SERVER One of the early origin servers for the Web was produced at the National Center for
Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Cham-
paign[Kwan, McGrath 1995, #64]. The name for this Web server was NCSA HTTPd
(httpd) and it was released to the public domain for all to use at no cost. httpd was ini-
tially designed and developed by Rob McCool and others. After McCool left to join
Netscape in 1994, NCSA development largely ceased with a few later ultimately unsuc-
cessful efforts by NCSA to restart development around httpd.

NCSA ARCHITECTURE Run-time architecture. The d in HTTPd refers to the Unix concept of a daemon. The
word daemon has a long tradition in the Unix operating environment to mean a long-
running process that assists the user. Therefore, HTTPd stands for “HTTP daemon” -
meaning that the server responds to incoming HTTP traffic by generating the proper
responses to the users without any direct intervention by the server administrator.

Upon initial execution, the httpd process would start listening for incoming HTTP traf-
fic. As new HTTP requests arrived, this listening process would spawn two identical
copies - in Unix parlance, the parent forked a child. One process (the parent process)
would resume listening for more HTTP requests. The other instance (the child) would
process the just-received incoming connection and generate the response. After that one
response was served back to the client, this child process would close the socket and ter-
minate.

This particular interaction model is particularly suited for a web server due to the repet-
itive nature of HTTP requests. Each resource on an HTTP server can be requested by

FIGURE 4. Origin Server Timeline with Netcraft Market Share Data from [Netcraft 2005, #107]

August 1995
Netcraft Survey Begins

NCSA 0.5

NCSA 1.3

Apache 0.2
Apache 0.6.4

Shambala Fork
Apache 0.8.0

IIS 1.0

May 1997
1 million servers

Apache 1.3
with Win32
support

IIS 3.0
IIS 2.0

Apache 1.2
with HTTP/1.1

NSPR
Branch

IIS 4.0

NCSA 1% share

APR
Branch

April 1999
5 million servers

IIS 5.0

Apache 2.0
Branch

Code Red
Worm

Apache
2.0.35

September 2000
20 million serversSeptember 1993

Apache
2.2.0

May 2004
50 million servers

IIS 6.0

30 million
Apache
servers

Apache
1.0

McCool et al
leave for Netscape

NCSA 1.5.2

NCSA
1.0

NCSA
1.4.2
Architectural Styles of Extensible REST-based Applications 11

Origin Servers

independent clients a large number of times and possibly in parallel. If the resource has
not changed (retrieving a page is a read-only operation), then the representations served
for each one of these requests should be identical as any state will be explicit in the
request exchange. (HTTP labels methods having this behavior as idempotent.) This
attribute allows one server process to independently handle any incoming requests with-
out having to coordinate with other server instances.

However, due to the uneven nature of Web traffic, it does not make sense to dedicate one
server instance to a particular ‘part’ of the server’s namespace[Katz, Butler 1994, #58].
If the namespace were divided as such and a large burst of activity were to come in on
one portion of the namespace, this could present significant bottlenecks - as that one
process would be tied up serving all of the requests for that dedicated namespace.
Therefore, httpd’s run-time architecture allows all instances to respond to any part of the
namespace independently. In addition to parallelizing on a single machine, this archi-
tecture also allows for replicated instances of httpd to work across multiple machines by
the use of round-robin DNS entries and networked file systems[Katz, Butler 1994, #58,
Kwan, McGrath 1995, #64].

Portability. httpd was written in the C language and the implementation was solely tar-
geted towards Unix-derived platforms. Therefore, it had no intrinsic concept of porta-
bility outside of C and Unix systems. Yet, even Unix-derived platforms differ from each
other greatly and httpd utilized language preprocessor macros for each flavor of the
operating system that was explicitly supported. Additionally, the administrator had to
hand-modify the build system in order to indicate which operating system httpd was
being built on. Therefore, in comparison to modern-day servers, the portability of the
original NCSA httpd server was quite restricted.

Internal Extensibility. While the code base behind httpd was relatively small, there
was no clear mechanisms for extending the internal operations of the server. For exam-
ple, most of the code relied upon global variables without any dedicated structures or
objects. Therefore, if you wanted to support extensions to the protocol, there was no
level of abstraction through which to effect these changes.

External Extensibility. Even without an internal extensibility layer, httpd did provide
an effective external extensibility mechanism - the Common Gateway Interface
(CGI)[Coar and Robinson 1999, #20]. The only other mechanism to produce a repre-
sentation for a resource with httpd was to deliver static files off the file system. CGI was
placed as an alternative to static files by allowing external dynamic execution of pro-
grams to produce output that a specific client will then receive. We will explore CGI
more completely in “Common Gateway Interface (CGI)” on page 50.

With CGI, we begin to see a constraint of the external architecture peeking through:
HTTP mandates synchronous responses. While the CGI program was processing the
request to generate a response, the requestor would be ‘on hold’ until the script com-
pletes. During the exection of the script, NCSA warned that “the user will just be staring
at their browser waiting for something to happen.”[National Center for Supercomputing
Applications 1995, #103] Therefore, CGI script authors were advised to hold the execu-
12 Architectural Styles of Extensible REST-based Applications

Origin Servers

tion time of their scripts at a minimum so that it did not cause the user on the other end
to wait too long for a response.

Lessons Learned. Run-time architecture featuring parallel identical processes is well-
suited for HTTP servers; extensibility focused on ‘end user’ extensibility instead of
‘developer’ extensibility; some characteristics of HTTP introduce very specific and oth-
erwise awkward features to CGI.

APACHE HTTP SERVER The Apache Project formed in February 1995 to resume active development of NCSA’s
popular but abandoned httpd. The goal of this new project was to incorporate bug fixes
and new features. Besides important social innovations in distributed and open-source
software development [Fielding 1999, #35, Mockus, Fielding 2000, #95], one of the
keys to Apache’s long-term success can be attributed to the sustained proliferation of
third-party modules (now totalling over 300) around the core product. (This author is a
contributor to the Apache HTTP Server.)

As shown in Figure 4 on page 11, The Apache HTTP Server is currently the most popu-
lar HTTP server used today. The various versions and derivatives of Apache collectively
account for around 70% of the servers in use today [Netcraft 2005, #107], and has been
the market leader for over nine years [The Apache Software Foundation 2004, #143].
The long-term mission of the Apache HTTP Server Project is to “provide a secure, effi-
cient and extensible server that provides HTTP services in sync with the current HTTP
standards.” [The Apache Software Foundation 2004, #142]

Due to its lineage from NCSA httpd codebase, there are a lot of surface similarities
between the two codebases. In stark contrast to NCSA httpd however, the internals of
the Apache HTTP Server are characterized by an extremely modularized design with
almost all aspects of functionality available to be altered without modifying the core
code. We will consider two snapshots of Apache’s architecture: the ‘initial’ Apache
architecture comprising all releases through the 1.3 series and the current release series
(2.x and beyond).

INITIAL APACHE

ARCHITECTURE

With the split of Apache from NCSA, there was a concerted change to make the inter-
nals of the new server much more extensible. Instead of relying upon custom ad hoc
modifications to the codebase, the intention was to allow third-parties to add modules at
build-time and run-time that modified Apache’s behavior. These changes were balanced

TABLE 3. REST Architectural Constraints: NCSA httpd

Constraint Imposed Behavior

Representation Metadata Explicit global values for each header value

Extensible Methods Only through CGI’s REQUEST_METHOD environment

Resource/Representation No structure for requests or responses

Internal Transformation None

Proxy No, could not serve as a proxy

Statefulness No explicit session management

Cacheability No
Architectural Styles of Extensible REST-based Applications 13

Origin Servers

by a strong effort to be end-user backwards compatible with NCSA httpd to ease the
effort in migrating to Apache.

The principal mechanisms behind this rearchitecture were introduced in the “Shambala”
fork by Robert S. Thau. These changes were merged into the mainline Apache codebase
to become Apache 0.8.0 release in July 1995. These modifications formed the architec-
tural basis of all future Apache releases. An exposition of the rationales for these deci-
sions were put forth in a paper by Thau[Thau 1996, #137]. We will now summarize
these rationales and their impact on the Apache architecture. A summary depiction of
Apache’s architecture, as produced by The Apache Modeling Project, is presented in
Figure 5 on page 14[Gröne, Knöpfel 2002, #46, Gröne, Knöpfel 2004, #47]. Hassan
and Holt present another description of Apache’s architecture in Figure 6 on
page 15[Hassan and Holt 2000, #52].

Run-time Architecture. As with NCSA httpd, early versions of Apache rely upon fork-
ing to handle incoming requests. However, Apache introduced the ability to reuse chil-
dren via a “prefork” mechanism and to run these children at a low-privilege level. On
Unix platforms, the cost of starting up a new process is relatively high. With NCSA
httpd, every incoming connection would spawn a fresh process which caused a delay as
the operating environment launched this new process. Instead, Apache starts (“pre-
forks”) a configured number of children ahead of time and each process would take
turns handling incoming requests. By having the servers initialized ahead of time, this
allows a better response time and for spare capacity to be held in reserve. Any spare
servers would be idle waiting for incoming requests and the process initialization costs
can be amortized.

FIGURE 5. Apache HTTP Server Internal Architecture (From [Gröne, Knöpfel
2004, #47] Figure 4.6)
14 Architectural Styles of Extensible REST-based Applications

Origin Servers

In this preforking architecture, there is a parent process that keeps an eye on the children
that are running. This parent is responsible for spawning or reaping children processes
as needed. If all of the children are active and there is still space for new children, it will
create a new child. On the other hand, if too many children are idle, it will remove some
children from operation. While the parent process usually executes as a privileged user,
it does not directly service any incoming requests from the users. Instead, the children
that interact with clients are executed as an unprivileged user. This means that the attack
surfaces for security attacks is minimized - however, there have been security exploits
on certain operating systems that will elevate a unprivileged user to a privileged user.

Portability. The core implementation language of Apache is unchanged from httpd, so
it is still written in C. While Unix is still the main target platform for Apache, later
releases of Apache 1.x added support for Windows, OS/2, and Netware. While reamin-
ing in C, Shambala took advantage of some constraints enforced by the programming
language and turned it into a substantial performance advantage.

One of the defining characteristics of C is that it requires explicit allocation (malloc) and
deallocation of memory (free). These memory operations are rather expensive, so a
pool-based allocation system was introduced in Shambala[Thau 1995, #136, The
Apache Software Foundation 2003, #141]. This opportunity for efficiency is only avail-
able due to the well-defined lifecycle of HTTP traffic. In Apache, needed memory
chunks are allocated from the operating system as part of normal operation during a
request through malloc invocations. Normally, Apache would have to return all of the
allocated memory back to the operating system through explicit invocations of free. If
the each allocation was not explicitly freed, then memory leaks could occur. Over the

FIGURE 6. Apache HTTP Server Internal Architecture (From [Grosskurth and
Godfrey 2005, #50])
Architectural Styles of Extensible REST-based Applications 15

Origin Servers
lifetime of a server process with constant traffic and memory leaks, this could eventually
overload the memory capabilities of the system.

With the new pool system introduced in Shambala, when a response is completed, the
allocated memory is instead added to a internal free-list maintained by Apache. On sub-
sequent requests to the same process, the memory on the free-list can be reused instead
of allocating more memory from the operating system. In practice, after a few requests
are served, no more memory allocation is required from the operating system - previ-
ously allocated memory can suffice for subsequent runs. This pool model also has a
large benefit for both internal and external developers. Since Apache tracks the memory
itself, there is far less opportunity for memory leaks which impair the memory footprint
of Apache. This can permit developers to not have to worry about detecting memory
leaks in their modules as the pool system automatically tracks all allocations. In com-
parison to languages that offer intrinsic garbage collection (such as Java), there is no
substantial performance penalty incurred for maintaining this list. Actually, in perfor-
mance tests, this pool reuse system is a significant structural advantage of Apache that
allows it to fare well against other HTTP servers[Gaudet 1997, #41].

Internal Extensibility. As discussed earlier, NCSA’s architecture relied heavily upon
CGI programs to produce content or alter the server’s behavior. The CGI system suffers
a severe drawback in that it is largely decoupled from the web server. This indepen-
dence from the server comes at a steep cost as there is no clean mechanism to share con-
figuration information between the web server and CGI application. This can create
challenges for the content developer as their application becomes more complex by
enforcing such a strict separation. Additionally, there are also performance implications
with using CGI programs in that their process lifetime is only that of a particular
request. Techniques like FastCGI can avert this performance issue by attempting to
reuse a script interpreter across multiple connections[Brown 1996, #16]. However, this
can introduce compatibility problems when global variables are used in CGI programs
that are not correctly reset after each request.

Therefore, Apache specifically allowed for extensibility internally by exposing fixed
points at which a third-party can interface in-process with the web server. Apache’s ini-
tial extensibility phases, called hooks, included:

• URI to filename translation

• several phases involved with access control

• determining the MIME type of the resulting representation

• actually sending data back to the client

• logging the request

Each of these play a critical part in the functionality of the web server, but they can be
logically independent. For example, the MIME type of a representation (which is con-
tent-specific) would not typically indicate a relationship as to how the server should log
the request (which is usually server-specific). However, if there is a relationship, then a
module can still hook into all needed phases and coordinate execution. Besides allow-
ing dynamic behavioral modification through hooks, Apache has an internally extensi-
ble configuration syntax which allows dynamic registration of new commands with
module-specific directives.
16 Architectural Styles of Extensible REST-based Applications

Origin Servers
The drawbacks of this internal extensibility mechanism is that all of the modules run at
the same privilege level and share the same address space. Consequently, there are no
barriers preventing a malicious module from compromising the integrity of the system.
A poorly written Apache module could expose a security vulnerability that could cause
the server to crash. However, Apache’s run-time architecture limits the effects of a bad
module to only the specific process handling the request. Other children that are servic-
ing a request are not affected if any other child dies through a software fault.

External Extensibility. Scripting languages such as PHP and JSPs are accomodated as
handlers within Apache. These are specific modules that register for the handler hook
and can deliver content for a specific resource. These handlers can be associated
through content types or file extensions among other mechanisms. Therefore, in the
case of PHP, its handler is responsible for converting the PHP script into usable HTML
representations. The main advantage of having these scripts use a handler over a CGI
mechanism is that there is no inter-process communication overhead required. Addi-
tionally, the scripting languages can take advantage of more Apache-specific features
than what are available only through CGI.

REST Constraints. Apache represents an improvement over the NCSA httpd in con-
straining the extensions to follow the REST style. There is a clear separation between
data and metadata with dedicated metadata structures. There is also less usage of global
variables through dedicated request structures. However, Apache does not enforce a
clear separation between the resource and representation as they share the same data
structure (request_rec). A proxy component was added in later versions of Apache 1.3.
However, these modules had significant implementation and design problems that
resulted in its removal from later releases - limiting Apache’s effectiveness as a proxy/
gateway. As we will discuss in the following section, improving these modules was a
factor behind some subsequent architectural changes.

Lessons Learned. Optimizations created based on language-choice and domain-specific
constraints; Run-time architecture modified to better suit the underlying platform; Mod-
ularity and internal extensibility heavily stressed through hooks and discrete separated
dynamic modules; External extensibility through scripting languages; improvements in
maintaining REST constraints.

APACHE 2.X ARCHITECTURE The Apache HTTP Server 2.0 has redesigned the popular Apache HTTP Server by
incorporating feedback from the development and user community. While remaining

TABLE 4. REST Architectural Constraints: Early Apache HTTP Server

Constraint Imposed Behavior

Representation Metadata Headers are in a hash-table structure; can be merged

Extensible Methods Yes, through a dedicated request field

Resource/Representation Response and request are coupled in the same structure

Internal Transformation None

Proxy Present in early versions of 1.3, but removed due to problems

Statefulness No explicit session management

Cacheability None
Architectural Styles of Extensible REST-based Applications 17

Origin Servers
faithful in spirit to the initial design of the 1.3 series server, the 2.0 series does break
compatibility with the previous version in several areas.

Resolved design issues. Thau identified a number of design shortcomings of Apache in
[Thau 1996, #137] - all of these issues have been resolved in Apache 2.x. The first issue
raised is that Apache did not have a protocol API. The protocol code was refactored in
2.x and now has modules that implement FTP, SMTP, and NNTP in a clear and princi-
pled approach. Secondly, Thau indicated that it was hard to customize existing mod-
ules. This has been addressed by the introduction of the provider API, first introduced
in mod_dav. Several other modules (such as authorization and caching modules) have
since been broken down to use this provider API to easily alter their operation. Thirdly,
Thau identified that the order dependencies of hooks were problematic. There is now a
different hook registration system that allows explicit ordering of hooks (including pre-
decessors and successors). Finally, Thau identified the lack of hooks that conform to
system startup and teardown. These have now been added.

Portability and Run-time Architecture. 2.0 introduces a new portability layer called
the Apache Portable Runtime that provides a “predictable and consistent interface to
underlying platform-specific implementations.”[The Apache Portable Runtime Project
2004, #140] The path to APR was, however, not a straight line. After the introduction
of support for Netware, Windows, and even more Unix variants in Apache 1.3, a consen-
sus emerged that a comprehensive portability strategy had to evolve to support more
platforms in a cleaner way. There were initially two concurrent strategies: porting
Apache to Mozilla’s new runtime layer (NSPR) and the introduction of the Multi-Pro-
cessing Modules (MPM).

These two approaches were noticably different: one (NSPR) would replace all of the
platform specific code out of Apache and move all of it into a portability layer. A move
to a new portability layer, such as NSPR, would necessitate a rewrite of the entire code
base to use the primatives supported by the portability layer. In return, all of the con-
cerns about supporting a new operating system would be off-loaded to the portability
layer.

The other approach would isolate all of the “complicated” platform-specific code into a
new policy layer within Apache - called the MPM. The rest of the code would rely upon
standard ANSI C semantics. The MPM would specify the policy for handling the
incoming connections: the default policy would be the prefork strategy initially intro-
duced with Shambala and discussed earlier. Other policies would include a worker
strategy that leveraged a hybrid process-thread approach, a mpm_winnt strategy that
worked only on Windows platforms, and a mpm_netware module for Netware systems.
The goal of the MPM design was that the process or thread management code these
threads would be restricted to these policy modules. This containment was based on the
belief that the difficult portability aspects could be constrained to the MPM modules
alone.

These branches evolved in parallel until the group forced a decision over the adoption of
the NSPR modules. The key argument against NSPR was not a technical one - but,
rather, a social one - the developers did not agree with the licensing terms presented by
NSPR. An attempt to resolve these concerns were inconclusive - therefore, the develop-
ers started their own portability layer based on the code that was already present in
18 Architectural Styles of Extensible REST-based Applications

Origin Servers
Apache 1.3. This code formed the basis for the Apache Portable Runtime (APR) layer
first present in 2.0. However, the MPM components were also ultimately integrated into
the new APR branch. Therefore, even though the strategies seemed at odds initially,
both strategies were eventually merged. The code was rewritten on top of a new porta-
bility layer and a policy layer was introduced to abstract the process management code.
Through the MPM system, a number of strategies have been experimented with -
including a policy that supports asynchronous writes introduced in the recent 2.2
release[The Apache HTTP Server Project 2005, #138].

Internal Extensibility. A recurring issue that was raised by developers throughout the
1.3 series was that it was hard to layer and combine functionality between modules. If a
developer wanted to extend how REST representations are generated in the Apache han-
dlers, code had to be duplicated between modules. Therefore, a major advance in the 2.0
release was the addition of a layering system for data to allow principled composition of
features and resource representation transformations (e.g., on-the-fly compression and
dynamic page generation). Compatibly integrating this system while maintaining as
much backward compatibility as possible was a key development challenge.

Another issue with the 2.0 series was the evolution of the mod_proxy code, which
allows a standard Apache httpd server instance to act as a proxy. Since Apache’s original
design intended it to act as an HTTP server, the prevailing design assumptions through-
out the code is that the system is an HTTP server not an HTTP client. However, when a
proxy requests a page from an upstream origin server, it acts as a client in the REST
architecture. The concept of input and output from the architecture perspective became
switched with a proxy. This presented a number of mismatches between mod_proxy
and the rest of the httpd architecture that required design compromises to compensate.

Integration. A set of extensions to the Apache HTTP Server allow the core server func-
tionality to be integrated into a larger and different architecture. Through modules such
as mod_perl and mod_python, new applications around the core Apache HTTP Server
architecture can be constructed. For example, the Perl-based qpsmtpd SMTP mail
server can leverage the features of Apache through mod_perl[Sergeant 2005, #123].
This arrangement offloads all of the connection management and network socket code
from Perl to the httpd’s C core, but any extensions to qpsmtpd can be maintained in Perl.

Lessons learned. Portability concerns led to a new portability layer and new run-time
architecture policy layer; the absence of an internally extensible RESTful representation

TABLE 5. REST Architectural Constraints: Apache HTTP Server

Constraint Imposed Behavior

Representation Metadata Headers are in a hash-table structure; can be merged

Extensible Methods Yes, through dedicated request field

Resource/Representation Response and request are coupled in the same structure

Internal Transformation 2.0 adds filter support; 2.2 permits more complicated chains

Proxy Can serve as a proxy in 2.0; load-balancing support in 2.2

Statefulness No explicit session management

Cacheability Production-quality in 2.2 release
Architectural Styles of Extensible REST-based Applications 19

Origin Servers
required the shoe-horning of filters; early design assumptions of where a node fits in the
overall REST architecture challenged as the system evolves; use in different server-
based applications.

MICROSOFT INTERNET

INFORMATION SERVER (IIS)

Microsoft first released their HTTP server named Internet Information Server (IIS) in
February, 1996. This initial version of IIS was only available on Windows NT 3.51.
Over time, it was updated to work on newer releases of the Windows platform. The
early releases of IIS featured basic HTTP and FTP serving support. Over time, more
features and extensibility models were added. At the same time, however, many secu-
rity vulnerabilities were exposed in IIS servers. This led to a number of prevalent
worms, such as Code Red, on the Internet that spread through the vulnerabilities in
IIS[Cook 2005, #21, Moore, Shannon 2002, #96].

IIS 6.0, first included with Windows 2003 Server, was the beginning of a security-cen-
tric architectural rewrite for Microsoft’s server products. At this point, Microsoft also
renamed IIS to stand for “Internet Information Services.” After numerous security vul-
nerabilities had to be fixed, Microsoft engineered a number of modifications to the IIS
architecture with an eye towards security. Besides being no longer installed by default,
IIS 6.0 offers a number of features focused on forcing administrator to make security-
conscious decisions about their server.

Portability. From the outset, IIS was only intended to operate on Microsoft’s Windows
platforms. Therefore, it can take extreme advantage of Windows-specific functionality
that are only available on that platform. However, this means that portability to other
operating systems is not feasible with the IIS architecture. One distinction that is chal-
lenged with IIS 6.0 is the separation between the kernel mode and user mode in the
operating system.

A new kernel-mode driver called http.sys, running at the highest privileges inside the
Windows kernel, was introduced that takes over a portion of the HTTP functionality
from the traditional user-mode applications[Microsoft Corporation #71, Wang 2005,
#152]. The goal of this new driver was to “to increase Web server throughput and scal-
ability of multiprocessor computers, thereby significantly increasing the following: the
number of sites a single IIS 6.0 server can host; the number of concurrently-active
worker processes.”[Microsoft Corporation #72]

Run-time architecture. IIS presents the administrator with two run-time architectural
models to chose from. Depicted in Figure 7 on page 21 is the IIS 5.0 isolation mode
architectural model. This legacy model is targeted towards “applications developed for
older versions of IIS that are determined to be incompatible with worker process isola-
tion mode.” [Microsoft Corporation #73] The downfall of this architectural model is
that all instances share the same process - one fault could jeopardize the reliability of the
server. This architectural fault led to numerous reliability problems[Peiris 2003, #116,
Web Host Industry Review 2001, #153].

To increase reliability, IIS 6.0 introduces a new run-time architectural option called
Worker Process Isolation Mode, depicted in Figure 8 on page 21. This model defines a
collection of application pools that are assigned to a specific web site - a fault in one
website will only jeopardize the application pool it resides in.[Microsoft Corporation
20 Architectural Styles of Extensible REST-based Applications

Origin Servers
FIGURE 7. Internet Information Services (IIS5 Compatibility Mode) (From
[Microsoft Corporation #74])

FIGURE 8. Internet Information Services 6.0 Architecture (From [Microsoft
Corporation #74])
Architectural Styles of Extensible REST-based Applications 21

Origin Servers
#75] These pools register with the kernel-mode HTTP driver for a particular namespace
and incoming requests for that namespace is then forwarded to the appropriate user-
space process to generate a response.[Smith 2004, #127]

Internal Extensibility. ISAPI is the code name given to Microsoft’s Internet Server API
specification, which debuted with the initial release of IIS. Microsoft claims that they
initially positioned ISAPI to compete with CGI - however it differs substantially from
CGI. ISAP modules would be executed inside the server process not outside the server
process like CGI[Schmidt 1996, #122]. ISAPI modules are required to be compiled as
Windows DLLs and explicitly inserted into the server configuration. Therefore, even
with Microsoft’s initial characterization as ISAPI as a competitor to CGI, we will char-
acterize ISAPI as an internal extensibility mechanism instead of an external extensibil-
ity mechanism.

ISAPI offers two dimensions of access: extensions and filters. ISAPI extensions must
be explicitly registered for a configured URI namespace[Microsoft Corporation #76].
For convenience, specific file types can also be associated with an ISAPI extension -
files bearing an .asp extension can be mapped to the ASP.dll extension. In this manner,
extensions are like CGI applications as they create a virtual namespace under its own
control; however, extensions offers far more control while introducing more security
risks than CGI applications. As we will discuss in the following section, ISAPI exten-
sions presented significant source disclosure risks.

ISAPI filters, instead of being explicitly requested, are explicitly configured for a spe-
cific site. A filter is set up for a specific virtual host and is then executed on every
request for that virtual host. The filter can then transform the incoming and outbound
data before it is processed by other filters or extensions. In addition, filters can perform
a number of other tasks, including:[Microsoft Corporation #77]

• Control which physical file gets mapped to the URL

• Control the user name and password used with anonymous or basic authentication

• Run processing when a connection with the client is closed

• Perform special logging or traffic analysis

• Perform custom authentication

While the range of functionality offered through filters is similar to that offered by
Apache HTTP Server’s hooks, Microsoft recommends that “the work performed by
ISAPI filters [be] minimized”[Microsoft Corporation #78]. This is because every filter
is executed on each request which can introduce substantial invocation overhead if it is
not needed on every request.

Also, as part of the new Worker Process Isolation mode in IIS 6.0, ISAPI Extensions
and Filters are now relegated to the individual process space of the specific application
pool. Since errors in the kernel-mode driver can cause stability problems, it is protected
from any external modifications. Yet, this directly constrains what operations can be
performed by the ISAPI filters. Previously, raw data filters had the ability to access the
underlying connection stream to introduce modifications into the data stream. With the
new kernel-mode code handling the brunt of the protocol interactions, all of this is
required to be handled by the http.sys driver directly. Therefore, any applications that
22 Architectural Styles of Extensible REST-based Applications

User Agents
require raw data access must use the lower-security IIS 5.0 isolation mode and bypass
the HTTP kernel driver.

External Extensibility. IIS 3.0 introduced Active Server Pages (ASP) and is classified
as a server-side scripting language. As discussed before, the implementation of ASPs in
IIS are handled by an ISAPI extension. Numerous security issues discovered with IIS
over the years permitted the source code of these ASPs to be disclosed through bypass-
ing these extensions. This presented a number of security risks as sensitive information
(such as database usernames and passwords) were often stored inside the ASP files
under the assumption that the client would never see the source behind these ASP files.
Eventually, most ASP content developers began to understand that various vulnerabili-
ties would occur which would disclose the source of their files and consequently limited
the amount of sensitive information in the ASP files themselves.

While IIS 6.0 retains support for ASPs, CGIs, WebDAV, and other server-side technolo-
gies, they must now be explicitly enabled by the site administrator. Only static content
will be served by default. This action is now required “to help minimize the attack sur-
face of the server.”[Microsoft Corporation #79] Any requests to these inactive services,
even if they are otherwise installed, will result in an HTTP error being returned to the
user.

Lessons Learned. Lack of separation in run-time architecture presented serious security
risks; Installing and activating unnecessary components by default can be dangerous;
Security constraints can restrict range of functionality that can be provided.

User Agents

Fielding defines a user agent in the REST world as:

A user agent uses a client connector to initiate a request and becomes the ultimate recip-
ient of the response. The most common example is a Web browser, which provides
access to information services and renders service responses according to the applica-
tion needs.[Fielding 2000, #36, 5.2.3]

TABLE 6. REST Architectural Constraints: IIS

Constraint Imposed Behavior

Representation Metadata Request: Fetch request header with ‘:’
Response: Add headers with manual delimiting[Microsoft
Corporation 2004, #90]

Extensible Methods HTTP processing by the kernel prevents this with IIS 6.0

Resource/Representation Extensions Response object not clearly defined

Internal Transformation Filters are defined for an entire site
IIS 6.0 further reduces filter flexibility for security

Proxy None

Statefulness ASP session information hides state from ISAPI modules

Cacheability Added in IIS 6.0
Architectural Styles of Extensible REST-based Applications 23

User Agents
Grosskurth and Godfrey used automated architectural recovery processes to define a ref-
erence architecture for web browsers depicted as Figure 9 on page 24[Grosskurth and
Godfrey 2005, #50]. Besides producing a reference architecture, they also presented a
timeline that covers the early history of web browsers as depicted in Figure 10 on
page 24. In an earlier work, Grosskurth and Echihabi extracted software architectures
for several other web browsers[Grosskurth and Echihabi 2004, #49]. For the web
browsers that they extracted an architecture for and are discussed here, we will present
their architecture diagrams as well. However, it should be noted that these architectural
diagrams are relatively high-level and tell us little about the behavior of the system
along the prism dimensions we introduced earlier.

FIGURE 9. Web Browser Reference Architecture (From [Grosskurth and Godfrey
2005, #50])

FIGURE 10. Web Browser Timeline (From [Grosskurth and Godfrey 2005, #50])
24 Architectural Styles of Extensible REST-based Applications

User Agents
MOSAIC AND DESCENDANTS The migration from text-based browsers to graphical browsers allowed the content on
the World Wide Web to evolve from hypertext to hypermedia. One of the earliest suc-
cessful graphical web browsers was NCSA Mosaic which started development in
1993[National Center for Supercomputing Applications 2002, #106]. Like httpd,
Mosaic was developed at the National Center for Supercomputing Applications (NCSA)
at the University of Illinois at Urbana-Champaign. The ability to render images, and
hence, richer documents, over the World Wide Web was critical in facilitating an explo-
sive growth in web traffic[Kwan, McGrath 1995, #64].

MOSAIC ARCHITECTURE Compared to web browsers today, Mosaic was highly restricted as to what content it
could render internally. Mosaic was initially restricted to supporting only the Hyper-
Text Markup Language (HTML), the Graphics Interchange Format (GIF) format, and
the XPixMap image format (XPM).

Portability. There were several versions of Mosaic that were distributed by NCSA:
ones for Windows, Macintosh and the various Unix platforms. While they shared the
same brand name, they did not share a common architecture. Each one was written
independently and had separate release cycles. By far the most popular version during
this time was Mosaic for X Windows (X Windows being the standard windowing sys-
tem on Unix platforms). Therefore, we will restrict the following architecture discus-
sions to Mosaic for X Windows.

Run-time architecture. Since Mosaic was an X Windows program, its architecture fol-
lowed the constraints of X: a single process generated and responded to user events.
New windows could be created which would request a URL and render the response
within the window. Mosaic did support other protocols, including FTP and Gopher, that
could be accessed through the URL syntax.

External Extensibility. In each HTTP response, there is usually an associated metadata
field called Content-type. The presence of this metadata allowed programs such as
Mosaic to determine how to best render the received representation. If Mosaic could
render the content-type natively (such as for HTML, GIF, or XPM), it would display the
content inside of the browser window. However, if it was not one of the types that it
supported, Mosaic relied upon helper applications to render the document.

However, this setup had a significant drawback: these helper applications were truly
external to Mosaic[Schatz and Hardin 1994, #121]. Mosaic would download the repre-
sentation locally to disk and pass the local file information to the specified application.
The viewer would then execute independently and render the content separately in its
own window space. Thus, a critical aspect of hypermedia was lost: all navigation capa-
bilities stopped once the helper application was launched.

Internal Extensibility and Integration. To help address the loss of navigation through
unknown media types, an experimental Common Client Interface (CCI) was first
released with Mosaic 2.5 for X Windows in late 1995[National Center for Supercomput-
ing Applications 1995, #102, Schatz and Hardin 1994, #121]. By this time, most of the
original Mosaic development team had left to start Netscape, which among other com-
petitors, started their own internal extensibility efforts. There were also serious inherent
security problems with CCI - any incoming connection to the CCI TCP port would
Architectural Styles of Extensible REST-based Applications 25

User Agents
allow the user to control the browser without any authentication. Therefore, there was
little practical adoption of CCI.

CCI allowed for external applications to send instructions to Mosaic: such as navigating
to a particular page. One such CCI-enabled application was X Web Teach which
allowed a teacher to browse websites with student Mosaic instances automatically navi-
gating to the same sites.[Braverman 1994, #15] Other work with CCI would allow con-
trol of the user interface within Mosaic[Newmarch 1995, #110]. Notably, CCI did not
allow for drawing of unknown media types within the Mosaic windows.

Lessons Learned. Internal rendering of types facilitate hypermedia, but the lack of tight
integration for unknown media types present a difficulty in persisting the hypermedia
experience.

EARLY NETSCAPE

NAVIGATOR ARCHITECTURE

Even though little code was shared between NCSA Mosaic and the new Netscape Navi-
gator, the key designers behind the two browsers were constant. Similar to what tran-
spired with NCSA httpd and Apache HTTP Server, a large percentage of the user base
quickly migrated from the depleted NCSA project to a viable comptetitor - in this case,
Netscape Navigator. There was, however, one notable difference between the server
administrator’s transition to Apache: Netscape, unlike NCSA Mosaic, was only avail-
able for a fee. However, until its competitors became viable alternatives and undercut
its prices by giving their browsers away, Netscape had acquired over an 80% market
share by the summer of 1995[Wilson 2003, #155] It should also be pointed out that the
internal codename for Netscape Navigator was Mozilla - which would ultimately resur-
face later.

Given a chance to re-examine past architectural decisions based on their Mosaic design
experiences, the team decided to address several issues that were unresolved with
NCSA Mosaic. Among the key architectural changes were the introduction of more
current HTML support, Java applets, JavaScript, Cookies, and the introduction of a cli-
ent-side plug-in system to internally incorporate the concept of helper applications.

Portability. Like NCSA Mosaic, Navigator was written in C with versions of Navigator
available for Unix, Macintosh, Windows, and other platforms. During this time, Java
emerged on the scene with its “write once, run anywhere” promises. Navigator was one
of the first non-Sun browsers to incorporate applet support - which allowed Java appli-
cations to run inside of the browser[Gosling and Yellin 1996, #44].

TABLE 7. REST Architectural Constraints: Mosaic

Constraint Imposed Behavior

Representation Metadata None

Extensible Methods No

Resource/Representation Content went straight from parser to user’s window

Internal Transformation External viewers only

Proxy Can pass requests to a proxy

Statefulness No state management issues

Cacheability Partially: some features didn’t work ‘right’ with the cache
26 Architectural Styles of Extensible REST-based Applications

User Agents
As an object-oriented language with integrated memory management and the promises
of pure portability, the Netscape developers initially found Java an attractive lan-
guage.[Zawinski 2000, #158] Therefore, Netscape started the process of rewriting Nav-
igator in Java under the codename of “Xena” (the press labeled this effort “Javigator”).
Jamie Zawinski, one of the lead Navigator developers, has commented, “I think C is a
pretty crummy language. I would like to write the same kinds of programs in a better
language.”[Zawinski 2000, #158] Unsurprisingly, however, the promises and reality of
Java were far apart: the portability, efficiency, and confusing mix of concepts caused
serious problems. Zawinski eventually concluded, “I'm back to hacking in C, since it's
the still only way to ship portable programs.”[Zawinski 2000, #158] Given these techni-
cal problems, Netscape management later cancelled the Java porting effort and only
released incomplete portions of the Mail client under the code name Grendel[Zawinski
1998, #157].

Internal Extensibility. One of the significant advances introduced with Navigator was
the addition of a plug-in architecture. Developers could now write dynamically-loaded
plugins to handle specific content-types and render them inside of the browser - instead
of requiring an external application. For example, a user who wanted to view a Quick-
Time movie inside of their browser only needed to install a QuickTime plug-in for
Netscape. Additionally, if the content type being viewed supported links (such as a
movie trailer pointing to a website for more information), the plug-ins could further the
hypermedia context by directing the browser to fetch that URL. True two-way interac-
tion between the browser and its plugins was achieved.

Plug-ins inside of Netscape can perform the following tasks[Oeschger 2002, #113]:

• draw into a part of a browser window

• receive keyboard and mouse events

• obtain data from the network using URLs

• add hyperlinks or hotspots that link to new URLs

• draw into sections on an HTML page

• communicate with JavaScript/DOM from native code

These plug-ins would be compiled into native code by the developer and distributed to
the users for installation. To maintain backwards compatibility and promote their own
adoption rates, most current web browsers still support loading these original Netscape
plug-ins.

External Extensibility. Netscape also introduced a number of ways for content design-
ers to influence the behavior of the browser above what could be achieved with simple
HTML. The first of these was the introduction of JavaScript[Netscape 1996, #108].
JavaScript is a client-side scripting language that allows content developers, through
special HTML tags, to control the behavior of the browser when viewing that specific
HTML page. We will discuss JavaScript more completely in “JavaScript” on page 52.

The other key feature that Netscape Navigator introduced was cookies.[Kristol and
Montulli 1997, #63, Netscape 1999, #109] As discussed previously in “REST Mis-
matches in HTTP Extensions” on page 6, cookies are one of the most pervasive exam-
ples of non-RESTfulness on the Web. Cookies allow a server to provide an opaque
Architectural Styles of Extensible REST-based Applications 27

User Agents
token to the client as a meta-data field. The client can then save this cookie and then
present that same opaque token to the same server in any subsequent requests. Since the
server issued the “cookie” in the first place, it can then determine the client that is mak-
ing the request. Numerous security implications have been discovered through the
improper use of cookies, but their usage still remains prevalent today.

Lessons Learned. Attempts at porting the web browser to Java failed; Internal extensi-
bility greatly enhanced through client-side plugins; external extensibility enhanced with
introduction of JavaScript; Statefulness REST constraints violated with the introduction
of cookies.

NETSCAPE 6.0 / MOZILLA

ARCHITECTURE

After the success of Netscape 4 and the failure of their Java rewrite, the developers
behind Netscape decided to rewrite the codebase from scratch. This caused the release
of Netscape 6.0 to be delayed until April 2000. One commentator criticized this deci-
sion[Spolsky 2000, #128]:

Netscape 6.0 is finally going into its first public beta. There never was a version 5.0. The
last major release, version 4.0, was released almost three years ago. Three years is an
awfully long time in the Internet world. During this time, Netscape sat by, helplessly, as
their market share plummeted.
It's a bit smarmy of me to criticize them for waiting so long between releases. They
didn't do it on purpose, now, did they?
They did it by making the single worst strategic mistake that any software company can
make:
They decided to rewrite the code from scratch.

This period was one of large social turmoil for the project as Netscape was purchased by
America Online and the Mozilla Foundation was started[Markham 2005, #68]. The
codebase that eventually formed the basis of Netscape 6.0 was first open-sourced under
the Mozilla moniker in 1998. Since the opening of the Mozilla codebase, all subsequent
Netscape releases were derived to some degree from the Mozilla codebase.

Architecture Recovery Process. As part of the TAXFORM project, Godfrey and Lee
reconstructed the software architecture behind Mozilla Milestone 9 through an auto-
mated architectural recovery process[Godfrey and Lee 2000, #42]. Milestone 9 was
first released to the public in August 26, 1999 and represented a web browser, mail cli-

TABLE 8. REST Architectural Constraints: Early Netscape

Constraint Imposed Behavior

Representation Metadata Requests: Meta-data represented as content[Oeschger 2002,
#113]
Responses: Content-type is the vector for determining viewer

Extensible Methods Only POST and GET methods were supported

Resource/Representation Plug-ins could transform based on representation type

Internal Transformation Content could dynamically change through plug-ins

Proxy Can pass requests to a proxy

Statefulness Introduction of Cookies conflicts with REST

Cacheability Yes
28 Architectural Styles of Extensible REST-based Applications

User Agents
ent, news reader, and chat engine in one integrated application[Mozilla Foundation
2002, #100]. Mozilla’s aim with Milestone 9 was to introduce a new networking layer
called Necko[Mozilla Foundation 2001, #99]. The Mozilla developers justified Necko
because “Mozilla’s current networking library is in a sorry state” and the old layer “was
designed for a radically different non-threaded world.”[Harris and Potts 1999, #51]

Godfrey and Lee’s recovered architecture diagram for Mozilla Milestone 9 is presented
in Figure 11 on page 29. A breakdown of Mozilla’s architectural systems is presented
Table 9 on page 29. While Godfrey and Lee also provided the number of lines of code
for each architectural division, we exclude that number here.

Portability. At this point in time, the complete Mozilla codebase consisted of over
7,400 source files and over two million lines of code in a combination of C and
C++[Godfrey and Lee 2000, #42]. To place the cost of portability in perspective, God-
frey determined that only 20% of the C files and 60% of the C++ files were actually
required to operate on the Linux operating system. To ease the difficulties associated

FIGURE 11. Mozilla Milestone 9 Architecture (From [Godfrey and Lee 2000, #42])

TABLE 9. Mozilla Architecture Breakdown (From [Godfrey and Lee 2000, #42])

Name Description
Associated
Subsystems

Associated
Files

HTMLPres HTML layout engine 47 1401

HTMLParser HTML Parser 8 93

ImageLib Image processing library 5 48

JavaScript JavaScript engine 4 134

Network Networking code 13 142

StdLib System include files (i.e., “.h” files) 12 250

Tools Major subtools (e.g., mail and news readers) 47 791

UserInterface User interface code (widgets, etc.) 32 378

Utility Programming utilities (e.g., string libraries) 4 60

nsprpub Platform independent layer 5 123

xpcom Cross platform COM-like interface 23 224
Architectural Styles of Extensible REST-based Applications 29

User Agents
with the recovery process, Godfrey therefore eliminated the code that was not required
on Linux. Therefore, their analysis did not consider how 80% of the C code or 40% of
the C++ code fit into rest of the overall architecture. We believe that removing these
codes understated the true impact of portability for Mozilla.

Analysis of Mozilla’s Architecture. Godfrey summarized their architectural observa-
tions about Mozilla that “either its architecture has decayed significantly in its relatively
short lifetime, or it was not carefully architected in the first place”[Godfrey and Lee
2000, #42]. As can be seen in the figure, the recovered architecture indicates a “near-
complete graph in terms of the dependencies between the different [Mozilla] sub-
systems.” Their recovered architecture indicated a dependency upon the network layer
by the image processing layer. They concluded that “the architectural coherence of
Mozilla to be significantly worse than that of other large open source systems whose
software architectures we have examined in detail.”

It is compelling to compare this rather harsh architectural assessment with that of Bren-
dan Eich, one of the Netscape developers and co-founders of the Mozilla project, who
remarked in November, 2005[Eich 2005, #24]:

Some paths were long, for instance the reset in late 1998 around Gecko, XPCOM, and
... XPFE. This was a mistake in commercial software terms, but it was inevitable given
Netscape management politics of the time, and more to the point, it was necessary for
Mozilla's long-term success. By resetting around Gecko, we opened up vast new terri-
tory in the codebase and the project for newcomers to homestead.

Godfrey and Lee used an underlying codebase for the architectural recovery which
included these precise modifications that Eich credits for Mozilla’s “long-term success.”
Therefore, we must question either the validity of the developer’s informal assessment
or the faithfulness of reconstructed architecture. This leads to an interesting line of
questioning: Were these changes really in the codebase and detectable by the fact
extractors? If they were present, did they have any measurable architectural impact at
this point in time? If the architectural coherence is “significantly worse” than compara-
ble systems, what does this indicate for the future? Given the conflicting nature of the
architectural assessments, it is imperative to continue to trace the evolution of the
Mozilla codebase with an eye towards its architecture.

Lessons Learned. Need for complete architectural rewrite due to decay allowed compet-
itors to overtake it in the market; challenges in understanding recovered software archi-
tecture in context of evolving systems.
30 Architectural Styles of Extensible REST-based Applications

User Agents
CURRENT MOZILLA

ARCHITECTURE

In 2004, Grosskurth and Echihabi returned to Mozilla to assess the architecture’s
progress[Grosskurth and Echihabi 2004, #48]. By this time, Mozilla had launched a
spinoff product called Firefox. Firefox differed from Mozilla in that only delivered web
browsing functionality without any mail-reading functionality. Most of the resulting
discussion of the current Mozilla architecture applies to Firefox as well.

Grosskurth and Echihabi’s resulting concrete architecture is presented in Figure 12 on
page 31. They also fit this recovered Mozilla architecture into a reference architecture
for web browsers as presented in Figure 13 on page 32. Finally, we present an architec-
ture diagram created by a manual process and was presented as part of a book on devel-
oping applications with Mozilla in Figure 14 on page 32[McFarlane 2003, #69].

Grosskurth’s architectural recovery techniques were similar in nature to the analysis
conducted by Godfrey and Lee in 2000. Therefore, the two sets of resulting architec-
tures can be compared with relative ease. Even though the code size did not increase

FIGURE 12. Mozilla Concrete Architecture - circa 2004 (From [Grosskurth and
Echihabi 2004, #48])
Architectural Styles of Extensible REST-based Applications 31

User Agents
substantially, the striking difference between the two architectural snapshots is that the
complex graph of intra-module dependencies has now been eliminated. The cyclical
dependencies that caused Godfrey and Lee to label Mozilla as an exemplar of architec-
tural decay is no longer.

FIGURE 13. Mozilla Architecture (From [Grosskurth and Echihabi 2004, #49]
Figure 8)

FIGURE 14. Mozilla Architecture (From [McFarlane 2003, #69])
32 Architectural Styles of Extensible REST-based Applications

User Agents
Grosskurth and Echihabi also termed the Mozilla architecture as a modified pipe-and-
filter system. However, we believe that this is an over-simplistic classification of
Mozilla’s architecture. Features of Mozilla’s architecture, specifically the networking
layer, do indeed exhibit the characteristics of a pipe-and-filter system[Saksena 2001,
#120]. However, the higher-level portions of Mozilla, which include the renderer and
interfaces, have characteristics closer to an event-driven architecture than a pipe-and-fil-
ter architecture.[Larsson 1999, #65]

Internal Extensibility. One of the defining characteristics of this new architectural
model is the breakdown of components via Cross Platform Component Object Model
(XPCOM)[Turner and Oeschger 2003, #148]. While XPCOM’s design is inspired by
Microsoft’s COM system, XPCOM only operates within the Mozilla architecture rather
than across an operating system[Parrish 2001, #115]. Building upon XPCOM with user
interface extensions like XPFE[Trudelle 1999, #147], Mozilla now offers third-parties
the ability to customize all facets of the system dynamically. This has created a wealth
of third-party extensions that modify Mozilla’s behavior in a variety of mechanisms.
New protocols can also be added through XPCOM[Rosenberg 2004, #119].

Even with this new model, Mozilla still supports Netscape plug-ins. Yet, there is also a
hidden cost for backwards-compatibility inside the Mozilla architecture for this support.
The previous Unix-based plug-ins were based on the Motif Xt library, while new plug-
ins are built on top of the GTK+ library[Grosskurth and Echihabi 2004, #48]. There-
fore, run-time emulation is performed with these legacy modules by dynamically trans-
lating Motif calls to GTK+.

Portability. Like all of its architectural predecessors, Mozilla is still written in C and
C++. However, JavaScript has been introduced as a critical part of Mozilla: almost all
Mozilla extensions can now be written in JavaScript via XPCOM[Bandhauer 1999,
#10]. Therefore, extension developers no longer need to write their extensions in C, but
instead can access the full flexibility of Mozilla’s interfaces through XPCOM and Java-
Script.

Additionally, Mozilla has built up the Netscape Portability Runtime (NSPR)[Mozilla
Foundation 2000, #98]. This layer abstracts all of the non-user-interface differences
between the different platforms that Mozilla supports. It should be noted that when
developing Apache HTTP Server 2.0, the Apache developers approached the Mozilla
developers about using NSPR for their base portability layer as well. However, licens-
ing differences between these groups caused the construction of the Apache Portable
Runtime components which is now used by Apache HTTP Server and several other
projects.

Integration. Through the Gecko engine, other applications can import the functionality
of Mozilla into their own applications[Evans 2002, #28]. Gecko is described as:

the browser engine, networking, parsers, content models, chrome and the other technol-
ogies that Mozilla and other applications are built from. In other words, all the stuff
which is not application specific.[Mozilla Foundation 2004, #101]

While applications embedding Gecko have a fine-grained behavior over browsing, it is
rather inflexible in its approach in that it forces the application to fit the mold of a web
Architectural Styles of Extensible REST-based Applications 33

User Agents
browser[Lock 2002, #67]. Therefore, Gecko-derived applications tend to be variants on
Mozilla but are not functionally much different than Mozilla.

Lessons Learned. Significant effort to clean up architecture; Internal extensibility pro-
vided via JavaScript and C++; distinct rendering engine permits integration by third par-
ties but isn’t sufficiently powerful to permit different kinds of applications

MICROSOFT INTERNET

EXPLORER

Microsoft’s Internet Explorer can trace its lineage back to the NCSA Mosaic codebase.
To bootstrap their delivery of a web browser, Microsoft initially licensed the code for a
web browser from a company called Spyglass. Spyglass, in turn, was the commercial
variant of NCSA Mosaic for Windows-based platforms. However, in the years since the
first release of Internet Explorer, the corresponding code base and architecture greatly
evolved to the point where it now has little architectural similarity with the original
Mosaic architecture.

After Internet Explorer 6 was released, Microsoft disbanded the IE development team.
Around this same time, a slew of security vulnerabilities were discovered that presented
extreme risks to their users. Besides limiting the responsiveness to security reports, this
absence in the market also led to an opening for other competitors to innovate. Given
these criticisms and advances made by competitors, Microsoft has recently reformed the
Internet Explorer team to focus on a new release of Internet Explorer 7 set to coincide
with the next major Windows release of Windows Vista currently slated for late 2006.
One of the stated goals of this new version is to revamp Internet Explorer’s architectural
approach to better support security. Therefore, we will examine the current state of the
Internet Explorer architecture and look towards the architecture that has been disclosed
for the upcoming Internet Explorer 7.

INTERNET EXPLORER

ARCHITECTURE

Due to Internet Explorer’s closed-source nature, the lack of access to source code pre-
sents a difficulty to recover a detailed and accurate software architecture representation.
However, we can rely upon publicly available architectural information made available
by Microsoft. One such source, presented in Figure 15 on page 35, is a public architec-
tural description of Microsoft Internet Explorer for Windows CE available on the
Microsoft Developer Network (MSDN) website.[Microsoft Corporation 2005, #92]
Another source for architectural information about Internet Explorer is contained within
recent presentations given by Microsoft’s Internet Explorer development team discuss-

TABLE 10. REST Architectural Constraints: Mozilla and Firefox

Constraint Imposed Behavior

Representation Metadata Visitor pattern on nsIHttpChannel object allows examination
of metadata for requests and responses

Extensible Methods Yes

Resource/Representation Extensions can now operate on more than just Content-Type

Internal Transformation Changes can occur even without embed tags

Proxy Can pass requests to a proxy

Statefulness Cache can now handle multiple representations over time
which alleviates the negative stateful impact of Cookies

Cacheability Yes
34 Architectural Styles of Extensible REST-based Applications

User Agents
FIGURE 15. Microsoft Internet Explorer for Windows CE (From [Microsoft
Corporation 2005, #92])

FIGURE 16. Microsoft Internet Explorer Architecture (Adapted from [Chor 2005,
#18])
Architectural Styles of Extensible REST-based Applications 35

User Agents
ing the impact of security on IE’s architecture.[Chor 2005, #18] This particular architec-
tural representation of Internet Explorer is reproduced in Figure 16 on page 35.

Portability. Besides the ubiquitous Windows versions, there have been versions of
Internet Explorer released on a variety of non-Microsoft operating systems, including
Mac OS, Solaris, HP-UX, and a variety of handheld devices. However, as alternatives
emerged, these non-Windows platforms have quietly had their support dropped in recent
years[Microsoft Corporation 2005, #93]. Additionally, the code base behind these ver-
sions of Internet Explorer was often independent of the code base for the main Win-
dows-based version. Therefore, while the Internet Explorer brand name was shared
across implementations, behind the scenes, there was usually little in common. For our
purposes, we will only consider the Windows-based architectures of Internet Explorer.

Internal Extensibility. With Internet Explorer 4.0, Microsoft introduced a set of Pow-
erToys that allowed developers to produce extensions to Internet Explorer. These exten-
sions were contained in an HTML file which Internet Explorer would execute to alter its
behavior. Example modifications that were supported was controlling the zoom factor
of an image, listing all of the links on a page, and displaying information about the cur-
rent page.[Microsoft Corporation #80]

In Internet Explorer 5.0, this functionality was broadened to allow modification by
COM objects and events[BowmanSoft 2001, #14]. At the same time, the feature set was
renamed to Web Accessories. One facet of modification was through “bands” which
dedicate a region of the Internet Explorer window to a third-party extension[Microsoft
Corporation #81]. These bands can display any desired information in this region
through any programming language that supports COM objects and events. New down-
load managers, toolbar buttons, and menu items can be added through Web Accesso-
ries[Microsoft Corporation #82, Microsoft Corporation #83, Microsoft Corporation
#84]

However, Web Accessories only have access to relatively high-level and coarse-grained
user-centric events. A plug-in that wishes to examine the complete HTTP headers for a
response must install a custom proxy. This proxy must then interface with the WinInet
layer to capture the HTTP stream and relay it externally to the Web Accessory plug-in.
An example of such a system, Fiddler, is provided by Microsoft[Lawrence 2005, #66].

Through the URLmon component, developers can also register an asynchronous plug-
gable protocol to register a new protocol or MIME filter[Microsoft Corporation #85].
When a resource is requested, Internet Explorer will use the provided URL scheme
(such as http or ftp) to look up which module defines the protocol interactions. The
request is then handed off and the module initates the proper protocol. Besides raw pro-
tocols, filters can be registered that will be invoked whenever a representation’s mime-
type matches, which allows for custom internal transformations of the representation
before the user will see the result.

Integration. Through a COM object called WebBrowser, any Windows application can
import the functionality of Internet Explorer[Microsoft Corporation #86]. All of the
browsing and parsing functionality is then handled internally by Internet Explorer.
Additional customizations can be introduced through Browser Helper Objects, which
allow a developer to customize the look and feel of the browser[Esposito 1999, #27].
36 Architectural Styles of Extensible REST-based Applications

User Agents
External Extensibility and Run-time Architecture. The run-time architecture of
Internet Explorer is presented in Figure 16 on page 35. The external extensibility items
that are supported are in the “page rendering” layer via the MSHTML components. In
addition to the other mechanisms (such as JavaScript through the Script Engine compo-
nent) that IE supports, the key addition with IE is support for ActiveX con-
trols.[Microsoft Corporation #87] Internet Explorer can act as a container for these
COM objects and content developers can request their inclusion through special HTML
tags. When requested and if it is installed on the client machine, an ActiveX control
will appear as part of the returned page. It should be noted that until Internet Explorer
6.0, ActiveX controls would automatically be downloaded and installed without asking
permission from the user[Microsoft Corporation 2004, #91]. This presented serious
security risks.

These security concerns with ActiveX arise from the fact that these controls can perform
any action on the computer that the current user can perform.[Microsoft Corporation
#88] One defensive mechanism that was introduced is that a control developer can mark
a control as “safe for scripting.” If an ActiveX control isn’t marked as safe for scripting,
it can not be executed by Internet Explorer. Unfortunately, most developers do not have
enough knowledge about when to mark a control as safe for scripting or not. Microsoft
themselves allowed Internet Explorer to be scripted by external sites until IE
6.0[Microsoft Corporation #89]. Even with these opt-in measures available, as we will
discuss next with Internet Explorer 7, the lack of privilege separation in Internet
Explorer 6 and earlier still present significant opportunities for malicious attacks that
can compromise the system.

INTERNET EXPLORER 7
ARCHITECTURE

Faced with the deluge of security vulnerabilities, Microsoft has embarked on a rewrite
of Internet Explorer focused on introducing a security-centric architecture to the next
release of Internet Explorer to be shipped with the upcoming Windows Vista release cur-
rently expected in the second half of 2006.

Internet Explorer’s current Group Program Manager, Tony Chor, admits that “compati-
bility and features trumped security” in previous versions of Internet Explorer[Chor
2005, #18]. The main problems identified were that various architectural flaws and defi-
ciencies combined to lead to the poor security measures of Internet Explorer. Among
those identified was that Internet Explorer led users to be confused about the impact of
certain choices, architectural vulnerabilities were exposed allowing malicious code to
be installed, and attacks on the extensibility features present in Internet Explorer. To
rectify this situation going forward, this new version introduces a revised architectural
model aimed at improving the security characteristics of IE.

The core of Internet Explorer 7’s redesigned architecture will rely upon a new feature in
Windows Vista called user account protection (UAP). This new operating system fea-
ture segregates the normal day-to-day operation of the user with the administrative func-
tions. This divide prevents a process from being able to perform malicious activities
without explicit authorization. Microsoft claims that “the goal of UAP is to enable the
use of the Windows security architecture as originally designed in Microsoft Windows
NT 3.1 to protect the system so that the these [threat] scenarios are blocked.”[Microsoft
Corporation 2005, #94]
Architectural Styles of Extensible REST-based Applications 37

User Agents
IE7 will now run at this lower “privilege mode.” This implies that the IE process will
be prevented from writing outside a set of specified directories or communicating with
other higher-privilege processes[Silbey 2005, #126] If a requested operation (such as
saving a file) would violate the privilege, the new Windows Vista system will provide
the user with the ability to block the operation from completing or explicitly allow the
operation. Certain high-risk sequences, such as installing an ActiveX control, will
require administrator rights.

In order to maintain compatibility with previous extensions, the exposed ActiveX inter-
faces will remain the same. However, any commands that require additional privileges
will be stopped and explicit authorization will be requested along with a description of
the command that is being attempted.

Lessons Learned. Again, a lack of separation in run-time architecture presented serious
security risks; portability strategies mandating independent implementations for each
platform may lead to maintenance concerns that force eventual product withdrawal;
appropriately combining with operating system security capabilities can improve over-
all security.

KONQUEROR Konqueror from the K Desktop Environment project (KDE) is one of the few user
agents that can not trace its heritage to the NCSA Mosaic codebase. Instead, Konqueror
evolved from the file manager for the KDE environment. The Konqueror name itself is
a subtle reference to the other browsers. The KDE developers explain it thusly:

After the Navigator and the Explorer comes the Conqueror; it's spelled with a K to show
that it's part of KDE. The name change also moves away from “kfm” (the KDE file
manager, Konqueror's predecessor) which represented only file management.[KDE e.V.
2005, #60]

Konqueror’s architecture, as extracted by Grosskurth and Echihabi, is presented in
Figure 17 on page 39.

Portability. All KDE components are written in C++ with window management duties
delegated to the QT library. Befitting Konqueror’s heritage as the file manager on the
KDE desktop, it is an intrinsic part of the KDE environment and relies heavily upon the
services provided by other KDE components. Therefore, Konqueror can not truly be
viewed as a stand-alone application, but rather as a fundamental part of a desktop envi-

TABLE 11. REST Architectural Constraints: Internet Explorer

Constraint Imposed Behavior

Representation Metadata Event triggered before navigation to view outbound headers
If want to view headers, use a separate proxy server

Extensible Methods No

Resource/Representation Extensions can only operate on content-type

Internal Transformation MIME filters can be registered as protocol handlers

Proxy Security zones allows proxy requests on a zone basis

Statefulness Limited control over cache for state considerations

Cacheability Yes
38 Architectural Styles of Extensible REST-based Applications

User Agents
ronment. This limits the portability of Konqueror in that it will operate on any system
that supports KDE, but due to the large dependency chain, the Konqueror application as
a whole can not easily be considered separately from KDE.

Run-time architecture and External Extensibility. The application called Konqueror
is just a relatively thin layer on top of other KDE components. One of Konqueror’s
main dependencies is upon the khtml engine which handles the rendering of any
returned representation (such as for HTML, JavaScript, and CSS). Through a Kon-
qeuror plugin and operating system emulation, Konqueror can also support ActiveX
controls.[KDE e.V. 2001, #59] khtml is also responsible for directly interfacing with
the networking layer (kio) - therefore, the Konqueror application never directly inter-
faces with the networking layer. As we will discuss later with Safari, khtml represents
the most important functional component of Konqueror.

Internal Extensibility. Konqueror’s main extensibility mechanism is through KDE’s
KParts component framework[Faure 2000, #29]. Through KParts, a developer can ren-
der media elements inside the Konqueror window[Granroth 2000, #45]. However,
KParts only really supports embedding of an application inside of a Konqueror window.
KParts does not specifically permit a developer to alter the look and feel of the Kon-
queror application.

If extensions to the underlying protocol are desired, new protocols can be added through
KDE’s networking layer. All protocols that are supported by Konqueror are handled
through ioslaves. The KDE input/output layer understands the concepts of URLs and
can delegate protocol handling to registered modules. However, there is no mechanism

FIGURE 17. Konqueror Architecture (From [Grosskurth and Echihabi 2004, #49]
Figure 12)
Architectural Styles of Extensible REST-based Applications 39

User Agents
to extend a specific URL handler - therefore, any extensions to a protocol would have to
be handled through a completely separate kioslave mechanism.

Lessons Learned. Evolution from a different application; tight integration with other
layers of platform offers compartmentalization, but it blurs the distinction between an
application and the platform it is on top of.

SAFARI In 2003, Apple announced the Safari Web Browser for their Macintosh OS X platform.
Until this time, the prevailing browser on Mac OS X was Microsoft’s Internet Explorer
for Macintosh. In the words of one expert on CSS, with Internet Explorer for Macin-
tosh, “the port (of Internet Explorer) to OS X has gone horribly wrong, and I've written
5.2 off.”[Koch 2004, #62]. Therefore, Apple decided to produce their own browser; but
instead of writing the browser from scratch, they decided to examine other alternatives.

TABLE 12. REST Architectural Constraints: Konqueror

Constraint Imposed Behavior

Representation Metadata Konqueror itself does not have access to any metadata

KHTML and kio do to varying extents

Extensible Methods New URL scheme would be required

Resource/Representation KHTML modifications based upon content-type

Internal Transformation kio layer has concept of filter transformations

Proxy Can pass requests through the kio layer

Statefulness Explicit state support

Cacheability Yes, handled by the KHTML and kio layer

FIGURE 18. Safari Architecture (From [Grosskurth and Echihabi 2004, #49]
Figure 14)
40 Architectural Styles of Extensible REST-based Applications

User Agents
Run-time architecture. As seen in Safari’s architecture, as extracted by Grosskurth and
Echihabi and presented in Figure 18 on page 40, Safari is based upon Konqueror’s
KHTML rendering engine and KJS JavaScript engine. Apple’s development manager
explained their choice to the KDE community as follows:

The number one goal for developing Safari was to create the fastest web browser on
Mac OS X. When we were evaluating technologies over a year ago, KHTML and KJS
stood out. Not only were they the basis of an excellent modern and standards compliant
web browser, they were also less than 140,000 lines of code. The size of your code and
ease of development within that code made it a better choice for us than other open
source projects. Your clean design was also a plus. And the small size of your code is a
significant reason for our winning startup performance.[Melton 2003, #70]

Since a number of developers on Apple’s Safari team had previously worked for
Netscape on Mozilla, the implied questions that quickly arose focused on why Apple
did not choose Mozilla for their engine instead. Many viewed this as an attack on
Mozilla[Festa 2003, #30]. A Mozilla contributor, Christopher Blizzard, dismissed those
claims as follows:

First of all, I don't think that we should be having the Safari vs. Mozilla/Chimera dis-
cussion at all. It takes our eyes off of the real prize (Internet Explorer) and that which
we all should be worried about. I mean, if you control the browser, you control the
Internet. It sounds kooky, but it's true. When we squabble amongst ourselves it doesn't
do us any good.
That being said, I do have a few things to say about the fact that Apple is going this
alone. First, it's great that they decided to choose an open source solution, even if it isn't
Mozilla. If they manage to engage the KHTML community and get well integrated with
them then they have the chance to enjoy the fruits of that relationship, like as we have
with the Mozilla project. ...
Now, is our layout engine huge and ungainly and hard to understand? Yes. Yes it is. And,
at least to some degree it's important to understand that Mozilla's layout engine has
warts because the web has warts. It's an imperfect place and that leads to imperfect
code. Remember that while KHTML is a good bit smaller than our layout engine, it also
doesn't render a lot of sites anywhere near as well as Mozilla does. Over time, they are
going to have to add many of the same warts to KHTML as we have to our layout
engine. They might be able to do so in a more clean way, but they will still be
there.[Blizzard 2003, #13]

Portability. Safari extracted the KHTML and KJS code from KDE and used that as the
base rendering engines for their web browser. The main consequence of this is that the
rendering characteristics of Safari and Konqueror are largely the same because they use
the same rendering components. However, this extraction did not change the implemen-
tation language of the KDE components (which was originally in C++), therefore Safari
relies upon a wide mix of programming languages to achieve its tasks: ranging from C,
C++, Objective-C, and Objective-C++.

All of the code in KHTML that depends on the KDE component foundation had to be
changed to work on Mac OS X’s foundation instead. For example, all of the windowing
primatives based on QT in KHTML had to be adapted to Mac OS X’s Cocoa interfaces.
According to one Mozilla developer, Safari “also took one of the most complex and
effort-intensive parts of Gecko (Mozilla’s rendering engine), the view manager, to add
to KHTML, because Gecko's worked so well.”[Baker 2003, #9, Shaver 2003, #124]
Architectural Styles of Extensible REST-based Applications 41

Libraries and Frameworks
Internal Extensibility. Safari supports two kinds of extensibility mechanisms:
Netscape-compatible plug-ins and WebKit[Apple Computer Inc. 2005, #3]. To ease the
transition for prospective users and developers, plug-ins designed against the Netscape
plug-in interface will work with Safari without any source modification. The end-user
only needs to receive a Mac OS X-compiled version of the Netscape plug-in from the
developer. Recent versions of Safari also offer custom extensions to the Netscape plug-
in architecture to support scripting functions[Apple Computer Inc. 2005, #4]

On top of support for Netscape plug-ins, Safari also offers a set of extensions in Objec-
tive-C called WebKit[Apple Computer Inc. 2005, #5, Apple Computer Inc. 2005, #6].
Extensions written for WebKit allows use of Apple’s bundled development tools for
easy construction.[Apple Computer Inc. 2005, #7] Since most of Apple’s Mac OS X
extensions are already written in Objective C, the learning curve for the WebKit frame-
work is not high for developers who are already familiar with Apple’s extension frame-
works. Therefore, WebKit’s target audience is squarely those who are already familiar
with Apple’s frameworks not those who are interested in just the web browsing func-
tionality.

Integration. By leveraging the WebKit interface, applications on Mac OS X can reuse
the services provided by Safari. Dashboard, a new widget system introduced in Mac OS
X 10.4, uses the WebKit engine for retrieving dynamic content and rendering the items
on the user’s screen.[Apple Computer Inc. 2005, #8] Contrary to statements which have
stated otherwise, the iTunes player on Mac OS X does not use WebKit.[Hyatt 2004,
#56] Since WebKit would not likely be available on other platforms due to its extreme
dependency on Mac OS X services, this would preclude iTunes from using WebKit
because a major platform target for iTunes is Windows.

Lessons Learned. Possible to take generic, portable code and make it optimized for only
one platform; OS’s native framework system allows any application to integrate a web
browser; applications that use WebKit only work on that OS though.

Libraries and Frameworks

The origin servers and user agents we have examined so far provide a complete usable
system aimed at either content providers and interested end-users. However, not all

TABLE 13. REST Architectural Constraints: Safari

Constraint Imposed Behavior

Representation Metadata Dictionary of all header fields for HTTP objects

Extensible Methods Like KDE, new URL schemes required to extend methods

Resource/Representation Response and Request have defined objects

Internal Transformation Modifications of returned HTML content through DOM

Proxy Can pass requests to a proxy

Statefulness Each application can define a policy for accepting cookies

Cacheability Yes, on a per-application basis
42 Architectural Styles of Extensible REST-based Applications

Libraries and Frameworks
RESTful applications fit the mold of an HTTP server or web browser. Some applica-
tions which take part of the RESTful part follow a completely different interaction para-
digm. To serve these needs, a collection of RESTful frameworks have emerged to
provide the structural necessitities for these applications. Again, we will limit ourselves
to the criteria presented in “Selecting Appropriate RESTful Applications” on page 7.

One notable characteristic of this classification of systems is that most of the systems
described here do not provide support for external extensibility mechanisms. Interpreta-
tion of HTML, JavaScript, and CSS are typically associated with the role of web brows-
ers. Therefore, developers looking to integrate web browsing into their application will
tend to integrate one of the user agent architectures instead of using one of these frame-
works.

LIBWWW Having been around in some form since 1992, one of the oldest frameworks for design-

ing and constructing HTTP applications is libwww1 [Aas 2004, #1, Fielding 1998, #32,
Kahan 2003, #57]. libwww has been used to design and develop a variety of HTTP cli-
ent applications, such as the Amaya web browser [Vatton 2004, #151].

Portability and Run-time Architecture. libwww is written in C and has been explic-
itly ported to Unix, Windows, and Macintosh platforms. However, there is no portabil-
ity layer - so all developers using libwww must explicitly handle platform differences
themselves. While not directly supporting threads, libwww is built upon an event loop
model[Nielsen 1999, #111]. An application can register its own event loop that will be
called whenever an event is triggered. Through this event loop and non-blocking net-
working performance, libwww can handle multiple connections simultaneously.

Internal Extensibility. There have been conflicting descriptions about the underlying
architecture of libwww. One popular description of the architecture of W3C’s libwww
can be found in Chapter 7 of Bass [Bass, Clements 1998, #11]. Here, the architecture of
libwww is divided into five layers: application, access, stream, core, and generic utili-
ties. They also claim that libwww can be utilized to construct both server and client-side
HTTP applications. Finally, they present the following lessons that can be learned from
libwww: 1) Formalized APIs are required; 2) A layered architectural style must be
adopted; 3) An open-ended set of features must be supported; 4) Applications should be
thread-safe.

However, the original designers of libwww have presented their architecture as a “Coke
Machine” architecture [Frystyk Nielsen 1999, #39]. This view of the architecture pro-
vides designers with a wide range of functionality, in no particular ordering, that can be
used to construct a RESTful application. Furthermore, while libwww could theoreti-
cally be used to write server applications, the stated intent is for W3C’s libwww to be a
“highly modular, general-purpose client side Web API written in C.” [Kahan 2003, #57]
Hence, the express focus of libwww is therefore on helping to develop HTTP clients not
servers. The initial positioning as an HTTP client framework introduces fundamental

1. This name is shared by at least two unrelated libraries; we refer to the W3C’s C-based libwww.
Architectural Styles of Extensible REST-based Applications 43

Libraries and Frameworks
assumptions throughout the framework that raise serious challenges when designing
applications with libwww for other REST connector types.

Lessons Learned. Providing a framework that is not inherently coupled to a web
browser is feasible; however, interface is too limited to use it for any other REST node.

CURL cURL (“client for URLs”) is an open-source project focused on facilitating the retrieval
or transmission of content with a wide range of protocols through URLs[Stenberg 2006,
#132]. Two sub-projects are distributed as part of Project cURL: libcurl, a C library, and
curl, a command-line program built on top of libcurl. Since the curl command-line pro-
gram is a thin wrapper on top of libcurl, we will focus principally on the attributes of
libcurl. libcurl provides support for a number of protocols, including FTP, HTTP, TEL-
NET, and LDAP and is available on most currently available operating systems.

As of this writing, the main author behind cURL is currently embarking on a ‘high per-
formance’ version of cURL, called hiper, that will add HTTP Pipelining and a greater
degree of parallelism [Stenberg 2005, #131].

Portability. libcurl is written in C and has been ported to almost all modern operating
systems today. Additionally, libcurl also has a number of bindings to over 30 different
languages available (such as Java, Python, Perl, Lisp, and Visual Basic). Therefore, a
developer can leverage libcurl in their preferred programing language. This process is
helped by the fact that almost all programming languages provide some mechanism for
interacting with C libraries. However, these bindings are not uniform in the functional-
ity provided. Each language binding provides a range of libcurl’s functionality. Some
of these bindings export only the minimal functionality of libcurl (such as the easy inter-
faces), while other bindings provide the complete functionality of libcurl to that particu-
lar language.

Run-time Architecture. libcurl offers two interfaces for developers: an easy interface
and the multi interface. With the easy interface, a developer can simply provide a URL
and the response will be emitted to the end-user’s screen by default. With the multi
interface, a number of requests can be handled simultaneously by libcurl. However, the
libcurl design specifically requires that any application using the multi interface manage
any threads and network connections independently. Therefore, if a developer wishes to
multiplex across different connections in a threading environment, they must manage
the asynchronous communication without libcurl’s assistance. This greatly increases

TABLE 14. REST Architectural Constraints: libwww

Constraint Imposed Behavior

Representation Metadata Restricted set of headers that can be set or fetched

Extensible Methods Yes

Resource/Representation Separate request and response structures

Internal Transformation Filter mechanisms to morph content with chaining

Proxy Can pass requests to a proxy

Statefulness Cookies can be handled through extension mechanisms

Cacheability Yes
44 Architectural Styles of Extensible REST-based Applications

Libraries and Frameworks
the burden on developers attempting to use libcurl; therefore, most libcurl extensions
tend to shy away from the multi interface.

Internal Extensibility. A developer can extend the functionality of libcurl through the
use of options. These options are in the form of key-value pairs that are set by the appli-
cation before the communication process with the server begins. At specific well-
defined points in time, libcurl will examine its options to determine if and how its
behavior should be altered. For example, a callback function can be provided that will
be invoked whenever libcurl wants to write the response to a request. By default, libcurl
will write to the user’s screen; by replacing that option with a callback to a developer-
defined function, the application can process the response in memory or other tasks as
desired.

Importability. The main application that uses libcurl is the curl command-line client
itself. curl provides users with the ability to tranfer files through URLs and supports all
of the underlying protocols that libcurl supports. A selection of applications that use
libcurl include[Stenberg 2006, #133]:

• clamav - a GPL anti-virus toolkit for UNIX

• git - Linux source code repository tool

• gnupg - Complete and free replacement for PGP

• libmsn - C++ library for Microsoft's MSN Messenger service

• OpenOffice - a multiplatform and multilingual office suite

None of these applications would be viewed as traditional RESTful applications like a
web server or browser, but each of them incorporates RESTful functionality through lib-
curl.

Lessons Learned. Truly different applications from a web browser can be created on top
of a RESTful framework; providing support for a vast range of languages can increase
penetration; multiple interfaces allow for a gentle learning curve.

HTTPCLIENT /

HTTP COMPONENTS

The Apache Software Foundation’s Jakarta Commons HTTPClient library is a Java-
based HTTP client framework. HTTPClient focuses on “providing an efficient, up-to-

TABLE 15. REST Architectural Constraints: libcurl

Constraint Imposed Behavior

Representation Metadata Requests: Private linked list; can add headers
Responses: Metadata combined with data stream

Extensible Methods Yes

Resource/Representation Lack of separation between the resource being requested and
the returned representation

Internal Transformation Option mechanism allows only one level of chaining

Proxy Can pass requests to a proxy

Statefulness Explicit support for setting, preserving, or ignoring cookies

Cacheability No
Architectural Styles of Extensible REST-based Applications 45

Libraries and Frameworks
date, and feature-rich package implementing the client side of the most recent HTTP
standards and recommendations.”[The Apache Software Foundation 2005, #144] Note
that, as of this writing, the project is preparing to be renamed to “Jakarta HTTP Compo-
nents.”

Portability. HTTPClient is written in the Java programming language, therefore it
requires a Java Virtual Machine (JVM) to operate. While Java does provide a simple
HTTP client interface in its standard class libraries, it is not easily extensible and does
not support a wide-range of features. Therefore, HTTPClient focuses on offering a
more complete range of features compared to the built-in Java interfaces. An overview
of replacement Java HTTP client frameworks are available at [Oakland Software Incor-
porated 2005, #112].

Run-time Architecture. HTTPClient will attempt to reuse connections via HTTP
Keep-Alive’s wherever possible via connection pooling strategies. Therefore, HTTP-
Client requires that developers explicitly release a connection after it is done to return it
to the connection pool. If the connection is still viable and has been released while
another request is conveyed to the same server, it will reuse the open connection.
HTTPClient can also support multiple concurrent connections through its MultiThread-
edHttpConnectionManager class. Each connection is allocated to a specific thread with
the manager class being responsible for multi-plexing the active connections efficiently
across threads.

Internal Extensibility. Since HTTPClient is written in Java, it is also written in an
object-oriented manner. Therefore, any core HTTPClient class can be extended and
replaced to alter its functionality. For instance, HTTP methods are introduced by
extending the primitive method classes. HTTPClient also supports a wide-range of
authentication mechanisms through this same object-oriented extensibility mechanisms.
HTTPClient also supports altering its protocol compliance through the use of a prefer-
ence model.

Importability. Due to the choice of Java, most usage of HTTPClient is restricted to
Java applications. Still, a broad range of applications have emerged using HTTPClient.
The following is a selection of applications which have been written on top of HTTPCli-
ent[The Apache Software Foundation 2005, #145]:

• Jakarta Slide - a content repository and content management framework

• Jakarta Cactus - a simple test framework for unit testing server-side Java code

• LimeWire - a peer-to-peer Gnutella client

• Dolphin - a Java-based Web browser

• Mercury SiteScope - a monitoring program for URLs and lots more

TABLE 16. REST Architectural Constraints: HTTPClient

Constraint Imposed Behavior

Representation Metadata Metadata fields part of request and response objects

Extensible Methods Yes

Resource/Representation Separates request and response streams as discrete objects
46 Architectural Styles of Extensible REST-based Applications

Libraries and Frameworks
Lessons Learned. Possible to construct RESTful frameworks in Java; however, applica-
tions using HTTPClient are realistically limited to only those applications written in
Java.

NEON neon differs from the other client frameworks mentioned so far in that it is focused on
supporting a specific extension to HTTP: WebDAV[Orton 2005, #114]. Web Distrib-
uted Authoring and Versioning (WebDAV) is an official extension of HTTP which facil-
itates multiple authors collaboratively editing REST resources[Clemm, Amsden 2002,
#19, Goland, Whitehead 1999, #43, Whitehead and Wiggins 1998, #154]. Therefore, in
addition to basic HTTP client functionality, neon offers a number of features that are of
specific interest to WebDAV clients.

Portability. The neon library is written in the C programming language which does not
have explicit memory management support. Therefore, neon does offer some memory
management capabilities on top of the standard C libraries. neon can be configured in a
special memory-leak detection mode which tracks all allocations to the source files
where the allocation was initially made. Still, all memory allocations must be explicitly
deallocated or leaks will occur.

Since neon is not built on top of an explicit portability layer, it must therefore handle all
of the differences between platforms itself. neon offers support for Windows explicitly.
Unix-based platforms are supported through GNU autoconf, which facilitates auto-dis-
covery of most features of platform.[Free Software Foundation 2005, #38] Addition-
ally, bindings to the Perl language are available for neon.

Internal Extensibility. Like libcurl, neon offers two levels of interfaces: a simple inter-
face and a low-level interface. Most developers can leverage the simple interfaces to
perform basic HTTP client tasks. These simple interfaces wrap a more intrinsic inter-
faces which help shields the user from unnecessary complexities. If more complicated
client operations are required, the lower-level interfaces are available for use.

Extensibility with neon occurs through passing callbacks pointers that are then invoked
at certain points in time during the response lifecycle. With WebDAV methods, many of
the responses are often XML-based. To provide assistance to applications interacting
with WebDAV,. neon offers the ability to give callback functions that are invoked during
the XML parsing stage. This allows the application not to have to deal with the parsing
themselves while retaining the ability to see the parsed data.

Run-time architecture. neon presents a synchronous network-blocking run-time archi-
tecture. When a user requests a URL from neon, control will not be returned until the
response has been completely handled by the registered handlers and readers. In addi-

Internal Transformation Extensible object model allows for one level of chaining

Proxy Can pass requests to a proxy

Statefulness Explicit support for setting, preserving, or ignoring cookies

Cacheability No

TABLE 16. REST Architectural Constraints: HTTPClient

Constraint Imposed Behavior
Architectural Styles of Extensible REST-based Applications 47

Libraries and Frameworks
tion to these readers, neon offers the ability to receive notifications at certain connec-
tion-level events (such as when a connection is established). At this time, neon does not
support handling multiple connections at the same time.

Importability. Due to neon’s focus on incorporating WebDAV-friendly features, appli-
cations that take advantage of WebDAV are the target audience. Since WebDAV is an
extension to HTTP, neon can also perform HTTP tasks as well[Stenberg 2003, #130].
Applications that use neon include:

• Litmus - a WebDAV server test suite

• Subversion - a version control system that is a compelling replacement for CVS
which uses WebDAV

• davfs2 - WebDAV Linux File System

Lessons Learned. A RESTful framework that focuses on providing support for an
HTTP extension (in this case, WebDAV) is possible and desired for those applications
that use these extensions.

SERF Serf is an HTTP client framework that is inspired by the Apache HTTP Server’s
design[Stein and Erenkrantz 2004, #129]. Serf was designed by some of the principal
architects of Apache HTTP Server. (This author is one of those architects behind serf.)
One of serf’s principal goals was to explore the question of whether a REST-centric
framework written for an origin server can also apply to a client. Due to these goals,
serf shares a lot of conceptual ideas with the Apache HTTP Server. Besides transporting
these ideas to a client, Serf also takes the opportunity to rethink some of the design deci-
sions made by the Apache HTTP Server.

Portability. Serf is written in C on top of the Apache Portable Runtime (APR) portabil-
ity layer. This is the same portability layer currently used by Apache HTTP Server.
Therefore, the cost of portability are shared with a much larger project that already has
an established portability layer. Additionally, serf uses the same pool-based memory
management model used by Apache HTTP Server. Therefore, serf’s memory model is
similar to that of Apache HTTP Server’s.

Internal Extensibility. The key extensibility concept in serf is that of buckets. These
buckets represent data streams which can have transformations applied to them dynami-

TABLE 17. REST Architectural Constraints: neon

Constraint Imposed Behavior

Representation Metadata Request: Add metadata fields to request structure

Response: Register callbacks for specific metadata names

Extensible Methods Yes

Resource/Representation Separate request and response structures

Internal Transformation Explicit function to support a representation transformation

Proxy Can pass requests to a proxy

Statefulness Cookie support either enabled or disabled by developer

Cacheability No
48 Architectural Styles of Extensible REST-based Applications

Libraries and Frameworks
cally and in a specific order. This name can trace its origins through Apache HTTP
Server[Woolley 2002, #156] and, from there, back to the libwww-ada95 library[Field-
ing 1998, #33]. In turn, this layering concept is related to Unix STREAMS[Ritchie
1984, #118].

Serf’s usage of buckets has more in common with the Onions system of libwww-ada95
than with Apache HTTP Server’s bucket brigade model. The description of Onions
described its model as:

A good network interface should be constructed using a layered paradigm in order to
maximize portability and extensibility (changing of underlying layers without affecting
the interface), but at the same time must avoid the performance cost of multiple data
copies between buffers, uncached DNS lookups, poor connection management, etc.
Onions are layered, but none of the layers are wasted in preparing a meal.[Fielding
1998, #34]

However, Onions was only implemented as an abstract layer without any actual client
implementations completed. Apache HTTP Server 2.x implemented a complete system
around their bucket brigade system and serf based its initial bucket types on the choices
represented in Apache HTTP Server. Therefore, serf represents a fusion of the concepts
behind Onions and the concrete contributions of Apache HTTP Server.

Run-time architecture. Serf is designed to perform non-blocking network connections
- this means that, at no time, do serf buckets wait to write or read data on the network.
Therefore, the buckets can only process the immediately available data. This decision
was made to allow serf to handle more connections in parallel than other synchronous
(network-blocking) frameworks. If no data is available to be written or read on any
active connection, serf will leverage platform-specific optimizations to wait until such
data is available (such as polling). Therefore, serf can gracefully scale up to handling
large numbers of network connections in parallel as it will only be active when data is
immediately available.

This decision to support asynchronous network behavior comes at a cost of extra com-
plexity in writing buckets for serf. This complexity is related to the fact the bucket can
not wait for the next chunk of data - only the connection management code can perform
these wait operations. In order to address this concern, serf buckets must be written fol-
lowing the behavior of a finite-state machine. If enough data is not available to proceed
to the next stage, then the bucket must indicate that it can not proceed further. After all
connections reach this exhausted state, the connection manager will then enter the wait-
ing state until more data is received.

Importability. At this point, no specific applications exist which use serf. A simple
program which fetches resources using serf is available. There is also a proof-of-con-
cept threading spidering program that uses serf’s parallelization and pipelining capabili-
ties. Plans are currently in place to integrate Subversion with serf. The rationale behind
this integration is that Subversion has introduced a number of custom WebDAV methods
for performance reasons because neon does not support HTTP pipelining[Erenkrantz
2005, #26]. We believe that that serf can resolve these performance problems and
Architectural Styles of Extensible REST-based Applications 49

Constructing RESTful Application Architectures
remove the need for custom methods solely for performance reasons[Roy’s post about
REPORT considered harmful].

Lessons Learned. Possible to reuse portability layers from a RESTful server (Apache
HTTP Server) in a RESTful framework; asynchronous behavior places additional con-
straints on developers; transformations through STREAM-like interfaces increases flex-
ibility in transformations

Constructing RESTful Application Architectures

Even in the presence of these systems that have been described so far, these architec-
tures do not fully describe all RESTful applications. Fully-functional REST applica-
tions, like electronic-commerce web sites, leverage these architectures already
described to build a larger application. However, the fact that particular internal archi-
tectural constraints foster the benefits provided by REST does not imply that an applica-
tion building upon that style could never violate the REST principles. We will now
examine a few technologies that are commonly used to build RESTful applications and
how they interact with the REST constraints.

COMMON GATEWAY

INTERFACE (CGI)

NCSA described a prototypical Common Gateway Interface (CGI) application as:

For example, let's say that you wanted to “hook up” your Unix database to the World
Wide Web, to allow people from all over the world to query it. Basically, you need to
create a CGI program that the Web daemon will execute to transmit information to the
database engine, and receive the results back again and display them to the client. This
is an example of a gateway, and this is where CGI, currently version 1.1, got its ori-
gins.[National Center for Supercomputing Applications 1995, #103]

A CGI program can be written in any compiled programming language (e.g. C, Java,
etc.) or can be interpreted through a scripting language (e.g. Unix shell, Perl, Python,
TCL, etc.). The only requirement is that the CGI must be executable on the underlying
platform. When a CGI program is invoked by httpd, the CGI program can rely on four
ways to transfer information from the CGI program and the webserver and vice versa:

• Environment variables: determine the metadata sent via the HTTP request

TABLE 18. REST Architectural Constraints: serf

Constraint Imposed Behavior

Representation Metadata Requests: Add metadata fields to request bucket

Responses: Retrieve metadata bucket chain from response

Extensible Methods Yes

Resource/Representation Explicit response and request buckets

Internal Transformation Multiple transformations can be applied independently

Proxy Can pass requests to a proxy

Statefulness No cookie support

Cacheability No
50 Architectural Styles of Extensible REST-based Applications

Constructing RESTful Application Architectures
• Command line: determine if there are any server-specific arguments

• Standard input: receive request bodies from the client (such as through POSTs)

• Standard output: Set the metadata and data that would be returned to the client

Example CGI Applications. Deployment of CGI was common by 1994 and documen-
tation relating to CGI was included in the NCSA HTTPd documentation.[National Cen-
ter for Supercomputing Applications 1995, #104] The NCSA HTTPd 1.3 release
included a number of example CGI scripts. One example included in NCSA HTTPd 1.3
was an order form for Jimmy John’s submarine shop located in Champaign, Illinois
(cgi-src/jj.c). Upon initial entry to the submarine shop site, an order form was dynami-
cally presented to the user listing all of the ordering options: subs, slims, sides, and pop.
The user would then submit an HTML form for validation. The jj CGI script would
then validate the submitted form to ensure that the name, address, phone, and a valid
item order was placed correctly. After validation, orders were then submitted via an
email to FAX gateway for further processing.

REST Constraints. We begin to see a constraint of the external architecture peeking
through with CGI: HTTP mandates synchronous responses. Therefore, while the CGI
program was processing the request to generate a response, the requestor would be ‘on
hold’ until the script completes. During the exection of the script, NCSA warned that
“the user will just be staring at their browser waiting for something to happen.”[National
Center for Supercomputing Applications 1995, #103] Therefore, CGI script authors
were advised to make the execution of their scripts short so that it did not cause the user
on the other end to wait too long for the response.

CGI introduced clear support for two REST constraints: extensible methods and
namespace control. Although, CGI was most commonly used with the GET and POST
HTTP methods, other methods could be indicated through the passed
REQUEST_METHOD environment variable. This allows the CGI script to respond to
new methods as they are generated by the client.

Additionally, CGI scripts could define an arbitrary virtual namespace under its own con-
trol. This was achieved by the PATH_INFO environment variable. NCSA’s CGI docs
describe PATH_INFO as:

The extra path information, as given by the client. In other words, scripts can be
accessed by their virtual pathname, followed by extra information at the end of this
path. The extra information is sent as PATH_INFO. This information should be decoded
by the server if it comes from a URL before it is passed to the CGI script.

For example, if a CGI program is nominally located at /cgi-bin/my-app, then a request
to /cgi-bin/my-app/this/is/the/path/info, would execute the my-app CGI program and the
PATH_INFO environment variable would be set to “/this/is/the/path/info”. This pre-
sents the appearance of a namespace that the CGI script can respond to appropriately.

HTML FORMS A browser supporting HTML forms allows a content developer to allow the end-user to
fill out fields on a web page and submit these values back to the server. Without forms,
the interaction a user could have with a site was relatively limited as they could not
specify any input to be submitted to the server other than the selection of a hyperlink. A
Architectural Styles of Extensible REST-based Applications 51

Constructing RESTful Application Architectures
simple example of an HTML form as it would appear to a user as shown in Figure 19 on
page 52.

As shown above, there are two key HTML tags in an HTML form: form and input. The
form tag declares to the browser that a form should be displayed. Within the form tag,
the method attribute indicates whether a GET or POST method should be used when the
form is submitted and the action attribute specifies what URL the method should be per-
formed on. The input tag defines all of the fields in the form. The type attribute indi-
cates the format of the data field. A special type attribute is the “SUBMIT” field which
indicates that when this button is selected, the entire form is submitted to the server.

Deployment. NCSA Mosaic for X 2.0, released in November 1993, was one of the first
browsers to support FORM tags.[Andreessen 1993, #2, National Center for Supercom-
puting Applications 1999, #105] A specification of forms was first included in HTML+
announced in November 1993 as well[Raggett 1993, #117]. Almost all browsers after
that point included HTML forms support and form usage remains a cornerstone of web-
sites to this day.

REST Constraints. Forms have a particular interaction within the REST semantics.
For a “GET” action form, the data is submitted appended to the specified URL as a
query string using the GET HTTP method. In the example above, if a user typed ‘John’
into the ‘first’ field and ‘Smith’ into the ‘last’ field and chose to submit the form, the
corresponding GET request would look like:

http://www.example.com/cgi-bin/post-query?first=John&last=Smith

However, if the action specified a “POST”, that same form would be submitted to the
http://www.example.com/cgi-bin/post-query resource with the following request body:

first=John&last=Smith

Limitations in early browsers limited the amount of data that could be appended to a
GET query string; therefore, usage of forms gravitated towards POST forms instead of
GET. Depending upon the meaning of form submissions (specifically whether or not it
changed the underlying resource), this could be an incorrect usage of the POST method.

JAVASCRIPT As discussed in “Early Netscape Navigator Architecture” on page 26, JavaScript was
first introduced with Netscape Navigator in 1995. JavaScript is a client-side interpreted
scripting language that allowed content developers, through special HTML tags, to con-

<FORM METHOD="POST" ACTION="http://www.example.com/cgi-bin/post-query">
First Name: <INPUT NAME="first">

Last Name: <INPUT NAME="last">

To submit the query, press this button: <INPUT TYPE="submit" VALUE="Submit">.
 </FORM>

FIGURE 19. Form Browser Example (HTML snippet and screenshot)
52 Architectural Styles of Extensible REST-based Applications

Discussion
trol the behavior of the browser.[Champeon 2001, #17] Therefore, it differs from
server-side scripting languages like PHP in that it is executed within the context of the
user agent - not that of the origin server. However, the content developer still remains in
control of the script. After the success of Navigator, almost all browsers subsequently
introduced JavaScript support. Additionally, the JavaScript language is now an ECMA
standard.[Eich and Clary 2003, #22] As mentioned with “Current Mozilla Architecture”
on page 31, JavaScript as a language provides the core extensibility language for
Mozilla Firefox extensions.

Brendan Eich, the initial implementor of JavaScript at Netscape, relates the beginning of
JavaScript, “I hacked the JS prototype in ~1 week in May [1995]...And it showed! Mis-
takes were frozen early”[Eich 2005, #23] This new scripting language was originally
called “Mocha”, but was later renamed to “JavaScript” due to marketing influences
between Netscape and Sun. While JavaScript’s syntax was loosely modeled after the
Java programming language, the relationship was only superficial. The object model of
JavaScript was inspired more by HyperCard than Java and was tailored to the specific
minimal needs of a content designer attempting to control the browser. JavaScript
would be embedded inside of the HTML representations and a JavaScript-aware
browser could then interpret these embedded scripts on the client-side.

More recently, sites are now using asynchronous JavaScript mechanisms and other
browser technologies (under the collective moniker AJAX) to create richer web-centric
applications.[Garrett 2005, #40] Earlier works such as KnowNow’s JavaScript-based
micro-servers presaged this later work.[Khare and Taylor 2004, #61, Udell 2001, #149]
However, these AJAX applications only take advantage of the services already provided
by modern browsers. Therefore, they are relying squarely upon the RESTful extensibil-
ity mechanisms provided by the current generation of user agents.

Discussion

Through our examination of these RESTful architectures, a clear pattern emerges that
can describe the progress made over the last ten years as viewed through our framework
prisms. These evolutionary stages are:

• External Extensibility - Attract end-users

• Internal Extensibility - Attract developers

• Portability - Expand the reach of the underlying architecture

• Run-time Architecture - Improve performance and lessen security vulnerabilities

At each stage, we can clearly see how the constraints set forth by REST interacted with
the decisions made by architects to improve their systems.

EXTERNAL EXTENSIBILITY As we have seen, initially, RESTful applications (although it wasn’t termed as such
then) featured extensibility only through external modifications that were not part of the
internal architecture. There were very few changes that could be made architecturally to
NCSA httpd and Mosaic. In a hypermedia domain, as was the initial target of the
Architectural Styles of Extensible REST-based Applications 53

Discussion
WWW’s creators, being able to support various types of content is critically important.
Instead of just supporting delivery of static files, NCSA httpd introduced CGI to allow
different forms of content to be dynamically generated and delivered to the client. This
concept has evolved to other scripting languages such as PHP, JSP, and ASP which offer
more specialized features meant for constructing Web-enabled content.

Similarly, NCSA Mosaic introduced the concept of helper applications in order to per-
mit the user to view a broad spectrum of media types. This allowed formats that Mosaic
did not natively understand to be viewed by an external application. However, by hav-
ing such a sharp divide between these helper applications and the user agent, the brows-
ing experience suffered a severe blow since the concept of having links between content
was lost. Netscape Navigator repaired this problem by introducing internal content
plug-ins which could render specific media types inside the browser window and main-
tain the complete hypermedia experience.

These initial choices represented the priorities of the communities at that time. At the
early stages of the WWW, the main goal was to attract end-users - not architects. This
goal predictably led to architectures focused on interfacing with external applications.
As these capabilities were utilized by a wider community, more people became inter-
ested in how to change the behavior of the architecture dynamically. The need for more
expressive and powerful architectures became understood.

INTERNAL EXTENSIBILITY Once this critical mass of users was reached, businesses started to investigate how they
could leverage the WWW for their own purposes. Due to their experiences with the ini-
tial basic hypermedia content, they began to understand more about what they could
conceptually achieve with the WWW. Eventually, electronic-commerce and other richer
Web-enabled application were conceived. This led to a boom of interest around the core
infrastructure providing this framework. However, the architectures present at that time
were not flexible enough to address their individual needs for this next generation of
websites.

These assessments led to either radical rewrites (Apache with its Shambala fork,
Mozilla with XPCOM) or new code bases (NCSA Mosaic to Netscape Navigator) that
greatly improved the extensibility of the overall system compared to their predecessors.
Those architectures, such as NCSA httpd, that did not have these extensibility character-
istics faced marginalization over time and have largely disappeared from use.

The defining characteristic of these new architectures is that they focused heavily on
extensibility by allowing extension designers to alter the behavior of the system dynam-
ically without altering the original implementation. Instead of providing a monolithic
architecture that aimed to achieve every conceivable task, these architectures provided
for a minimal core that could be extended through well-defined mechanisms. In the
case of Apache, almost all functionality bundled with the server is not built into the core,
but rather through its own extensibility mechanisms (hooks and filters). Over time, a
strong community of external extension designers emerged that modified Apache to suit
their needs. Without this minimal and extensible core, the diverse range of Apache
modules would not have been possible.
54 Architectural Styles of Extensible REST-based Applications

Discussion
PORTABILITY For those architectures that did not explicitly target a single platform (as Microsoft’s IIS
and Internet Explorer did), the next challenge was how to support a broad range of plat-
forms without sacrificing performance or other beneficial characteristics. This work led
to the production of two platform abstraction layers: APR with Apache HTTP Server
and NSPR with Mozilla. Notably, these abstraction layers are characterized by provid-
ing optimizations on platforms where they are available. This is in contrast to the “least
common denominator” approach taken by other portability layers and programming
languages.

Additionally, while some ultimately aborted efforts were undertaken to rewrite these
RESTful architectures in a “better” programming language such as Java, the top choices
remain C and C++. By using C directly, as seen with cURL, a number of bindings to
other languages can be provided which allow extension developers to enhance the archi-
tecture in the language of their choice.

Even though most of our surveyed systems are written in C or C++, most have incorpo-
rated special features to help deal with supposed shortcomings of C - specifically with
regards to memory management. In some instances, these features take advantage of
the RESTful protocol constraints. For example, the Apache HTTP Server takes extreme
advantage of the defined RESTful processing flow in its memory management model.
Instead of tying itself to a non-deterministic garbage collector (such as offered by Java),
Apache’s memory model ties allocations to the life span of an HTTP response. This
offers a predictable memory model that makes it easier for developers to code modules
with Apache, not suffer from memory leaks, and offer significant performance advan-
tages.

RUN-TIME ARCHITECTURE After the previous three dimensions were addressed, we often see a return to the initial
run-time architecture decisions. By this time, the systems have usually had a lot of real-
world experience to provide substantial feedback as to how the run-time architecture
could be improved. RESTful protocols through its mandated explicit stateful interac-
tions imply that the ideal run-time architecture does not need to exhibit complex coordi-
nation capabilities - each interaction can be handled independently and in parallel. Even
with this beneficial characteristic, the scalability of the architecture can strain the under-
lying operating environment with certain types of workloads. Therefore, threading or
asynchronous network behavior is introduced to the architecture. However, the cost of
adding threading or asynchronous behavior after the system has been deployed is
extremely prohibitive.

We see the negative effects of this with the jump from Apache HTTP Server 1.3 to 2.0
through the introduction of threading with the MPM policy layer. As part of the transi-
tion from 1.3 to 2.0, extension developers had to make their modules thread-safe. Many
Apache modules were not written with thread-safety in mind and hence have not been
updated to the new versions of Apache due to the additional complexity in making the
code thread-safe. Retrofiting in threads was also painful for the Mozilla architecture as
early Mozilla builds had to introduce a new networking layer so that the network layer
would be multi-threading. Therefore, if high-performance workloads are ultimately
desired from a RESTful system, threading and asynchronous network access should be
essential anticipated qualities from the beginning of the architectural design.
Architectural Styles of Extensible REST-based Applications 55

Discussion
Scalability is not the only reason to reconsider the run-time architecture of these REST-
ful systems. As seen with IIS 6.0 and the forthcoming Internet Explorer 7, poor early
architectural decisions about the run-time architecture can impact the security of the
system by not providing enough barriers against malicious behaviors.

IMPACT OF SECURITY ON

RESTFUL ARCHITECTURES

In the provenance of a RESTful world, extensibility can not remain unchecked. Due to
the proliferation and ubiquitous nature of the WWW today, these RESTful architectures
are constantly under attack by malicious entities. Worms like Code Red, which specifi-
cally attacked Microsoft’s IIS, caused two noticeable reactions: a slight drop in market
share of the affected product and a new security-centric architecture release. Microsoft
reacted to the attacks by redesigning IIS to focus on security at the expense of extensi-
bility. Microsoft is also redesigning Internet Explorer in similar ways for an upcoming
versions of Windows to combat its poor security reputation.

Therefore, from an architectural perspective in this domain, we can view security as the
imposition of constraints on extensibility. For these RESTful systems, the minimal core
architecture is generally trusted to be secure - however, extensions or content are no
longer as trusted as they once were. A fence has been erected between the core of the
RESTful architecture and its components. The absence of this fence came at an extreme
price to those people who had their systems compromised due to faults that a sound
architecture could have prevented.

While the link between security and extensibility is real, it is however not quite as strong
as Microsoft claims with their Internet Information Services 6 and Internet Explorer 7
rearchitectures. They may be over-emphasizing the importance of security due to their
own past poor attitudes towards security. Other competitors, such as Apache HTTP
Server and Mozilla, have an arguably better long-term reputation towards security than
Microsoft. While these projects haven’t been free of security vulnerabilities either,
large-scale attacks haven’t occurred against their products.

The reason for these lack of attacks can’t be attributed to poor market share alone:
Apache HTTP Server currently has a 2-to-1 advantage over IIS according to Net-
craft[Netcraft 2005, #107]. Mozilla Firefox has made improvements in its market share
in the last year by trying to capitalize on the security problems with Internet Explorer in
the minds of the consumers. A commentator recently compared Firefox’s security with
Internet Explorer’s and remarked:

I ask only that the vendor be responsible and fix the security vulnerabilities, especially
the critical ones, in a timely fashion. Microsoft isn't one of those vendors. According to
Secunia, Internet Explorer 6.x has several unpatched, critical security vulnerabilities
dating back to 2003 (the first year Secunia offered its own security alerts). And this
month, Microsoft arrogantly decided not to issue any security patches--none.[Vamosi
2005, #150]

FUTURE DIRECTIONS: REST

CONSTRAINTS

The obvious question that remains is what should be the architectural focus going for-
ward for these RESTful architectures. We believe that the next evolutionary stage to
emerge is going to be specifically centered on addressing these REST constraints that
we have highlighted. None of the surveyed systems offer a perfect fit with the REST
constraints we outlined. To lend further credence to this argument, we are beginning to
see hints of progress on precisely this front. The recent release of Apache HTTP Server
56 Architectural Styles of Extensible REST-based Applications

Discussion
2.2 focused heavily on three areas: improving control over filters - an integral part of
supporting internal transformations, a more scalable proxy, and a production-quality
cache mechanism.[The Apache HTTP Server Project 2005, #139] The recent release of
Firefox 1.5 introduces a revised cache system that offers better stateful characteris-
tics.[Mozilla Corporation 2005, #97]

IMPACT OF MARKET SHARE

ON FUTURE ADOPTION

The architectures that remain ten years hence have evolved to facilitate exposure of the
core interfaces to support both rapid internal and third-party modifications. While it is
not impossible to introduce new RESTful origin servers or user agents today, there is a
definite gravity effect in place that prevents new products from capturing large amounts
of market share for HTTP servers and browsers. On the other hand, frameworks for
RESTful applications that are not traditional servers and browsers have not yet reached
a point where there is a compelling universal choice. Each RESTful framework that we
examined serves a slightly different clientele with its own set of architectural tradeoffs.
Therefore, we believe there remains an opportunity for introducing a set of RESTful
frameworks that are targeted towards these different REST applications.

LESSONS FOR FUTURE

RESTFUL FRAMEWORKS

While libraries like libwww, cURL, and others can serve as architecture frameworks for
the REST style, we believe that these frameworks focus too heavily on acting as HTTP
protocol implementations and provide too few services to be effective in developing
complete end-to-end RESTful applications. In contrast, we envision a family of frame-
works that focus generically on the construction of RESTful applications from the per-
spective of all the various participants: servers, proxies, caches, and clients.
Furthermore, an ideal framework will focus deeply on the REST constraints, such as
state management and protocol extensibility, that have largely been ignored by other
frameworks, but are among the most difficult parts of REST implementations to “get
right.”

To assist future RESTful framework developers, Table 19 on page 57 summarizes the
lessons that we believe are important for future architects to incorporate in future archi-
tectural framework decisions based on collective past experiences.

TABLE 19. Lessons for Future RESTful Architects

Prism Lesson

REST
Constraints

Tying the architecture to one REST node type impacts future flexibility
Early familiarity with these constraints can prevent later conflicts

External
Extensibility

Provide same services at a minimum as other systems; If not designing a
typical web server or client, may not be as important

Integration Provide multiple interfaces to balance the learning curve and power
Allow external architects fine-grained control over integration options

Internal
Extensibility

Provide a minimal core architecture; the rest should be modular
Provide appropriate hooks to allow developers to alter your behavior
Support multiple representation transformations through filter chains
Architectural Styles of Extensible REST-based Applications 57

Acknowledgements
Acknowledgements

This material is based upon work supported by the National Science Foundation under
Grant No. CNS-0438996.

Bibliography

1. Aas, G. libwww-perl. <http://lwp.linpro.no/lwp/>, HTML, June 25, 2004.
2. Andreessen, M. NCSA Mosaic for X 2.0 available. <http://ksi.cpsc.ucalgary.ca/archives/

WWW-TALK/www-talk-1993q4.messages/444.html>, Email, November 10, 1993.
3. Apple Computer Inc. Introduction to Web Kit Plug-in Programming Topics. <http://devel-

oper.apple.com/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/
index.html>, HTML, August 11, 2005.

4. ---. About Web Browser Plug-ins. <http://developer.apple.com/documentation/InternetWeb/
Conceptual/WebKit_PluginProgTopic/Concepts/AboutPlugins.html>, HTML, August 11,
2005.

5. ---. Introduction to Web Kit Objective-C Programming Guide. <http://developer.apple.com/
documentation/Cocoa/Conceptual/DisplayWebContent/index.html>, HTML, April 29, 2005.

6. ---. URL Loading System Overvieww. <http://developer.apple.com/documentation/Cocoa/
Conceptual/URLLoadingSystem/Concepts/URLOverview.html>, HTML, October 8, 2005.

7. ---. Creating Plug-ins with Cocoa and the Web Kit. <http://developer.apple.com/documenta-
tion/InternetWeb/Conceptual/WebKit_PluginProgTopic/Concepts/AboutPlugins.html>,
HTML, August 11, 2005.

8. ---. Mac OS X - Dashboard. <http://www.apple.com/macosx/features/dashboard/>, HTML,
2005.

9. Baker, M. Browser Innovation, Gecko and the Mozilla Project. <http://www.mozilla.org/
browser-innovation.html>, HTML, February 25, 2003.

10. Bandhauer, J. XPJS Components Proposal. <http://www.mozilla.org/scriptable/xpjs-compo-
nents.html>, HTML, July 1, 1999.

11. Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice. SEI Series in Soft-
ware Engineering. Addison Wesley: Reading, MA, 1998.

12. Berners-Lee, T., Fielding, R., and Frystyk, H. Hypertext Transfer Protocol -- HTTP/1.0.
Internet Engineering Task Force, Request for Comments Report 1945, May, 1996.

13. Blizzard, C. Untitled. <http://www.0xdeadbeef.com/html/2003/01/index.shtml#20030114>,
HTML, January 14, 2003.

14. BowmanSoft. Mastering Internet Explorer: The Web Browser Control. Visual Basic Web
Magazine. 2001. <http://www.vbwm.com/art_2001/IE05/>.

15. Braverman, A. X Web Teach - a sample CCI application. <http://archive.ncsa.uiuc.edu/SDG/

Portability Optimize by understanding how REST can influence workload
High-quality portability layers are now available for reuse
Language selection has an impact on integration options

Run-time
Architecture

Explicit state of REST lends itself well to independent processes
Higher scalability loads helped by threads and network asynchronous
behavior, but has a high cost if added after the fact; add it early
Separation and isolation can minimize vulnerability attack surfaces

TABLE 19. Lessons for Future RESTful Architects

Prism Lesson
58 Architectural Styles of Extensible REST-based Applications

Bibliography
Software/XMosaic/CCI/x-web-teach.html>, National Center for Supercomputing Applica-
tions,, HTML, September 23, 1994.

16. Brown, M. FastCGI: A High-Performance Gateway Interface. In Proceedings of the Pro-
gramming the Web - a search for APIs Workshop at Fifth International World Wide Web Con-
ference. Paris, France, May 6, 1996. <http://www.cs.vu.nl/~eliens/WWW5/papers/
FastCGI.html>.

17. Champeon, S. JavaScript: How Did We Get Here? O'Reilly Web DevCenter. April 6, 2001.
<http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html>.

18. Chor, T. Internet Explorer Security: Past, Present, and Future. In Proceedings of the Hack in
the Box. Kuala Lumpur, Malaysia, September 26-29, 2005. <http://www.packetstormsecu-
rity.org/hitb05/Keynote-Tony-Chor-IE-Security-Past-Present-and-Future.ppt>.

19. Clemm, G., Amsden, J., Ellison, T., Kaler, C., and Whitehead, E.J. RFC 3253: Versioning
Extensions to WebDAV. IETF, Request for Comments Report, March, 2002.

20. Coar, K.A.L. and Robinson, D.R.T. The WWW Common Gateway Interface Version 1.1.
<http://cgi-spec.golux.com/draft-coar-cgi-v11-03-clean.html>, HTML, June 25, 1999.

21. Cook, M. Securing I.I.S. 5 and 6 Server. <http://escarpment.net/training/
Securing_Microsoft_IIS_5_and_6(slides).pdf>, PDF, February 14, 2005.

22. Eich, B. and Clary, B. JavaScript Language Resources. <http://www.mozilla.org/js/lan-
guage/>, HTML, January 24, 2003.

23. Eich, B. JavaScript at Ten Years. In Proceedings of the 10th ACM SIGPLAN International
Conference on Functional Programming. Tallinn, Estonia, September 26-28, 2005. <http://
www.mozilla.org/js/language/ICFP-Keynote.ppt>.

24. ---. New Roadmaps. <http://weblogs.mozillazine.org/roadmap/archives/009218.html>,
HTML, November 3, 2005.

25. Erenkrantz, J.R. Web Services: SOAP, UDDI, and Semantic Web. Institute for Software
Research, Report UCI-ISR-04-3, May, 2004. <http://www.isr.uci.edu/tech_reports/UCI-ISR-
04-3.pdf>.

26. ---. Serf and Subversion. <http://svn.haxx.se/dev/archive-2005-11/1373.shtml>, Email,
November 27, 2005.

27. Esposito, D. Browser Helper Objects: The Browser the Way You Want It. <http://
msdn.microsoft.com/ie/iedev/default.aspx?pull=/library/en-us/dnwebgen/html/bho.asp>,
Microsoft Corporation, HTML, January, 1999.

28. Evans, E. Gecko Embedding Basics. 2002. <http://www.mozilla.org/projects/embedding/
embedoverview/EmbeddingBasics.html>.

29. Faure, D. Chapter 13: Creating and Using Components (KParts). In KDE 2.0 Development,
Sweet, D. ed. Sams Publishing, 2000.

30. Festa, P. Apple snub stings Mozilla. CNet News. January 14, 2003. <http://news.com.com/
2100-1023-980492.html>.

31. Fielding, R., Gettys, J., Mogul, J.C., Frystyk, H., Masinter, L., Leach, P., and Berners-Lee, T.
Hypertext Transfer Protocol -- HTTP/1.1. Internet Engineering Task Force, Request for
Comments Report 2616, June, 1999.

32. Fielding, R.T. libwww-perl: WWW Protocol Library for Perl. <http://ftp.ics.uci.edu/pub/
websoft/libwww-perl/>, HTML, June 25, 1998.

33. ---. libwww-ada95: WWW Protocol Library for Ada95. <http://ftp.ics.uci.edu/pub/websoft/
libwww-ada95/>, HTML, May 13, 1998.

34. ---. Onions Network Streams Library. <http://ftp.ics.uci.edu/pub/websoft/libwww-ada95/cur-
rent/Onions/README>, Text, May 13, 1998.

35. ---. Shared Leadership in the Apache Project. Communications of the ACM. 42(4), p. 42-43,
1999.

36. ---. Architectural Styles and the Design of Network-based Software Architectures. Ph.D. The-
sis. Information and Computer Science, University of California, Irvine, 2000. <http://
www.ics.uci.edu/~fielding/pubs/dissertation/top.htm>.

37. Fielding, R.T. and Taylor, R.N. Principled Design of the Modern Web Architecture. ACM
Transactions on Internet Technology (TOIT). 2(2), p. 115-150, May, 2002.
Architectural Styles of Extensible REST-based Applications 59

Bibliography
38. Free Software Foundation. Autoconf. <http://www.gnu.org/software/autoconf/>, HTML,
February 2, 2005.

39. Frystyk Nielsen, H. W3C Libwww Review. W3C, Report, June, 1999. <http://www.w3.org/
Talks/1999/06/libwww/>.

40. Garrett, J.J. Ajax: A New Approach to Web applications. <http://www.adaptivepath.com/pub-
lications/essays/archives/000385.php>, HTML, February 18, 2005.

41. Gaudet, D. Apache Performance Notes. <http://httpd.apache.org/docs/1.3/misc/perf-tun-
ing.html>, HTML, September 30, 1997.

42. Godfrey, M.W. and Lee, E.H.S. Secrets from the Monster: Extracting Mozilla's Software
Architecture. In Proceedings of the Second Symposium on Constructing Software Engineer-
ing Tools (CoSET'00). Limerick, Ireland, June, 2000.

43. Goland, Y., Whitehead, E.J., Faizi, A., Carter, S., and Jensen, D. RFC 2518: HTTP Exten-
sions for Distributed Authoring – WEBDAV. Internet Engineering Task Force, Request for
Comments Report 2518, p. 1-94, February, 1999.

44. Gosling, J. and Yellin, F. Window Toolkit and Applets. The Java(TM) Application Program-
ming Interface. 2, 406 pgs., Addison-Wesley Professional, 1996.

45. Granroth, K. Embedded Components Tutorial. <http://www.konqueror.org/componentstuto-
rial/>, HTML, March 3, 2000.

46. Gröne, B., Knöpfel, A., and Kugel, R. Architecture recovery of Apache 1.3 -- A case study. In
Proceedings of the 2002 International Conference on Software Engineering Research and
Practice. Las Vegas, 2002. <http://f-m-c.org/publications/download/groene_et_al_2002-
architecture_recovery_of_apache.pdf>.

47. Gröne, B., Knöpfel, A., Kugel, R., and Schmidt, O. The Apache Modeling Project. Hasso
Plattner Institute for Software Systems Engineering, Report, July 5, 2004. <http://f-m-c.org/
projects/apache/download/the_apache_modelling_project.pdf>.

48. Grosskurth, A. and Echihabi, A. Concrete Architecture of Mozilla. University of Waterloo,
Report, October 24, 2004. <http://www.cs.uwaterloo.ca/~agrossku/2004/cs746/mozilla-con-
crete.pdf>.

49. ---. A Reference Architecture for Web Browsers. University of Waterloo, PDF Report,
December 7, 2004. <http://www.cs.uwaterloo.ca/~agrossku/2004/cs746/browser-refarch-
slides.pdf>.

50. Grosskurth, A. and Godfrey, M.W. A Reference Architecture for Web Browsers. In Proceed-
ings of the 2005 International Conference on Software Maintenance. Budapest, Hungary,
September 25-30, 2005.

51. Harris, W. and Potts, R. Necko: A new netlib kernel architecture. <http://www.mozilla.org/
docs/netlib/necko.html>, HTML, April 14, 1999.

52. Hassan, A.E. and Holt, R.C. A Reference Architecture for Web Servers. In Proceedings of the
Seventh Working Conference on Reverse Engineering. p. 150-159, 2000. <http://doi.ieee-
computersociety.org/10.1109/WCRE.2000.891462>.

53. Hibbs, C. Rolling with Ruby on Rails. O'Reilly Databases. January 20, 2005. <http://
www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html>.

54. Hunter, J. and Crawford, W. Java Servlet Programming. 2nd ed. 753 pgs., O'Reilly Media,
Inc., 2001.

55. Hunter, J. New features added to Servlet 2.5. JavaWorld. January 2, 2006. <http://www.java-
world.com/javaworld/jw-01-2006/jw-0102-servlet.html>.

56. Hyatt, D. iTunes and WWebKit. <http://weblogs.mozillazine.org/hyatt/archives/
2004_06.html#005666>, HTML, June 8, 2004.

57. Kahan, J. Libwww - the W3C Sample Code Library. <http://www.w3.org/Library/>, W3C,
HTML, September, 2003.

58. Katz, E.D., Butler, M., and McGrath, R.E. A scalable HTTP server: The NCSA prototype.
Computer Networks and ISDN Systems. 27(2), p. 155-164, November, 1994. <http://
dx.doi.org/10.1016/0169-7552(94)90129-5>.

59. KDE e.V. Reaktivate Released. <http://www.konqueror.org/announcements/reaktivate.php>,
HTML, July 9, 2001.
60 Architectural Styles of Extensible REST-based Applications

Bibliography
60. ---. Konqueror FAQ. <http://konqueror.kde.org/faq/>, HTML, 2005.
61. Khare, R. and Taylor, R.N. Extending the REpresentational State Transfer Architectural

Style for Decentralized Systems. In Proceedings of the 26th International Conference on
Software Engineering (ICSE 2004). Edinburgh, Scotland, UK, May, 2004. <http://doi.ieee-
computersociety.org/10.1109/ICSE.2004.1317465>.

62. Koch, P.-P. Browsers - Explorer 5 Mac. <http://www.quirksmode.org/browsers/
explorer5mac.html>, HTML, November 23, 2004.

63. Kristol, D.M. and Montulli, L. HTTP State Management Mechanism. Internet Engineering
Task Force, Request for Comments Report 2109, February, 1997. <http://www.ietf.org/rfc/
rfc2109.txt>.

64. Kwan, T.T., McGrath, R.E., and Reed, D.A. NCSA's World Wide Web server: design and
performance. Computer. 28(11), p. 68-74, November, 1995. <http://dx.doi.org/10.1109/
2.471181>.

65. Larsson, A. The Life of An HTML HTTP Request. <http://www.mozilla.org/docs/
url_load.html>, Mozilla Foundation, HTML, October 8, 1999.

66. Lawrence, E. Fiddler PowerToy - Part 1: HTTP Debugging. <http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/dnwebgen/html/IE_IntroFiddler.asp>, Microsoft Cor-
poration, HTML, January, 2005.

67. Lock, A. Embedding Mozilla. In Proceedings of the Free and Open Source Software Devel-
opers' European Meeting (FOSDEM 2002). Brussels, Belgium, February 16-17, 2002.
<http://www.mozilla.org/projects/embedding/FOSDEMPres2002/contents.html>.

68. Markham, G. The Mozilla Foundation. In Proceedings of the Free and Open Source Software
Developers' European Meeting (FOSDEM 2005). Brussels, Belgium, February 26-27, 2005.
<http://www.gerv.net/presentations/fosdem2005-mofo/>.

69. McFarlane, N. Rapid Application Development with Mozilla. 704 pgs., Prentice Hall, 2003.
<http://mb.eschew.org/>.

70. Melton, D. Greetings from the Safari team at Apple Computer. <http://lists.kde.org/?l=kfm-
devel&m=104197092318639&w=2>, Email, January 7, 2003.

71. Microsoft Corporation. HTTP Protocol Stack (IIS 6.0). <http://www.microsoft.com/technet/
prodtechnol/WindowsServer2003/Library/IIS/a2a45c42-38bc-464c-a097-
d7a202092a54.mspx>, Microsoft Windows Server 2003 TechCenter, HTML.

72. ---. IIS 6.0 Operations Guide (IIS 6.0). <http://www.microsoft.com/technet/prodtechnol/
WindowsServer2003/Library/IIS/f74c464e-6d5d-403c-97e7-747cd798dde2.mspx>,
Microsoft Windows Server 2003 TechCenter, HTML.

73. ---. Configuring Isolation Modes (IIS 6.0). <http://www.microsoft.com/technet/prodtechnol/
WindowsServer2003/Library/IIS/ed3c22ba-39fc-4332-bdb7-a0d9c76e4355.mspx>,
Microsoft Windows Server 2003 TechCenter, HTML.

74. ---. What's Changed (IIS 6.0). <http://www.microsoft.com/technet/prodtechnol/
WindowsServer2003/Library/IIS/7b037954-441d-4037-a111-94df7880c319.mspx>,
Microsoft Windows Server 2003 TechCenter, HTML.

75. ---. Application Isolation Modes (IIS 6.0). <http://www.microsoft.com/technet/prodtechnol/
WindowsServer2003/Library/IIS/7b037954-441d-4037-a111-94df7880c319.mspx>,
Microsoft Windows Server 2003 TechCenter, HTML.

76. ---. ISAPI Extension Overview. <http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/html/78f84895-003d-4631-8571-97042c06a4b8.asp>, IIS Web Development
SDK, HTML.

77. ---. ISAPI Filter Overview. <http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/iissdk/html/22e3fbfb-1c31-41d7-9dc4-efa83f813521.asp>, IIS Web Development SDK,
HTML.

78. ---. Creating ISAPI Filters. <http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/iissdk/html/773e63f0-1861-47fc-ac85-fa92e799d82c.asp>, IIS Web Development SDK,
HTML.

79. ---. Important Changes in ASP (IIS 6.0). <http://www.microsoft.com/technet/prodtechnol/
WindowsServer2003/Library/IIS/e1a77c5d-046e-4538-8d9d-b2996c3143d3.mspx>,
Architectural Styles of Extensible REST-based Applications 61

Bibliography
Microsoft Windows Server 2003 TechCenter, HTML.
80. ---. Web Accessories. <http://msdn.microsoft.com/workshop/browser/accessory/overview/

overview.asp>, Internet Explorer - Browser Extensions, HTML.
81. ---. Creating Custom Explorer Bars, Tool Bands, and Desk Bands. <http://

msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/Shell/program-
mersguide/shell_adv/bands.asp>, Advanced Shell Techniques, HTML.

82. ---. Implementing a Custom Download Manager. <http://msdn.microsoft.com/workshop/
browser/ext/overview/downloadmgr.asp>, Internet Explorer - Browser Extensions, HTML.

83. ---. Adding Toolbar Buttons. <http://msdn.microsoft.com/workshop/browser/ext/tutorials/
button.asp>, Internet Explorer - Browser Extensions, HTML.

84. ---. Adding Menu Items. <http://msdn.microsoft.com/workshop/browser/ext/tutorials/
menu.asp>, Internet Explorer - Browser Extensions, HTML.

85. ---. Asynchronous Pluggable Protocols. <http://msdn.microsoft.com/workshop/networking/
pluggable/pluggable.asp>, Internet Explorer - Asynchronous Pluggable Protocols, HTML.

86. ---. WebBrowser Object. <http://msdn.microsoft.com/workshop/browser/webbrowser/refer-
ence/objects/webbrowser.asp>, Internet Explorer - WebBrowser, HTML.

87. ---. Introduction to ActiveX Controls. <http://msdn.microsoft.com/workshop/components/
activex/intro.asp>, Internet Development, HTML.

88. ---. Designing Secure ActiveX Controls. <http://msdn.microsoft.com/workshop/components/
activex/security.asp>, Internet Development, HTML.

89. ---. Reusing the WebBrowser Control. <http://msdn.microsoft.com/workshop/browser/web-
browser/webbrowser.asp>, Internet Explorer - WebBrowser, HTML.

90. ---. How To: Implementing Cookies in ISAPI. <http://support.microsoft.com/kb/q168864/>,
HTML, July 1, 2004.

91. ---. Windows XP Service Pack 2: What's New for Internet Explorer and Outlook Express.
<http://www.microsoft.com/windowsxp/sp2/ieoeoverview.mspx>, HTML, August 4, 2004.

92. ---. Internet Explorer 6.0 Architecture. <http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/wcedsn40/html/coconInternetExplorer55Architecture.asp>, Microsoft Win-
dows CE .NET 4.2, HTML, April 13, 2005.

93. ---. Internet Explorer 5 for Mac. <http://www.microsoft.com/mac/products/internetexplorer/
internetexplorer.aspx>, HTML, December 19, 2005.

94. ---. Developer Best Practices and Guidelines for Applications in a Least Privileged Environ-
ment. <http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnlong/html/
AccProtVista.asp>, HTML, September, 2005.

95. Mockus, A., Fielding, R.T., and Herbsleb, J. A Case Study of Open Source Software Devel-
opment: The Apache Server. In Proceedings of the International Conference on Software
Engineering. p. 263-272, ACM Press. Limerick, Ireland, June, 2000.

96. Moore, D., Shannon, C., and Brown, J. Code-Red: a case study on the spread and victims of
an Internet worm. In Proceedings of the Internet Measurement Workshop. Marseille, France,
November 6-8, 2002. <http://www.caida.org/outreach/papers/2002/codered/codered.pdf>.

97. Mozilla Corporation. Mozilla Firefox 1.5 Release Notes. <http://www.mozilla.com/firefox/
releases/1.5.html>, HTML, November 29, 2005.

98. Mozilla Foundation. NSPR: Module Description. <http://www.mozilla.org/projects/nspr/
about-nspr.html>, HTML, September 20, 2000.

99. ---. SeaMonkey Milestones. <http://www.mozilla.org/projects/seamonkey/milestones/
index.html>, HTML, February 9, 2001.

100. ---. Old Milestone Releases. <http://www.mozilla.org/projects/seamonkey/release-notes/>,
HTML, November 27, 2002.

101. ---. Mozilla Embedding FAQ. <http://www.mozilla.org/projects/embedding/faq.html>,
HTML, December 8, 2004.

102. National Center for Supercomputing Applications. Application Programmer's Interface for
the NCSA Mosaic Common Client Interface (CCI). <http://archive.ncsa.uiuc.edu/SDG/Soft-
ware/XMosaic/CCI/cci-api.html>, HTML, March 31, 1995.

103. ---. CGI: Common Gateway Interface. <http://hoohoo.ncsa.uiuc.edu/cgi/intro.html>, HTML,
62 Architectural Styles of Extensible REST-based Applications

Bibliography
December 6, 1995.
104. ---. NCSA HTTPd Tutorial: CGI Configuration. <http://hoohoo.ncsa.uiuc.edu/docs/tutorials/

cgi.html>, HTML, September 27, 1995.
105. ---. Mosaic for X version 2.0 Fill-Out Form Support. <http://archive.ncsa.uiuc.edu/SDG/

Software/Mosaic/Docs/fill-out-forms/overview.html>, HTML, May 11, 1999.
106. ---. NCSA Mosaic Version History. <http://www.ncsa.uiuc.edu/Divisions/PublicAffairs/

MosaicHistory/history.html>, HTML, November 25, 2002.
107. Netcraft. Netcraft Web Server Survey. <http://www.netcraft.com/survey/>, HTML, Decem-

ber 2, 2005.
108. Netscape. JavaScript Guide. <http://wp.netscape.com/eng/mozilla/3.0/handbook/javascript/

>, HTML, 1996.
109. ---. Client Side State - HTTP Cookies. <http://wp.netscape.com/newsref/std/

cookie_spec.html>, HTML, 1999.
110. Newmarch, J. Extending the Common Client Interface with User Interface Controls. In Pro-

ceedings of the AusWeb95: The First Australian WorldWideWeb Conference. p. AW016-04,
Australia, May 1-2, 1995. <http://ausweb.scu.edu.au/aw95/integrating/newmarch/>.

111. Nielsen, H.F. Threads and Event Loops. <http://www.w3.org/Library/User/Architecture/
Events.html>, HTML, July 13, 1999.

112. Oakland Software Incorporated. Java HTTP Client - Comparison. <http://www.oaklandsoft-
ware.com/product_16compare.html>, HTML, April, 2005.

113. Oeschger, I. API Reference: Netscape Gecko Plugins. 2.0 ed. 190 pgs., Netscape Communi-
cations, 2002. <http://www.ics.uci.edu/~jerenkra/netscape-plugin.pdf>.

114. Orton, J. neon HTTP and WebDAV client library. <http://www.webdav.org/neon/>, HTML,
2005.

115. Parrish, R. XPCOM Part 1: An Introduction to XPCOM. developerWorks. February 1, 2001.
<http://www-128.ibm.com/developerworks/webservices/library/co-xpcom.html>.

116. Peiris, C. What's New in IIS 6.0? (Part 1 of 2). DevX.com. August 20, 2003. <http://
www.devx.com/webdev/Article/17085>.

117. Raggett, D. HTML+ (Hypertext markup format). <http://www.w3.org/MarkUp/HTMLPlus/
htmlplus_1.html>, HTML, November 8, 1993.

118. Ritchie, D.M. A Stream Input-Output System. AT&T Bell Laboratories Technical Journal.
63(8 Part 2), p. 1897-1910, October, 1984.

119. Rosenberg, D. Adding a New Protocol to Mozilla. 2004. <http://www.nexgenmedia.net/
docs/protocol/>.

120. Saksena, G. Networking in Mozilla. In Proceedings of the O'Reilly Open Source Convention.
San Diego, California, 2001. <http://www.mozilla.org/projects/netlib/presentations/osc2001/
>.

121. Schatz, B.R. and Hardin, J.B. NCSA Mosaic and the World Wide Web: Global Hypermedia
Protocols for the Internet. Science. 265(5174), p. 895-901, August 12, 1994.

122. Schmidt, J. ISAPI. Microsoft Internet Developer. Spring, 1996. <http://www.microsoft.com/
mind/0396/ISAPI/ISAPI.asp>.

123. Sergeant, M. Using Qpsmtpd. O'Reilly SysAdmin. September 15, 2005. <http://www.oreilly-
net.com/pub/a/sysadmin/2005/09/15/qpsmtpd.html>.

124. Shaver, M. back; popular demand. <http://shaver.off.net/diary/2003/01/15/back-popular-
demand/>, HTML, January 15, 2003.

125. Shaw, M. and Garlan, D. Software Architecture: Perpectives on an Emerging Discipline. 242
pgs., Prentice Hall, 1996.

126. Silbey, M. More details on Protected Mode IE in Windows Vista. <http://blogs.msdn.com/ie/
archive/2005/09/20/471975.aspx>, HTML, September 20, 2005.

127. Smith, J. Optimizing and Performance Tuning IIS 6.0. Informit.com. September 10, 2004.
<http://www.informit.com/articles/article.asp?p=335881>.

128. Spolsky, J. Things You Should Never Do, Part I. <http://www.joelonsoftware.com/articles/
fog0000000069.html>, Joel On Software, HTML, April 6, 2000.

129. Stein, G. and Erenkrantz, J. Serf Design Guide. <http://svn.webdav.org/repos/projects/serf/
Architectural Styles of Extensible REST-based Applications 63

Bibliography
trunk/design-guide.txt>, HTML, September 14, 2004.
130. Stenberg, D. libcurl vs neon for WebDav? <http://curl.haxx.se/mail/lib-2003-03/0208.html>,

Email, March 19, 2003.
131. ---. High Performance libcurl - hiper. <http://curl.haxx.se/libcurl/hiper/>, HTML, December

26, 2005.
132. ---. cURL - Frequently Asked Questions. <http://curl.haxx.se/docs/faq.html>, HTML, Janu-

ary 5, 2006.
133. ---. Programs Using libcurl. <http://curl.haxx.se/libcurl/using/apps.html>, HTML, January

5, 2006.
134. Suryanarayana, G., Erenkrantz, J.R., Hendrickson, S.A., and Taylor, R.N. PACE: An Archi-

tectural Style for Trust Management in Decentralized Applications. In Proceedings of the 4th
Working IEEE/IFIP Conference on Software Architecture. p. 221-230, Oslo, Norway, June,
2004.

135. Taylor, R.N., Medvidovic, N., Anderson, K.M., E. James Whitehead, J., Robbins, J.E., Nies,
K.A., Oreizy, P., and Dubrow, D.L. A Component- and Message-Based Architectural Style
for GUI Software. IEEE Transactions on Software Engineering. 22(6), p. 390-406, June,
1996.

136. Thau, R.S. Notes on the Shambhala API. <http://mail-archives.apache.org/mod_mbox/httpd-
dev/199507.mbox/%3c9507051409.AA08582@volterra%3e>, Email, July 5, 1995.

137. ---. Design considerations for the Apache Server API. Computer Networks and ISDN Sys-
tems. 28(7-11), p. 1113-1122, May, 1996. <http://dx.doi.org/10.1016/0169-7552(96)00048-
7>.

138. The Apache HTTP Server Project. Apache MPM event. <http://httpd.apache.org/docs/2.2/
mod/event.html>, HTML, December 5, 2005.

139. ---. Overview of new features in Apache 2.2. <http://httpd.apache.org/docs/2.2/
new_features_2_2.html>, HTML, December 13, 2005.

140. The Apache Portable Runtime Project. Apache Portable Runtime Project. <http://
httpd.apache.org/dev/guidelines.html>, HTML, November 20, 2004.

141. The Apache Software Foundation. Apache API notes. <http://httpd.apache.org/docs/1.3/
misc/API.html>, HTML, October 13, 2003.

142. ---. The Apache HTTP Server Project. <http://httpd.apache.org/>, HTML, 2004.
143. ---. Apache HTTP Server Reaches Record Eight Consecutive Years of Technical Leadership.

<http://www.prnewswire.com/cgi-bin/stories.pl?ACCT=SVBIZINK3.story&STORY=/
www/story/05-11-2004/0002172126&EDATE=TUE+May+11+2004,+02:15+PM>, HTML,
May 11, 2004.

144. ---. HttpClient. <http://jakarta.apache.org/commons/httpclient/>, HTML, 2005.
145. ---. HttpClientPowered. <http://wiki.apache.org/jakarta-httpclient/HttpClientPowered>,

HTML, 2005.
146. ---. Apache Axis. <http://ws.apache.org/axis/>, HTML, 2005.
147. Trudelle, P. XPToolkit: Straight-up Elevator Story. <http://www.mozilla.org/xpfe/Elevator-

StraightUp.html>, HTML, February 21, 1999.
148. Turner, D. and Oeschger, I. Creating XPCOM Components. 2003. <http://www.mozilla.org/

projects/xpcom/book/cxc/>.
149. Udell, J. The Event-Driven Internet. Byte.com. December 3, 2001. <http://www.byte.com/

documents/s=1816/byt20011128s0003/1203_udell.html>.
150. Vamosi, R. Security Watch: In defense of Mozilla Firefox. CNET Reviews. September 23,

2005. <http://reviews.cnet.com/4520-3513_7-6333507-1.html>.
151. Vatton, I. Amaya Home Page. <http://www.w3.org/Amaya/>, HTML, May 3, 2004.
152. Wang, D. HOWTO: Use the HTTP.SYS Kernel Mode Response Cache with IIS 6. <http://

blogs.msdn.com/david.wang/archive/2005/07/07/
HOWTO_Use_Kernel_Response_Cache_with_IIS_6.aspx>, HTML, July 7, 2005.

153. Web Host Industry Review. Microsoft to Rewrite IIS, Release Patches. Web Host Industry
Review. September 26, 2001. <http://www.thewhir.com/marketwatch/iis926.cfm>.

154. Whitehead, E.J. and Wiggins, M. WEBDAV: IETF Standard for Collaborative Authoring on
64 Architectural Styles of Extensible REST-based Applications

Bibliography
the Web. IEEE Internet Computing. p. 34-40, September/October, 1998.
155. Wilson, B. Browser History: Netscape. <http://www.blooberry.com/indexdot/history/

netscape.htm>, HTML, September 30, 2003.
156. Woolley, C. Bucket Brigades: Data Management in Apache 2.0. In Proceedings of the

ApacheCon 2002. Las Vegas, 2002. <http://www.cs.virginia.edu/~jcw5q/talks/apache/buck-
etbrigades.ac2002.ppt>.

157. Zawinski, J. Grendel Overview. <http://www.mozilla.org/projects/grendel/announce.html>,
HTML, September 8, 1998.

158. ---. java sucks. <http://www.jwz.org/doc/java.html>, HTML, 2000.
Architectural Styles of Extensible REST-based Applications 65

	UCI-ISR-06-12-cover.pdf
	UCI-ISR-06-12-abs.pdf
	UCI-ISR-06-12-body.pdf
	Architectural Styles of Extensible REST-based Applications
	Software Architecture and Frameworks
	Software Architecture in the World Wide Web
	Representational State Transfer
	HTTP/1.1 and the Modern Web
	REST Mismatches in HTTP Extensions

	Selecting Appropriate RESTful Applications
	Framework Constraint Prism
	Portability
	Run-time architecture
	Internal Extensibility
	External Extensibility
	Integration
	REST Constraints

	REST Constraints
	Architectural Characteristic Matrix
	Origin Servers
	NCSA HTTP Server
	NCSA Architecture
	Run-time architecture
	Portability
	Internal Extensibility
	External Extensibility

	Apache HTTP Server
	Initial Apache Architecture
	Run-time Architecture
	Portability
	Internal Extensibility
	External Extensibility
	REST Constraints
	Apache 2.x Architecture
	Resolved design issues
	Portability and Run-time Architecture
	Internal Extensibility
	Integration

	Microsoft Internet Information Server (IIS)
	Portability
	Run-time architecture
	Internal Extensibility
	External Extensibility

	User Agents
	Mosaic And Descendants
	Mosaic Architecture
	Portability
	Run-time architecture
	External Extensibility
	Internal Extensibility and Integration
	Early Netscape Navigator Architecture
	Portability
	Internal Extensibility
	External Extensibility
	Netscape 6.0 / Mozilla Architecture
	Architecture Recovery Process
	Portability
	Analysis of Mozilla’s Architecture
	Current Mozilla Architecture
	Internal Extensibility
	Portability
	Integration

	Microsoft Internet Explorer
	Internet Explorer Architecture
	Portability.
	Internal Extensibility
	Integration
	External Extensibility and Run-time Architecture.
	Internet Explorer 7 Architecture

	Konqueror
	Portability
	Run-time architecture and External Extensibility
	Internal Extensibility

	Safari
	Run-time architecture
	Portability
	Internal Extensibility
	Integration

	Libraries and Frameworks
	libwww
	Portability and Run-time Architecture
	Internal Extensibility

	cURL
	Portability
	Run-time Architecture
	Internal Extensibility
	Importability

	HTTPClient / HTTP Components
	Portability
	Run-time Architecture
	Internal Extensibility
	Importability

	Neon
	Portability
	Internal Extensibility
	Run-time architecture
	Importability

	Serf
	Portability
	Internal Extensibility
	Run-time architecture
	Importability

	Constructing RESTful Application Architectures
	Common Gateway Interface (CGI)
	Example CGI Applications
	REST Constraints

	HTML Forms
	Deployment
	REST Constraints

	JavaScript

	Discussion
	External Extensibility
	Internal Extensibility
	Portability
	Run-Time Architecture
	Impact of Security on RESTful Architectures

	Future Directions: REST Constraints
	Impact of Market Share on Future Adoption
	Lessons For Future RESTful Frameworks

	Acknowledgements
	Bibliography

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [4000 4000]
 /PageSize [1332.000 828.000]
>> setpagedevice

