
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Thomas A. Alspaugh
University of California, Irvine
alspaugh@ics.uci.edu

Temporally Expressive Scenarios in ScenarioML

May 2005

ISR Technical Report # UCI-ISR-05-6

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

Temporally Expressive Scenarios in ScenarioML

Thomas A. Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA, USA 92697-3425

alspaugh@ics.uci.edu

ISR Technical Report # UCI-ISR-05-06
May 2005

Abstract

Sequential, non-overlapping events are the norm in traditionally-expressed scenarios and use cases, but the
world is much more fluid. Events have duration and may overlap, be separated in time, begin or end together, or
have various other specific temporal relations. The ordering of the events may be completely known or partially
uncertain, resulting in any of a large (but finite) number of relations for any two events. These relations, which can
be formally stated and manipulated, are separable in form and meaning from the events themselves, which in re-
quirements are most often expressed in prose. The temporal relations and partial ordering of events can be a sig-
nificant part of what is specified, and must be inferred by a reader if not explicitly expressed. This paper presents a
scenario language, ScenarioML, which expresses requirements scenarios using a broad and effective selection of
event relations and structures. ScenarioML scenarios range from concrete scenarios to parameterized schemata
that represent large families of scenarios related in a variety of temporal and structural ways. The language is de-
signed for automated analysis and operations on temporal event relations, as well as other aspects of scenarios. An
example from aircraft navigation is presented.

Temporally Expressive Scenarios in ScenarioML

Thomas A. Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA, USA 92697-3425

alspaugh@ics.uci.edu

ISR Technical Report # UCI-ISR-05-06
May 2005

Abstract

Sequential, non-overlapping events are the norm in traditionally-expressed scenarios and use cases, but the

world is much more fluid. Events have duration and may overlap, be separated in time, begin or end together, or
have various other specific temporal relations. The ordering of the events may be completely known or partially
uncertain, resulting in any of a large (but finite) number of relations for any two events. These relations, which can
be formally stated and manipulated, are separable in form and meaning from the events themselves, which in re-
quirements are most often expressed in prose. The temporal relations and partial ordering of events can be a sig-
nificant part of what is specified, and must be inferred by a reader if not explicitly expressed. This paper presents a
scenario language, ScenarioML, which expresses requirements scenarios using a broad and effective selection of
event relations and structures. ScenarioML scenarios range from concrete scenarios to parameterized schemata
that represent large families of scenarios related in a variety of temporal and structural ways. The language is de-
signed for automated analysis and operations on temporal event relations, as well as other aspects of scenarios. An
example from aircraft navigation is presented.

1 Introduction
Scenarios are widely used in a number of ways during the development process, and by a variety of participants

[BFJ92, Ale04]. Stakeholders use them to communicate what is wanted, and developers use them to confirm their
understanding [BFJ92, MMM98, Rob04]. Both may use them as the primary form in which requirements are re-
corded [Coc00, Hau04, JCJ92], or as a preliminary form from which specialists produce more refined forms such as
goals and requirements [LW98]. Developers may use them as guide and scaffolding in a process by which other
artifacts such as goals are developed [RSBA98]. They are used to simulate and explore a system’s use [BFJ92] or a
design’s utility [Sut03], and to present a test or validation [BBL04].

Scenarios range in form from prose narratives to structured models of event sequencing. Prose scenarios can
express or imply subtle and complex temporal relations among the events they describe, but more-structured sce-
nario forms are often focused on other aspects of narrative. Use cases organize the numerous alternatives and ex-
ceptional cases that can occur during purposeful transactions to achieve a goal. Message Sequence Charts and Se-
quence Charts clearly present the sequences of communications between actors and system components. Activity
Diagrams and flowchart forms highlight the decisions that are made over the course of a transaction. Each of these
forms is useful in its own way and its own context.

What constitutes an event in a scenario is variously described in the literature: something that happens, an ac-
tion, an interaction, a step, or in some usages only an instantaneous change from one state to another. Our view is
that any of these may constitute an event, but that an event is fundamentally something occurring over a time inter-
val, not instantaneously. While a number of commonly-used formalisms (such as Message Sequence Charts and
Sequence Diagrams) assume non-overlapping events for simplicity (often expressed as time points or restricted to be
state changes), in the real world closer examination shows that no event is truly indivisible. Rather, a real event that

appears to be instantaneous at one level of detail, abstraction, or concepts, is revealed at a finer-grained level to be
composed of smaller sub-events or to be better described by concepts that distinguish its time span and evolution
over that time.

It is notable that (to paraphrase Rousseau) events occur freely in the world, but are usually described in linear
succession, or perhaps in concurrent groups of linear successions; events have duration, but are usually described as
if instantaneous. This is advantageous for specifying or designing a solution whose components already operate on
this model, because it is a highly effective simplification and can avoid thorny challenges that concurrency can
bring. But it is not effective for accurately and fluently describing situations whose events are more subtly related to
begin with.

This paper describes a form, ScenarioML, whose purpose is the expression of a broad variety of event relations
and orderings. The events it describes are assumed to have duration, and the relations of interest between them are
qualitative. ScenarioML is oriented toward temporally complex and subtle narratives, such as are often found in
descriptions of domains and group interactions, and during early requirements activities of all kinds. Its temporal
relations are based on Allen’s interval algebra. Interval algebra is a formalism that exhaustively expresses all possi-
ble qualitative temporal relations between definite or indefinite intervals, and (with certain caveats) supports tempo-
ral inference on them [All83]. A ScenarioML scenario states what is essentially an arbitrarily subtle partial order of
potentially-overlapping events. ScenarioML is designed to express complex temporal situations, but also to express
simple relations simply.

Though this paper does not focus on them, ScenarioML also provides a panoply of operators for expressing sets
of partial orderings: iteration, alternation, permutation, interruption, and exception; episodes for reuse of events and
event orderings; parameterization of scenarios and episodes; refinement operators to hide or incorporate additional
levels of detail; and markup to link instances of defined terms with their definitions.

As its name suggests, ScenarioML is expressed in XML (Extensible Markup Language), which takes advantage
of a large and growing range of publicly available tools and packages and makes the language more effective as a
medium of interchange among researchers, practitioners, and tools for analysis and operations. Specialized tool
support is under development, with prototypes completed for some tool functions. An HTML presentation format
eases reading and understanding of ScenarioML scenarios, and appears in Figure 7.

The remainder of this paper is organized as follows. Section 2 gives an example that motivates the discussion
to follow. Section 3 discusses Allen’s interval algebra, and Section 4 presents ScenarioML, focusing on the tempo-
ral aspects which are defined in terms of Allen’s interval algebra. Section 5 discusses analyses and operations on
ScenarioML scenarios. Section 6 contrasts the related work, and Section 7 presents lessons learned and future work.

2 A motivating example
As a motivating example, we will consider a description of a typical flight of a small plane from Palomar Air-

port to Riverside Airport, both in the U.S. state of California. The description is based on a recent flight in which
the author sat in the co-pilot’s seat of a small plane, collecting data on navigation and pilot cognitive workload.

While waiting for clearance to take off, the pilot begins entering the waypoints for the route from Palomar to Riv-
erside into the plane’s GPS (Global Positioning System) device. The pilot taxis to the end of the runway, the airport
tower clears the plane for takeoff before the entire route is entered, and the pilot takes off. Once the plane climbs high
enough to enter the TIS (Traffic Information System) radar service area, the TIS receives data about the location and
path of nearby planes from radar stations on the ground, and warns the pilot if another plane approaches. Shortly after
this altitude is reached, the pilot resumes entering the remaining waypoints. The TIS allows the pilot to safely devote
attention to the GPS knobs and display without having to look outside the airplane at all times to scan for approaching
traffic. Each waypoint must be entered before the GPS can guide the pilot to it, but otherwise the waypoints may be
entered at any time before that, and can be changed along the way to a different route if necessary.

The waypoints are identified by brief names such as KCRQ and PDZ, and correspond to radio navigation beacons
on the ground or to the intersections of the standard air routes between beacons. Today’s flight begins at Palomar Air-
port (KCRQ) and continues to Oceanside (OCN) and the intersection of routes V23 and V363 (KRAUZ). It turns at the
intersection of V363 and V8, unnamed on the standard charts but frequently referred to as POM12 because it is 12 NM
(nautical miles) south of the Pomona beacon. From there, the route continues to Paradise (PDZ) and finally to the Riv-
erside airport (KRAL). This is the standard flight plan from Palomar to Riverside.

At two times during the flight, other planes come within approximately 2 NM and 1000 feet of altitude. The TIS
plays an audible warning “Traffic, traffic” through the pilot’s headphones and highlights the symbol representing that

plane on its display screen as a yellow circle. The pilot adjusts the scale of the display to show the other plane’s rela-
tive position more clearly, considers the location of that plane and all nearby planes, and decides how best to maneuver
to avoid the other plane. After the plane has been avoided, the pilot navigates back to the route and continues the flight.

Frequently (but not on this flight) the air traffic controllers re-route planes on this route, vectoring them 20° to the
right to cross the corner of the now-closed El Toro Marine Corps Air Station and thus avoid traffic on the landing ap-
proach to Santa Ana Airport (Orange County) runway 19R. In this case, the pilot skips the POM12 waypoint and turns
back onto the V8 route to PDZ when his vector crosses it.

This scenario displays several characteristics common in real-world scenarios:
• Several things happen at once.
• The interesting events have durations.
• Point events (such as arriving at the TIS horizon altitude) are usually significant not in themselves, but because

they begin or end interval events.
• There are temporal constraints (usually connected to causation) between the events in a strand of the scenario.
• There are sometimes additional temporal constraints among events in different strands of the scenario (for ex-

ample, between entering a waypoint and flying to it).
• Some events happen unpredictably.
• Some things might not happen at all (such as a TIS incident), or might happen several times.

If we were to represent this scenario using any of the traditional forms of a scenario description, some things
will be awkward or difficult to represent, especially the relationships among non-sequential events and the specific
kinds of unpredictability. Much temporal (and causal) information is likely to be lost.

3 Allen’s Interval Algebra
Allen’s interval algebra expresses qualitative relations between temporal intervals, and provides a basis for rea-

soning from a set of given relations on specific intervals to other relations that they imply [All83]. Allen defined
thirteen basic relations between fixed time intervals, shown in Figure 1. These relations are pairwise disjoint and
mutually exhaustive: two fixed intervals can be related by no more than one of the thirteen, and there are no two
fixed intervals that are not related by one of the thirteen. This makes them an excellent basis for reasoning about
intervals.

(The names listed for the relations are those used by Krokhin et al. [KJJ03], and the symbols are adapted from
the same source but expressed as single letters.)

Figure 1. Allen’s basic relations

Each basic relation’s converse is also one of the basic relations (“equals”, e, is its own converse). For each dis-
tinct pair of converses, one relation’s symbol is lower case and the other relation’s is upper case. As an example, if
a(p)b (a precedes b) for two intervals a and b, then the converse relation b(P)a (b is preceded by a) also holds.

Allen combined these basic relations to describe indefinite intervals whose position in time is incompletely
known (referred to simply as “intervals” in the sequel). The relation between two intervals is expressed as the union
of all possible basic relations that could hold between them. As an illustration, a GPS waypoint must have been
entered before navigation to that waypoint can be done. Two possible basic relations can hold: the “Enter waypoint
w” interval event could precede the “Fly leg to waypoint w” interval event, or it could meet it, but no other basic
relation is consistent with the requirement. We would then say the temporal relation between the events is (pm), the
union of p and m. Of course, for the specific fixed events that are part of a real flight, only one of the two basic rela-
tions actually holds.

There are 213 such unions of relations between indefinite intervals, and they exhaustively cover all the possible
relations between two intervals (plus the null relation representing“no possible relation”). These unions are referred
to simply as “relations” in the sequel. The converse of a relation is the union of the converses of its basic relations.
The intersection of two relations is the set-theoretical intersection of the basic relations of the two relations.

Reasoning about more than two intervals is based on composition of relations. If x, y, and z are intervals related
by x(r)y and y(s)z, then the relation between x and z is the composition of r and s, denoted r s , and we write x(r s)z.
The composition of two basic relations b b′ can be calculated using the definitions of the basic relations. Composi-
tion of two general relations r = (b1⋅⋅⋅bn) and s = (b′1⋅⋅⋅b′m) is the union of the pairwise compositions of their compo-
nent basic relations:

Allen and others published tables of composition of basic relations [All83, KJJ03], and we have published a Java
command for calculating compositions [Als05]. Figure 2 shows the composition resulting from a(p)b and b(p)c, and
we see that the composition results in a single possibility a(p)c. In general, however, the composition will be more
complex. Figure 3 shows the composition of a(o)b and b(o)c, resulting in three possible basic relations between a
and c. The composition is their union, a(pmo)c.

Figure 2. Composition of Allen relation p.p

Figure 3. Composition of Allen relation o.o
The transitive closure of composition on a set of relations on intervals propagates the effect of each relation to

all the other relations among intervals. Allen presented an algorithm for approximating this propagation. In es-
sence, it attempts to infer the strongest temporal relation that can be shown to hold between each pair of intervals
mentioned in a set of relations on intervals. Exact solution of inference for Allen’s interval algebra has been shown
to be NP-hard [VKB89].

For some sets of relations on intervals, such as { x(pm)y, y(pm)x } (x is both before and after y), there is no as-
signment of fixed intervals to the interval variables that satisfies the constraints. We say that the relations are not
satisfiable in this case. The problem of determining whether an arbitrary set of relations on intervals is satisfiable
has been shown to be NP-complete [VBK89]. However, determining satisfiability within certain subalgebras has
been proven tractable; a subalgebra of Allen’s interval algebra is a subset of the 213 relations that is closed under
intersection, converse, and composition. Eighteen maximal tractable subalgebras have been identified, in which
satisfiability may be determined in polynomial time [KJJ03].

4 ScenarioML temporal relations
ScenarioML events are recursively structured, with simple events as the leaves of the structure tree and tempo-

ral groupings of progressively larger scope up to the root. A simple event is represented by the text that describes it:
<simpleEvent> The plane flies high enough to be in the TIS radar service area. </simpleEvent>

Simple events may be grouped together in twelve kinds of temporal groupings, summarized in Table 1. Each of
the twelve kinds is characterized by the Allen relation that holds between adjacent events in the grouping. A tempo-
ral grouping of events is represented by the type of temporal grouping and the events contained in the group. The
events may be simple events, or they may be other temporal groupings. An example of how ScenarioML expresses
this appears in Figure 4, which gives a fragment of a ScenarioML representation of the small plane scenario from
Section 2. The fragment shows the beginning of a Catenation temporal grouping and several levels of its subevents.

Figure 4. Small plane scenario in ScenarioML (excerpt)

Table 1. ScenarioML temporal groupings

The table gives the Allen relation for each grouping and a description in words that illustrates it. For example,
in a Separation grouping, whose adjacent events are related by (p), each event begins after its predecessor in the
group ends. In a Concurrent grouping, whose adjacent events are related by (OFDseSdfo), each event overlaps with
its predecessor in the group. The temporal groupings are also illustrated graphically in Figure 6.

The names of the groupings were chosen to represent the relation between the grouping’s events, as far as pos-
sible:
• A Separation’s events are separated by an interval.
• The events of a Catenation occur in a connected succession.
• Events of a Succession succeed each other.
• Each event of a Supersession occurs partially over the preceding one.
• Each event of a Comprehension includes the event following it.
• Each event of a Progression is at least a little beyond the previous one.
• Each event of a Nonregression has started no later than its predecessor.
• Indeterminate events have potentially any relation.
• Concurrent events must overlap at least in part with the events listed adjacent to them.
• Connate events are “born” together.
• Conterminate events share a termination.
• Coeval events last over the same time span.

The names of the groupings are either nouns, all ending in “-ion”, or adjectives not ending in “-ion”. Nouns are
used for the grouping types in which the listing sequence of the subevents affects the temporal relations among
them. In these groupings, subevents that are listed earlier also occur earlier in time. Adjectives are used for the
grouping types in which the listing sequence does not matter. Each of these groupings is its own converse, so the
order of its subevents is immaterial.

The Allen relations for the twelve groupings were chosen for several reasons:
• Of the 8191 non-null Allen relations (213 minus “no temporal relation”), these are among the easiest to state and

understand, and thus likely to be the most used in practice, and most likely to be used to group events correctly.
• These relations have been sufficient to describe the events and situations we have encountered in our validation

work (Comprehension, Connate, Conterminate, and Coeval were added for this reason).
• Each of these relations’ composition with itself is also one of the twelve groupings.
• Each of the relations’ composition with itself is a fixed point of the composition operator.
• The twelve groupings are a tractable subclass of Allen’s interval algebra.

As with Allen relations in general, we can use composition to infer the temporal relation between non-adjacent
events in a grouping; thus, simple composition properties for the groupings are valuable. If x, y, and z are consecu-
tively-listed events in grouping G, then by the definition of groupings, x(G)y and y(G)z. The relation between x and
z is then x(G G)z. The relation between x and a fourth or later-listed event in the grouping would be the result of
additional composition with G. Since the result of each grouping’s composition with itself is a fixed point of com-
position, the relation between any two non-adjacent events in a grouping will be simply (G G), the same no matter
how far separated the events are within the group. Table 2 gives the relation between non-adjacent events in each
grouping.

Table 2. ScenarioML grouping composition

For four of the groupings (catenation, succession, supersession, and concurrent), the relation between adjacent
and non-adjacent events is not the same. The table also gives the relation between any two events in the grouping,
which is simply the union of the adjacent and non-adjacent relations. For the remaining groupings, any two events
in the grouping have a single relationship, which we consider ideal.

The twelve groupings are a subclass of the H (or Ord-Horn) subalgebra of Allen’s interval algebra, and so form
a tractable subclass for inference [KJJ03]. Inference of relations between indirectly related events is thus practical.

We mentioned earlier that it is possible to construct a set of Allen relations on events that is unsatisfiable, that
is, for which there is no choice of fixed times for the events that would satisfy all the relations. It is not possible to
make an unsatisfiable ScenarioML scenario with the language constructs described so far, but event references in-
troduce that possibility. An event reference is a tag that refers to an event defined elsewhere, so that the event may
be referred to in a grouping that does not contain the event’s definition. For clarity of expression, ScenarioML also
introduces event relations, which unlike groupings do not define compound events, but instead add an additional
temporal constraint on events defined elsewhere. Figure 5 shows a relation from the ScenarioML form of the small
plane scenario. The scenario fragment shown in the figure defines a simple event named “enterKRAL” and a rela-
tion that constrains it to occur before the event named “flyToKRAL”, defined elsewhere in another grouping. This
relation expresses the fact that in the scenario, each waypoint must be entered before it can be flown to.

Figure 5. Event reference and relation

5 Operations on scenarios
A goal of the development of ScenarioML is that it not only to be expressive, but also support analyses and op-

erations on the form of the scenario. ScenarioML separates the expression of each event from the expression of the
temporal relations between the events. Each simple event is expressed in prose, but the temporal relations are ex-
pressed ultimately in interval algebra, and so there is the opportunity for software tool support to automate tedious

work and expand the scope of work that can be attempted. In this section we list and briefly discuss some of the
analyses and operations that ScenarioML supports.

The most direct operation that interval algebra supports is inferring the strongest relation that can be shown to
hold between two events. The interval algebra foundation of ScenarioML and the fact that it is a tractable subclass
makes possible manual or automated calculation of that relation for any arbitrary pair of events in a scenario.

A related analysis is the question of whether a scenario is satisfiable or not. With the use of event references
and temporal relations imposed from outside the tree structure of event groupings, the possibility of unknowingly
creating an unsatisfiable scenario is a very real one.

More specific is the question of whether a scenario is satisfied by specific event timings. A scenario’s meaning
seems most fundamentally to be derived from the varieties of real-world events that can be said to be an instance of
the scenario. Interval algebra supports the temporal aspect of this analysis.

A general class of operations are the transformations that preserve meaning, of which we have identified some
and have grounds for expecting many more. Some event groupings can be split and the parts grouped at a higher
level, for example a catenation can be divided into two catenations that then become the subevents of a new catena-
tion one level up. This transformation and others analogous to it preserve the meaning of the scenario while altering
the form in which it is expressed. Not all grouping can be split and recombined in this way, but some can be if cer-
tain additional relations are imposed on its events through references to them.

In the opposite direction, some temporal groupings can be combined while preserving meaning. The question is
particularly interesting for groupings of different kinds; no general approach has been identified to date, but there
appear to be possibilities.

The use of temporal groups together with additional relations on events through references to them opens the
possibility of inverting groups and relations. It is possible in some cases to interchange event definition and event
reference while exchanging grouping and relation, resulting in an equivalent scenario in a much different form. The
operation is complex enough, and indeed the process of verifying that the operation is possible is difficult enough,
that tool support is necessary to make this a practical possibility.

6 Related work
SMaRT (Scenario Management and Requirements Tool) is a software tool for creating, editing, and analyzing

scenarios, developed at North Carolina State University [WAA03]. It supports scenarios with sequential events,
hierarchically structured in linear sequence, alternation, and iteration, with episodes for reusing the events of a sce-
nario in other scenarios. It implements and extends the scenario management work of Alspaugh et al. [AAB99].
SMaRT does not have a public file format that can be used to combine its functionality with that of other tools.

SDML (Scenario Definition Markup Language) [DPI02, DPI03] is an XML scenario language that expresses
the use case forms of Cockburn and Rumbaugh et al. [Coc97, RJB99]. A basic SDML scenario is a linear sequence
of interactions, with possible branch points listing alternative variant subsequences. Other scenarios can be refer-
enced unconditionally by inclusion or conditionally by extension. More complex structure is obtained by iterating a
scenario and by composing two scenarios in parallel or in mutual exclusion [DPI04]. ScenarioML includes equiva-
lents of SDML structuring elements except for mutual exclusion. SDML events are expressed as actors and actions,
each from a list defined as part of the use case, as in Alspaugh et al.’s Integrated Scenario Management Strategy and
the SMaRT system [AAB99, WAA03]. A graphical editor has been implemented for SDML scenarios [DPI04].
The SDML schema does not appear to be public at this writing, so that SDML cannot be used to combine the func-
tionality of scenario tools.

Interval scripts [PMB97, PB03] are low level interactive scripts specifying the temporal relations between time
intervals using Allen’s interval algebra. They are intended for describing and managing interactivity in immersive
environments. Interval scripts use the full Allen’s interval algebra rather than a subalgebra as ScenarioML does, and
express relations between pairs of events. Inference is approximated by projecting each relation onto combinations
of past, now, and future and computing a conservative approximation to inference in this algebra, for which strict
inference is still NP-hard. Although interval scripts have the same temporal basis as ScenarioML scenarios, there
are few other similarities.

7 Lessons learned and future work
We have seen that scenarios can be extended with more general temporal relations in a way that gives additional

expressiveness while still remaining relatively easy to use. Having this additional expressive power has led us to
write scenarios describing situations that would not have seemed appropriate for scenarios before, one example be-
ing the combination of tasks that the pilot of a small plane must address. The additional expressive power has also
led us to produce scenarios that are more detailed and complete than would have been practical in the past.

The existence of an XML-based language for expressing scenarios has led to unusual uses of them that would
otherwise be impractical or not thought of, notably a collaboration with virtual character researchers, a research pro-
ject on specific aspects of pilot cognitive workload, and investigation of novel approaches to testing. As is often the
case, the availability of a new or extended tool leads to the discovery of new uses for it.

The availability of ScenarioML as a common language for expressing scenarios has made tool support for work
with scenarios much more of a practical possibility. The existence of a large body of publicly-available packages
for Java and XML allows development of scenario tools on a shorter time scale and with fewer developers, and al-
lows quick prototyping of experimental scenario.

Perhaps most interesting is that the people that have used ScenarioML to date have been intrigued by it. There
is reason to believe that ScenarioML can be useful and effective as a way of expressing and working with scenarios,
but beyond those utilitarian aspects it seems clear that users enjoy seeing what they can do with ScenarioML.

There are several directions of future work for ScenarioML.
A fundamental test of a scenario form is the extent to which it helps to define scenarios, check scenarios, and

work with concurrent events within a single scenario and across two or more scenarios. Preliminary results for Sce-
narioML are encouraging, but more investigation is needed to support comparison with other scenario forms and a
strong argument in favor of ScenarioML.

Temporal logics of one form or another are the most common formal approach for stating temporal relations
among events, although they are rarely used in conjunction with scenarios. Temporal logic has disadvantages in
practice: its users must have substantial training, tool support is essential, and it is somewhat cumbersome for ex-
pressing arbitrary relations in software requirements. ScenarioML offers a possible alternative approach which may
be easier to use and advantageous in some or many requirements contexts. We plan to investigate the extent to
which one might be used instead of the other, and conduct case studies comparing them.

We have seen that ScenarioML can be effective in representing scenarios, and in recording temporal relations
that otherwise would be overlooked. Certain patterns of expression seem to recur, but it is not clear whether these
are inherent to ScenarioML or a consequence of the way it has been presented to users. It is plausible that some
patterns of expression will be more effective, and (for example) better support certain uses of scenarios or be better
supported by software tools, but to date there is not enough information to do more than hypothesize. The fact that
ScenarioML has a form that can be analyzed by a tool opens the possibility of using the accumulating collections of
scenarios as data to study patterns of use.

A particularly intriguing possibility is the matching of scenarios against streams of events, to identify occur-
rences of specific scenarios at particular points in the stream. This is a possible basis for a more extensive scenario
semantics, built upon event types and subsumption among them. A related question is matching one scenario
against another, and comparing two scenarios for similarity. ScenarioML scenarios have much more varied struc-
ture and semantics than linear-sequence scenarios, so comparison is much more challenging. Work along these lines
is underway in connection with autonomous character research here at UCI.

Tool support is essential to make a fairly complex notation like ScenarioML useful. Work on a graphical editor
for ScenarioML is in its preliminary stages. As part of that work, the issue of meaning-preserving transformations
on ScenarioML scenarios is significant as a source for more effective and powerful tool support in an editor and in
general. Such transformations can be used to improve the form in which a scenario is expressed, without changing
the meaning the scenario expresses. This leads to the question of what forms are more advantageous, and in what
contexts, and connections with effective patterns of expression.

A related area of research is the presentation of the large amount of information in a ScenarioML scenario in a
form that is manageable and understandable. The XML form of a ScenarioML scenario becomes progressively
more difficult to understand as the scope of the scenario increases, as do notations in general. We have investigated
effective presentation forms for scenarios, one of which is shown in Figure 7; there, relations that are primarily se-

quential are expressed down the page, while relations that are primarily concurrent are expressed across the page.
This form is a useful one but more research is needed.

ScenarioML has a number of constructs not directly connected to temporal relations, and these have not been as
fully explored as its temporal groupings and relations. Scenario management is still a substantial unsolved problem,
and one approach (seen in the Use Case community among others) is to make use of language constructs to address
scenario organization, management, and re-use. This has been an ongoing area of research and the availability of
ScenarioML as a basis for work in this area is a considerable benefit.

Specification-based testing is a promising area in which major unsolved problems remain. The possibility of
using scenarios as the specification from which tests are derived has some intriguing aspects: scenarios are closer to
user-expressed goals than the forms from which specification-based tests have been derived in the past, and the scale
of scenarios offers potential benefits in addressing testing beyond the unit level. ScenarioML forms a basis for in-
vestigating these possibilities.

8 Acknowledgements
The author thanks his colleagues in the Rosetea research group and the Informatics Department of UC Irvine, and
the anonymous reviewers of an earlier version.

9 References
[Ale04] I. F. Alexander. Scenarios in System Development. In I. F. Alexander and N. Maiden, editors, Scenarios, Stories, Use
Cases: Through the Systems Development Life-Cycle, pp. 3-24. John Wiley & Sons, 2004.

[All83] J. F. Allen. Maintaining Knowledge About Temporal Intervals. Communications of the ACM 26(11):832-843, Nov.
1983.

[AAB99] T. A. Alspaugh, A. I. Antón, T. Barnes, and B. W. Mott. An Integrated Scenario Management Strategy. In Fourth
IEEE International Symposium on Requirements Engineering (RE'99), pp. 142-149. 1999.

[Als05] T. A. Alspaugh. Software Support for Calculations in Allen’s Interval Algebra. Institute for Software Research Techni-
cal Report UCI-ISR-05-02, University of California, Irvine, February 2005.

[BBL04] F. Basanieri, A. Bertolino, G. Lombardi, G. Nucera, E. Marchetti, and A. Ribolini, "Cow_suite: A UML-Based Tool
for Test-Suite Planning and Derivation," ERCIM News (58) pp. 30-32, July 2004.

[BFJ92] K. Benner, M.S. Feather, W.L. Johnson, and L. Zorman. Utilizing Scenarios in the Software Development Process. In
IFIP Working Group 8.1 Working Conference on Information Systems Development Processes, pp. 694-751. 1992.

[Coc97] A. Cockburn. Using Goal-Based Use Cases. Journal of Object-Oriented Programming, 10(7):56-62. 1997.

[Coc00] A. Cockburn. Writing Effective Use Cases. Addison-Wesley Longman Publishing Co., Inc., 2000.

[DPI02] G. Della Penna, B. Intrigila, A. R. Laurenzi, and S. Orefice. An XML Definition Language for Software System Speci-
fication. In 6th World Multi Conference on Systemics, Cybernetics and Informatics, pp. 179-190, 2002.

[DPI03] G. Della Penna, B. Intrigila, A. R. Laurenzi, and S. Orefice. An XML Definition Language to Support Scenario-
Based Requirements Engineering. International Journal of Software Engineering and Knowledge Engineering,
13(3):237–256, June 2003.

[DPI04] G. Della Penna, B. Intrigila, A. R. Laurenzi, and S. Orefice. A Methodology for Scenario Development. In 16th Inter-
national Conference on Software Engineering and Knowledge Engineering, pp. 7-12, 2004.

[Hau04] P. Haumer. Use Case-Based Software Development. In I. F. Alexander and N. Maiden, editors, Scenarios, Stories,
Use Cases: Through the Systems Development Life-Cycle, pp. 237–264. John Wiley & Sons, 2004.

[KJJ03] A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations: The tractable subalgebras of Allen's inter-
val algebra. Journal of the ACM 50(5):591-640. Sep. 2003.

[JCJ92] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-Oriented Software Engineering: A Use Case
Driven Approach. ACM Press, 1992.

[LW98] A. van Lamsweerde and L. Willemet. Inferring Declarative Requirements Specifications from Operational Scenarios.
IEEE Transactions on Software Engineering 24(12):1089-1114. Dec. 1998.

[MMM98] N. A. M. Maiden, S. Minocha, K. Manning, and M. Ryan. CREWS-SAVRE: Systematic Scenario Generation and
Use. In Proceedings: 3rd International Conference on Requirements Engineering, pp. 148-155. 1998.

[PB03] C. Pinhanez and A. Bobick. Interval Scripts: A Programming Paradigm for Interactive Environments and Agents. Per-
vasive and Ubiquitous Computing, 7(1):1-21. 2003

[PMB97] C. S. Pinhanez, K. Mase, and A. Bobick. Interval scripts: a design paradigm for story-based interactive systems. In
CHI '97: SIGCHI Conference on Human Factors in Computing Systems, pp. 287-294, 1997.

[Rob04] S. Robertson. Scenarios in Requirements Discovery. In I. F. Alexander and N. Maiden, editors, Scenarios, Stories, Use
Cases: Through the Systems Development Life-Cycle, pp. 3-24. John Wiley & Sons, 2004.

[RJB99] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual. Addison Wesley Long-
man, 1999

[RSBA98] C. Rolland, C. Souveyet, and C. Ben Achour. Guiding Goal Modeling Using Scenarios. IEEE Transactions on Soft-
ware Engineering, 24(12):1055–1071, Dec. 1998.

[Sut03] A. Sutcliffe. Scenario-Based Requirements Engineering. In 11th IEEE International Conference on Requirements En-
gineering (RE '03), pp. 320-329, 2003.

[WAA03] W. Stufflebeam, A. I. Antón, and T. A. Alspaugh. SMaRT — Scenario Management and Requirements Tool. In 11th
IEEE International Conference on Requirements Engineering (RE '03), pp. 351. 2003.

[VKB89] M. Vilain, H. Kautz, Henry and P. van Beek, Constraint Propagation Algorithms for Temporal Reasoning: A revised
report. In D. S. Weld and J. de Kleer, editors. Readings in Qualitative Reasoning about Physical Systems, pp. 373-381. 1989.

Figure 6. ScenarioML temporal groupings

Figure 7. A ScenarioML scenario fragment, presented in HTML

