
Final Report on
Collaborative Software Engineering Tools Workshop and Follow-Up

Project NAG2-1555

Edited by

David F. Redmiles, PhD

Institute for Software Research and
Department of Informatics

University of California, Irvine
Irvine, CA 92697-3425 USA

redmiles@ics.uci.edu

ISR Technical Report # UCI-ISR-03-14

December 2003

Abstract: This report documents the project “Collaborative Software Engineering Tools
Workshop and Follow-Up.” Under this project, a workshop was held at NASA/Ames on
August 5 and 6, 2002. Additional research followed up on the workshop. Hence, the
report contains these two components: materials from the workshop and a series of
research papers that document our follow-up activities.
 The workshop brought together technical staff of NASA/Ames and faculty and
staff researchers from University of California's Institute for Software Research (ISR).
The goal of the workshop was to generate a joint understanding of collaborative software
engineering tools informed from four perspectives: 1) technology, 2) theory, 3) field
studies, and 4) specific NASA problems.
 The follow-up work included an intern working at NASA and providing some
analysis of observations during the course of that work. The analysis was carried out
collaboratively between personnel at NASA/Ames and UCI/ISR. Additional
experimental software development was performed at UCI examining the role and
architecture of event notification servers and awareness. Also, some initial explorations
about extending field study methods were done.

Since the workshop, a web site has been maintained at
http://www.isr.uci.edu/events/NASA-Workshop/

Table of Contents

Part 1: Workshop Materials

Part 2: Follow-up Materials

Part 1: Workshop Materials

Agenda

Monday, August 5

10:30 - 12:00 Scope of Collaborative Software Engineering

Introductions all around (15 mins)

Introductory Remarks
David Redmiles, UCI/ISR Faculty and
John Penix, Computer Scientist, NASA Ames

Challenges in Distributed Collaborative Space Mission Design
Gloria Mark, ISR Faculty

ScienceOrganizer: A Collaborative Information Management Tool for Scientific
Teams
Richard M. Keller, Senior Computer Scientist, NASA Ames

Discussion (15 mins)

12:00 - 1:00 Lunch

1:00 - 2:15 Quantification and Visualization

Palantír: Increasing Awareness among Distributed Workspaces
André van der Hoek, ISR Faculty

Visualizing Software Instability
Jennifer Bevan, UC Santa Cruz Graduate Student

Source Code Instrumentation and Quantification of Events
Robert Filman, Computer Scientist, NASA Ames

Visualization of Software and Development
Paul Dourish, ISR Faculty

Discussion (15 mins)

2:15 - 2:30 Break

2:30 - 3:45 Collaboration Studies and Tools

Exploring the Relationship between Project Selection and Requirements Analysis
Mark Bergman, ISR Graduate Student

Past and Future of Postdoc
Chris Knight, NASA Ames

A Field Study of Collaborative Software Development Teams
Cleidson de Souza, ISR Graduate Student, NASA Ames Summer Intern

How do we go where no one has gone before?
Issues in the development of Autonomous Operations for Space
Kanna Rajan, NASA Ames

Discussion (15 mins)

3:45 - 4:00 Break

4:00 - 5:00 Architecture and Synthesis

US/France Coalition Warfare as a Model of Dynamic Architectures for Cross-
Organizational Software Engineering
Richard N. Taylor, ISR Director and Faculty
(no slides available)

Formal Peer Inspection Information Architecture
Gilda Pour, Faculty, San Jose State University

Software Design Modelling and Code Generation Tools
Jon Whittle, Computer Scientist, NASA Ames
(no slides available)

Discussion (15 mins)

Tuesday, August 6

9:30 - 11:30 Event Infrastructure and Wrap up

From Simulation to Implementation - An overview of the Brahms Research and
its application to Work Practice Analysis and Software Agents
Maarten Sierhuis, Senior Scientist, NASA Ames

Event-notification and Messaging Architectures for Real-time Science
Coordination
Elias Sinderson, UC Santa Cruz Graduate Student, NASA Ames Summer Intern

Using Event Notification Servers to Support Awareness
David Redmiles, ISR Faculty

Discussion on Common Themes (1 hr 15 mins)
Moderated by David Redmiles and John Penix

11:30 - 12:30 Lunch

After lunch, a subset of people will meet to make future plans. Subset includes
David Redmiles, John Penix, Michael Kantor, Susan Knight, Debra Brodbeck, at
least 1 more UCI faculty, and 1 or more NASA or JPL people.

Participants

NASA Ames

• Martha DelAlto, md@ptolemy.arc.nasa.gov
• David Bell, dbell@arc.nasa.gov
• Robert Filman, Computer Scientist, rfilman@arc.nasa.gov
• Rich Keller, Senior Computer Scientist, rkeller@arc.nasa.gov
• Chris Knight, Computer Scientist, cknight@mail.arc.nasa.gov
• Jeff Lee, jmlee@arc.nasa.gov
• Kenneth I. Laws, klaws@email.arc.nasa.gov
• Masoud Mansouri-Samani, masoud@email.arc.nasa.gov
• Larry Markosian, zaven@email.arc.nasa.gov
• Peter Mehlitz, pcmehlitz@email.arc.nasa.gov
• Owen O'Malley, Computer Scientist, owen@email.arc.nasa.gov
• Joan Pallix, jpallix@mail.arc.nasa.gov
• John Penix, Computer Scientist and Workshop Organizer,

jpenix@ptolemy.arc.nasa.gov
• Tom Pressburger, ttp@email.arc.nasa.gov
• Kanna Rajan, Senior Researcher, kanna@ptolemy.arc.nasa.gov
• David Roland, droland@mail.arc.nasa.gov
• John Shupe, jshupe@mail.arc.nasa.gov
• Maarten Sierhuis, Senior Scientist, msierhuis@mail.arc.nasa.gov
• Jon Whittle, Computer Scientist, jonathw@ptolemy.arc.nasa.gov

ISR/UCI

• Mark Bergman, Graduate Student, mbergman@ics.uci.edu
• Debra Brodbeck, ISR Technical Relations Director, brodbeck@uci.edu
• Eric Dashofy, Graduate Student, edashofy@ics.uci.edu
• Cleidson R. B. de Souza, Graduate Student, cdesouza@ics.uci.edu (currently on

summer Internship at NASA Ames)
• Paul Dourish, Faculty, jpd@ics.uci.edu
• Roberto S.S. Filho, Graduate Student, rsilvafi@ics.uci.edu
• Michael Kantor, Post-Doctoral Researcher, mkantor@ics.uci.edu
• Susan Knight, ISR Corporate Relations Officer, sknight@uci.edu
• Gloria Mark, Faculty, gmark@ics.uci.edu

• David Redmiles, Faculty and Workshop Organizer, redmiles@ics.uci.edu

• Richard Taylor, ISR Director and Faculty, taylor@uci.edu
• André van der Hoek, Faculty, andre@ics.uci.edu

ISR/UC Santa Cruz

• Jennifer Bevan, Graduate Student, jbevan@cse.ucsc.edu
• Elias Sinderson, Graduate Student and NASA Ames Summer Intern (2002),

elias@cse.ucsc.edu

Other

• Dale Martin, Clifton Labs, Inc., dmartin@cliftonlabs.com
• Lantz Moore, Senior Software Engineer, Clifton Labs, Inc.,

lmoore@cliftonlabs.com
• Gilda Pour, Faculty, San Jose State University and NRC Research Associate,

NASA Ames, gpour@email.sjsu.edu
• Jason Robbins, Collab.Net, Inc., jrobbins@collab.net

W
o

rk
s
h

o
p

 o
n

 C
o

ll
a

b
o

ra
ti

v
e

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g
 T

o
o

ls

Jo
hn

 P
en

ix
Co

m
pu

te
r

Sc
ie

nt
is

t
N

A
SA

 A
m

es

D
av

id
 R

ed
m

ile
s

A
ss

oc
ia

te
 P

ro
fe

ss
or

U
C

Ir
vi

ne
 /

 I
SR

D
eb

ra
 B

ro
db

ec
k

Te
ch

ni
ca

l R
el

at
io

ns
 D

ir
ec

to
r

U
C

Ir
vi

ne
 /

 I
SR

Go
al
s

an
d

Sc
op

e
of

 t
he

W
or

ks
ho

p

�
U

nd
er

st
an

di
ng

 C
ol

la
bo

ra
ti

on
 a

nd
 S

of
tw

ar
e

To
ol

s
�

Re
al

 w
or

ld
 s

et
ti

ng
 in

fo
rm

ed
 b

y
re

se
ar

ch
�

M
ut

ua
l E

du
ca

ti
on

�
A

sp
ec

ts
 o

f
th

e
Sc

op
e

�
D

if
fi

cu
lt

ie
s

in
 s

tu
dy

in
g

an
d

su
pp

or
ti

ng
 c

ol
la

bo
ra

ti
on

�
N

A
SA

 P
ro

bl
em

s
an

d
O

pp
or

tu
ni

ti
es

�
U

CI
 R

es
ea

rc
h

Te
ch

no
lo

gy
, S

tu
di

es
, a

nd
 O

pp
or

tu
ni

ti
es

Lo
gi
st

ic
s

�
Se

ss
io

ns
�

U
su

al
ly

 1
 h

ou
r

15
 m

in
ut

es
�

Ta
lk

s
ar

e
15

 m
in

ut
es

 in
cl

ud
in

g
cl

ar
if

yi
ng

qu
es

ti
on

s
�

15
 m

in
ut

es
 o

f
di

sc
us

si
on

�
Br

ea
k

fo
r

m
or

e
di

sc
us

si
on

To
 a

dv
an

ce
 s

of
tw

ar
e

an
d

in
fo

rm
at

io
n

te
ch

no
lo

gy
 t

hr
ou

gh
re

se
ar

ch
 p

ar
tn

er
sh

ip
s.

IS
R

is
 t

he
 o

nl
y

or
ga

ni
za

ti
on

 f
oc

us
ed

 o
n

So
ft

wa
re

 R
es

ea
rc

h
wi

th
in

 t
he

 U
ni

ve
rs

it
y

of
 C

al
if

or
ni

a
sy

st
em

.

ht
tp

:/
/w

ww
.is

r.
uc

i.
ed

u/

W
it
hi
n

th
e

U
ni
ve

rs
it
y

Co
nt

ex
t…

�
15

 F
ac

ul
ty

 A
ss

oc
ia

te
s

�
40

 P
h.

D
. s

tu
de

nt
s

�
2

Vi
si

ti
ng

 S
ch

ol
ar

s
�

~9
 S

ta
ff

 m
em

be
rs

 (t
ec

hn
ic

al
 a

nd
ad

m
in

is
tr

at
iv

e)

Fa
cu

lt
y

•
Ri

ch
ar

d
N
.

Ta
yl
or

U
CI

/I
CS

 a
nd

 D
ir

ec
to

r
of

 I
SR

•
M

ar
k

A
ck

er
m
an

U
ni

ve
rs

it
y

of
 M

ic
hi

ga
n

•
Pa

ul
 D

ou
ri
sh

U
CI

/I
CS

•
A
lf
on

so
 F

ug
ge

tt
a

Po
lit

ec
ni

co
 d

i M
ila

no
•
Le

s
Ga

ss
er

U
ni

ve
rs

it
y

of
 I

lli
no

is
 a

t
U

rb
an

a-
Ch

am
pa

ig
n

•
A
lf
re

d
Ko

bs
a

U
CI

/I
CS

•
Gl

or
ia
 M

ar
k

U
CI

/I
CS

•
Si

m
on

 P
en

ny
U

CI
/S

ch
oo

l o
f

th
e

A
rt

s
an

d
th

e
Sc

ho
ol

 o
f

En
gi

ne
er

in
g.

D
av

id
 F

.
Re

dm
ile

s
U

CI
/I

CS
D
eb

ra
 J

.
Ri

ch
ar

ds
on

U
CI

/I
CS

 a
nd

 I
CS

 D
ep

t.
 C

ha
ir

D
av

id
 S

.
Ro

se
nb

lu
m

U
CI

/I
CS

Sc
ot

t
Sa

m
ue

ls
en

U
CI

/S
ch

oo
l o

f
En

gi
ne

er
in

g
an

d
D

ir
ec

to
r,

 A
dv

an
ce

d
Po

we
r

an
d

En
er

gy
Pr

og
ra

m
 (A

PE
P)

W
al
t

Sc
ac

ch
i

U
CI

/I
CS

A
nd

ré
 v

an
 d

er
 H

oe
k

U
CI

/I
CS

E.
 J

am
es

 W
hi
te

he
ad

U
C

Sa
nt

a
Cr

uz

Re
se

ar
ch

 E
m
ph

as
es

ht
tp

:/
/w

ww
.i
sr

.u
ci
.e

du
/r

es
ea

rc
h.

ht
m
l

�
A
na

ly
si
s

an
d

T
es

ti
ng

D
eb

ra
 J

. R
ic

ha
rd

so
n

D
av

id
 S

. R
os

en
bl

um

�
Co

m
pu

te
r

Su
pp

or
te

d
Co

op
er

at
iv
e

W
or

k
M

ar
k

A
ck

er
m

an
Pa

ul
 D

ou
ri

sh
A

lf
re

d
Ko

bs
a

Gl
or

ia
 M

ar
k

D
av

id
 R

ed
m

ile
s

�
Co

nf
ig
ur

at
io
n

M
an

ag
em

en
t

A
nd

ré
 v

an
 d

er
 H

oe
k

Ji
m

 W
hi

te
he

ad

�
D
ev

el
op

m
en

t
En

vi
ro

nm
en

ts
D

av
id

 F
. R

ed
m

ile
s

 D
av

id
 S

. R
os

en
bl

um
D

eb
ra

 J
. R

ic
ha

rd
so

n
 R

ic
ha

rd
 N

. T
ay

lo
r

A
nd

ré
 v

an
 d

er
 H

oe
k

�
H
um

an
-C

om
pu

te
r

In
te

ra
ct

io
n

Pa
ul

 D
ou

ri
sh

A

lf
re

d
Ko

bs
a

Si
m

on
 P

en
ny

D
av

id
 F

. R
ed

m
ile

s

�
H
yp

er
m
ed

ia
A

lf
re

d
Ko

bs
a

D
av

id
 F

. R
ed

m
ile

s

Ri
ch

ar
d

N
. T

ay
lo

r
Ji

m
 W

hi
te

he
ad

�
In

te
rn

et
-s

ca
le
 E

ve
nt

 N
ot

if
ic
at

io
n

A
lf

on
so

 F
ug

ge
tt

a
D

av
id

 S
. R

os
en

bl
um

�
O
pe

n
So

ur
ce

M
ar

k
A

ck
er

m
an

A
lf

on
so

 F
ug

ge
tt

a
Le

s
Ga

ss
er

W

al
t

Sc
ac

ch
i

Ji
m

 W
hi

te
he

ad

�
So

ft
wa

re
 A

cq
ui
si
ti
on

 a
nd

 E
le
ct

ro
ni
c

Co
m
m
er

ce
W

al
t

Sc
ac

ch
i

�
So

ft
wa

re
 A

rc
hi
te

ct
ur

e
D

av
id

 F
. R

ed
m

ile
s

 D
av

id
 S

. R
os

en
bl

um
Ri

ch
ar

d
N

. T
ay

lo
r

 S
co

tt
 S

am
ue

ls
on

A
nd

ré
 v

an
 d

er
 H

oe
k

�
So

ft
wa

re
 E

ng
in
ee

ri
ng

 E
du

ca
ti
on

A
nd

ré
 v

an
 d

er
 H

oe
k

�
So

ft
wa

re
 U

nd
er

st
an

di
ng

Pa
ul

 D
ou

ri
sh

D
av

id
 F

. R
ed

m
ile

s

H
ow

 c
an

 c
om

pa
ni
es

 g
et

 i
nv

ol
ve

d?

�
Re

se
ar

ch
 P

ar
tn

er
sh

ip
s

en
ab

lin
g

Co
lla

bo
ra

ti
ve

Re
se

ar
ch

 T
ea

m
s

�
Ex

te
rn

al
 f

un
di

ng
 f

ro
m

 G
ov

er
nm

en
t

or
 I

nd
us

tr
y

so
ur

ce
s

(N
SF

, D
oD

/D
A

RP
A

, N
A

SA
, e

tc
.)

�
In

te
rn

al
 f

un
di

ng
 f

ro
m

 C
or

po
ra

te
 P

ar
tn

er

�
Re

se
ar

ch
 A

ff
ili

at
es

�
Co

rp
or

at
e

sp
on

so
re

d
re

se
ar

ch
 p

ro
je

ct
�

Gr
ad

ua
te

 s
tu

de
nt

 r
es

ea
rc

h
fe

llo
w

sh
ip

�
IS

R
re

se
ar

ch
 p

re
se

nt
at

io
ns

 o
n-

si
te

�
Re

se
ar

ch
 S

po
ns

or
s

�
Co

rp
or

at
e

af
fi

lia
ti

on
 o

n
IS

R
W

eb
 S

it
e

an
d

Ev
en

ts

ht
tp

:/
/w

ww
.is

r.
uc

i.e
du

/

Fo
r

M
or

e
In

fo
rm

at
io
n

D
eb

ra
 A

. B
ro

db
ec

k
Te

ch
ni

ca
l R

el
at

io
ns

D
ir

ec
to

r
br

od
be

ck
@

uc
i.e

du
(9

49
) 8

24
-2

26
0

D
r.

 S
us

an
 J

. K
ni

gh
t

Co
rp

or
at

e
Re

la
ti

on
s

O
ff

ic
er

sk
ni

gh
t@

uc
i.e

du
(9

49
) 8

24
-5

92
7

Ta
bl

e
of

Co
nt

en
ts

1

Co
lla

bo
ra

tiv
e

So
ft

w
ar

e
En

gi
ne

er
in

g
To

ol
s W

or
ks

ho
p

Dr
. J

oh
n

Pe
ni

x

2

RS
O

M
ot

iv
at

io
n*

_
Ov

er
 1

0%
 o

f N
AS

A’
s

ci
vi

l s
er

va
nt

 a
nd

co
nt

ra
ct

or
 w

or
kf

or
ce

 s
pe

nd
 th

e
m

aj
or

it
y

of
 th

ei
r

ti
m

e
m

an
ag

in
g,

 d
ev

el
op

in
g,

as
su

ri
ng

, v
er

ify
in

g,
 a

nd
/o

r
m

ai
nt

ai
ni

ng
so

ft
w

ar
e

_
NA

SA
 h

as
 in

 o
pe

ra
ti

on
 u

se
 (a

nd
 m

ai
nt

ai
ns

)
at

 le
as

t 2
00

 m
ill

io
n

lin
es

 o
f s

ou
rc

e
co

de
_

Ov
er

 $
1

bi
lli

on
 d

ol
la

rs
 o

f N
AS

A’
s

an
nu

al
 $

15
bi

lli
on

 b
ud

ge
t i

s
so

ft
w

ar
e

co
st

*
B

as
ed

 o
n

es
tim

at
es

 e
xt

ra
po

la
te

d
fr

om
 a

 1
99

3
st

ud
y

–
so

ur
ce

 N
A

S
A

 C
hi

ef
 E

ng
in

ee
r’s

 O
ffi

ce

3

RS
O

Re
si

lie
nt

 S
of

tw
ar

e
En

gi
ne

er
in

g
Pr

oj
ec

t O
ve

rv
ie

w

Hi
gh

 D
ep

en
da

bi
lit

y
Co

m
pu

ti
ng

In
te

lli
ge

nt
So

ft
w

ar
e

En
gi

ne
er

in
g

To
ol

s

NA
SA

/C
IC

T
NS

F

EC
S

Re
si

lie
nt

 S
of

tw
ar

e
En

gi
ne

er
in

g

Fu
nd

am
en

ta
l

Ne
w

 T
ec

hn
ol

og
ie

s
De

pe
nd

ab
ili

ty
 M

et
ri

cs
 a

nd

Te
ch

no
lo

gy
 V

al
id

at
io

n
To

ol
 D

ev
el

op
m

en
t

an
d

In
se

rt
io

n

R
is

k-
D

ir
ec

te
d

SE
 T

oo
ls

CO
TS

O
pe
n

So
ur
ce

D
ep

en
da

bi
lit

y
R

es
ea

rc
h

NA
SA

 M
is

si
on

s a
nd

Ae
ro

sp
ac

e
In

du
st

ry

4

RS
O

In
te

lli
ge

nt
 S

of
tw

ar
e

En
gi

ne
er

in
g

To
o

ls
Go

al

_
Re

du
ce

 m
is

si
on

 c
ri

ti
ca

l r
is

ks
 b

y
de

ve
lo

pi
ng

 to
ol

s a
nd

m
et

ho
ds

 to
 id

en
ti

fy
 a

nd
 e

lim
in

at
e

so
ft

w
ar

e
er

ro
rs

_
So

ur
ce

s o
f c

ri
ti

ca
l s

of
tw

ar
e

ri
sk

:
_

M
is

un
de

rs
ta

nd
in

g
re

qu
ir

em
en

ts
 a

nd
 h

ar
dw

ar
e

so
ft

w
ar

e
in

te
rf

ac
e

_
Po

or
 c

om
m

un
ic

at
io

n
be

tw
ee

n
te

am
s

_
In

su
ffi

ci
en

t d
es

ig
n

an
d

te
st

in
g

_
In

ad
eq

ua
te

 o
r

in
ap

pr
op

ri
at

e
m

et
ho

ds
 a

nd
 p

ro
ce

ss
es

 M
is

ha
p

Ca
us

e
Cl

as
si

fic
at

io
n:

 1
/3

 a
er

os
pa

ce
 m

is
ha

ps
 a

re
 s

of
tw

ar
e

re
la

te
d

M
ar

s
Cl

im
at

e
Or

bi
te

r

M
ar

s
Po

la
r

La
nd

er

Ar
ia

ne
 5

5

RS
O

In
te

lli
ge

nt
 S

of
tw

ar
e

En
gi

ne
er

in
g

To
o

ls
 A

pp
ro

ac
h

_
M

at
ur

e
ad

va
nc

ed
 m

od
el

in
g

an
d

an
al

ys
is

 to
ol

s
_

Ad
va

nc
ed

 S
of

tw
ar

e
Ve

ri
fic

at
io

n
an

d
Te

st
in

g
_

In
te

gr
at

ed
 F

or
m

al
/I

nf
or

m
al

 R
eq

ui
re

m
en

ts
En

gi
ne

er
in

g
_

In
te

gr
at

e
an

d
le

ve
ra

ge
 st

at
e

o
f a

rt
 to

ol
 te

ch
no

lo
gy

_
Co

m
m

er
ci

al
 a

nd
 o

pe
n

so
ur

ce
 to

ol
s

_
Di

st
ri

bu
te

d
co

lla
bo

ra
tio

n
fr

am
ew

or
ks

_
W

or
k

w
it

h
m

is
si

on
s t

o
in

fu
se

 to
o

ls
 in

to
 sp

ec
ifi

c
pr

oc
es

se
s:

_
Ad

d
ea

rl
y

lif
ec

yc
le

 r
eq

ui
re

m
en

ts
 a

na
ly

sis
 c

ap
ab

ili
ti

es
_

Im
pr

ov
e

te
st

in
g

ef
fe

ct
iv

en
es

s
_

En
ab

le
 to

ol
-s

up
po

rt
ed

, d
ist

ri
bu

te
d

co
de

 r
ev

ie
w

s

6

RS
O

Co
lla

bo
ra

tiv
e

So
ft

w
ar

e
En

gi
ne

er
in

g
To

ol
s

_
Pr

ob
le

m
: M

is
co

m
m

un
ic

at
io

n
be

tw
ee

n
te

am
s i

s a
co

m
m

on
 so

ur
ce

 o
f c

ri
ti

ca
l e

rr
or

s
_

NA
SA

 s
of

tw
ar

e
is

 o
ft

en
 d

ev
el

op
ed

 b
y

di
st

ri
bu

te
d

m
ul

ti
di

sc
ip

lin
ar

y
te

am
s,

 c
om

po
un

di
ng

 th
is

 p
ro

bl
em

_
Ex

is
ti

ng
 s

of
tw

ar
e

en
gi

ne
er

in
g

to
ol

s
do

 n
ot

 p
ro

vi
de

st
ro

ng
 s

up
po

rt
 fo

r
co

lla
bo

ra
ti

on
_

So
lu

ti
on

:
In

se
rt

 a
dv

an
ce

d
to

ol
s i

nt
o

NA
SA

 m
is

si
on

pr
oc

es
se

s b
y

in
te

gr
at

in
g

w
it

h
co

lla
bo

ra
ti

ve
fr

am
ew

or
ks

:
_

In
te

gr
at

io
n

of
 th

e
Ve

ri
fic

at
io

n
an

d
Te

st
in

g
To

ol
s

in
to

 a
co

lla
bo

ra
ti

ve
 e

nv
ir

on
m

en
t t

o
su

pp
or

t c
ol

la
bo

ra
ti

ve
so

ft
w

ar
e

de
si

gn
 a

nd
 c

od
e

re
vi

ew
s

(A
RC

)

7

RS
O

Di
st

ri
bu

te
d

Co
lla

bo
ra

ti
ve

 S
of

tw
ar

e
Re

vi
ew

s

W
or

kf
lo

w
-d

ri
ve

n
re

vi
ew

 p
ro

ce
ss

Re
m

ot
e

Ex
pe

rt
s

Au
to

m
at

ed
To

ol
s

Lo
ca

l
De

ve
lo

pe
rs

Ev
en

t
Se

rv
er

Re
se

ar
ch

 Is
su

e
In

te
gr

at
in

g
an

al
ys

is
 to

ol
s

in
to

 p
ro

ce
ss

Re
se

ar
ch

 Is
su

e
Di

st
ri

bu
ti

ng
hu

m
an

-
ce

nt
er

ed
re

vi
ew

 p
ro

ce
ss

8
8

9
9

8

RS
O

W
or

ks
ho

p
Go

al

_
Im

pr
ov

e
th

is
 p

re
se

nt
at

io
n!

_
W

ha
t a

re
 N

AS
A’

s
pr

ob
le

m
s?

_
W

ha
t a

re
 s

om
e

po
te

nt
ia

l s
ol

ut
io

ns
?

_
W

ha
t t

ec
hn

ol
og

y
do

 w
e

ha
ve

 th
at

 c
an

 p
la

y
a

ro
le

?
_

W
ha

t r
es

ea
rc

h
ne

ed
s

to
 b

e
do

ne
?

_
Ho

w
 d

o
w

e
do

 th
at

 r
es

ea
rc

h?

Ch
al

le
ng

es
 in

 C
ol

la
bo

ra
ti

ve
Ch

al
le

ng
es

 in
 C

ol
la

bo
ra

ti
ve

Sp
ac

e
M

is
si

on
 D

es
ig

n
Sp

ac
e

M
is

si
on

 D
es

ig
n

Gl
or

ia
 M

ar
k

Un
iv

er
si

ty
 o

f C
al

ifo
rn

ia
, I

rv
in

e

M
y

Re
se

ar
ch

 In
te

re
st

s

•
Di

st
ri

bu
te

d
an

d
co

llo
ca

te
d

gr
ou

p
de

si
gn

 w
or

k

•
Ho

w
 c

an
 th

e
af

fo
rd

an
ce

s
of

 a
 “

w
ar

ro
om

”
in

flu
en

ce
 c

ol
la

bo
ra

ti
ve

 d
es

ig
n?

•
W

ha
t t

ec
hn

ol
og

ie
s c

an
 b

en
ef

it
 c

ol
la

bo
ra

ti
ve

de
si

gn
 fo

r
co

llo
ca

te
d

an
d

di
st

ri
bu

te
d

w
or

k:
 e

.g
.

lif
e-

si
ze

, w
al

l-
si

ze
 H

DT
V

•
W

ha
t e

ffe
ct

s
on

 d
es

ig
n

do
es

 g
ro

up
-t

o-
gr

ou
p

di
st

ri
bu

te
d

co
lla

bo
ra

ti
on

 h
av

e?

Tw
o

tr
en

ds
: d

is
tr

ib
ut

ed
 a

nd
co

llo
ca

te
d

de
si

gn
•

Co
lla

bo
ra

ti
ve

 d
es

ig
n

ac
ro

ss
 d

is
ta

nc
e

–
Ex

am
pl

es
: C

AD
 s

ha
re

d
ap

p:
 T

el
ef

ly
 s

ys
te

m
, “

ro
un

d-
th

e-
cl

oc
k”

 so
ft

w
ar

e
de

ve
lo

pm
en

t
–

Em
pi

ri
ca

l s
tu

di
es

: c
oo

rd
in

at
io

n
pr

ob
le

m
s:

 tr
an

si
ti

on
in

g,
in

te
gr

at
io

n,
 c

om
m

un
ic

at
io

n
(H

er
bs

le
b

et
 a

l.,
 1

99
9;

 G
ri

nt
er

,
19

98
)

•
Co

lla
bo

ra
ti

ve
 d

es
ig

ni
ng

 in
 sa

m
e

ph
ys

ic
al

en
vi

ro
nm

en
t

–
Ex

am
pl

es
: n

ew
 g

en
er

at
io

n
of

 e
le

ct
ro

ni
c

m
ee

ti
ng

 r
oo

m
s

(e
.g

. i
-l

an
d:

 S
tr

ei
tz

, 1
99

9;
 in

te
ra

ct
iv

e
w

or
ks

pa
ce

s:
St

an
fo

rd
; D

is
co

ve
ry

 C
ol

la
bo

ra
to

ry
: A

ri
as

 e
t a

l.)
–

Em
pi

ri
ca

l s
tu

di
es

: r
ad

ic
al

 c
ol

lo
ca

ti
on

 (T
ea

sl
ey

 e
t a

l.,
 2

00
0;

20
02

; M
ar

k,
 2

00
2)

Dy
na

m
ic

 G
ro

up
 W

or
k

St
ru

ct
ur

es

•
Fr

am
ew

or
k

fo
r

co
ns

id
er

in
g

gr
ou

p
w

or
k

of
te

n
as

su
m

es
 “

st
ab

le
”

te
am

 m
em

be
rs

hi
p/

st
ru

ct
ur

es

•
Di

st
ri

bu
te

d
an

d
co

llo
ca

te
d

gr
ou

p
w

or
k

is
 fa

r
m

o
re

co
m

pl
ex

:
–

te
am

 b
ou

nd
ar

ie
s a

re
 fu

zz
y

–
pe

op
le

 b
el

on
g

to
 m

ul
ti

pl
e

te
am

s,
 w

or
ki

ng
 sp

he
re

s
–

m
ul

ti
pl

e
ro

le
s

–
so

ci
al

 r
el

at
io

ns
hi

ps
 a

re
 d

yn
am

ic

•
In

 “
w

ar
ro

om
s”

, e
ve

n
lo

ca
le

 c
an

no
t d

ef
in

e
a

te
am

st
ru

ct
ur

e

So
m

e
Ba

ck
gr

ou
nd

 T
he

or
y

•
So

ci
al

 w
or

ld
s (

St
ra

us
s,

 S
hi

bu
ta

ni
, G

id
de

ns
)

•
Co

-p
re

se
nc

e
(G

id
de

ns
)

•
In

te
ra

ct
io

n
w

he
n

co
llo

ca
te

d:
 m

on
it

or
in

g,
ad

ju
st

in
g

be
ha

vi
or

s,
 c

om
m

on
 u

se
 o

f a
rt

ifa
ct

s,
et

c. –
(e

.g
. H

ea
th

 a
nd

 L
uf

f,
Su

ch
m

an
, H

ar
pe

r
et

 a
l.,

Ro
be

rt
so

n,
 R

ou
nc

ef
ie

ld
 e

t a
l.,

 S
ch

m
id

t a
nd

W
ag

ne
r)

•
So

ci
al

 n
et

w
or

ks

Dy
na

m
ic

 n
et

w
or

ks
 w

it
hi

n
a

gr
ou

p
•

So
m

e
ty

pe
s

of
 s

oc
ia

l n
et

w
or

ks
–

in
te

ns
io

na
l n

et
w

or
ks

 (N
ar

di
 e

t a
l.,

 in
 p

re
ss

)
–

“k
no

ts
”

(E
ng

es
tr

om
 e

t a
l,

19
99

)
–

ac
to

r-
ne

tw
or

k
th

eo
ry

 (L
at

ou
r,

 1
99

6)
–

co
al

it
io

ns
 (Z

ag
er

, 2
00

0)
–

vi
rt

ua
l c

om
m

un
it

y
ne

tw
or

ks
 (W

el
lm

an
, 1

99
8)

•
Al

so
:

–
ne

tw
or

ks
 to

 e
xc

ha
ng

e
an

d
pr

oc
es

s
in

fo
rm

at
io

n
ev

en
w

he
n

pe
op

le
 a

re
 c

ol
lo

ca
te

d,
 a

ls
o

di
st

ri
bu

te
d

•
An

al
ys

is
: w

ho
 in

te
ra

ct
s

w
it

h
w

ho
, i

n
m

ai
n

an
d

si
de

ba
r

ch
an

ne
ls

 o
f c

om
m

un
ic

at
io

n

Ex
am

pl
e

of
 c

ol
lo

ca
te

d
de

si
gn

 w
or

k
w

it
h

dy
na

m
ic

 n
et

w
or

ks
•

In
 1

99
5,

 T
ea

m
 X

 fo
rm

ed
 a

t t
he

 J
PL

 to
 s

er
ve

 a
s

in
te

rn
al

co
ns

ul
ta

nt
s t

o
NA

SA
 in

 d
es

ig
ni

ng
 n

ew
 s

pa
ce

 m
is

si
on

pr
op

os
al

s,
 e

.g
. M

ar
s P

ro
be

•
Te

am
 X

 d
es

ig
ns

 a
 c

om
pl

ex
 sp

ac
e

m
is

si
on

 in
 a

bo
ut

 n
in

e
ho

ur
s

•
Ho

w
 c

an
 p

hy
si

ca
l c

ol
lo

ca
ti

on
 a

nd
 te

ch
no

lo
gy

to
ge

th
er

 e
na

bl
e

a
te

am
 t

o
pr

od
uc

e
a

sp
ac

e
m

is
si

on
pr

op
os

al
 in

 su
ch

 a
 r

em
ar

ka
bl

y
sh

or
t t

im
e?

M
et

ho
do

lo
gy

Fi
rs

t s
tu

dy
:

•
Fi

el
dw

or
k

ob
se

rv
in

g
w

ar
ro

om
 fo

r
th

re
e

m
on

th
s

–
Si

de
ba

r
co

nv
er

sa
ti

on
s c

od
ed

–
Se

ve
nt

ee
n

in
-d

ep
th

 se
m

i-
st

ru
ct

ur
ed

 in
te

rv
ie

w
s

–
Ar

ti
fa

ct
s

co
lle

ct
ed

–
HD

TV
 e

xp
er

im
en

t:
vi

de
ot

ap
in

g,
 q

ue
st

io
nn

ai
re

s,
 g

ro
up

in
te

rv
ie

w

Cu
rr

en
t s

tu
dy

:
•

Fi
el

dw
or

k
ob

se
rv

in
g

re
m

o
te

 si
te

s
–

vi
de

o
&

 a
ud

io
 ta

pe
s

of
 e

ac
h

re
m

ot
e

si
te

, w
av

e
fil

es
 o

f
re

m
ot

e
co

nv
er

sa
ti

on
s

Ex
te

rn
al

 R
ep

re
se

nt
at

io
ns

Us
ed

 in
 th

e
W

ar
ro

om
Re

pr
es

en
ta

ti
on

In
di

vi
du

al
w

or
ks

ta
ti

on
s

Pu
bl

is
h-

su
bs

cr
ib

e

Sp
re

ad
sh

ee
t

Or
bi

t v
is

ua
liz

at
io

n
pr

og
ra

m

Pu
bl

ic
 d

is
pl

ay

Pa
pe

r
w

hi
te

bo
ar

ds

Cr
ea

to
r/

Dr
iv

er

Te
am

 m
em

be
r

En
ti

re
 te

am

En
ti

re
 te

am

Te
am

 le
ad

er

Te
am

 le
ad

er

Te
am

 m
em

be
r

H:
 F

un
ct

io
n

M
on

it
or

 o
th

er
s’

 w
or

k

In
fo

 fl
ow

Fo
cu

si
ng

 a
ge

nt

Vi
su

al
iz

in
g

in
fo

rm
at

io
n

Sh
ar

ed
 v

ie
w

Vi
su

al
iz

in
g

in
fo

rm
at

io
n

So
ci

al
 n

et
w

or
ki

ng
: s

id
eb

ar
s

•
Av

g.
 n

um
be

r
co

de
d

du
ri

ng
 th

re
e-

ho
ur

 se
ss

io
n:

98
 (l

ar
ge

 v
ar

ia
bi

lit
y)

•
Ha

ve
 la

st
ed

 fr
om

 fe
w

 se
co

nd
s t

o
53

 m
in

ut
es

•
Av

g.
 e

ng
in

ee
r

sp
ea

ks
 2

0
m

in
ut

es
 in

 s
id

eb
ar

,
ra

ng
e

is
 7

-1
10

 m
in

ut
es

 in
 a

 th
re

e-
ho

ur
 s

es
si

on
.

•
Si

de
ba

rs
 u

se
d

to
 p

ro
ce

ss
 in

fo
rm

at
io

n
fr

om
sp

re
ad

sh
ee

t:
qu

es
ti

on
 a

ss
um

pt
io

ns
, n

eg
ot

ia
te

,
fin

d
ot

he
r

op
ti

on
s,

 e
tc

.

Ex
am

pl
e:

 In
it

ia
ti

ng
 N

et
w

or
ki

ng
fo

r
Sp

on
ta

ne
ou

s
Si

de
ba

r

•
Po

w
er

 to
 C

on
fig

. G
ra

ph
ic

s:
 C

an
 w

e
ge

t a
ny

 p
ow

er
 d

ur
in

g
th

e
fli

gh
t?

 W
ill

 th
e

ce
lls

 b
e

po
in

te
d

ou
t?

 O
th

er
w

is
e

w
e’

ll
ne

ed
 b

ig
 m

on
st

er
 b

at
te

ri
es

.

•
M

is
si

on
 D

es
ig

n,
 T

ea
m

 L
ea

de
r,

 In
st

ru
m

en
ts

 a
re

 sp
ea

ki
ng

ac
ro

ss
 r

oo
m

 to
 e

ac
h

ot
he

r

•
St

ru
ct

ur
es

 o
ve

rh
ea

rs
 P

ow
er

 a
nd

 C
on

fig
. G

ra
ph

ic
s

an
d

jo
in

s t
he

m

•
AC

S
ov

er
he

ar
s

an
d

jo
in

s
co

nv
er

sa
ti

on
 fr

om
 a

cr
os

s
th

e
ro

om
.

•
…

…
…

.

An
 E

xp
lo

ra
to

ry
 S

tu
dy

 U
si

ng
 L

ife
-

si
ze

 H
DT

V
w

it
h

Te
am

 X
•

La
rg

e
12

8”
 x

 7
2”

 sc
re

en
 sh

ow
in

g
HD

TV
 a

s a
 “

w
in

do
w

”
to

 sh
ow

 a
ct

iv
it

y
be

tw
ee

n
ro

om
s +

 a
ud

io

•
Te

am
 X

 sp
lit

 in
to

 tw
o

ro
om

s

•
Re

al
 sp

ac
e

sh
ut

tl
e

m
is

si
on

 p
ro

po
sa

l

•
Te

le
ph

on
es

, w
it

h
ph

on
e

nu
m

be
rs

, t
o

su
pp

or
t s

id
eb

ar
s

•
Da

y
1:

 a
ud

io
 d

ir
ec

tl
y

se
nt

 in
, v

id
eo

 s
en

t t
hr

ou
gh

 G
ig

ab
it

 E

th
er

ne
t (

.8
 se

co
nd

 la
g)

•
Da

y
2:

 b
ot

h
au

di
o

an
d

vi
de

o
se

nt
 th

ro
ug

h
Gi

ga
bi

t
Et

he
rn

et

(d

eg
ra

de
d

au
di

o)

Th
e

Po
te

nt
ia

l o
f H

ig
h

Te
le

pr
es

en
ce

•
Vi

de
o

us
ed

 a
s m

ea
ns

 fo
r

ob
se

rv
in

g
ac

ti
vi

ty
 in

re
m

ot
e

ro
om

: n
ot

 a
s g

oo
d

fo
r

su
pp

or
ti

ng
“n

et
w

or
ki

ng
”

–
<

20
%

 o
f t

he
 ti

m
e,

 v
id

eo
 u

se
d

fo
r

si
de

ba
rs

–
“D

iff
ic

ul
t t

o
ho

ld
 a

 lo
ca

l s
id

eb
ar

 w
ith

ou
t d

is
tu

rb
in

g
pe

op
le

in
 o

th
er

 r
oo

m
”

–
A

le
ar

ni
ng

 c
ur

ve
 m

ay
 e

xi
st

–
Re

qu
ir

em
en

ts
 fo

r
si

de
ba

rs
 a

cr
os

s d
is

ta
nc

e:
•

Ne
ed

 to
 u

nd
er

st
an

d
w

ho
 to

 sp
ea

k
w

it
h

•
Ne

ed
 se

am
le

ss
 w

ay
 to

 c
on

ne
ct

Ne
tw

or
ks

 a
t w

or
k

in
 c

ol
lo

ca
te

d
en

vi
ro

nm
en

ts

•
Ne

tw
or

ks
 in

 c
ol

lo
ca

te
d

w
or

k
ea

si
ly

 b
re

ak
 d

ow
n

ov
er

 d
is

ta
nc

e
w

it
h

th
e

w
ro

ng
 te

ch
no

lo
gy

 su
pp

or
t

•
De

lic
at

e
ba

la
nc

e
of

 a
ut

o
m

at
io

n
an

d
hu

m
an

pr
oc

es
si

ng

•
To

o
m

uc
h

au
to

m
at

io
n

ea
se

s l
oa

d,
 b

ut
 m

ay
re

m
ov

e
op

po
rt

un
it

y
fo

r
cr

ea
ti

vi
ty

 in
 d

es
ig

n

•
Fl

ex
ib

ili
ty

 is
 k

ey
: t

o
m

ov
e

ba
ck

 a
nd

 fo
rt

h
be

tw
ee

n
el

ec
tr

on
ic

 a
nd

 so
ci

al
 n

et
w

or
k

Cu
rr

en
t W

or
k:

 G
ro

up
-t

o-
Gr

ou
p

Di
st

ri
bu

te
d

Co
lla

bo
ra

ti
ve

 D
es

ig
n

•
W

he
re

as
 d

is
tr

ib
ut

ed
 te

am
s m

ig
ht

 b
e

co
ns

id
er

ed
 a

 “
sp

he
re

 o
f w

or
k”

, w
ha

t h
ap

pe
ns

w
he

n
di

ffe
re

nt
 “

sp
he

re
s o

f w
o

rk
”

co
lla

bo
ra

te
?

•
St

ud
yi

ng
 J

PL
, M

ar
sh

al
l,

Gl
en

n,
 S

an
di

a,
 b

eg
an

Ap
ri

l 2
00

2

•
Fo

ur
 fo

ci
i:

–
Re

qu
ir

em
en

ts
: c

on
ce

pt
io

n
as

 w
el

l a
s

fu
nc

ti
on

–
In

fo
rm

at
io

n
flo

w
–

So
ci

al
 n

et
w

or
ki

ng
–

Te
ch

no
lo

gy
 u

se

Op
po

rt
un

it
ie

s
fo

r
Ne

w
Te

ch
no

lo
gi

es
 to

 S
up

po
rt

Di
st

ri
bu

te
d

W
or

k

•
Ho

w
 c

an
 w

e
le

ve
ra

ge
 p

eo
pl

e’
s a

bi
lit

y
to

 m
on

it
or

ot
he

rs
’ w

or
k?

•
Se

am
le

ss
 su

pp
or

t f
or

 si
de

ba
r

co
nv

er
sa

ti
on

s
(i

nt
en

ti
on

al
 a

nd
 s

po
nt

an
eo

us
) w

it
ho

ut
 o

ve
rl

oa
d

of
 in

fo
rm

at
io

n

•
Ex

te
rn

al
 r

ep
re

se
nt

at
io

ns
 th

at
 c

ap
tu

re
 th

e
de

si
gn

ra
tio

na
le

, n
ot

 ju
st

 th
e

re
su

lt

•
…

…
.s

ti
ll

w
or

ki
ng

…

Th
an

ks
 to

…
.

•
Pa

ul
 D

eF
lo

ri
o,

 B
ob

 O
be

rt
o,

 R
eb

ec
ca

 W
he

el
er

,
JP

L

•
Te

am
 X

•
Cu

rr
en

t s
tu

dy
: S

te
ve

 A
br

am
s,

 D
ou

g
Gr

im
es

,
Na

yl
a

Na
ss

if

C
o

lla
b

o
ra

ti
ve

 S
o

ft
w

ar
e

E
n

g
in

ee
ri

n
g

 W
o

rk
sh

o
p

R
ic

h
ar

d
 M

. K
el

le
r,

 P
h

.D
.

S
ci

en
ce

O
rg

an
iz

er
:

A
 C

ol
la

bo
ra

tiv
e

In
fo

rm
at

io
n

M
an

ag
em

en
t T

oo
l f

or
 S

ci
en

tif
ic

 T
ea

m
s

In
fo

rm
at

io
n

 S
h

ar
in

g
 a

n
d

 In
te

g
ra

ti
o

n
 G

ro
u

p
C

o
lla

b
o

ra
ti

ve
 a

n
d

 A
ss

is
ta

n
t

S
ys

te
m

s
T

ec
h

 A
re

a
C

o
m

p
u

ta
ti

o
n

al
 S

ci
en

ce
s

D
iv

is
io

n
N

A
S

A
 A

m
es

 R
es

ea
rc

h
 C

en
te

r

Ri
ch

 K
el

le
r

Sh
aw

n
W

ol
fe

Da
vi

d
Ha

ll,
 Q

SS
Ro

be
rt

 C
ar

va
lh

o
St

ev
e

Ri
ch

, S
AI

C
De

ep
ak

 K
ul

ka
rn

i
Da

n
Be

rr
io

s,
 R

IA
CS

S
ci

en
ce

D
es

k
P

ro
je

ct
 S

ta
ff

C
om

pu
ta

tio
na

l S
ci

en
ce

s
D

iv
is

io
n

N
A

S
A

 A
m

es
 R

es
ea

rc
h

C
en

te
r

Se
rg

ey
 Y

en
tu

s,
 Q

SS
Ke

it
h

Sw
an

so
n

Ia
n

St
ur

ke
n,

 Q
SS

Li
ng

-J
en

 C
hi

an
g,

 Q
SS

Da
vi

d
Ni

sh
ik

aw
a

Li
nd

a
An

dr
ew

s,
 R

IA
CS

W
W

W

In
fo

rm
at

io
n

ar
ch

iv
in

g
an

d
sh

ar
in

g
Im

ag
es

, M
od

el
s,

 D
oc

um
en

ts
, D

at
a,

 N
ot

es
, p

lu
s

or
ga

ni
za

ti
on

, r
et

ri
ev

al
, i

nd
ex

in
g,

 a
nn

ot
at

io
n,

an
d

th
re

ad
in

g
se

rv
ic

es

Co
lla

bo
ra

ti
on

/C
oo

rd
in

at
io

n/
Co

m
m

un
ic

at
i

on

Se
rv

ic
es

Co
ns

ul
ta

ti
on

 to
ol

s,
 W

or
kf

lo
w

, C
al

en
da

rs
, G

ro
up

 a
nd

 R
es

ou
rc

e
Sc

he
du

lin
g,

 A
w

ar
en

es
s,

 E
m

ai
l d

is
tr

ib
ut

io
n

an
d

ar
ch

iv
in

g,
Vi

de
o/

au
di

o
co

nf
er

en
ci

ng
, C

ha
t

Re
m

ot
e

co
nt

ro
l o

f
Sc

ie
nt

ifi
c

In
st

ru
m

en
ts

M
on

it
or

in
g,

 c
on

tr
ol

, a
nd

 e
xp

er
im

en
ta

ti
on

W
W

W
W

W
W

W
W

W

In
te

rn
etIn

te
rn

et

In
te

rn
et

In
te

rn
et

S
ci

en
ce

D
es

k
P

ro
je

ct
:

S
ci

en
ce

D
es

k
P

ro
je

ct
: I

n
fr

as
tr

u
ct

u
re

 In
fr

as
tr

u
ct

u
re

su
p

p
o

rt
 f

o
r

d
is

tr
ib

u
te

d
 s

ci
en

ti
fi

c
te

am
s

su
p

p
o

rt
 f

o
r

d
is

tr
ib

u
te

d
 s

ci
en

ti
fi

c
te

am
s

R
es

ea
rc

h
 A

re
as

••
S

ci
en

ti
fi

c
K

n
o

w
le

d
g

e
M

an
ag

em
en

t
 S

ci
en

ti
fi

c
K

n
o

w
le

d
g

e
M

an
ag

em
en

t ::
ca

p
tu

re
,

ca
p

tu
re

,

p
re

se
rv

at
io

n
, t

ra
ce

ab
ili

ty
 o

f
sc

ie
n

ti
fi

c
kn

o
w

le
d

g
e

p
re

se
rv

at
io

n
, t

ra
ce

ab
ili

ty
 o

f
sc

ie
n

ti
fi

c
kn

o
w

le
d

g
e

••
In

te
lli

g
en

t
In

fo
rm

at
io

n
 A

cc
es

s
In

te
lli

g
en

t
In

fo
rm

at
io

n
 A

cc
es

s ::
in

te
lli

g
en

t
in

d
ex

in
g

,
in

te
lli

g
en

t
in

d
ex

in
g

,

vi
su

al
iz

at
io

n
, a

n
d

 n
av

ig
at

io
n

vi
su

al
iz

at
io

n
, a

n
d

 n
av

ig
at

io
n

••
C

o
lla

b
o

ra
to

ri
es

C
o

lla
b

o
ra

to
ri

es
::

as
yn

ch
ro

n
o

u
s

an
d

 s
yn

ch
ro

n
o

u
s

as
yn

ch
ro

n
o

u
s

an
d

 s
yn

ch
ro

n
o

u
s

co
lla

b
o

ra
ti

ve
 s

ci
en

ti
fi

c
te

am
w

o
rk

co
lla

b
o

ra
ti

ve
 s

ci
en

ti
fi

c
te

am
w

o
rk

••
A

g
en

t-
as

si
st

ed
 R

em
o

te
 E

xp
er

im
en

ta
ti

o
n

A
g

en
t-

as
si

st
ed

 R
em

o
te

 E
xp

er
im

en
ta

ti
o

n
::

in
te

lli
g

en
t

m
o

n
it

o
ri

n
g

 a
n

d
 c

o
n

tr
o

l
in

te
lli

g
en

t
m

o
n

it
o

ri
n

g
 a

n
d

 c
o

n
tr

o
l

h
tt

p
:/

/s
ci

en
ce

d
es

k.
ar

c.
n

as
a.

g
o

v

Fi
el

d
R

es
ea

rc
h

Si
te

s

H
om

e
In

st
itu

tio
ns

F
ie

ld
 D

at
a

C
ol

le
ct

io
n

&

P
re

lim
in

ar
y

D
at

a
A

na
ly

si
s

U
. C

on
n

A
m

es
 R

es
ea

rc
h

C
en

te
r

Fi
el

d
Sa

m
pl

es
G

eo
lo

gi
ca

l
Sa

m
pl

es

Bi
ol

og
ic

al
Sa

m
pl

es

M
ic

ro
bi

al
 C

u
ltu

re
s

O
th

er
 c

ul
tu

re
co

lle
ct

io
ns

Y
el

lo
w

st
on

e
N

at
io

na
l P

ar
k

M
ic

ro
sc

o
p

y
L

ab

G
re

en
h

o
u

se

B
aj

a
C

al
if

or
ni

a,
M

ex
ic

o

H
ig

hb
or

ne
 C

ay
,

B
ah

am
as

U
. M

ia
m

i

A
ri

zo
na

 S
ta

te

P
or

tl
an

d
St

at
e

M
ic

ro
b

ia
l

C
u

lt
u

re
 F

ac
ili

ty

M
ic

ro
b

io
lo

g
y

L
ab

M
o

ti
va

ti
o

n
:

D
is

tr
ib

u
te

d
 S

ci
en

ti
fi

c
F

ie
ld

 a
n

d
 L

ab
 W

o
rk

U
. o

f
O

re
go

n

•
fi

el
d

 n
o

te
s

•
im

ag
es

•
m

ea
su

re
m

en
ts

•
se

n
so

r
d

at
a

•
la

b
 n

o
te

s
an

d
 e

xp
er

im
en

t
d

at
a

•
el

ec
tr

o
n

 m
ic

ro
sc

o
p

e
im

ag
es

•
an

al
ys

is
 r

es
u

lt
s

•
p

u
b

lic
at

io
n

s

Sc
ie

nc
eO

rg
an

iz
er

 In
fo

rm
at

io
n

Re
po

si
to

ry
Fi

el
d

R
es

ea
rc

h
Si

te
s

H
om

e
In

st
itu

tio
ns

U
. C

on
n

A
m

es
 R

es
ea

rc
h

C
en

te
r

Y
el

lo
w

st
on

e
N

at
io

na
l P

ar
k

M
ic

ro
sc

o
p

y
L

ab

G
re

en
h

o
u

se

B
aj

a
C

al
if

or
ni

a,
M

ex
ic

o

H
ig

hb
or

ne
 C

ay
,

B
ah

am
as

U
. M

ia
m

i

A
ri

zo
na

 S
ta

te

P
or

tl
an

d
St

at
e

M
ic

ro
b

ia
l

C
u

lt
u

re
 F

ac
ili

ty

M
ic

ro
b

io
lo

g
y

 L
ab

U
. o

f
O

re
go

n

Ce

nt
ra

l

Re

po
si

to
ry

•
Im

ag
es

•
M

ea
su

re
m

en
ts

•
Cu

lt
ur

es
•

Da
ta

se
ts

•
Do

cu
m

en
ts

•
Re

co
rd

s

W
h

at
 is

 S
ci

en
ce

O
rg

an
iz

er
?

•
A

n
 in

fo
rm

at
io

n
 r

ep
o

si
to

ry
 /

d
ig

it
al

 li
b

ra
ry

 f
o

r
d

is
tr

ib
u

te
d

sc
ie

n
ti

fi
c

p
ro

je
ct

 t
ea

m
s:

 s
to

re
s

he
te

ro
ge

ne
ou

s
pr

oj
ec

t
in

fo
rm

at
io

n
pr

od
uc

ts
 -

-
im

ag
es

, d
at

as
et

s,
 d

oc
um

en
ts

, a
nd

va
rio

us
 ty

pe
s

of
 s

ci
en

tif
ic

 r
ec

or
ds

 (d
es

cr
ib

in
g

sa
m

pl
es

, f
ie

ld
 s

ite
s,

m
ea

su
re

m
en

ts
, i

ns
tr

um
en

ts
, m

ic
ro

bi
al

 c
ul

tu
re

s,
 e

tc
.)

•
A

 h
yb

ri
d

 t
o

o
l c

o
m

b
in

in
g

 t
h

e
fu

n
ct

io
na

lit
y

o
f:

•
a

da
ta

ba
se

•
a

do
cu

m
en

t-
sh

ar
in

g
sy

st
em

•
a

hy
pe

rm
ed

ia
 in

fo
rm

at
io

n
sp

ac
e

•
a

se
m

an
tic

 n
et

w
or

k

•
F

ea
tu

re
s

cr
o

ss
-l

in
ka

g
e:

 e
na

bl
es

 r
ap

id
 a

cc
es

s
to

in
te

rr
el

at
ed

 in
fo

rm
at

io
n

•
A

 “
p

ro
je

ct
 m

em
o

ry
”

sy
st

em
:

tr
ac

ks
 h

is
to

ry
 o

f p
ro

je
ct

te
am

’s
 fi

el
dw

or
k,

 la
bw

or
k,

 a
nd

 a
ss

oc
ia

te
d

da
ta

 c
ol

le
ct

io
n

ac
tiv

iti
es

 T
h

e
S

ci
en

ce
O

rg
an

iz
er

“P
ro

je
ct

 In
fo

rm
at

io
n

 W
eb

”

S
ci

en
ce

O
rg

an
iz

er
 m

ai
n

ta
in

s
p

ro
je

ct
 in

fo
rm

at
io

n
 in

an
 in

te
rc

o
n

n
ec

te
d

 n
et

w
o

rk
 o

r
“i

n
fo

rm
at

io
n

 w
eb

”

p
ro

je
ct

im
ag

e

m
ea

su
re

m
en

t
si

te

in
st

ru
m

en
t

sa
m

p
le

d
o

cu
m

en
t

•
N

od
es

: i
nf

or
m

at
io

n
re

so
ur

ce
s

•
Li

nk
s:

re
la

tio
ns

hi
ps

 a
m

on
g

re
so

ur
ce

s

S
em

an
tic

 h
yp

er
m

ed
ia

 s
ys

te
m

In
fo

rm
at

io
n

 R
es

o
u

rc
es

 (
“n

o
d

es
”)

•
De

sc
ri

be
 v

ar
io

us
 ty

pe
s o

f p
ro

je
ct

-s
pe

ci
fic

 in
fo

rm
at

io
n:

Pe
op

le
, P

la
ce

s,
 E

ve
nt

s,
 D

ev
ic

es
, M

ea
su

re
m

en
ts

 (e
.g

.,
fie

ld
 s

it
es

, l
ab

s,
 tr

ip
s,

 s
am

pl
es

, i
m

ag
es

, d
oc

um
en

ts
, i

ns
tr

um
en

ts
 e

tc
.)

•
Co

nt
ai

n
m

et
ad

at
a

(c
at

eg
or

ic
al

, t
ex

t,
or

 n
um

er
ic

)
•

Ca
n

ha
ve

 “
at

ta
ch

ed
”

fil
es

 (e
.g

.,
im

ag
es

, d
oc

um
en

ts
, d

at
as

et
s)

M
ic

ro
bi

al
-M

at
-S

am
pl

e
-6

54
C

ol
le

ct
ed

-b
y:

 S
. J

on
es

C
ol

le
ct

io
n

da
te

:
1/

24
/0

0
C

ol
le

ct
io

n
si

te
:

 P
on

d
6:

fi
el

d4
:

…
M

ic
ro

bi
al

-C
ul

tu
re

-1
23

C
ul

ti
va

te
d-

by
:

 R
. S

m
it

h

G
en

us
:

m
ic

ro
co

le
us

 c
h.

G
ro

w
th

 m
ed

iu
m

:
 A

SN

D
at

e
is

ol
at

ed
:

03
-0

4-
00

fi
el

d5
:

...

SE
M

-I
m

ag
e

-6
54

T
ak

en
-b

y:
 R

.S
m

it
h

Im
ag

e
da

te
:

1/
24

/0
0

E
qu

ip
m

en
t:

Im
ag

e
F

ile
:

E
xa

m
p

le
s

o
f

In
fo

rm
at

io
n

 R
es

o
u

rc
es

:

In
fo

rm
at

io
n

R
es

ou
rc

es

pr
oj

ec
t

m
ea

su
re

m
en

t
no

te
im

ag
edo

cu
m

en
tcu

lt
ur

e

pe
rs

on

si
te

sa
m

pl
e

ex
pe

ri
m

en
t

eq
ui

pm
en

t

ca
m

er
a

ga
s

ch
ro

m
at

og
ra

ph

st
ub

O
2

m
ic

ro
se

ns
or

N
2

m
ic

ro
se

ns
or

ph
ot

og
ra

ph
ic

 im
ag

e

SE
M

 im
ag

e

SE
M

O
2

co
nc

en
tr

at
io

n

N
2

co
nc

en
tr

at
io

n

T
yp

es
 o

f
S

ci
en

ce
O

rg
an

iz
er

“I
n

fo
rm

at
io

n
 R

es
o

u
rc

es
”

(p
ar

ti
al

)

sp
ec

tr
om

et
er

sp
ec

tr
og

ra
ph

ch
ro

m
at

og
ra

m

ot
he

r

ot
he

r

ot
he

r

m
ic

ro
gr

ap
h

R
el

at
io

n
sh

ip
s

am
o

n
g

 R
es

o
u

rc
es

(“
lin

ks
”)

•
In

fo
rm

at
io

n
Re

so
ur

ce
s

ar
e

in
te

rr
el

at
ed

 b
y

m
ea

ns
 o

f n
am

ed
 li

nk
s

th
at

 c
ha

ra
ct

er
iz

e
th

e
na

tu
re

 o
f t

he
 r

el
at

io
ns

hi
p

•
Re

la
ti

on
sh

ip
s

ar
e

cu
st

om
iz

ed
 to

 a
 p

ro
je

ct
 te

am
 b

as
ed

 o
n

an
 a

na
ly

si
s

of
 th

e
in

fo
rm

at
io

n
re

so
ur

ce
s

in
 th

e
sc

ie
nt

ifi
c

do
m

ai
n

M
ic

ro
bi

al
-M

at
-S

am
pl

e
-6

54

C
ol

le
ct

ed
-b

y:
 S

. J
on

es
C

ol
le

ct
io

n
da

te
:

1/
24

/0
0

C
ol

le
ct

io
n

si
te

:
 P

on
d

6:
fi

el
d4

:
…

M
ic

ro
bi

al
-C

ul
tu

re
-1

23
C

ul
ti

va
te

d-
by

:
 R

. S
m

it
h

G
en

us
:

m
ic

ro
co

le
us

 c
h.

G
ro

w
th

 m
ed

iu
m

:
 A

SN

D
at

e
is

ol
at

ed
:

03
-0

4-
00

fi
el

d5
:

...

SE
M

-I
m

ag
e

–1
23

x

T
ak

en
-b

y:
 R

.S
m

it
h

Im
ag

e
da

te
:

1/
24

/0
0

E
qu

ip
m

en
t:

Im
ag

e
F

ile
:

cu
lti

va
te

d-
fr

om

p
ic

tu
re

d
-i

n

im
ag

e
sa

m
pl

e

cu
lt

ur
e

ph
ot

og
ra

ph
ic

 im
ag

e

SE
M

 im
ag

e

S
an

ct
io

n
ed

 L
in

ks
 b

et
w

ee
n

 “
cu

lt
u

re
”

an
d

 o
th

er
 t

yp
es

 o
f

re
so

u
rc

es

st
ub

eq
ui

pm
en

t

m
o

u
n

te
d

-o
n

p
ic

tu
re

d
-i

ncu
lt

iv
at

ed
-f

ro
m

pe
rs

on

im
ag

e
(o

th
er

)

do
cu

m
en

t

h
as

-m
ed

iu
m

-r
ec

ip
e

U
R

L

h
as

-g
en

et
ic

-s
eq

u
en

ce
-U

R
L

is
o

la
te

d
-b

y
pe

rs
on

cu
lt

iv
at

ed
-b

y

Ev
ol

vi
ng

 W
eb

 o
f P

ro
je

ct
In

fo
rm

at
io

n

m
em
be
r-
of

si
te
-f
or

fo
un
d-
at

co
lle
ct
ed
-b
y ha
s-
m
ea
su
re
m
en
t

pr
od
uc
ed
-b
y

cu
lt
iv
at
ed
-

fr
om

pi
ct
ur
ed
-i
n pr

od
uc
ed
-b
y

ha
s-
re
ci
pe

p
ro

je
ct

:

si
te

:

d
o

cu
m

en
t:

sa
m

p
le

:

m
ea

su
re

m
en

t:
S

E
M

 im
ag

e:

eq
u

ip
m

en
t:

eq
u

ip
m

en
t:

p
er

so
n

:

:
cu

lt
u

re

EM
ER

G

Br
ad

 B
.

Po
nd

 3
 n

ea
r

4

AS
N

m
ed

iu
m

 r
ec

ip
e

O2
 m

ic
ro

se
ns

or
SE

M

M
C-

12
3

SE
M

 im
ag

e
12

3x
O2

 c
on

ce
nt

ra
ti

on
 3

2B

P
ro

je
ct

 In
fo

rm
at

io
n

in
 c

on
te

xt

M
at

65
4

Pr
oj

ec
t

In
fo

rm
at

io
n

Re
co

rd

Li
nk

s t
o

Re
la

te
d

Re
co

rd
s

•
im

ag
es

•
da

ta
se

ts
•

cu
ltu

re
s

•
sa

m
pl

es
•

fie
ld

 si
te

s
•

m
ea

su
re

m
en

ts
•

in
st

ru
m

en
ts

•
la

b
no

te
s

•
pu

bl
ic

at
io

ns
•

sp
re

ad
sh

ee
ts

•
co

nv
en

ie
nt

na
vi

ga
ti

on
•

pr
ed

ef
in

ed
lin

ks
•

in
fo

rm
at

io
n

tr
ac

eb
ac

k

 c
re

at
e

ne
w

lin
ks

 c
re

at
e

ne
w

re
co

rd
s

m
od

ify
 r

ec
or

ds

da
ta

fie
ld

s

ic
on

 id
en

tif
ie

s
re

co
rd

 ty
pe

 c
lic

k
to

 n
av

ig
at

e

W
eb

-b
as

ed
,

pl
at

fo
rm

in
de

pe
nd

en
t a

cc
es

s

se
ar

ch
 fo

r
re

co
rd

s

Sc
ie

nc
eO

rg
an

iz
er

 B
ro

w
se

r

In
te

rf
ac

in
g

 S
o

ft
w

ar
e

S
ci

en
ce

O
rg

an
iz

er

S
h

ar
ed

Im
ag

e
A

n
n

o
ta

to
r

M
ic

ro
se

n
so

r
R

em
o

te
 C

o
n

tr
o

lle
r

se
n

so
r

im
ag

e

an
n

o
ta

te
d

im
ag

e

M
ic

ro
so

ft
 O

ff
ic

e
in

te
rf

ac
e

re
al

-t
im

e
m

ea
su

re
m

en
ts

,
im

ag
es

A
g

en
t-

as
si

st
ed

S
ci

en
ti

fi
c

E
xp

er
im

en
ta

ti
o

n
 S

ys
te

m

d
o

cu
m

en
ts

M
ar

s
E

xp
lo

ra
ti

o
n

S
im

u
la

to
r

S
p

ar
ro

w
 W

eb
In

te
rf

ac
e

im
ag

es
,

m
ea

su
re

m
en

ts

S
ci

en
ce

O
rg

an
iz

er

S
h

ar
ed

 Im
ag

e
A

n
n

o
ta

to
r

C
o

lla
b

o
ra

ti
ve

 W
h

it
eb

o
ar

d
in

g
 &

 A
n

n
o

ta
ti

o
n

 T
o

o
l

M
ic

ro
se

n
so

r
M

ic
ro

se
n

so
r

R
em

o
te

 C
o

n
tr

o
lle

r
 R

em
o

te
 C

o
n

tr
o

lle
r

O
2

M
ic

ro
se

n
so

r
&

p
o

si
ti

o
n

in
g

 t
ab

le

S
ci

en
ce

O
rg

an
iz

er

1

2

3

S
av

e
to

 O
rg

an
iz

er

Lo
w

 n
ut

rie
nt

 M
at

 f
ro

m
 P

on
d

1A

Sc
ie

nc
eO

rg
an

iz
er

ag
en

t

Ex
pe

ri
m

en
t D

at
a

Re
po

si
to

ry

Ex
pe

ri
m

en
ta

ti
on

ag

en
t

Sc
ie

nc
e

te
am

Re
m

ot
e

co
nt

ro
l

po
si

ti
on

in
g

ta
bl

e
w

/
in

st
ru

m
en

t p
ac

ka
ge

A
g

en
t-

as
si

st
ed

 S
ci

en
ti

fi
c

E
xp

er
im

en
ta

ti
o

n
 S

ys
te

m

•
ov

er
al

l
 e

xp
er

im
en

t
 c

oo
rd

in
at

io
n

Sc
ie

nt
is

t’
s

ag
en

t

Gr
ee

nh
ou

se
ag

en
t

•
sc

he
du

lin
g

•
er

ro
r

 m
on

it
or

in
g

•
ex

pe
ri

m
en

t r
eq

ue
st

s
•

us
er

 n
ot

ifi
ca

ti
on

•
us

er
 p

re
fe

re
nc

es

•
da

ta
 s

to
ra

ge
•

lo
gg

in
g

Sc
ie

nc
e

Or
ga

ni
ze

r

Ex
pe

ri
m

en
t

Se
tu

p/
M

on
it

or
in

g
In

te
rf

ac
e

Pi
lo

t U
se

rs
:

•
AR

C
M

ic
ro

bi
al

 E
co

sy
st

em
s G

ro
up

•
NA

I E
co

ge
no

m
ic

s F
oc

us
 G

ro
up

•
EC

S
M

is
ha

p
In

ve
st

ig
at

io
n

•
AR

C
El

ec
tr

on
 M

ic
ro

sc
op

y
La

b
•

JS
C

As
tr

ob
io

lo
gy

 In
st

it
ut

e
fo

r
th

e
St

ud
y

of
Bi

om
ar

ke
rs

•
NI

H/
NA

SA
 M

al
ar

ia
 C

on
tr

ol
 S

tu
dy

 (v
ia

Fu
nd

am
en

ta
l B

io
lo

gy
 P

ro
gr

am
)

•
M

ar
s s

im
ul

at
io

n
an

d
an

al
og

 s
tu

di
es

 (v
ia

M
ob

ile
 A

ge
nt

s P
ro

je
ct

)
•

AS
U/

NS
F

De
se

rt
 M

ic
ro

bi
al

 S
ur

ve
y

S
ci

en
ce

O
rg

an
iz

er
 C

u
st

o
m

er
s

m
o

re
m

at
u

re

le
ss

m
at

u
re

25
10

12
5

U
se

rs
•F

re
qu

en
t

•M
od

er
at

e
•I

nf
re

qu
en

t

95

Pa
la

nt
ír

: I
nc

re
as

in
g

A
w

ar
en

es
s

am
on

g
D

is
tr

ib
ut

ed
 C

M
W

or
ks

pa
ce

s

Pa
la

nt
ír

: I
nc

re
as

in
g

A
w

ar
en

es
s

am
on

g
D

is
tr

ib
ut

ed
 C

M
W

or
ks

pa
ce

s

An
dr

é
va

n
de

r
Ho

ek
, A

ni
ta

 S
ar

m
a

In
st

it
ut

e
fo

r
So

ft
w

ar
e

Re
se

ar
ch

Un
iv

er
si

ty
 o

f C
al

ifo
rn

ia
, I

rv
in

e
{a

nd
re

,a
sa

rm
a}

@
ic

s.
uc

i.e
du

A
 T

yp
ic

al
 D

ev
el

op
m

en
t S

ce
na

ri
o

A
 T

yp
ic

al
 D

ev
el

op
m

en
t S

ce
na

ri
o

CM
re

po
si

to
ry

Pe
te

’s
 w

or
ks

pa
ceC

B
A

El
le

n’
s w

or
ks

pa
ce

E
C

D

D
ir

ec
t C

on
fli

ct
s

D
ir

ec
t C

on
fli

ct
s

CM
re

po
si

to
ry

Pe
te

’s
 w

or
ks

pa
ceC

B
A

El
le

n’
s w

or
ks

pa
ce

E
C

D

Ov
er

la
pp

in
g

ch
an

ge
s t

o
th

e
sa

m
e

ar
ti

fa
ct

In
di

re
ct

 C
on

fli
ct

s
In

di
re

ct
 C

on
fli

ct
s CM

re
po

si
to

ry

Pe
te

’s
 w

or
ks

pa
ceC

B
A

El
le

n’
s w

or
ks

pa
ce

E
C

D

Ch
an

ge
s

to
 o

ne
 a

rt
ifa

ct
 m

od
ify

in
g

th
e

be
ha

vi
or

 o
f a

no
th

er
 a

rt
ifa

ct

T
ra

di
ti

on
al

 C
M

 A
pp

ro
ac

he
s

T
ra

di
ti

on
al

 C
M

 A
pp

ro
ac

he
s

�
Pe

ss
im

is
ti

c
–

An
 a

rt
ifa

ct
 c

an
 b

e
ch

an
ge

d
by

 o
nl

y
on

e
pe

rs
on

 a
t a

ny
 o

ne
 ti

m
e

–
Li

m
it

ed
 in

 n
ot

 a
llo

w
in

g
an

y
pa

ra
lle

l
w

or
k

�
Op

ti
m

is
ti

c
–

An
 a

rt
ifa

ct
 c

an
 b

e
ch

an
ge

d
by

 m
an

y
pe

rs
on

s
at

 th
e

sa
m

e
ti

m
e

–
Li

m
it

ed
 in

 le
ad

in
g

to
 m

er
ge

 p
ro

bl
em

s
th

at
 n

ee
d

to
 b

e
re

so
lv

ed
 m

an
ua

lly

T
ra

di
ti

on
al

 C
M

 A
pp

ro
ac

he
s

T
ra

di
ti

on
al

 C
M

 A
pp

ro
ac

he
s

�
Pe

ss
im

is
ti

c
–

An
 a

rt
ifa

ct
 c

an
 b

e
ch

an
ge

d
by

 o
nl

y
on

e
pe

rs
on

 a
t a

ny
 o

ne
 ti

m
e

–
Li

m
it

ed
 in

 n
ot

 a
llo

w
in

g
an

y
pa

ra
lle

l w
or

k

�
Op

ti
m

is
ti

c
–

An
 a

rt
ifa

ct
 c

an
 b

e
ch

an
ge

d
by

 m
an

y
pe

rs
on

s
at

 th
e

sa
m

e
ti

m
e

–
Li

m
it

ed
 in

 le
ad

in
g

to
 m

er
ge

 p
ro

bl
em

s t
ha

t
ne

ed
 to

 b
e

re
so

lv
ed

 m
an

ua
lly

Ne
it

he
r

so
lu

ti
on

 a
dd

re
ss

es
 d

ir
ec

t a
nd

 in
di

re
ct

 c
on

fli
ct

s v
er

y
w

el
l,

es
pe

ci
al

ly
 in

 a
 d

is
tr

ib
ut

ed
 a

nd
 d

ec
en

tr
al

iz
ed

 se
tt

in
g

K
ey

 O
bs

er
va

ti
on

K
ey

 O
bs

er
va

ti
on

�
A

CM
 w

or
ks

pa
ce

 in
 r

ea
lit

y
pr

ov
id

es
tw

o
ki

nd
s

of
 is

ol
at

io
n:

–
Go

od
 is

ol
at

io
n

�
Hi

de
s a

ct
ua

l c
ha

ng
es

 to
 a

rt
ifa

ct
s

–
Ba

d
is

ol
at

io
n

�
Hi

de
s k

no
w

le
dg

e
of

 w
ha

t a
rt

ifa
ct

s o
th

er
de

ve
lo

pe
rs

 a
re

 c
ha

ng
in

g

A
pp

ro
ac

h
A

pp
ro

ac
h

�
Co

nt
in

uo
us

 w
or

ks
pa

ce
 a

w
ar

en
es

s
–

W
hi

ch
 a

rt
ifa

ct
s

ar
e

be
in

g
ch

an
ge

d
by

w
ho

m
?

–
W

ha
t i

s t
he

 s
ev

er
ity

 o
f t

he
 c

ha
ng

es
?

(a
m

ou
nt

/s
iz

e
of

 c
ha

ng
e

be
in

g
m

ad
e)

–
W

ha
t i

s t
he

 im
pa

ct
 o

f t
he

 c
ha

ng
es

?
(e

ffe
ct

 o
f c

ha
ng

es
 o

n
on

e’
s

cu
rr

en
t

w
or

k)
�

Su
ch

 a
w

ar
en

es
s h

as
 t

he
 p

ot
en

ti
al

 to
si

gn
ifi

ca
nt

ly
 r

ed
uc

e
th

e
nu

m
be

r
of

di
re

ct
 a

nd
 in

di
re

ct
 c

on
fli

ct
s

Pa
la

nt
ír

 A
rc

hi
te

ct
ur

e
Pa

la
nt

ír
 A

rc
hi

te
ct

ur
e

CM
re

po
si

to
ry

Pe
te

’s
 w

or
ks

pa
ce

C
B

A
El

le
n’

s w
or

ks
pa

ce
E

C
D

CM
 c

lie
nt

CM
 s

er
ve

r
CM

 c
lie

nt
Ev

en
t w

ra
pp

er
Ev

en
t w

ra
pp

er
Ev

en
t w

ra
pp

er

Pe
te

’s
 V

ie
w

of
 th

e
W

or
ld

Se
ve

ri
ty

/i
m

pa
ct

an
al

ys
is

El
le

n’
s V

ie
w

of
 th

e
W

or
ld

Pe
te

’s
Vi

su
al

iz
at

io
n

El
le

n’
s

Vi
su

al
iz

at
io

n

Po
pu

la
ti

ng
 a

 W
or

ks
pa

ce
Po

pu
la

ti
ng

 a
 W

or
ks

pa
ce

M
ak

in
g

C
ha

ng
es

 in
 th

e
W

or
ks

pa
ce

M
ak

in
g

C
ha

ng
es

 in
 th

e
W

or
ks

pa
ce

C
om

m
it

ti
ng

 C
ha

ng
es

C
om

m
it

ti
ng

 C
ha

ng
es

M
or

e
C

ha
ng

es
 (b

y
O

th
er

D
ev

el
op

er
s)

M
or

e
C

ha
ng

es
 (b

y
O

th
er

D
ev

el
op

er
s)

E
tc

.,
E

tc
.,

E
tc

…
E

tc
.,

E
tc

.,
E

tc
…

V
is

ua
liz

at
io

n
Fe

at
ur

es
V

is
ua

liz
at

io
n

Fe
at

ur
es

�
Di

ffe
re

nt
 v

ie
w

s
w

it
h

di
ffe

re
nt

 tr
ad

e-
of

fs
–

Am
ou

nt
 o

f i
nf

or
m

at
io

n
ve

rs
us

 le
ve

l o
f i

nt
ru

si
ve

ne
ss

–
Sc

ro
ll-

ba
r,

 ta
bu

la
r,

 fu
lly

 g
ra

ph
ic

al
�

Co
nf

ig
ur

ab
le

–
Se

le
ct

io
n

of
 r

el
ev

an
t d

ev
el

op
er

s,
 e

ve
nt

s,
 ti

m
ef

ra
m

es
�

Sc
al

ab
le

–
In

te
rn

al
 d

at
a

st
ru

ct
ur

e
ve

rs
us

 a
ct

ua
l v

is
ua

liz
at

io
n

–
Pa

ir
-w

is
e

w
or

ks
pa

ce
s

–
So

rt
in

g
pe

r
se

ve
ri

ty
 o

r
ch

an
ge

 im
pa

ct
�

Ex
te

ns
iv

e
m

et
ad

at
a

Se
ve

ri
ty

 A
na

ly
si

s
Se

ve
ri

ty
 A

na
ly

si
s

�
Am

ou
nt

 (s
iz

e)
 o

f c
ha

ng
e

be
in

g
m

ad
e

�
Pr

op
os

ed
 a

lg
or

it
hm

s
–

Nu
m

be
r

of
 fi

le
s

�
Si

m
pl

e,
 b

ut
 in

ac
cu

ra
te

–
Li

ne
s

of
 c

od
e

�
Si

m
pl

e,
 b

ut
 in

ac
cu

ra
te

–
To

ke
n

ba
se

d
di

ffe
re

nc
e

�
M

ea
su

re
s s

tr
uc

tu
ra

l c
ha

ng
es

, b
ut

 la
ng

ua
ge

de
pe

nd
en

t
–

Ab
st

ra
ct

 sy
nt

ax
 tr

ee
�

Ve
ry

 d
et

ai
le

d
an

al
ys

es
, b

ut
 li

ke
ly

 to
o

ex
pe

ns
iv

e
(a

nd
 la

ng
ua

ge
 d

ep
en

de
nt

)
�

Cu
rr

en
t w

or
k

in
 p

ro
gr

es
s

Im
pa

ct
 A

na
ly

si
s

Im
pa

ct
 A

na
ly

si
s

�
Ef

fe
ct

 o
f c

ha
ng

es
 o

n
on

e’
s

cu
rr

en
t w

or
k

�
Pr

op
os

ed
 a

lg
or

it
hm

s
–

Ov
er

la
pp

in
g

nu
m

be
r

of
 fi

le
s

�
Si

m
pl

e,
 b

ut
 in

ac
cu

ra
te

–
Ov

er
la

pp
in

g
lin

es
 o

f c
od

e
�

Si
m

pl
e,

 b
ut

 in
ac

cu
ra

te
–

Ch
an

ge
d

in
te

rf
ac

es
�

Po
te

nt
ia

lly
 a

cc
ur

at
e

an
d

ef
fe

ct
iv

e,
 b

ut
 la

ng
ua

ge
de

pe
nd

en
t

–
De

pe
nd

en
cy

 a
na

ly
si

s
�

Ve
ry

 p
re

ci
se

, s
em

an
ti

c
re

su
lt

s,
 b

ut
 c

om
pl

ex
 (a

nd
la

ng
ua

ge
 d

ep
en

de
nt

)
�

Cu
rr

en
t w

or
k

in
 p

ro
gr

es
s

C
on

cl
us

io
ns

C
on

cl
us

io
ns

�
Pa

la
nt

ír
 is

 a
 p

ro
to

ty
pe

 th
at

…
–

…
br

in
gs

 a
w

ar
en

es
s

to
 d

is
tr

ib
ut

ed
 C

M
 w

or
ks

pa
ce

s
–

…
sh

ow
s

pa
ir

-w
is

e
co

nf
lic

t
–

…
pr

ov
id

es
 s

ev
er

it
y

an
d

im
pa

ct
 a

na
ly

se
s

�
Pa

la
nt

ír
 is

 in
de

pe
nd

en
t o

f t
he

 ty
pe

 o
f C

M
sy

st
em

 u
se

d
�

Us
e

of
 P

al
an

tí
r

re
su

lt
s i

n
fe

w
er

 d
ir

ec
t a

nd
in

di
re

ct
 c

on
fli

ct
s

–
Ca

se
 st

ud
y

to
 b

e
pl

an
ne

d
in

 n
ea

r
fu

tu
re

�
Fu

tu
re

 w
or

k
–

In
te

gr
at

e
w

it
h

di
ffe

re
nt

 C
M

 s
ys

te
m

s
–

Im
pl

em
en

t s
ev

er
it

y
an

d
im

pa
ct

 a
na

ly
si

s
al

go
ri

th
m

s
fo

r
bo

th
 a

to
m

ic
 a

nd
 c

om
po

un
d

ar
ti

fa
ct

s
–

De
ve

lo
p

ad
di

ti
on

al
 v

is
ua

liz
at

io
ns

R
es

ea
rc

h
Pr

oj
ec

ts
R

es
ea

rc
h

Pr
oj

ec
ts

Im
pl

em
en

ta
ti

on
Im

pl
em

en
ta

ti
on

De
pl

oy
m

en
t

De
pl

oy
m

en
t

Sy
st

em
 T

es
ti

ng
Sy

st
em

 T
es

ti
ng

Ru
n-

Ti
m

e
Ru

n-
Ti

m
e

De
si

gn
De

si
gn

Co
m

po
ne

nt
s

Co
m

po
ne

nt
s

So
ur

ce
 F

ile
s

So
ur

ce
 F

ile
s

Fe
at

ur
es

Fe
at

ur
es

Sy
st

em
s

Sy
st

em
s

Ex
ec

ut
ab

le
s

Ex
ec

ut
ab

le
s

Ve
rs

io
ne

d
Co

m
po

ne
nt

s
(A

rc
hi

te
ct

ur
e)

SR
M

xA
DL

 2
.0

Ar
ch

Vi
ew

Ar
ch

Di
ff

NU
CM

W
re

n
TW

IC
S

Ém
ig

ré
M

én
ag

e

Pa
la

nt
ír

IV
A:

 V
is

ua
liz

in
g

So
ftw

ar
e

In
st

ab
ilit

y

Je
nn

ife
r B

ev
an

U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
, S

an
ta

 C
ru

z

Jb
ev

an
@

so
e.

uc
sc

.e
du

Pr
ob

le
m

: S
of

tw
ar

e
D

ec
ay

•
So

ftw
ar

e
de

ca
ys

 a
s

a
re

su
lt

of
 in

co
m

pa
tib

ilit
es

be
tw

ee
n

th
e

op
er

at
in

g
en

vi
ro

nm
en

t a
nd

 th
e

im
pl

em
en

te
d

ar
tif

ac
t.

–
Fa

ilu
re

 to
 m

ee
t r

eq
ui

re
m

en
ts

, s
pe

ci
fy

 a
cc

ur
at

e
re

qu
ire

m
en

ts
, o

r a
nt

ic
ip

at
e

ch
an

ge
s

in
 re

qu
ire

m
en

ts
.

•
Th

e
ex

is
tin

g
so

ftw
ar

e
ar

ch
ite

ct
ur

e
ca

n
hi

nd
er

 th
e

ef
fe

ct
iv

en
es

s
of

 th
e

m
ai

nt
en

an
ce

 p
ro

ce
ss

.
–

“g
ol

de
n

ha
nd

cu
ffs

”,
in

tra
ns

ig
en

t c
od

e.

H
yp

ot
he

si
s

an
d

Pr
op

os
al

•
H

yp
ot

he
si

s:
 a

n
an

al
ys

is
 o

f h
ist

or
ic

al
 m

od
ifi

ca
tio

n
da

ta
 c

an
 id

en
tif

y
an

d
cl

as
si

fy
 p

ro
bl

em
at

ic
, h

ig
h-

m
ai

nt
en

an
ce

 s
of

tw
ar

e
re

gi
on

s.
–

Th
es

e
re

gi
on

s
ca

n
be

 d
es

cr
ib

ed
 a

s
“in

st
ab

ilit
ie

s”
.

–
Su

ch
 k

no
w

le
dg

e
ca

n
di

re
ct

 s
of

tw
ar

e
re

de
si

gn
 e

ffo
rts

.

•
Pr

op
os

al
:

IV
A,

 a
 to

ol
 to

 v
is

ua
liz

e
an

d
an

al
yz

e
so

ftw
ar

e
in

st
ab

ilit
ie

s.
–

Th
e

vi
su

al
iz

at
io

n
ca

n
di

re
ct

 fo
cu

se
d

an
al

ys
is

.

R
el

at
ed

 R
es

ea
rc

h

•
St

at
ic

 s
of

tw
ar

e
an

al
ys

is
…

–
U

se
s

de
pe

nd
en

ce
 g

ra
ph

s
of

 a
 s

in
gl

e
re

vi
si

on
 to

ge
ne

ra
te

 c
od

e
m

et
ric

s
(c

oh
es

io
n,

 c
ou

pl
in

g,
co

m
pl

ex
ity

) o
r c

on
du

ct
 c

ha
ng

e
im

pa
ct

 a
na

ly
se

s.

•
So

ftw
ar

e
ev

ol
ut

io
n

ei
th

er
…

–
An

al
yz

es
 s

of
tw

ar
e

m
od

ifi
ca

tio
n

da
ta

 to
 c

re
at

e
pr

oc
es

s-
le

ve
l m

et
ric

s
an

d
m

od
el

s
of

 e
vo

lu
tio

n.

–
At

te
m

pt
s

to
 a

ut
om

at
ic

al
ly

 e
vo

lv
e

so
ftw

ar
e.

IV
A

Is
 D

iff
er

en
t B

ec
au

se
…

•
IV

A
di

st
in

gu
is

he
s

be
tw

ee
n

de
pe

nd
en

ce
-re

la
te

d
ch

an
ge

s
an

d
ch

an
ge

s
m

ad
e

du
rin

g
th

e
sa

m
e

“c
om

m
it”

.
•

IV
A

do
es

 n
ot

 re
qu

ire
 a

dv
an

ce
d

ch
an

ge
m

an
ag

em
en

t d
at

a
fo

r b
as

ic
 fu

nc
tio

na
lit

y
–

O
nl

y
re

qu
ire

s
w

he
n,

 w
he

re
, w

ha
t,

bu
t n

ot
 w

hy
.

•
U

se
r c

on
tro

ls
 IV

A
fil

te
rin

g
an

d
ag

gr
eg

at
in

g
of

ch
an

ge
 d

at
a.

–
D

iff
er

en
t u

se
rs

 a
re

 in
te

re
st

ed
 in

 d
iff

er
en

t t
hi

ng
s.

IV
A

Ar
ch

ite
ct

ur
e

Pr
ep

ro
ce

ss
or

 D
ae

m
on

 -

D
ep

en
de

nc
e

G
ra

ph

G
en

er
at

io
n

 -
 R

aw
 M

et
ric

 C
al

cu
la

tio
n

In
st

ab
ilit

y
An

al
yz

er

- N
or

m
al

iz
at

io
n

&
Fi

lte
rin

g
- I

ns
ta

bi
lit

y
Id

en
tif

ic
at

io
n

- M
et

ric
 C

al
cu

la
tio

n
- I

ns
ta

bi
lit

y
Pr

io
rit

iz
at

io
n

Vi
su

al
iz

at
io

n
En

gi
ne

R
ep

or
t

G
en

er
at

or
SC

M
re

po
si

to
ry

IV
A

re
po

si
to

ry

In
st

ab
ilit

y
Vi

su
al

iz
at

io
n

(1
 o

f 3
)

•
D

ep
en

de
nc

e
gr

ap
h

no
de

s
po

si
tio

ne
d

us
in

g
he

ira
rc

hi
ca

l r
el

at
io

ns
hi

p.

•
C

au
se

s
sp

at
ia

l c
lu

st
er

in
g

of
 re

la
te

d
no

de
s:

–
Pa

ck
ag

e,
 c

la
ss

, m
et

ho
d

–
D

ire
ct

or
y,

 fi
le

, f
un

ct
io

n

In
st

ab
ilit

y
Vi

su
al

iz
at

io
n

(2
 o

f 3
)

•
Su

rfa
ce

 m
ap

 g
en

er
at

ed
fro

m
 d

ep
en

de
nc

e
gr

ap
h

la
yo

ut
.

•
R

et
ai

ns
 g

lo
ba

l c
on

te
xt

 o
f

da
ta

 (c
od

e
lo

ca
tio

n,
 e

tc
.)

•
H

id
es

 e
dg

es
, r

ed
uc

es
cl

ut
te

r.

In
st

ab
ilit

y
Vi

su
al

iz
at

io
n

(3
 o

f 3
)

•
C

la
ss

ifi
ed

 in
st

ab
ilit

y
re

gi
on

s
ar

e
ov

er
la

id
 o

n
th

e
su

rfa
ce

 m
ap

.
•

In
st

ab
ilit

ie
s

fo
llo

w
 e

dg
es

of
 u

nd
er

ly
in

g
de

pe
nd

en
ce

gr
ap

h.
•

C
ol

or
 a

nd
 w

id
th

 d
en

ot
e

us
er

-c
on

tro
lla

bl
e

m
et

ric
s;

di
st

an
ce

 d
en

ot
es

 s
pa

n
of

co
up

lin
g. U
se

 In
 C

ol
la

bo
ra

tiv
e

D
ev

el
op

m
en

t

•
IV

A
ca

n
an

al
yz

e
an

d
pr

ov
id

e
fe

ed
ba

ck
 o

n
a

gi
ve

n
im

pl
em

en
ta

tio
n

of
 c

ol
la

bo
ra

tiv
e

de
ve

lo
pm

en
t.

–
D

oe
s

ta
sk

 b
re

ak
do

w
n

fo
rc

e
co

nt
en

tio
n?

•
C

ol
or

at
io

n
ba

se
d

on
 n

um
be

r o
f d

iff
er

en
t c

om
m

itt
er

s.

–
D

oe
s

sy
st

em
 a

rc
hi

te
ct

ur
e

fo
rc

e
co

nt
en

tio
n?

•
H

ig
h

se
ve

rit
y

an
d

nu
m

be
r o

f d
iff

er
en

t c
om

m
itt

er
s.

–
U

se
r c

an
 c

on
tro

l v
is

ua
liz

at
io

n
by

 d
ire

ct
in

g
co

lo
r,

lin
e

w
id

th
, o

r a
gg

re
ga

tio
n

al
go

rit
hm

s.

C
on

cl
us

io
n

•
IV

A
w

ill
le

ve
ra

ge
 th

e
da

ta
 s

to
re

d
in

 c
ha

ng
e

co
nt

ro
l s

ys
te

m
s

(C
VS

 a
s

a
m

in
im

um
) b

y
id

en
tif

yi
ng

 a
nd

 c
la

ss
ify

in
g

hi
st

or
ic

al
 c

ha
ng

e
pa

tte
rn

s.
•

A
pr

oo
f-o

f-c
on

ce
pt

 IV
A

is
 u

nd
er

 c
on

st
ru

ct
io

n
–

W
ill

ha
nd

le
 J

av
a

so
ur

ce
 c

od
e

in
 S

ub
ve

rs
io

n
re

po
si

to
ry

.
–

W
ill

pr
ov

id
e

ad
di

tio
na

l v
is

ua
liz

at
io

ns
 fo

r i
n-

de
pt

h
ex

pl
or

at
io

n
of

 s
pe

ci
fic

 in
st

ab
ilit

y
re

gi
on

s.

Q
ue

st
io

ns
?

•
Th

e
w

or
k

co
m

pl
et

ed
 to

 d
at

e
w

as
 fu

nd
ed

 b
y

a
20

01
 U

SE
N

IX
 S

tu
de

nt
 R

es
ea

rc
h

G
ra

nt
.

•
Se

e
ht

tp
://

w
w

w
.c

se
.u

cs
c.

ed
u/

~j
be

va
n

fo
r I

VA
pr

og
re

ss
 a

nd
 s

ta
tu

s
up

da
te

s.

•
Em

ai
l j

be
va

n@
cs

e.
uc

sc
.e

du
 w

ith
 fu

tu
re

qu
es

tio
ns

.

S
o

u
rc

e-
C

o
d

e
In

st
ru

m
en

ta
ti

o
n

an
d

Q
u

an
ti

fi
ca

ti
o

n
o

f
E

ve
n

ts

R
ob

er
tE

.F
ilm

an
R

IA
C

S
rf

ilm
an

@
m

ai
l.a

rc
.n

as
a.

go
v

K
la

us
H

av
el

un
d

K
es

tr
el

T
ec

hn
ol

og
y

ha
ve

lu
nd

@
em

ai
l.a

rc
.n

as
a.

go
v

N
A

S
A

A
m

es
R

es
ea

rc
h

C
en

te
r

M
of

fe
tt

F
ie

ld
,C

A
94

03
5

U
.S

.A
.

S
ep

ar
at

io
n

o
f

C
o

n
ce

rn
s

�
A

fu
n

d
am

en
ta

le
n

g
in

ee
ri

n
g

p
ri

n
ci

p
le

is
th

at
o

f
se

p
ar

at
io

n
o

f
co

n
ce

rn
s

–
R

ea
liz

in
g

d
if

fe
re

n
t

sy
st

em
co

n
ce

p
ts

as
se

p
ar

at
e,

w
ea

kl
y

lin
ke

d
el

em
en

ts
–

D
is

tr
ib

u
ti

o
n

o
f

ex
p

er
ti

se
�

S
ep

ar
at

io
n

o
f

co
n

ce
rn

s
p

ro
m

is
es

b
et

te
r

–
M

ai
n

ta
in

ab
ili

ty
–

E
vo

lv
ab

ili
ty

–
R

eu
sa

b
ili

ty
–

A
d

ap
ti

vi
ty

�
C

o
n

ce
rn

s
cr

o
ss

-c
u

t
–

A
p

p
ly

to
d

if
fe

re
n

t
m

o
d

u
le

s
in

a
va

ri
et

y
o

f
p

la
ce

s
�

C
o

n
ce

rn
s

m
u

st
b

e
co

m
p

o
se

d
to

b
u

ild
ru

n
n

in
g

sy
st

em
s

In
co

n
ve

n
ti

o
n

al
p

ro
g

ra
m

m
in

g
,t

h
e

co
d

e
fo

r
d

if
fe

re
n

t
co

n
ce

rn
s

o
ft

en
b

ec
o

m
es

m
ix

ed
-t

o
g

et
h

er
(t

an
g

le
d

)

E
xa

m
p

le
s

o
f

S
o

ft
w

ar
e

C
o

n
ce

rn
s

�
S

ec
u

ri
ty

–
A

lw
ay

s
ca

ll
th

e
se

cu
ri

ty
ch

ec
k

b
ef

o
re

al
lo

w
in

g
d

at
ab

as
e

ac
ce

ss
�

A
cc

o
u

n
ti

n
g

–
A

lw
ay

s
d

eb
it

th
e

u
se

r’
s

ac
co

u
n

t
o

n
ea

ch
ac

ce
ss

to
a

se
rv

ic
e

o
f

o
b

je
ct

s
in

th
e

cl
as

s…
�

S
yn

ch
ro

n
iz

at
io

n
–

D
o

n
’t

le
t

m
u

lt
ip

le
u

se
rs

ca
ll

an
y

o
f

m
et

h
o

d
s

f,
g

,o
r

h
o

n
a

si
n

g
le

o
b

je
ct

si
m

u
lt

an
eo

u
sl

y
–

T
h

e
ef

fe
ct

s
o

f
th

es
e

ac
ti

o
n

s
sh

o
u

ld
b

e
tr

an
sa

ct
io

n
al

�
Q

u
al

it
y

o
f

se
rv

ic
e

–
Q

u
eu

e
u

p
th

e
w

ai
ti

n
g

ca
lls

h
an

d
lin

g
th

em
b

y
p

ri
o

ri
ty

�
R

el
ia

b
ili

ty
–

P
ro

vi
d

e
re

p
lic

an
ts

o
f

th
is

o
b

je
ct

�
P

er
fo

rm
an

ce
en

h
an

ce
m

en
ts

–
C

ac
h

e
th

e
re

su
lt

s
o

f
ca

lls
to

el
em

en
ts

in
th

is
cl

as
s

–
D

is
p

la
y

ro
u

ti
n

es
sh

o
u

ld
sh

o
w

th
e

re
su

lt
s

o
f

ch
an

g
es

,e
xc

ep
t

d
is

p
la

y
ro

u
ti

n
es

ca
lle

d
in

th
e

sc
o

p
e

o
f

o
th

er
d

is
p

la
y

ro
u

ti
n

es
sh

o
u

ld
b

u
ff

er
th

ei
r

ch
an

g
es

fo
r

d
is

p
la

y
al

la
t

o
n

ce

F
u

n
ct

io
n

al
an

d
N

o
n

-F
u

n
ct

io
n

al
R

eq
u

ir
em

en
ts

Fu
nc

tio
na

l:
N

on
-f

un
ct

io
na

l(
ili

ty
):

A
va

ila
bi

lit
y

R
el

ia
bi

lit
y

S
ec

ur
ity

M
an

ag
ea

bi
lit

y
R

es
po

ns
iv

en
es

s

Fu
nc

tio
n

1
&

ili
ty

su
pp

or
t

Fu
nc

tio
n

4
&

ili
ty

su
pp

or
t

Fu
nc

tio
n

2
&

ili
ty

su
pp

or
t

Fu
nc

tio
n

3
&

ili
ty

su
pp

or
t

Fu
nc

.R
eq

.2
Fu

nc
.R

eq
.4

F
un

c
R

eq
.1

Fu
nc

.R
eq

.3

Fu
nc

tio
na

lr
eq

ui
re

m
en

ts
m

ap
to

sp
ec

if
ic

co
m

po
ne

nt
s

Il
ity

re
qu

ir
em

en
ts

m
ap

al
m

os
te

ve
ry

w
he

re

S
er

vi
ce

s
an

d
Ili

ti
es

�
Ili

ty
re

q
u

ir
em

en
ts

ar
e

im
p

le
m

en
te

d
b

y
co

m
b

in
at

io
n

s
o

f
se

rv
ic

e
al

g
o

ri
th

m
s.

�
S

u
p

p
o

rt
in

g
ili

ti
es

in
vo

lv
es

a
co

m
p

le
x

se
le

ct
io

n
fr

o
m

se
ts

o
f

al
te

rn
at

iv
e

se
rv

ic
e

al
g

o
ri

th
m

s.
�

T
h

e
se

rv
ic

es
m

u
st

b
e

in
vo

ke
d

p
er

va
si

ve
ly

th
ro

u
g

h
o

u
t

th
e

sy
st

em
.

Il
ity

re
qu

ir
em

en
ts

:

Se
rv

ic
es

:

A
va

ila
bi

lit
y

R
el

ia
bi

lit
y

S
ec

ur
ity

M
an

ag
ea

bi
lit

y
R

es
po

ns
iv

en
es

s

R
ep

lic
at

io
n

A
R

ep
lic

at
io

n
2

R
ep

lic
at

io
n R
ep

lic
at

io
n

A
R

ep
lic

at
io

n
2

T
ra

ns
ac

tio
ns

E
nc

ry
pt

io
n

A
ut

he
nt

ic
at

io
n

T
ra

ci
ng

&
A

ud
it

Fa
ul

tD
et

ec
tio

n

R
es

ou
rc

e
R

es
er

va
tio

n

Q
ue

ue
M

gm
t.

O
b

je
ct

In
fr

as
tr

u
ct

u
re

F
ra

m
ew

o
rk

R
es

ea
rc

h
H

yp
o

th
es

is

�
Ili

ti
es

ca
n

b
e

ac
h

ie
ve

d
b

y
in

se
rt

in
g

se
rv

ic
es

in
to

th
e

co
m

m
u

n
ic

at
io

n
p

at
h

b
et

w
ee

n
fu

n
ct

io
n

al
co

m
p

o
n

en
ts

–
O

n
b

o
th

si
d

es
o

f
th

e
co

m
m

u
n

ic
at

io
n

�
F

ra
m

ew
o

rk
s

th
at

au
to

m
at

e
se

rv
ic

e
in

se
rt

io
n

ca
n

sy
st

em
at

ic
al

ly
ac

h
ie

ve
n

o
n

-f
u

n
ct

io
n

al
re

q
u

ir
em

en
ts

–
O

b
je

ct
In

fr
as

tr
u

ct
u

re
F

ra
m

ew
o

rk
(O

IF
)

�
Ili

ti
es

ca
n

b
e

ac
h

ie
ve

d
b

y
in

se
rt

in
g

se
rv

ic
es

in
to

th
e

co
m

m
u

n
ic

at
io

n
p

at
h

b
et

w
ee

n
fu

n
ct

io
n

al
co

m
p

o
n

en
ts

–
O

n
b

o
th

si
d

es
o

f
th

e
co

m
m

u
n

ic
at

io
n

�
F

ra
m

ew
o

rk
s

th
at

au
to

m
at

e
se

rv
ic

e
in

se
rt

io
n

ca
n

sy
st

em
at

ic
al

ly
ac

h
ie

ve
n

o
n

-f
u

n
ct

io
n

al
re

q
u

ir
em

en
ts

–
O

b
je

ct
In

fr
as

tr
u

ct
u

re
F

ra
m

ew
o

rk
(O

IF
)

A
rc

h
it

ec
tu

re
w

it
h

S
er

vi
ce

s
in

C
o

m
p

o
n

en
t

C
o

m
m

u
n

ic
at

io
n

s

Fu
nc

tio
n

1
&

ili
ty

su
pp

or
t

Fu
nc

tio
n

4
&

ili
ty

su
pp

or
t

Fu
nc

tio
n

2
&

ili
ty

su
pp

or
t

Fu
nc

tio
n

3
&

ili
ty

su
pp

or
t

T
ra

di
tio

na
ld

es
ig

ns
m

ix
ili

ty
su

pp
or

tw
ith

in
fu

nc
tio

na
lc

om
po

ne
nt

s:

Fu
nc

tio
n

1

Fu
nc

tio
n

4
Fu

nc
tio

n
2

Fu
nc

tio
n

3
E

nc
ry

pt

Se
tP

ri
or

ity

D
ec

ry
pt

Q
ue

ue
M

gm
t

D
ec

ry
pt

Q
ue

ue
M

gm
t.

E
nc

ry
pt

Pa
ss

Pr
io

ri
ty

D
ec

ry
pt

Q
ue

ue
M

gm
t

O
IF

is
de

m
on

st
ra

tin
g

fr
am

ew
or

ks
th

at
in

se
rt

se
rv

ic
es

in
to

th
e

co
m

m
un

ic
at

io
n

pa
th

s
be

tw
ee

n
fu

nc
tio

na
lc

om
po

ne
nt

s.
R

ep
lic

at
io

n

R
ep

lic
at

io
n

K
ey

in
si

gh
t:

S
er

vi
ce

fu
nc

tio
na

lit
y

ca
n

be
se

pa
ra

te
d

fr
om

fu
nc

tio
na

ll
og

ic
by

in
se

rt
in

g
th

e
se

rv
ic

es
in

to
th

e
co

m
m

un
ic

at
io

ns
be

tw
ee

n
fu

nc
tio

na
lc

om
po

ne
nt

s.

K
ey

O
IF

Id
ea

s
�

In
je

ct
in

g
b

eh
av

io
r

o
n

th
e

co
m

m
u

n
ic

at
e

p
at

h
s

b
et

w
ee

n
co

m
p

o
n

en
ts

–
In

je
ct

o
rs

ar
e

d
is

cr
et

e,
u

n
if

o
rm

o
b

je
ct

s
–

In
je

ct
o

rs
ar

e
b

y
o

b
je

ct
/m

et
h

o
d

–
In

je
ct

o
rs

ar
e

d
yn

am
ic

al
ly

co
n

fi
g

u
ra

b
le

�
A

n
n

o
ta

te
d

co
m

m
u

n
ic

at
io

n
s

al
lo

w
in

je
ct

ed
se

rv
ic

es
to

p
as

s
p

ar
am

et
er

s
to

se
rv

ic
e

p
ee

rs
(e

.g
.,

m
es

sa
g

e
p

ri
o

ri
ty

,u
se

r-
id

,t
ra

ci
n

g
st

at
u

s)

�
T

h
re

ad
co

n
te

xt
s

p
re

se
rv

e
an

n
o

ta
ti

o
n

s
th

ro
u

g
h

ca
lls

�
P

ra
g

m
a:

H
ig

h
-l

ev
el

sp
ec

if
ic

at
io

n
la

n
g

u
ag

e
fo

r
d

es
cr

ib
in

g
d

es
ir

ed
in

je
ct

io
n

s
(P

ra
g

m
a)

A
u

th
en

ti
ca

te
A

u
th

en
ti

ca
te

R
et

ry
R

et
ry

M
an

ag
em

en
t

M
an

ag
em

en
t

R
el

ia
b

ili
ty

R
el

ia
b

ili
ty

C
O

R
B

A
P

ro
xy

C
h

ec
k

au
th

.
C

h
ec

k
au

th
.

Q
u

al
it

y
o

f
S

er
vi

ce
Q

u
al

it
y

o
f

S
er

vi
ce

M
an

ag
em

en
t

M
an

ag
em

en
t

R
el

ia
b

ili
ty

R
el

ia
b

ili
ty

C
O

R
B

A
S

ke
le

to
n

C
lie

nt
C

lie
nt

S
er

ve
r

S
er

ve
r

N
et

w
o

rk

C
o

n
fi

g
u

ra
b

le
P

ro
xi

es

�
O

IF
’s

in
je

ct
o

rs
ca

n
o

p
er

at
e

in
p

ai
rs

(e
.g

.,
en

cr
yp

t/
d

ec
ry

p
t;

re
q

u
es

t
au

th
en

ti
ca

ti
o

n
/a

u
th

en
ti

ca
te

)
o

r
si

n
g

ly
(e

.g
.,

re
tr

y
o

n
fa

ilu
re

;
lo

g
re

su
lt

s)

�
C

o
n

fi
g

u
ra

ti
o

n
is

b
y

p
ro

xy
/m

et
h

o
d

in
st

an
ce

�
C

o
n

fi
g

u
ra

ti
o

n
is

d
yn

am
ic

D
o

m
ai

n
P

ro
g

ra
m

m
er

s
d

ev
el

o
p

ap
p

lic
at

io
n

.

S
ec

u
ri

ty
Q

u
al

it
y

o
f

S
er

vi
ce

M
an

ag
ea

b
ili

ty

D
is

tr
ib

u
ti

o
n

an
d

Ili
ty

A
rc

h
it

ec
t

sp
ec

if
ie

s
se

rv
ic

es
.

R
el

ia
b

ili
ty

D
is

tr
ib

u
te

d
ap

p
lic

at
io

n

O
IF

ra
m

ew
o

rk

O
IF

P
ro

ce
ss

�
M

ap
o

rg
an

iz
at

io
n

al
p

o
lic

ie
s

to
im

p
le

m
en

ta
ti

o
n

–
E

.g
.,

•
d

ef
in

e
a

se
cu

ri
ty

p
o

lic
y

•
en

su
re

th
at

p
o

lic
y

is
fo

llo
w

ed
b

y
al

ld
is

tr
ib

u
te

d
co

m
p

o
n

en
ts

A
sp

ec
t-

O
ri

en
te

d
P

ro
g

ra
m

m
in

g
(A

O
P

)

�
O

IF
is

an
A

sp
ec

t-
O

ri
en

te
d

P
ro

g
ra

m
m

in
g

sy
st

em
�

S
o

ft
w

ar
e

en
g

in
ee

ri
n

g
te

ch
n

o
lo

g
y

fo
r

se
p

ar
at

el
y

ex
p

re
ss

in
g

sy
st

em
at

ic
p

ro
p

er
ti

es
w

h
ile

n
ev

er
th

el
es

s
p

ro
d

u
ci

n
g

ru
n

n
in

g
sy

st
em

s
th

at
em

b
o

d
y

th
es

e
p

ro
p

er
ti

es
�

N
ee

d
to

ex
p

re
ss

–
B

as
e

p
ro

g
ra

m
–

S
ep

ar
at

e
co

n
ce

rn
s

–
H

ow
th

e
se

p
ar

at
e

co
n

ce
rn

s
m

ap
to

th
e

b
as

e
p

ro
g

ra
m

•
O

r,
if

yo
u

p
re

fe
r,

ju
st

a
ju

m
b

le
o

f
p

ro
g

ra
m

el
em

en
ts

th
at

m
u

st
b

e
co

m
b

in
ed

.

Q
u

an
ti

fi
ca

ti
o

n
an

d
Im

p
lic

it
In

vo
ca

ti
o

n
�

P
ro

g
ra

m
m

at
ic

es
se

n
ce

o
f

A
O

P
is

to
b

e
ab

le
to

st
at

e
u

n
iv

er
sa

lly
q

u
an

ti
fi

ed
st

at
em

en
ts

ab
o

u
t

(c
o

n
ve

n
ti

o
n

al
,

lin
ea

r)
p

ro
g

ra
m

s
�

A
n

d
h

av
e

th
e

ef
fe

ct
o

f
th

es
e

st
at

em
en

ts
re

al
iz

ed
in

p
ro

g
ra

m
s

th
at

d
o

n
’t

co
n

ta
in

ex
p

lic
it

n
o

ta
ti

o
n

ap
p

ly
in

g
th

es
e

q
u

an
ti

fi
ed

st
at

em
en

ts

In
p

ro
g

ra
m

s
P

,w
h

en
ev

er
co

n
d

it
io

n
C

ar
is

es
,p

er
fo

rm
ac

ti
o

n
A

.

�
D

im
en

si
o

n
s

o
f

co
n

ce
rn

fo
r

th
e

d
es

ig
n

er
an

d
im

p
le

m
en

te
r

o
f

an
A

O
P

sy
st

em
:

–
Q

u
an

ti
fi

ca
ti

o
n

:
W

h
at

ki
n

d
s

o
f

co
n

d
it

io
n

s
C

ca
n

b
e

sp
ec

if
ie

d
.

–
In

te
rf

ac
e:

W
h

at
is

th
e

in
te

rf
ac

e
o

f
th

e
ac

ti
o

n
s

A
.T

h
at

is
,h

ow
d

o
th

ey
in

te
ra

ct
w

it
h

b
as

e
p

ro
g

ra
m

s
an

d
ea

ch
o

th
er

.
–

W
ea

vi
n

g
:

H
o

w
w

ill
th

e
sy

st
em

ar
ra

n
g

e
to

in
te

rm
ix

th
e

ex
ec

u
ti

o
n

o
f

th
e

b
as

e
ac

ti
o

n
s

o
f

P
w

it
h

th
e

ac
ti

o
n

s
A

.

C
h

o
ic

es
in

D
ev

el
o

p
in

g
A

O
P

L
an

g
u

ag
es

�
W

h
at

q
u

an
ti

fi
ed

st
at

em
en

ts
ar

e
al

lo
w

ed
–

Jo
in

p
o

in
ts

•
M

et
h

o
d

ca
lls

•
F

ie
ld

ac
ce

ss
•

A
b

st
ra

ct
sy

n
ta

x
•

C
o

n
tr

o
lf

lo
w

–
S

co
p

e
o

f
q

u
an

ti
fi

ca
ti

o
n

•
S

u
b

cl
as

se
s

•
B

y
n

am
e

•
L

ex
ic

al
st

ru
ct

u
re

�
S

yn
ta

x
fo

r
ex

p
re

ss
in

g
ap

p
lic

at
io

n

�
In

te
ra

ct
io

n
am

o
n

g
as

p
ec

ts
an

d
b

as
e

co
d

e
–

V
is

ib
ili

ty
–

O
rd

er
in

g
–

C
o

n
fl

ic
t

re
so

lu
ti

o
n

�
Im

p
le

m
en

ta
ti

o
n

m
ec

h
an

is
m

–
C

o
m

p
ile

r
–

B
yt

e-
co

d
e

m
an

ip
u

la
ti

o
n

–
D

yn
am

ic
w

ra
p

p
in

g
–

F
ra

m
ew

o
rk

s
–

M
et

a-
p

ro
g

ra
m

m
in

g
–

P
ro

g
ra

m
tr

an
sf

o
rm

at
io

n

S
ta

ti
c

an
d

D
yn

am
ic

Q
u

an
ti

fi
ca

ti
o

n

�
In

ea
rl

ie
r

w
o

rk
,w

e
d

is
ti

n
g

u
is

h
ed

b
et

w
ee

n
–

S
ta

ti
c

q
u

an
ti

fi
ca

ti
o

n
:

d
is

ce
rn

ab
le

fr
o

m
th

e
sy

n
ta

ct
ic

st
ru

ct
u

re
o

f
th

e
sp

ec
im

en
p

ro
g

ra
m

•
E

.g
,c

al
ls

–
D

yn
am

ic
q

u
an

ti
fi

ca
ti

o
n

:
m

at
ch

in
g

ev
en

ts
th

at
h

ap
p

en
in

th
e

co
u

rs
e

o
f

p
ro

g
ra

m
ex

ec
u

ti
o

n
.

•
E

.g
.,

cf
lo

w

�
C

u
rr

en
tl

y
ex

p
lo

ri
n

g
th

e
h

yp
o

th
es

is
th

at
(a

lm
o

st
)

al
li

n
te

re
st

in
g

“e
ve

n
ts

”
ar

e
d

yn
am

ic
,a

n
d

th
at

st
at

ic
q

u
an

ti
fi

ca
ti

o
n

m
er

el
y

re
fe

rs
to

th
o

se
ev

en
ts

th
at

ca
n

b
e

si
m

p
ly

in
fe

rr
ed

fr
o

m
th

e
st

at
ic

st
ru

ct
u

re
o

f
th

e
p

ro
g

ra
m

.
–

S
h

ad
o

w
s

in
th

e
co

d
e

–
E

xc
ep

ti
o

n
:

p
ro

g
ra

m
st

ru
ct

u
ra

lc
h

an
g

es

E
xt

re
m

e
E

xp
er

im
en

t

�
T

h
e

ex
tr

em
e

o
f

ex
p

re
ss

iv
en

es
s

in
q

u
an

ti
fi

ca
ti

o
n

is
to

b
e

ab
le

to
q

u
an

ti
fy

o
ve

r
al

lt
h

e
h

is
to

ry
o

f
ev

en
ts

in
a

p
ro

g
ra

m
ex

ec
u

ti
o

n
�

E
ve

n
ts

ar
e

w
it

h
re

sp
ec

t
to

th
e

ab
st

ra
ct

in
te

rp
re

te
r

o
f

a
la

n
g

u
ag

e
�

U
n

fo
rt

u
n

at
el

y,
la

n
g

u
ag

e
d

ef
in

it
io

n
s

d
o

n
’t

d
ef

in
e

th
ei

r
ab

st
ra

ct
in

te
rp

re
te

rs
.

E
ve

n
ts

an
d

E
ve

n
t

L
o

ci

E
ve

n
t

S
yn

ta
ct

ic
lo

cu
s

A
cc

es
si

n
g

th
e

va
lu

e
of

a
va

ria
b

le
or

fie
ld

R
ef

er
en

ce
s

to
th

at
va

ria
b

le

M
od

ify
in

g
th

e
va

lu
e

of
a

va
ria

b
le

or
fie

ld
A

ss
ig

n
m

en
ts

to
th

at
va

ria
b

le

In
vo

ki
n

g
a

su
b

p
ro

g
ra

m
S

u
b

p
ro

g
ra

m
ca

lls
C

yc
lin

g
th

ro
u

g
h

a
lo

op
Lo

op
st

at
em

en
ts

B
ra

n
ch

in
g

on
a

co
n

d
iti

on
al

T
h

e
co

n
d

iti
on

al
st

at
em

en
t

In
iti

al
iz

in
g

an
in

st
an

ce
T

h
e

co
n

st
ru

ct
or

s
fo

r
th

at
ob

je
ct

T
h

ro
w

in
g

an
ex

ce
p

tio
n

T
h

ro
w

st
at

em
en

ts
C

at
ch

in
g

an
ex

ce
p

tio
n

C
at

ch
st

at
em

en
ts

W
ai

tin
g

on
a

lo
ck

W
ai

t
an

d
sy

n
ch

ro
n

iz
e

st
at

em
en

ts

M
o

re
E

ve
n

ts
an

d
L

o
ci

E
ve

n
t

S
yn

ta
ct

ic
lo

cu
s

R
es

u
m

in
g

af
te

r
a

lo
ck

w
ai

t
O

th
er

's
n

ot
ify

an
d

en
d

of
sy

n
ch

ro
n

iz
at

io
n

s
T

es
tin

g
a

p
re

d
ic

at
e

on
se

ve
ra

lf
ie

ld
s

E
ve

ry
m

od
ifi

ca
tio

n
of

an
y

of
th

os
e

fie
ld

s
C

h
an

g
in

g
a

va
lu

e
on

th
e

p
at

h
to

an
ot

h
er

C
on

tr
ol

an
d

d
at

a
flo

w
an

al
ys

is
ov

er
st

at
em

en
ts

(s
lic

es
)

S
w

ap
p

in
g

th
e

ru
n

n
in

g
th

re
ad

N
ot

re
lia

b
ly

ac
ce

ss
ib

le
,

b
u

t
at

om
iz

at
io

n
m

ay
b

e
p

os
si

b
le

B
ei

n
g

b
el

ow
on

th
e

st
ac

k
S

u
b

p
ro

g
ra

m
ca

lls
F

re
ei

n
g

st
or

ag
e

N
ot

re
lia

b
ly

ac
ce

ss
ib

le
,

b
u

t
ca

n
tr

y
u

si
n

g
b

u
ilt

-in
p

rim
iti

ve
s

T
h

ro
w

in
g

an
er

ro
r

N
ot

re
lia

b
ly

ac
ce

ss
ib

le
;

co
u

ld
h

ap
p

en
an

yw
h

er
e

R
es

ea
rc

h
re

g
im

e

�
D

ef
in

e
a

la
n

g
u

ag
e

o
f

ev
en

ts
an

d
ac

ti
o

n
s

o
n

th
o

se
ev

en
ts

.
�

D
et

er
m

in
e

h
o

w
ea

ch
ev

en
t

is
re

fl
ec

te
d

(o
r

ca
n

b
e

m
ad

e
vi

si
b

le
)

in
so

u
rc

e
co

d
e.

�
C

re
at

e
a

sy
st

em
to

tr
an

sf
o

rm
p

ro
g

ra
m

s
w

it
h

re
sp

ec
t

to
th

es
e

ev
en

ts
an

d
ac

ti
o

n
s.

T
ra

n
sf

o
rm

at
io

n
al

A
lt

er
n

at
iv

es

�
F

o
r

Ja
va

,c
an

tr
an

sf
o

rm
at

–
T

h
e

so
u

rc
e-

co
d

e
le

ve
l

–
T

h
e

b
yt

e-
co

d
e

le
ve

l

A
rc

h
it

ec
tu

ra
lV

ie
w

So
ur

ce
Ja

va
co

de

So
ur

ce
Ja

va
co

de

E
ve

nt
-a

ct
io

n
de

sc
ri

pt
io

ns

E
ve

nt
-a

ct
io

n
de

sc
ri

pt
io

ns

E
ve

nt
-

E
di

t
co

m
pi

la
tio

n

T
ra

ns
fo

rm
T

ra
ns

fo
rm A
ST

T
ar

ge
tJ

av
a

co
de

T
ar

ge
tJ

av
a

co
de

Pa
rs

e
Pr

et
ty

Pr
in

t

A
p

p
lic

at
io

n
s

�
A

p
p

ly
in

g
A

O
P

to
d

eb
u

g
g

in
g

an
d

va
lid

at
in

g
co

n
cu

rr
en

t
p

ro
g

ra
m

s.
�

A
p

p
ly

in
g

A
O

P
to

m
o

n
it

o
r

p
ro

g
ra

m
s

d
u

ri
n

g
o

p
er

at
io

n
,s

o
th

at
ac

ti
o

n
s

ca
n

b
e

in
it

ia
te

d
in

ca
se

b
ad

th
in

g
s

h
ap

p
en

.
�

A
p

p
ly

in
g

A
O

P
as

a
g

en
er

al
p

ro
g

ra
m

m
in

g
p

ar
ad

ig
m

.

P
ro

g
ra

m
D

eb
u

g
g

in
g

�
D

et
ec

t
m

u
lt

i-
th

re
ad

in
g

p
ro

b
le

m
s

ca
u

se
d

b
y

ac
ce

ss
to

sh
ar

ed
re

so
u

rc
es

b
y

co
m

p
et

in
g

th
re

ad
s.

�
V

al
id

at
e

tr
ac

e
ex

ec
u

ti
o

n
s

ag
ai

n
st

u
se

r
re

q
u

ir
em

en
ts

.
�

V
al

id
at

e
m

u
lt

it
h

re
ad

ed
p

ro
g

ra
m

s
b

y
ex

p
lo

ri
n

g
sc

h
ed

u
le

in
te

rl
ea

vi
n

g
s.

D
et

ec
t

M
u

lt
i-

th
re

ad
in

g
P

ro
b

le
m

s

�
D

ea
dl

oc
ks

:
O

b
se

rv
e

in
w

h
at

o
rd

er
lo

ck
s

ar
e

ta
ke

n
an

d
re

le
as

ed
an

d
in

fe
r

p
o

te
n

ti
al

d
ea

d
lo

ck
s

fr
o

m
cy

cl
es

.
�

D
at

a
R

ac
es

:
O

b
se

rv
e

w
h

at
lo

ck
s

th
re

ad
s

o
w

n
w

h
en

th
ey

ac
ce

ss
va

ri
ab

le
s

an
d

in
fe

r
p

o
te

n
ti

al
d

at
a

ra
ce

s
fr

o
m

em
p

ty
o

ve
rl

ap
s.

D
ea

d
lo

ck
s

A
de

ad
lo

ck
ca

n
oc

cu
r

w
he

n
th

re
ad

s
ac

ce
ss

an
d

lo
ck

sh
ar

ed
re

so
ur

ce
s,

an
d

lo
ck

th
es

e
in

di
ff

er
en

to
rd

er
.

A
de

ad
lo

ck
ca

n
oc

cu
r

w
he

n
th

re
ad

s
ac

ce
ss

an
d

lo
ck

sh
ar

ed
re

so
ur

ce
s,

an
d

lo
ck

th
es

e
in

di
ff

er
en

to
rd

er
.

L2

1 2
12

L1

T
1

T
2

1 2
12

P
ro

bl
em

:
T

1
lo

ck
s

L
1

fi
rs

t
T

2
lo

ck
s

L
2

fi
rs

t

E
xa

m
pl

e
So

lu
ti

on
:

Im
po

se
or

de
r

on
lo

ck
s:

L
1

<
L

2

L
1

L
2

cy
cl

e

v
1
.
a
d
d
(
v
2
)

v
1
=
n
e
w

V
a
l
u
e
(
)
;

v
2
.
a
d
d
(
v
1
)

c
l
a
s
s
V
a
l
u
e
{

i
n
t

x
=
1
;

s
y
n
c
h
r
o
n
i
z
e
d
v
o
i
d
a
d
d
(
V
a
l
u
e
v
)
{
x
=
x
+
v
.
g
e
t
(
)
;
}

s
y
n
c
h
r
o
n
i
z
e
d
i
n
t

g
e
t
(
)
{
r
e
t
u
r
n
x
;
}

}c
l
a
s
s
V
a
l
u
e
{

i
n
t

x
=
1
;

s
y
n
c
h
r
o
n
i
z
e
d
v
o
i
d
a
d
d
(
V
a
l
u
e
v
)
{
x
=
x
+
v
.
g
e
t
(
)
;
}

s
y
n
c
h
r
o
n
i
z
e
d
i
n
t

g
e
t
(
)
{
r
e
t
u
r
n
x
;
}

}

Ja
va

P
ro

g
ra

m
w

it
h

D
ea

d
lo

ck

v
2
=
n
e
w

V
a
l
u
e
(
)
;

T
hr

ea
d

T
1

T
hr

ea
d

T
2

A
p

p
ly

in
g

A
O

P

a
s
p
e
c
t
D
e
a
d
l
o
c
k
D
e
t
e
c
t
i
o
n
{

w
h
e
n
s
y
n
c
h
r
o
n
i
z
e
(
o
b
j
)
{

T
h
r
e
a
d
c
u
r
r
=
T
h
r
e
a
d
.
c
u
r
r
e
n
t
T
h
r
e
a
d
(
)
;

S
e
t
l
o
c
k
s
=
T
h
r
e
a
d
s
.
g
e
t
L
o
c
k
s
(
c
u
r
r
)
;

G
r
a
p
h
.
a
d
d
E
d
g
e
s
(
l
o
c
k
s
,
o
b
j
)
;

G
r
a
p
h
.
f
i
n
d
C
y
c
l
e
s
(
)
;

T
h
r
e
a
d
s
.
a
d
d
L
o
c
k
(
c
u
r
r
,
o
b
j
)
;

} w
h
e
n
e
n
d
o
f
s
y
n
c
h
r
o
n
i
z
e
(
o
b
j
)
{

T
h
r
e
a
d
s
.
r
e
m
o
v
e
(
c
u
r
r
,
o
b
j
)
;

}
}

D
at

a
R

ac
es

A
da

ta
ra

ce
oc

cu
rs

w
he

n
tw

o
th

re
ad

s
•A

cc
es

s
a

sh
ar

ed
va

ri
ab

le
,

•A
tl

ea
st

on
e

ac
ce

ss
is

a
w

ri
te

,a
nd

•N
o

m
ec

ha
ni

sm
is

us
ed

to
pr

ev
en

ts
im

ul
ta

ne
ou

s
ac

ce
ss

.

A
da

ta
ra

ce
oc

cu
rs

w
he

n
tw

o
th

re
ad

s
•A

cc
es

s
a

sh
ar

ed
va

ri
ab

le
,

•A
tl

ea
st

on
e

ac
ce

ss
is

a
w

ri
te

,a
nd

•N
o

m
ec

ha
ni

sm
is

us
ed

to
pr

ev
en

ts
im

ul
ta

ne
ou

s
ac

ce
ss

.

x
=

x
+

1
x

=
x

+
1

x:
0

T
hr

ea
d

1
Sh

ar
ed

va
ri

ab
le

T
hr

ea
d

2

E
xa

m
pl

e
So

lu
ti

on
s:

m
on

ito
rs

,s
em

ap
ho

re
s,

…

R
es

ul
ta

ft
er

bo
th

up
da

te
s

:2
…

or
m

ay
be

1

v
1
.
a
d
d
(
v
2
)

v
1
=
n
e
w
V
a
l
u
e
(
)
;

v
2
.
a
d
d
(
v
1
)

c
l
a
s
s
V
a
l
u
e
{

i
n
t
x
=
1
;

v
o
i
d
a
d
d
(
V
a
l
u
e
v
)
{
x
=
x
+
v
.
g
e
t
(
)
;
}

i
n
t
g
e
t
(
)
{
r
e
t
u
r
n
x
;
}

}c
l
a
s
s
V
a
l
u
e
{

i
n
t
x
=
1
;

v
o
i
d
a
d
d
(
V
a
l
u
e
v
)
{
x
=
x
+
v
.
g
e
t
(
)
;
}

i
n
t
g
e
t
(
)
{
r
e
t
u
r
n
x
;
}

}

Ja
va

P
ro

g
ra

m
w

it
h

D
at

ar
ac

e

v
2
=
n
e
w
V
a
l
u
e
(
)
;

T
hr

ea
d

T
1

T
hr

ea
d

T
2

F
o

r
E

ac
h

V
ar

ia
b

le
:

A
L

o
ck

se
t

an
d

a
S

ta
te

m
ac

h
in

e

no
tu

se
d

ex
cl

us
iv

e

sh
ar

ed

sh
ar

ed
m

od
ifi

ed

w
r

rd
(n

ew
th

re
ad

)
rd

,w
r

(f
irs

tt
hr

ea
d)

rd

w
r

(n
ew

th
re

ad
)

w
r

rd
,w

r

=
no

ac
tio

n

=
re

fin
em

en
t

=
al

so
w

ar
ni

ng
s

{…
se

to
f

pr
ot

ec
tin

g
lo

ck
s

…
}

E
ra

se
r

al
go

ri
th

m
(C

om
pa

q)

A
p

p
ly

in
g

A
O

P
a
s
p
e
c
t
D
a
t
a
r
a
c
e
D
e
t
e
c
t
i
o
n
{

w
h
e
n
s
y
n
c
h
r
o
n
i
z
e
(
o
b
j
)
{

T
h
r
e
a
d
c
u
r
r
=
T
h
r
e
a
d
.
c
u
r
r
e
n
t
T
h
r
e
a
d
(
)
;

T
h
r
e
a
d
s
.
a
d
d
L
o
c
k
(
c
u
r
r
,
o
b
j
)
;

} w
h
e
n
e
n
d
o
f
s
y
n
c
h
r
o
n
i
z
e
(
o
b
j
)
{

T
h
r
e
a
d
c
u
r
r
=
T
h
r
e
a
d
.
c
u
r
r
e
n
t
T
h
r
e
a
d
(
)
;

T
h
r
e
a
d
s
.
r
e
m
o
v
e
(
c
u
r
r
,
o
b
j
)
;

} w
h
e
n
a
c
c
e
s
s
t
o
(
v
a
r
,
i
s
W
r
i
t
e
)
{

T
h
r
e
a
d
c
u
r
r
=
T
h
r
e
a
d
.
c
u
r
r
e
n
t
T
h
r
e
a
d
(
)
;

S
t
a
t
e
m
a
c
h
i
n
e
.
u
p
d
a
t
e
(
c
u
r
r
,
v
a
r
,
i
s
W
r
i
t
e
)
;

S
t
a
t
e
m
a
c
h
i
n
e
.
c
h
e
c
k
E
m
p
t
y
n
e
s
s
(
v
a
r
)
;

}
}

V
al

id
at

in
g

E
xe

cu
ti

o
n

T
ra

ce
s

A
g

ai
n

st
U

se
r

R
eq

u
ir

em
en

ts

a
s
p
e
c
t
C
h
e
c
k
R
e
q
u
i
r
e
m
e
n
t
s
{

w
h
e
n
(
C
L
O
S
E
D

a
n
d

n
o
t

p
r
e
v
i
o
u
s
l
y
D
O
_
C
L
O
S
E
)
{

R
e
p
o
r
t
(
“
S
y
s
t
e
m
c
l
o
s
e
d
b
y
i
t
s
e
l
f
”
)
;

} w
h
e
n
n
o
t
(
D
O
_
C
L
O
S
E
i
m
p
l
i
e
s

e
v
e
n
t
u
a
l
l
y
(
2
0
)
C
L
O
S
E
D
)
{

R
e
p
o
r
t
(
“
S
y
s
t
e
m
d
i
d
n
o
t
c
l
o
s
e
”
)
;

}
}

C
l
o
s
e
S
y
s
t
e
m
(
)
;

/
/
r
e
p
a
i
r

E
xp

lo
re

S
ch

ed
u

lin
g

�
S

im
p

le
ex

am
p

le
:

as
su

m
e

th
at

al
lv

ar
ia

b
le

ac
ce

ss
es

ar
e

p
ro

te
ct

ed
w

it
h

lo
ck

s.
�

In
se

rt
a

ca
ll

o
f

a
ra

n
d

o
m

iz
ed

yi
el

d
st

at
em

en
t

in
fr

o
n

t
o

f
al

ls
yn

ch
ro

n
iz

at
io

n
st

at
em

en
ts

an
d

ca
lls

o
f

sy
n

ch
ro

n
iz

ed
m

et
h

o
d

s.
�

T
h

is
w

ill
ca

u
se

th
e

sc
h

ed
u

le
r

to
ra

n
d

o
m

ly
m

ak
e

a
co

n
te

xt
sw

it
ch

w
h

en
ev

er
a

lo
ck

is
ta

ke
n

.T
h

is
m

ay
b

e
u

se
d

,f
o

r
ex

am
p

le
,t

o
re

ve
al

d
ea

d
lo

ck
s.

R
el

at
ed

w
o

rk

�
D

e
V

o
ld

er
et

al
.m

et
ap

ro
g

ra
m

m
in

g
�

A
O

P
th

ro
u

g
h

p
ro

g
ra

m
tr

an
sf

o
rm

at
io

n
–

C
o

lc
u

m
b

et
,F

ra
d

et
an

d
S

u
d

h
o

lt
–

S
ch

o
n

g
er

et
al

.X
M

L
tr

an
sf

o
rm

at
io

n
–

S
ki

p
p

er
ku

�
N

el
so

n
et

al
.c

o
n

ce
rn

-l
ev

el
fo

u
n

d
at

io
n

al
co

m
p

o
si

ti
o

n
o

p
er

at
o

rs
:

co
rr

es
p

o
n

d
en

ce
,

b
eh

av
io

ra
ls

em
an

ti
cs

an
d

b
in

d
in

g
�

W
al

ke
r

an
d

M
u

rp
h

y
o

n
ev

en
ts

as
jo

in
p

o
in

ts

C
o

n
cl

u
d

in
g

re
m

ar
ks

�
P

re
se

n
te

d
–

A
O

P
–

O
IF

,a
n

A
O

P
sy

st
em

–
E

ve
n

t-
b

as
ed

q
u

an
ti

fi
ed

ap
p

ro
ac

h
to

A
O

P
•

D
ev

el
o

p
in

g
an

en
vi

ro
n

m
en

t
fo

r
ex

p
er

im
en

ti
n

g
w

ith
A

O
P

la
n

g
u

ag
es

(D
S

L
fo

r
A

O
P

)

Vi
su

al
iz

at
io

n
of

So
ft

w
ar

e
an

d
Ac

ti
vi

ty

Pa
ul

 D
ou

ris
h

In
st

itu
te

 f
or

 S
of

tw
ar

e
R
es

ea
rc

h
U

C
Ir

vi
ne

jp
d@

ic
s.

uc
i.e

du

N
AS

A
AR

C,
 A

ug
us

t
20

02

w
ha

t w
e

al
re

ad
y

kn
ow

•
fr

om
 s

tu
di

es
 o

f
so

ft
w

ar
e

de
ve

lo
pm

en
t

–
co

m
pl

ex
ity

 o
f

ta
sk

 a
nd

 in
te

ra
ct

io
n

–
th

e
im

pa
ct

 o
f

di
st

an
ce

–
co

m
pl

ex
ity

 o
f

in
te

rd
ep

en
de

nc
e

•
fr

om
 s

tu
di

es
 o

f
co

lla
bo

ra
tio

n
–

fo
rm

al
 a

nd
 in

fo
rm

al
–

th
e

ro
le

 o
f

aw
ar

en
es

s
•

qu
al

ita
tiv

e
un

de
rs

ta
nd

in
gs

 o
f

th
e

ac
tio

ns
 o

f
ot

he
rs

•
pr

ov
id

es
 a

 c
on

te
xt

 f
or

 y
ou

r
ow

n
ac

tio
ns

ap
pr

oa
ch

•
vi

su
al

 a
pp

ro
ac

he
s

–
co

gn
iti

ve
 -

>
 p

er
ce

pt
ua

l
–

fo
cu

s
on

 a
rt

ifa
ct

s
ra

th
er

 t
ha

n
pr

oc
es

se
s

•
th

eo
re

tic
al

 b
ac

kg
ro

un
d

–
th

e
ex

pe
rie

nc
e

of
 c

om
pu

ta
tio

n
•

m
ak

in
g

co
m

pu
ta

tio
n

“p
re

se
nt

”

–
em

bo
di

ed
 in

te
ra

ct
io

n
•

in
te

ra
ct

io
n

as
 a

n
em

bo
di

ed
 p

ra
ct

ic
e

•
di

re
ct

ne
ss

 a
nd

 e
ng

ag
em

en
t

•
tw

o
pr

oj
ec

ts
:

se
es

of
t

an
d

va
vo

om

se
es

of
t

•
cs

cw
 r

es
ea

rc
h

fo
cu

s
on

 a
w

ar
en

es
s

–
pa

ss
iv

e
un

de
rs

ta
nd

in
g

of
 t

he
 a

ct
iv

ity
 o

f
ot

he
rs

•
tr

yi
ng

 t
o

un
de

rs
ta

nd
 “

aw
ar

en
es

s
in

 t
he

 la
rg

e”
–

la
rg

e-
sc

al
e,

 d
is

tr
ib

ut
ed

 s
of

tw
ar

e
de

ve
lo

pm
en

t
–

in
 la

rg
e

pr
oj

ec
ts

, t
he

 c
od

eb
as

e
is

 t
he

 a
rt

ifa
ct

–
aw

ar
en

es
s

of
 c

ha
ng

es
 in

 t
he

 a
rt

ifa
ct

–
aw

ar
en

es
s

of
 t

he
 a

ct
io

ns
 o

f
ot

he
rs

•
se

es
of

t
–

ad
op

te
d

fr
om

 w
or

k
of

 e
ic

k,
 w

ill
s,

 e
t

al
.

–
vi

ew
 t

he
 a

ct
iv

ity
 in

 c
vs

 r
ep

os
ito

rie
s

se
es

of
t

se
es

of
t

se
es

of
t

va
vo

om

•
in

te
rf

ac
e

ab
st

ra
ct

io
ns

 h
id

e
m

ec
ha

ni
sm

–
“f

ol
de

rs
”

ar
e

fo
ld

er
s

w
he

th
er

 lo
ca

l o
r

ne
tw

or
ke

d

•
bu

t
m

ec
ha

ni
sm

 is
 h

ow
 w

e
un

de
rs

ta
nd

 t
he

 w
or

ld
–

un
de

rs
ta

nd
in

gs
 o

f
ca

us
e

an
d

ef
fe

ct
–

te
m

po
ra

l d
yn

am
ic

 c
ou

pl
in

g
–

th
e

te
m

po
ra

l o
rg

an
iz

at
io

n
of

 s
oc

ia
l a

ct
io

n

•
m

an
ife

st
in

g
co

m
pu

ta
tio

n
–

ho
w

 t
o

gi
ve

 p
eo

pl
e

a
pi

ct
ur

e
of

 w
ha

t’s
 h

ap
pe

ni
ng

?

va
vo

om

•
in

iti
al

 e
xp

lo
ra

tio
n:

 v
av

oo
m

–
fo

cu
s

on
 n

ov
ic

e
pr

og
ra

m
m

er
s

•
w

e
un

de
rs

ta
nd

 t
he

 m
od

el
s

in
 t

er
m

s
of

 w
hi

ch
 t

o
ex

pl
ai

n
•

ve
st

ed
 in

te
re

st
 in

 f
in

di
ng

 o
ut

 w
ha

t’s
 g

oi
ng

 o
n

•
th

er
e’

s
pl

en
ty

 o
f

th
em

 ly
in

g
ar

ou
nd

–
va

vo
om

 is
 t

he
 v

is
ua

l v
irt

ua
l m

ac
hi

ne
•

vi
su

al
iz

e
ja

va
 p

ro
gr

am
 e

xe
cu

tio
n

•
dy

na
m

ic
, r

ea
l-t

im
e

vi
su

al
iz

at
io

ns
•

un
m

od
ifi

ed
 c

la
ss

 f
ile

s

vv
m

Ja
va

vm
ux

vi
z1

vi
z3

vi
z2

va
vo

om

va
vo

om

va
vo

om

va
vo

om

va
vo

om

•
va

vo
om

 is
 a

n
ea

rly
 t

ec
hn

ic
al

 e
xp

lo
ra

tio
n

–
th

e
fo

cu
s

on
 p

ro
gr

am
m

er
s

is
 a

 h
ac

k
•

bu
t

co
nv

en
ie

nt
…

 a
s

lo
ng

 a
s

th
ey

 h
av

e
th

e
rig

ht
 p

ro
gr

am
s

–
a

m
or

e
in

te
re

st
in

g
st

ra
te

gy
 is

 t
o:

•
fo

cu
s

on
 e

nd
 u

se
rs

•
fo

cu
s

on
 m

or
e

ab
st

ra
ct

 v
is

ua
lis

at
io

ns
•

fo
cu

s
on

 m
or

e
sp

ec
ia

lis
ed

 t
as

ks
–

cu
rr

en
tly

 e
xp

lo
rin

g
ne

tw
or

k
se

cu
rit

y

co
nc

lu
si

on
s

•
sy

st
em

 s
up

po
rt

 f
or

 in
fo

rm
al

 in
te

ra
ct

io
n

–
no

n
pr

oc
es

s-
ce

nt
ric

 c
ol

la
bo

ra
tio

n
–

qu
al

ita
tiv

e
un

de
rs

ta
nd

in
gs

 o
f

•
so

ft
w

ar
e

be
ha

vi
or

•
co

lla
bo

ra
tiv

e
ac

tiv
ity

•
ex

pl
oi

tin
g

so
ft

w
ar

e
as

 a
rt

ifa
ct

–
so

ft
w

ar
e

as
 p

rim
ar

y
co

or
di

na
tiv

e
re

so
ur

ce
–

di
re

ct
ne

ss
 a

nd
 m

al
le

ab
ili

ty
•

op
en

 q
ue

st
io

ns
–

in
te

gr
at

io
n

w
ith

 p
ra

ct
ic

e
–

ba
la

nc
e

be
tw

ee
n

tr
an

sl
uc

en
ce

 a
nd

 d
is

tr
ac

tio
n

–
de

m
on

st
ra

tio
n

of
 t

he
or

et
ic

al
 a

pp
ro

ac
h

Ex
pl

or
in

g
th

e
R
el

at
io

ns
hi

p
be

tw
ee

n
Pr

oj
ec

t
Se

le
ct

io
n

an
d

R
eq

ui
re

m
en

ts
 A

na
ly

si
s

M
ar

k
Be

rg
m

an
, G

lo
ria

 M
ar

k
In

fo
rm

at
io

n
an

d
Co

m
pu

te
r

Sc
ie

nc
e

D
ep

t.
U

ni
ve

rs
ity

 o
f

Ca
lif

or
ni

a,
 I

rv
in

e
m

be
rg

m
an

@
ic

s.
uc

i.e
du

, g
m

ar
k@

ic
s.

uc
i.e

du

In
iti

al
 P

ro
je

ct
 F

or
m

at
io

n
�

Fi
rs

t,
 P

ro
je

ct
 S

el
ec

tio
n

�
D

et
er

m
in

e
pr

oj
ec

t
ch

oi
ce

s
�

Ch
oo

se
 a

 p
ro

je
ct

 t
o

fu
nd

 a
nd

 d
ev

el
op

�
Th

en
, R

eq
ui

re
m

en
ts

 A
na

ly
si

s
�

D
et

er
m

in
in

g
st

ak
eh

ol
de

rs
’ w

an
ts

, n
ee

ds
, a

nd
co

ns
tr

ai
nt

s
fo

r
a

pr
oj

ec
t

�
R
eq

ui
re

m
en

ts
 A

na
ly

si
s

tr
ad

iti
on

al
ly

 f
ol

lo
w

s
Pr

oj
ec

t
Se

le
ct

io
n

�
H

ow
 d

oe
s

Pr
oj

ec
t

Se
le

ct
io

n
re

la
te

 t
o

R
eq

ui
re

m
en

ts
 A

na
ly

si
s?

�
Pr

oj
ec

t
Se

le
ct

io
n

de
ci

si
on

s
fr

am
e

su
bs

eq
ue

nt
R
eq

ui
re

m
en

ts
 A

na
ly

si
s

R
es

ea
rc

h
Q

ue
st

io
ns

�
In

 p
ra

ct
ic

e,
 d

oe
s

th
e

or
de

r
of

 f
irs

t
de

te
rm

in
in

g
pr

oj
ec

t
ch

oi
ce

s,
 m

ak
in

g
pr

oj
ec

t
se

le
ct

io
n

an
d

th
en

 p
er

fo
rm

in
g

re
qu

ire
m

en
ts

an
al

ys
is

 h
ol

d?
�

If
 n

ot
, w

ha
t

ar
e

po
ss

ib
le

 p
ro

ce
du

ra
l

re
la

tio
ns

hi
ps

 b
et

w
ee

n
pr

oj
ec

t
ch

oi
ce

co
ns

tr
uc

tio
n,

 p
ro

je
ct

 s
el

ec
tio

n
an

d
re

qu
ire

m
en

ts
 a

na
ly

si
s?

�
H

ow
 a

re
 t

he
y

si
m

ila
r

or
 d

iff
er

en
t

to
 c

ur
re

nt
re

qu
ire

m
en

ts
 a

na
ly

si
s

vi
ew

s?

R
es

ea
rc

h
M

et
ho

ds
�

Pr
oj

ec
t

Se
le

ct
io

n
an

d
R
eq

ui
re

m
en

ts
 A

na
ly

si
s

ha
ve

 b
ee

n
st

ud
ie

d
in

di
vi

du
al

ly
, b

ut
 n

ot
to

ge
th

er
�

Pr
oj

ec
t

Se
le

ct
io

n
ha

s
be

en
 e

xa
m

in
ed

em
pi

ric
al

ly
�

Al
m

os
t

no
 in

 s
itu

Re
qu

ire
m

en
ts

 A
na

ly
si

s
st

ud
ie

s

�
Ap

pl
y

Et
hn

og
ra

ph
ic

M
et

ho
ds

 t
o

st
ud

y
in

iti
al

pr
oj

ec
t

fo
rm

at
io

n
in

 s
itu

�
5

m
on

th
s

(2
-3

 t
im

es
w

ee
kl

y)
 o

f
on

 s
ite

pa
rt

ic
ip

an
t

ob
se

rv
at

io
n

�
46

 in
di

vi
du

al
 s

em
i-

st
ru

ct
ur

ed
 in

te
rv

ie
w

s
an

d
34

 s
em

i-f
or

m
al

 a
nd

fo
rm

al
 g

ro
up

 m
ee

tin
gs

�
5

de
ta

ile
d

te
ch

ni
ca

l
pr

es
en

ta
tio

ns
�

H
un

dr
ed

s
of

 r
el

at
ed

do
cu

m
en

ts

Th
e

Fi
el

d
Si

te
�

Th
e

N
ew

 M
ill

en
ni

um
 P

ro
gr

am
 (

N
M

P)
 a

t
th

e
Je

t
Pr

op
ul

si
on

 L
ab

or
at

or
y

(J
PL

):
 A

 g
ro

up
 in

 a
 N

AS
A

(N
at

io
na

l A
er

on
au

tic
s

an
d

Sp
ac

e
Ad

m
in

is
tr

at
io

n)
re

se
ar

ch
 la

bo
ra

to
ry

 lo
ca

te
d

in
 S

ou
th

er
n

Ca
lif

or
ni

a
�

Th
e

N
M

P
pr

og
ra

m
’s

 m
is

si
on

:
Sp

ac
e

fli
gh

t
va

lid
at

e
ne

w
te

ch
no

lo
gi

es
 t

ha
t

ar
e

de
em

ed
 im

po
rt

an
t

to
 N

AS
A’

s
fu

tu
re

 s
ci

en
ce

 m
is

si
on

s
�

Th
is

 in
cl

ud
es

 m
at

ur
in

g
ne

w
 t

ec
hn

ol
og

ie
s

(T
RL

 3
 �

 T
RL

 7
)

�
N

M
P

Se
le

ct
io

n
Pr

oc
es

s:
 C

ho
os

in
g

w
hi

ch
 n

ew
te

ch
no

lo
gi

es
 t

o
va

lid
at

e
�

Ea
ch

 n
ew

 t
ec

hn
ol

og
y

ca
nd

id
at

e
ca

n
be

co
m

e
th

e
ba

si
s

of
 a

 n
ew

 p
ro

je
ct

 –
 a

 v
al

id
at

io
n

m
is

si
on

�
N

M
P

se
le

ct
io

n
pr

oc
es

s
is

 a
 h

ig
hl

y
de

ve
lo

pe
d

fo
rm

 o
f i

n
si

tu
 in

iti
al

pr
oj

ec
t

fo
rm

at
io

n

As
si

st
 a

nd
 p

ro
m

ot
e

th
e

te
ch

no
lo

gy
 a

nd
 p

ro
je

ct
se

le
ct

io
n

pr
oc

es
s

Bu
ild

er
s

of
 n

ew
 a

er
os

pa
ce

re
la

te
d

te
ch

no
lo

gi
es

Pl
an

ne
rs

, d
es

ig
ne

rs
,

sc
ie

nt
is

ts
, b

ui
ld

er
s,

 a
nd

m
an

ag
er

s
of

 s
ci

en
ce

m
is

si
on

 s
pa

ce
 s

ys
te

m
s

N
AS

A
up

pe
r

le
ve

l d
ec

is
io

n
m

ak
er

s
w

ith
 t

he
 a

ut
ho

rit
y

to
 a

ss
ig

n
or

ga
ni

za
tio

na
l

re
so

ur
ce

s
to

 im
pl

em
en

t
th

ei
r

de
ci

si
on

D
es

cr
ip

ti
on

W
an

t
ne

w
 t

ec
hn

ol
og

ie
s

to
 s

pa
ce

 f
lig

ht
 v

al
id

at
e

W
an

t
to

 b
al

an
ce

 a
nd

 s
at

is
fy

 t
he

 n
ee

ds
 o

f
th

e
ad

m
in

is
tr

at
or

s
an

d
th

em
es

,
w

hi
le

 v
al

id
at

in
g

as
 m

an
y

pr
ov

id
er

s’
 t

ec
hn

ol
og

ie
s

as
 p

os
si

bl
e

Co
ns

tr
ai

ne
d

by
 a

llo
tt

ed
 p

ro
je

ct
 c

yc
le

 b
ud

ge
ts

 a
nd

 g
iv

en
 d

ea
dl

in
es

N
M

P
Te

ch
no

lo
gi

st
s

H
av

e
ve

ry
 p

re
ci

se
 c

on
st

ra
in

ts
 a

nd
 u

sa
ge

 g
ui

de
lin

es
 w

hi
le

 p
ro

vi
di

ng
 s

pe
ci

fic
,

se
m

i-c
us

to
m

iz
ab

le
 t

ec
hn

ic
al

 fu
nc

tio
na

lit
y

W
an

t
th

ei
r

te
ch

no
lo

gi
es

 s
pa

ce
 f

lig
ht

 v
al

id
at

ed
, l

ik
el

y
cr

ea
tin

g
a

lo
ng

 t
er

m
re

ve
nu

e
st

re
am

, w
hi

le
 m

in
im

iz
in

g
te

ch
no

lo
gy

 d
ev

el
op

m
en

t
co

st
s

Co
ns

tr
ai

ne
d

by
 V

AL
 a

w
ar

d
am

ou
nt

s
an

d
pr

oj
ec

t
de

ad
lin

es

Te
ch

no
lo

gy
Pr

ov
id

er
s

Te
ch

ni
ca

lly
 e

xp
lic

it
an

d
pr

ec
is

e
in

 t
he

ir
ne

ed
s

an
d

co
ns

tr
ai

nt
s

W
an

t
ne

w
 t

ec
hn

ol
og

y
th

at
 w

ou
ld

 lo
w

er
 f

ut
ur

e
sc

ie
nc

e
m

is
si

on
 s

ys
te

m
 c

os
ts

or
 e

na
bl

e
ex

pe
rim

en
ts

Co
ns

tr
ai

ne
d

by
 t

ig
ht

 b
ud

ge
ts

 a
nd

 p
ro

je
ct

 d
ea

dl
in

es

M
is

si
on

Th
em

es

W
an

ts
, n

ee
ds

 a
nd

 c
on

st
ra

in
ts

 t
en

d
to

 b
e

ge
ne

ra
l,

so
m

ew
ha

t
va

gu
e,

 a
nd

us
ua

lly
 c

on
fli

ct
in

g
W

an
t

br
oa

dl
y

ap
pl

ic
ab

le
 a

rr
ay

 o
f

ne
w

 t
ec

hn
ol

og
ie

s
to

 b
ec

om
e

av
ai

la
bl

e
fo

r
N

AS
A

w
id

e
sc

ie
nc

e
m

is
si

on
 u

sa
ge

, w
hi

le
 m

in
im

izi
ng

 c
os

t
Co

ns
tr

ai
ne

d
by

 b
ud

ge
ta

ry
 a

nd
 p

ol
ic

y
gu

id
el

in
es

 f
ro

m
 t

he
 U

S
Co

ng
re

ss

N
AS

A
Ad

m
in

is
tr

at
or

s

G
en

er
al

 R
eq

u
ir

em
en

ts
 P

ro
fi

le
La

b
R

ol
esRo

le
s

an
d

R
eq

ui
re

m
en

ts

Ro
le

s
an

d
Pr

oj
ec

t
Se

le
ct

io
n

On
e

of
 N

 C
an

di
da

te
Pr

oj
ec

t P
la

ns
, P

ro
je

ct
Pl

an
 N

 is
 fo

r
Co

nc
ep

t N

On
e

of
 x

 C
om

pe
ti

ng
Te

ch
no

lo
gi

es
 fo

r
Co

nc
ep

t N
 fr

om
 P

ro
vi

de
r

iOn
e

of
 N

 C
om

pe
ti

ng
Ge

ne
ra

l S
ys

te
m

Ca
nd

id
at

es

On
e

of
 m

 N
M

P
Te

ch
no

lo
gi

st
s

On
e

of
 i

Te
ch

no
lo

gy
Pr

ov
id

er
s

On
e

of
 p

 M
is

si
on

 T
he

m
es

NA
SA

 A
dm

in
is

tr
at

or
s

La
b

Ro
le

Pr
oc

es
s

Ro
le

Pr
oj

ec
t S

tr
ea

m
NP i,N

,x

Co
nc

ep
t N

NM
P m

: P
ro

ce
ss

Ac
to

rs
/A

ge
nt

s

P i: T
ec

hn
ol

og
y

Pr
ov

id
er

s

TC
p:

Th
em

e
Cu

st
om

er
s

PO
: P

ro
ce

ss
Ow

ne
rs

/
Pr

in
ci

pa
ls

N
M

P 1

N
M

P
m

N
M

P 2

�
�
�

N
M

P
 T

e
ch

n
o

lo
g

is
ts

 (
N

M
P

)

�
�
�

T
e

ch
n

o
lo

g
y

P
ro

vi
d

e
rs

 (
P

)

C
o

n
ce

p
t

N

�
�
�

P
k,

N
,z

P
j,N

,2

P
i,N

,1

C
o

n
ce

p
t

B

�
�
�

C
o

n
ce

p
t

A

�
�
�

P
k,

A
,x

P
j,A

,2

P
i,A

,1

P
k,

B
,y

P
j,B

,2

P
i,B

,1

T
C

1

T
h

e
m

e
 C

u
st

o
m

e
rs

 (
T

C
)

T
C

p

T
C

2

�
�
�

N
A

S
A

A
d

m
in

is
tr

a
to

rs
(P

O
)

O
ve

rs
e

e
s

C
o

n
ce

p
t

A
C

u
st

o
m

e
rs

C
o

n
ce

p
t

B
C

u
st

o
m

e
r

C
o

n
ce

p
t

N
C

u
st

o
m

e
rs

P
ro

je
ct

 S
tr

ea
m

 A

P
ro

je
ct

 S
tr

ea
m

 B

P
ro

je
ct

 S
tr

ea
m

 N

�
�
�

In
tr

a-
Co

n
ce

pt
A

Win
n

er

In
tr

a-
C

on
ce

pt
B

Win
n

er

In
tr

a-
Co

n
ce

pt
N

Win
n

er

Pr
oj

ec
t

Se
le

ct
io

n
Pr

oc
es

s

P
ro

ce
ss

 S
te

ps

ti
m

e
(n

ot
 t

o
sc

al
e)

Co
nc

ep
t

R
eq

ui
re

m
en

ts
D

ef
in

ed

Te
ch

no
lo

gy
Ca

nd
id

at
e

Pr
op

os
al

s
So

lic
ite

d

Pr
op

os
al

s
Pe

er
R
ev

ie
w

ed

Pe
er

Re
vi

ew
Pa

ne
l

Sy
st

em
Pr

op
os

al
Se

le
ct

io
n

Pa
ne

l

Pr
oj

ec
t

Pl
an

D
ev

el
op

m
en

t
Pr

oj
ec

t
Re

vi
ew

Bo
ar

d

Fi
na

l
Pr

oj
ec

t
Se

le
ct

io
n

P
ro

je
ct

 S
tr

ea
m

s

A B N…

Se
le

ct
ed

Pr
oj

ec
t(

s)

…P A
,1

P A
,2

P A
,x

P A
,u … P A
,w

P A
,i

…P B
,1

P B
,2

P B
,y

P B
,p … P B
,s

P B
,j

…P N
,1

P N
,2

P N
,z

P N
,d … P N
,g

P N
,k•
~

9-
10

 m
o.

 p
er

 p
ro

je
ct

 s
el

ec
tio

n
cy

cl
e

•
6

m
o.

 u
se

d
in

 p
ro

je
ct

 p
la

n
de

ve
lo

pm
en

t

R
el

at
io

ns
hi

p
Be

tw
ee

n
Pr

oj
ec

t
Se

le
ct

io
n

an
d

R
eq

ui
re

m
en

ts
 A

na
ly

si
s

�
In

iti
al

 p
ro

je
ct

 s
tr

ea
m

s
(c

on
ce

pt
s)

 d
ef

in
ed

 b
y

Th
em

e
Cu

st
om

er
’s

 r
eq

ui
re

m
en

ts
�

Co
m

pe
tit

io
n

be
tw

ee
n

te
ch

no
lo

gy
 c

an
di

da
te

s
in

fo
rm

s
an

d
re

fin
es

 p
ro

je
ct

 s
tr

ea
m

 r
eq

ui
re

m
en

ts
�

Ea
rly

 id
en

tif
ic

at
io

n
of

 w
an

te
d

an
d

un
de

si
re

d
ex

is
tin

g
te

ch
no

lo
gi

ca
l

ca
pa

bi
lit

y,
 c

os
ts

 a
nd

 c
on

st
ra

in
ts

�
Te

ch
no

lo
gy

 s
el

ec
tio

n
fr

am
es

 p
ro

je
ct

 d
ef

in
iti

on
 a

nd
 t

ig
ht

en
s

pr
oj

ec
t

re
qu

ire
m

en
ts

�
Co

m
pe

tit
io

n
be

tw
ee

n
pr

oj
ec

t
st

re
am

s
al

so
 r

ef
in

es
ea

ch
 p

ro
je

ct
’s

 r
eq

ui
re

m
en

ts
�

Pr
oj

ec
t

le
ve

l r
eq

ui
re

m
en

ts
 a

re
 u

se
d

in
 p

ro
je

ct
 s

el
ec

tio
n

de
ci

si
on

,
es

pe
ci

al
ly

 n
eg

at
iv

e
re

qu
ire

m
en

ts

M
ul

tip
le

 P
ar

al
le

l C
om

pe
tit

iv
e

R
eq

ui
re

m
en

ts
 A

na
ly

si
s

(M
PC

R
A)

�
R
el

at
io

ns
hi

p
be

tw
ee

n
pr

oj
ec

t
ch

oi
ce

s,
 s

el
ec

tio
n

an
d

re
qu

ire
m

en
ts

 a
na

ly
si

s
is

 b
id

ire
ct

io
na

l,
no

t
un

id
ire

ct
io

na
l

�
Pr

oj
ec

ts
 c

re
at

ed
 a

nd
 s

el
ec

te
d

re
qu

ire
m

en
ts

�
Re

qu
ire

m
en

ts
 id

en
tif

ie
d

an
d

fr
am

ed
 p

ro
je

ct
s,

 a
nd

 in
fo

rm
ed

 p
ro

je
ct

se
le

ct
io

n

�
Fo

un
d

m
ul

tip
le

 p
ar

al
le

l c
om

pe
tit

iv
e

re
qu

ire
m

en
ts

pa
th

s,
 n

ot
 ju

st
 o

ne
�

Re
fu

te
s

tr
ad

iti
on

al
 r

eq
ui

re
m

en
ts

 a
na

ly
si

s
–

si
ng

le
 p

ro
je

ct
 p

at
h

�
O

ut
co

m
e

co
ul

d
be

 m
ul

tip
le

 p
ro

je
ct

s,
 a

s
op

po
se

d
to

 t
he

 t
ra

di
tio

na
l

as
su

m
pt

io
n

of
 o

ne

�
Ex

te
ns

iv
e,

 m
ul

ti-
st

ep
, w

el
l-d

oc
um

en
te

d,
 o

pe
n,

co
m

pe
tit

iv
e

pr
oc

es
s

bu
ilt

 c
on

se
ns

us
 f

or
 f

in
al

 p
ro

je
ct

se
le

ct
io

n

1

Th
e

Pa
st

 a
nd

 F
ut

ur
e

of
Po

st
do

c
A

fif
te

en
-m

in
ut

e
ov

er
vi

ew
 o

f
Po

st
do

c
an

d
w

he
re

 d
oc

um
en

t
co

lla
bo

ra
ti

on
 is

 h
ea

di
ng

.

2

Cu
rr

en
t P

os
td

oc
: F

ea
tu

re
s

•
do

cu
m

en
t s

ha
ri

ng
 u

si
ng

 a
ny

 w
eb

br
ow

se
r

•
co

m
pl

et
el

y
us

er
-m

an
ag

ed
 a

cc
es

s
co

nt
ro

l,
gr

ou
ps

, l
is

ts
•

pe
r-

do
cu

m
en

t a
cc

es
s

co
nt

ro
l

•
au

to
m

at
ic

 d
oc

um
en

t c
on

ve
rs

io
n

(M
S

Of
fic

e
->

 P
DF

)
•

in
te

gr
at

ed
 m

ai
lin

g
lis

ts
•

(s
im

pl
e)

 lo
ck

in
g/

ve
rs

io
ni

ng
•

ea
sy

-t
o-

us
e,

 fa
m

ili
ar

 u
se

r
in

te
rf

ac
e

3

Cu
rr

en
t P

os
td

oc
: U

sa
ge

•
De

ve
lo

pe
d

at
 A

m
es

 fo
r

th
e

Ne
w

M
ill

en
ni

um
 P

ro
gr

am
 s

ci
en

ti
st

s
in

 ’9
4,

re
-w

ri
tt

en
 in

 ’9
5

•
fr

ee
 fo

r
NA

SA
 a

nd
 N

AS
A

co
lla

bo
ra

to
rs

•
~4

50
0

ac
ti

ve
 a

cc
ou

nt
s (

~2
80

0
na

sa
.g

ov
)

•
23

5
us

er
s

lo
gg

ed
 in

 la
st

 w
ee

k
•

60
GB

 o
f d

at
a

•
~1

,0
00

 e
-m

ai
l m

es
sa

ge
s

la
st

 w
ee

k
•

1.
5

FT
E

de
ve

lo
pe

rs
, 1

.5
 F

TE
 u

se
r-

su
pp

or
t 4

Po
st

do
c

Fu
tu

re
:

Te
ch

no
lo

gi
es

In
te

gr
at

io
n

w
it

h
th

e
de

sk
to

p:
•

W
eb

DA
V

fo
r

“d
ra

g-
an

d-
dr

op
”

in
te

gr
at

io
n

in
to

 m
od

er
n

de
sk

to
ps

/a
pp

lic
at

io
ns

 (i
nc

lu
di

ng
 A

CL
,

DA
SL

, D
el

ta
V

pr
ot

oc
ol

s)
•

IM
AP

/N
NT

P
fo

r
e-

m
ai

l a
rc

hi
ve

 a
cc

es
s

•
m

ul
ti

-t
ie

r/
m

od
ul

ar
 a

rc
hi

te
ct

ur
e

•
em

ph
as

is
 o

n
st

an
da

rd
s-

ba
se

d
pr

og
ra

m
m

at
ic

 a
cc

es
s

fo
r

ap
pl

ic
at

io
n

in
te

gr
at

io
n

(W
eb

 S
er

vi
ce

s)

5

Po
st

do
c

Fu
tu

re
:

Op
po

rt
un

it
ie

s
•

la
rg

e
us

er
 b

as
e

•
la

rg
e

co
lle

ct
io

n
of

 a
 w

id
e

va
ri

et
y

of
 d

oc
um

en
ts

•
lo

ng
-t

er
m

 h
is

to
ri

ca
l a

rc
hi

ve
•

w
ill

in
g

gu
in

ea
 p

ig
s

•
NA

SA
-o

w
ne

d
da

ta
ba

se
, s

ys
te

m
,

so
ft

w
ar

e
•

ho
pi

ng
 to

 w
or

k
w

it
h

m
is

si
on

(s
)

6

Ob
lig

at
or

y
Sc

re
en

 S
ho

t

A
Fi

el
d

St
ud

y
of

 C
ol

la
bo

ra
ti

ve
So

ft
w

ar
e

De
ve

lo
pm

en
t T

ea
m

s
(I

ni
ti

al
 R

es
ul

ts
)

Cl
ei

ds
on

 d
e

So
uz

a1,
2

Jo
hn

 P
en

ix
2

M
aa

rt
en

 S
ie

rh
ui

s2

1 U
C,

 Ir
vi

ne
 G

ra
du

at
e

St
ud

en
t a

nd
NA

SA
/A

m
es

 S
um

m
er

 In
te

rn
2 N

AS
A/

Am
es

 R
es

ea
rc

h
Ce

nt
er

Ov
er

vi
ew

�
Th

e
Se

tt
in

g:
 C

TA
S

�
M

et
ho

do
lo

gy
�

In
it

ia
l F

in
di

ng
s

�
Fu

tu
re

 W
or

k
�

Co
nc

lu
si

on
s

Th
e

Se
tt

in
g:

Ce
nt

er
 T

RA
CO

N
Au

to
m

at
io

n
Sy

st
em

(C
TA

S)
.

�
A

su
it

e
of

 a
ut

om
at

io
n

to
ol

s
de

ve
lo

pe
d

at
NA

SA
/A

m
es

 d
es

ig
ne

d
to

 h
el

p
ai

r
tr

af
fic

co
nt

ro
lle

rs
 to

 m
an

ag
e

ai
r

tr
af

fic
 fl

ow
 a

t
la

rg
e

ai
rp

or
ts

.

�
In

 1
99

1
it

 w
as

 c
ho

se
n

by
 th

e
FA

A
as

 th
e

fu
tu

re
 a

ut
om

at
io

n
sy

st
em

 fo
r

th
e

te
rm

in
al

 a
re

a.

�
Si

nc
e

th
en

 it
 h

as
 b

ee
n

us
ed

 in
 6

 d
iff

er
en

t
ai

rp
or

ts
.

Th
e

Se
tt

in
g:

Ce
nt

er
 T

RA
CO

N
Au

to
m

at
io

n
Sy

st
em

(C
TA

S)
.

�
CT

AS
 is

 c
om

po
se

d
of

 1
0

di
ffe

re
nt

 to
ol

s.
�

So
ur

ce
 c

od
e:

�
C

an
d

C+
+.

 G
UI

’s
 a

re
 b

ei
ng

 p
or

te
d

to
 J

av
a.

�
 1

,0
00

,0
00

 L
OC

 .
�

De
ve

lo
pm

en
t T

ea
m

:
�

Nu
m

be
r

of
 d

ev
el

op
er

s:
 3

1.
�

Tw
o

gr
ou

ps
: V

 &
V

an
d

De
ve

lo
pe

rs
.

�
W

or
k

in
 p

ro
ce

ss
es

, i
ns

te
ad

 o
f t

oo
ls

M
et

ho
do

lo
gy

�
Fi

el
d

St
ud

y
�

Fi
ve

 w
ee

ks
 in

 t
he

 f
ie

ld
 u

nt
il

no
w

, f
ou

r
m

or
e

w
ee

ks
 t

o
go

.

�
Da

ta
 C

ol
le

ct
io

n
�

Pa
rt

ic
ip

an
t O

bs
er

va
ti

on
�

“S
ha

do
w

in
g”

 d
ev

el
op

er
s

w
it

h
di

ffe
re

nt
 r

ol
es

.
�

In
te

rv
ie

w
 T

ec
hn

iq
ue

s
�

4
in

te
rv

ie
w

s
un

ti
l

no
w

 r
an

gi
ng

fr

om

45

to

12
0

m
in

ut
es

.

�
Da

ta
 C

ol
le

ct
ed

�
Se

ve
ra

l a
rt

ifa
ct

s
co

lle
ct

ed
�

W
ha

t
de

ve
lo

pe
rs

 d
o,

 h
ow

,
w

he
n,

 w
he

re
 t

he
y

do
,

an
d

m
os

t i
m

po
rt

an
tl

y
W

HY
 t

he
y

do
 it

.

In
it

ia
l R

es
ul

ts

�
M

os
t i

m
po

rt
an

t t
oo

ls
:

�
co

nf
ig

ur
at

io
n

m
an

ag
em

en
t;

an
d

�
bu

g
tr

ac
ki

ng
 s

ys
te

m
.

�
Th

es
e

to
ol

s
pr

ov
id

e
sh

ar
ed

 r
ep

os
it

or
ie

s
fo

r
so

ur
ce

 c
od

e
an

d
ch

an
ge

 r
eq

ue
st

s.
�

Th
e

CM
 a

nd
 t

he
 b

ug
 t

ra
ck

in
g

to
ol

 p
ro

vi
de

au
to

m
at

io
n

of
 s

om
e

ta
sk

s
lik

e:
�

Ve
rs

io
n

co
nt

ro
l,

id
en

ti
fic

at
io

n
of

re

le
as

es
,

re
po

rt
 g

en
er

at
io

n,
 a

nd
 s

o
on

.

In
it

ia
l R

es
ul

ts

�
De

ve
lo

pe
rs

ad

op
t

co
nv

en
ti

on
s

to
us

e
th

es
e

to
ol

s
so

 t
ha

t
th

ey
 u

se
rs

m
ig

ht
 c

oo
pe

ra
te

 e
ffe

ct
iv

el
y.

�
Ex

am
pl

es
:

�
Na

m
in

g
co

nv
en

ti
on

s
fo

r
cr

ea
ti

ng
br

an
ch

s a
nd

 v
ie

w
s t

o
w

or
k

w
it

h
th

e
CM

to
ol

;
�

Pr
io

ri
ti

es
 a

nd
 s

ev
er

it
ie

s
of

 t
he

 b
ug

s
in

th
e

bu
g

tr
ac

ki
ng

 to
ol

.

In
it

ia
l R

es
ul

ts

�
Ho

w
ev

er
,

th
e

co
nv

en
ti

on
s

ad
op

te
d

by

th
e

de
ve

lo
pe

rs

ar
e

no
t

au
to

m
at

ed
.

�
Ex

am
pl

es
:

�
Pr

ev
io

us
 n

am
in

g
co

nv
en

ti
o

n;
�

E-
m

ai
l

se
nt

 b
y

de
ve

lo
pe

rs
 r

ig
ht

be
fo

re
 th

e
ch

ec
k-

in
.

In
it

ia
l R

es
ul

ts

�
Im

po
rt

an
t

co
m

m
un

ic
at

io
n

us
in

g
e-

m
ai

l:
�

Is

it

th
e

m
os

t
ef

fe
ct

iv
e

to
ol

to

pr

ov
id

e
no

ti
fic

at
io

ns
?

�
On

 t
he

 o
th

er
 h

an
d,

 e
-m

ai
l

is
 a

ls
o

us
ed

 a
s

a
le

ar
ni

ng
 to

ol
 b

y
ne

w
 d

ev
el

op
er

s,
 s

o
th

at
 t

he
y

ca
n

be
 a

w
ar

e
w

ho
 i

s
re

sp
on

si
bl

e
fo

r
w

ha
t

pr
oc

es
s.

 T
hi

s
in

fo
rm

at
io

n
is

 l
at

er
 u

se
d

w
he

n
on

e
ha

s
to

 fi
x

a
bu

g
in

 th
at

 p
ro

ce
ss

.

Sh
or

t S
um

m
ar

y
of

 R
es

ul
ts

�
Co

or
di

na
ti

on
 u

si
ng

 C
M

 a
nd

 b
ug

tr
ac

ki
ng

�
Us

e
of

 C
on

ve
nt

io
ns

�
Co

m
m

un
ic

at
io

n
us

in
g

E-
m

ai
l

�
Pr

ob
le

m
at

ic
 in

 s
om

e
ca

se
s;

 b
ut

�
Pr

ov
id

es

aw
ar

en
es

s
of

ot

he
rs

w
or

k.
�

In
te

ns
e

Pa
ra

lle
l D

ev
el

op
m

en
t

Fu
tu

re
 W

or
k

�
Da

ta
 C

ol
le

ct
io

n
fo

r
3

m
or

e
w

ee
ks

.
�

An
al

ys
is

 o
f t

he
 d

at
a

�
Gr

ou
nd

ed
 T

he
or

y
�

Br
ah

m
s

m
ul

ti
-a

ge
nt

 m
od

el
�

Ul
ti

m
at

e
go

al
:

�
Id

en
ti

fy
 r

eq
ui

re
m

en
ts

 f
or

 t
ec

hn
ol

og
y

su
pp

or
t f

or
 th

is
 g

ro
up

.
�

If
ne

ce
ss

ar
y,

 d
ev

el
op

 th
is

 te
ch

no
lo

gy
.

Co
nc

lu
si

on
s

�
CT

AS
:

�
Su

cc
es

sf
ul

 p
ro

je
ct

 d
ev

el
op

ed
 a

t N
AS

A/
Am

es
.

�
M

et
ho

ds
�

In
it

ia
l r

es
ul

ts
�

Im
po

rt
an

t t
oo

ls
 u

se
d

by
 th

e
de

ve
lo

pe
rs

; a
nd

�
Pr

ob
le

m
s

w
it

h
th

es
e

to
ol

s

�
Fu

tu
re

 W
or

k

A
m

es
R

es
ea

rc
h

C
en

te
r

Ka
nn

a
Ra

ja
n

Co
lla

b/
SW

 E
ng

 W
S

8/
5/

02

Ho
w

 d
o

w
e

go
 w

he
re

 n
o

on
e

ha
s g

on
e

be
fo

re
?

Ka
nn

a
Ra

ja
n

Gr
ou

p
Le

ad
 S

pa
ce

cr
af

t A
ut

on
om

y
Au

to
no

m
y

an
d

Ro
bo

tic
s A

re
a

NA
SA

 A
m

es
 R

es
ea

rc
h

Ce
nt

er
(K

an
na

.R
aj

an
@

ar
c.

na
sa

.g
ov

)

A
m

es
R

es
ea

rc
h

C
en

te
r

Ka
nn

a
Ra

ja
n

Co
lla

b/
SW

 E
ng

 W
S

8/
5/

02

R
E

M
O

T
E

 A
G

E
N

T

E
X

P
E

R
IM

E
N

T

ht
tp

:/
/i

c.
ar

c.
na

sa
.g

ov
/p

ro
je

ct
s/

re
m

o
te

-a
ge

nt
/

D
ou

gl
as

 E
. B

er
na

rd
JP

L
St

ev
e

A
. C

hi
en

JP
L

Sc
ot

t D
av

ie
s

C
M

U
G

re
go

ry
 A

. D
or

ai
s

A
m

es
R

ic
ha

rd
 D

oy
le

JP
L

D
an

 D
vo

ra
k

JP
L

C
ha

rl
es

 F
ry

A
m

es
E

dw
ar

d
B

. G
am

bl
e

Jr
.

JP
L

E
ra

nn
 G

at
JP

L
B

ob
 K

an
ef

sk
y

A
m

es
R

on
 K

ee
si

ng
A

m
es

Ji
m

 K
ur

ie
n

A
m

es
G

uy
 K

. M
an

JP
L

W
ill

ia
m

 M
ill

ar
Am

es
S

un
il

 M
oh

an
A

m
es

P
au

l M
or

ris
A

m
es

N
ic

ol
a

M
us

ce
tt

ol
a

A
m

es
P

. P
an

du
ra

ng
 N

ay
ak

A
m

es
B

ar
ne

y
P

el
l

A
m

es
C

hr
is

ti
an

 P
la

un
t

A
m

es
G

re
g

R
ab

id
ea

u
JP

L
K

an
na

 R
aj

an
A

m
es

N
ic

ho
la

s
R

ou
qu

et
te

JP
L

S
co

tt
 S

aw
ye

r
A

m
es

R
ei

d
Si

m
m

on
s

C
M

U
B

en
ja

m
in

 S
m

ith
JP

L
G

re
gg

 S
w

ie
te

k
A

m
es

W
il

li
am

 T
ay

lo
r

A
m

es
Y

u-
W

en
 T

un
g

JP
L

M
ic

ha
el

 W
ag

ne
r

A
m

es
G

re
g

W
he

la
n

C
M

U
B

ri
an

 C
. W

il
li

am
s

A
m

es
D

av
id

 Y
an

JP
L

••
Re

m
ot

e
Ag

en
t E

xp
er

im
en

t M
ay

 1
7-

21
, 1

99
9

Re
m

ot
e

Ag
en

t E
xp

er
im

en
t M

ay
 1

7-
21

, 1
99

9
••

Re
m

ot
e

Ag
en

t o
n

DS
1

w
in

s
NA

SA
’s

 1
99

9
 R

em
ot

e
Ag

en
t o

n
DS

1
w

in
s

NA
SA

’s
 1

99
9

So

ft
w

ar
e

of
 th

e
Ye

ar
 A

w
ar

d
So

ft
w

ar
e

of
 th

e
Ye

ar
 A

w
ar

d ..

A
m

es
R

es
ea

rc
h

C
en

te
r

Ka
nn

a
Ra

ja
n

Co
lla

b/
SW

 E
ng

 W
S

8/
5/

02

M
AP

GE
N

fo
r

M
ER

Hi
gh

 L
ev

el
Ob

se
rv

at
io

n
Go

al
s

Ac
ti

vi
ty

Ed

it
or

Fu
lly

 S
pe

ci
fie

d
Ac

tiv
ity

 P
la

n

Se
qu

en
ce

Ge
ne

ra
to

r

P
la

nn
in

g
Sy

st
em

P
la

nn
in

g
Sy

st
em

Sc
ie

nc
e

Te
am

M
od

el
s

M
AP

GE
N

M
AP

GE
N

Al
an

 B
ab

a
JP

L
Jo

hn
 B

re
si

na
AR

C
Le

n
Ch

ar
es

t
JP

L
W

ill
 E

dg
in

gt
on

AR
C

Ar
i J

on
ss

on
AR

C
Ad

an
s K

o
JP

L
Bo

b
Ka

ne
fs

ky
AR

C
Pi

er
re

 M
al

da
gu

e
JP

L
Pa

ul
 M

or
ri

s
AR

C
Ka

nn
a

Ra
ja

n
AR

C

A
m

es
R

es
ea

rc
h

C
en

te
r

Ka
nn

a
Ra

ja
n

Co
lla

b/
SW

 E
ng

 W
S

8/
5/

02

Cu
rr

en
t D

ri
ve

rs

•
Sh

or
te

r
le

ad
 ti

m
es

 to
 d

es
ig

n,
 b

ui
ld

, t
es

t a
nd

 fl
y

•
De

ep
(e

r)
 sp

ac
e

m
is

si
on

s
•

M
or

e
co

m
pl

ex
it

y
–

Vi
si

ti
ng

 c
om

et
s

(C
ON

TO
UR

)
–

Lo
ng

 r
an

ge
 tr

av
er

se
s

o
n

M
ar

s
(M

ER
, M

SL
)

–
Di

st
ri

bu
te

d
Sp

ac
ec

ra
ft

 (L
IS

A,
 D

S3
, T

PF
)

•
M

or
e

sc
ie

nc
e

re
tu

rn
•

Ti
gh

te
r

bu
dg

et
s

•
Ne

w
 h

ar
dw

ar
e

ce
rt

ifi
ca

ti
on

 ta
ke

s
ti

m
e

•
So

ft
w

ar
e

Re
us

e
•

Ne
w

er
 (b

et
te

r?
) s

of
tw

ar
e

m
et

ho
do

lo
gi

es
•

Co
m

pl
ex

it
y

of
 s

of
tw

ar
e

ha
s

ri
se

n
•

Ve
ri

fic
at

io
n

an
d

Va
lid

at
io

n
is

 c
ri

tic
al

•
In

te
r-

ce
nt

er
 c

ol
la

bo
ra

ti
on

A
m

es
R

es
ea

rc
h

C
en

te
r

Ka
nn

a
Ra

ja
n

Co
lla

b/
SW

 E
ng

 W
S

8/
5/

02

Re
su

lt
s

•
Te

st
in

g
ha

s b
ec

om
e

ce
nt

ra
l i

n
s/

w
 d

ev
el

op
m

en
t

•
No

ti
on

 o
f a

 “
pr

oc
es

s”
 to

 d
es

ig
n/

bu
ild

/t
es

t/
de

pl
oy

•
No

ti
on

 o
f m

od
el

-b
as

ed
 a

pp
ro

ac
he

s o
n

th
e

in
cr

ea
se

•
Kn

ow
le

dg
e

Ac
qu

is
it

io
n

m
et

ho
ds

 a
re

 b
ec

om
in

g
cr

uc
ia

l
•

St
ru

gg
le

 to
 fi

nd
 w

ay
s t

o
co

lla
bo

ra
te

 a
cr

os
s t

im
e-

zo
ne

s a
nd

 c
ul

tu
re

s
–

M
ER •

10
’s

 o
f s

ci
en

ti
st

s
du

ri
ng

 th
e

de
si

gn
 p

ha
se

•
30

0+
 m

is
si

on
 s

ta
ff

(J
PL

)
•

20
0+

 sc
ie

nt
is

ts
 d

ur
in

g
m

is
si

on
 o

ps

A
m

es
R

es
ea

rc
h

C
en

te
r

Ka
nn

a
Ra

ja
n

Co
lla

b/
SW

 E
ng

 W
S

8/
5/

02

Ne
ed

s

•
Fo

rm
al

 m
et

ho
ds

 fo
r

V&
V

fo
r

au
to

no
m

ou
s s

ys
te

m
s

•
To

ol
s

fo
r

El
ic

it
at

io
n

•
Ri

ch
 a

rr
ay

 o
f m

et
ho

ds
 fo

r
so

ft
w

ar
e

sy
nt

he
si

s
•

Co
lla

bo
ra

ti
ve

 m
et

ho
ds

 fo
r

de
si

gn

F
o

rm
a

l
P

e
e

r
In

s
p

e
c
ti

o
n

In

fo
rm

a
ti

o
n

 A
rc

h
it

e
c
tu

re

G
ild

a
 P

o
u
r,

 P
h
.D

.,
 D

.E
n
g
.

C
o
lla

b
o
ra

ti
v
e
 S

o
ft

w
a
re

 E
n
g
in

e
e
ri
n
g
 T

o
o
ls

 W
o
rk

sh
o
p

8
/5

/0
2S
o

ft
w

a
re

 D
e

v
e

lo
p

m
e

n
t

F
o

rm
a

l
P

e
e

r
In

s
p

e
c
ti

o
n

H
e
lp

s
m

it
ig

a
te

 r
is

k
s

in
 s

o
ft

w
a
re

d
e
v
e
lo

p
m

e
n
t

a
n
d
 i
m

p
ro

v
e
 s

o
ft

w
a
re

q
u
a
lit

y

8
/5

/0
2S
o

ft
w

a
re

 D
e

v
e

lo
p

m
e

n
t

F
o

rm
a

l
P

e
e

r
In

s
p

e
c
ti

o
n

 (
c
o

n
t’

d
)

•
P
a
rt

ic
ip

a
n
ts

–
D

if
fe

re
n
t

ro
le

s
(e

.g
.
W

o
rk

 P
ro

d
u
ct

 A
u
th

o
r,

M

o
d
e
ra

to
r,

 P
ro

d
u
ct

 A
re

a
 L

e
a
d
,
In

sp
e
ct

o
r)

–
D

if
fe

re
n
t

re
sp

o
n
si

b
ili

ti
e
s

fo
r

e
a
ch

 r
o
le

•
In

sp
e
ct

io
n
 d

o
cu

m
e
n
ts

 a
n
d
 t

o
o
ls

–

D
if
fe

re
n
t

fo
rm

a
ts

 a
n
d
 s

tr
u
ct

u
re

s

–
L
o
ca

te
d
 o

n
 d

if
fe

re
n
t

p
la

tf
o
rm

s

–
L
o
ca

te
d
 i
n
 d

if
fe

re
n
t

p
h
y
si

ca
l
a
n
d
 l
o
g
ic

a
l
lo

ca
ti
o
n
s

8
/5

/0
2

F
o

rm
a

l
P

e
e

r
In

s
p

e
c
ti

o
n

C
h

e
c
k

o
u

t
&

 L
a

u
n

c
h

 C
o

n
tr

o
l

S
y
s
te

m
(C

L
C

S
)

8
/5

/0
2

8
/5

/0
2O
b

je
c
ti

v
e

T
o
 d

e
v
e
lo

p
 a

 c
u
st

o
m

iz
a
b
le

,
e
x
te

n
si

b
le

,
a
n
d
 f

le
x
ib

le
 W

e
b
-b

a
se

d
 a

rc
h
it
e
ct

u
re

 t
o

su
p
p
o
rt

 s
o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n
t

fo
rm

a
l

p
e
e
r

in
sp

e
ct

io
n

8
/5

/0
2A
p

p
ro

a
c
h

•
C
o
m

p
o
n
e
n
t-

b
a
se

d
 s

o
ft

w
a
re

 e
n
g
in

e
e
ri
n
g

•
X
M

L
 s

ch
e
m

a
 a

n
d
 X

S
L

8
/5

/0
2In

s
p

e
c
ti

o
n

 D
o

c
u

m
e

n
ts

•
R
o
le

-b
a
se

d
 I

n
sp

e
ct

io
n
 C

h
e
ck

lis
ts

-
W

o
rk

 P
ro

d
u
ct

 A
u
th

o
r’
s

In
sp

e
ct

io
n
 C

h
e
ck

lis
t

-
In

sp
e
ct

o
r’
s

In
sp

e
ct

io
n
 C

h
e
ck

lis
t

-
P
ro

d
u
ct

 A
re

a
 L

e
a
d
 I

n
sp

e
ct

io
n
 C

h
e
ck

lis
t

-
In

sp
e
ct

io
n
 M

o
d
e
ra

to
r’
s

In
sp

e
ct

io
n
 C

h
e
ck

lis
t

8
/5

/0
2In

s
p

e
c
ti

o
n

 D
o

c
u

m
e

n
ts

 (
c
o

n
t’

d
)

•
W

o
rk

 P
ro

d
u
ct

 I
n
sp

e
ct

io
n
 C

h
e
ck

lis
ts

-
D

o
cu

m
e
n
t-

W
o
rk

 P
ro

d
u
ct

 C
h
e
ck

lis
t

-
R
e
q
u
ir
e
m

e
n
t’
s

S
p
e
ci

fi
ca

ti
o
n
-W

o
rk

 P
ro

d
u
ct

 I
n
sp

e
ct

io
n

C
h
e
ck

lis
t

-
H

ig
h
-L

e
v
e
l
D

e
si

g
n
 -

W
o
rk

 P
ro

d
u
ct

 I
n
sp

e
ct

io
n
 C

h
e
ck

lis
t

-
D

e
ta

ile
d
 D

e
si

g
n
 -

W
o
rk

 P
ro

d
u
ct

 I
n
sp

e
ct

io
n
 C

h
e
ck

lis
t

-
C
o
d
e
 I

n
sp

e
ct

io
n
 -

W
o
rk

 P
ro

d
u
ct

 I
n
sp

e
ct

io
n
 C

h
e
ck

lis
t

-
T
e
st

 P
la

n
 -

W
o
rk

 P
ro

d
u
ct

 I
n
sp

e
ct

io
n
 C

h
e
ck

lis
t

-
T
e
st

 P
ro

ce
d
u
re

 –
W

o
rk

 P
ro

d
u
ct

 I
n
sp

e
ct

io
n
 C

h
e
ck

lis
t

8
/5

/0
2In

s
p

e
c
ti

o
n

 D
o

c
u

m
e

n
ts

 (
c
o

n
t’

d
)

•
P
e
e
r

In
sp

e
ct

io
n
 I

n
v
it
a
ti
o
n
 f

o
rm

•
P
e
e
r

In
sp

e
ct

io
n
 P

la
n
n
in

g
 C

h
e
ck

lis
t

•
O

v
e
rv

ie
w

•
L
is

ti
n
g
 o

f
R
e
fe

re
n
ce

 M
a
te

ri
a
ls

 (
e
.g

.
S
ta

n
d
a
rd

s,
 U

se
r

G
u
id

e
s)

•
S
u
m

m
a
ry

 o
f

lis
t

o
f

o
p
e
n
 i
ss

u
e
s

th
a
t

n
e
e
d
 t

o
 b

e

re
v
ie

w
e
d
 a

n
d
/o

r
a
d
d
re

ss
e
d

•
P
e
e
r

In
sp

e
ct

io
n
 D

e
fe

ct
 L

o
g
 f

o
rm

•
In

sp
e
ct

io
n
 S

u
m

m
a
ry

/C
lo

su
re

 R
e
p
o
rt

•
In

sp
e
ct

io
n
 S

a
ti
sf

a
ct

io
n
 S

u
rv

e
y
 f

o
rm

8
/5

/0
2

E
x

a
m

p
le

R
o

le
-B

a
s
e

d
 I

n
s
p

e
c
ti

o
n

 C
h

e
c
k

li
s
t

C
o

m
p

o
n

e
n

t

•
R
o
le

 o
f

th
e
 i
n
sp

e
ct

io
n
 p

a
rt

ic
ip

a
n
t

(V
a
ri
a
b
le

s
in

cl
u
d
e
 w

o
rk

 p
ro

d
u
ct

a
u
th

o
r,

 i
n
sp

e
ct

o
r,

 p
ro

d
u
ct

 a
re

a
 l
e
a
d
 i
n
sp

e
ct

o
r,

 a
n
d
 m

o
d
e
ra

to
r.

)

•
In

sp
e
ct

io
n
 p

h
a
se

 (
V
a
ri
a
b
le

s
in

cl
u
d
e
 p

la
n
n
in

g
,
o
v
e
rv

ie
w

,
in

sp
e
ct

io
n

p
re

p
a
ra

ti
o
n
,
in

sp
e
ct

io
n
 m

e
e
ti
n
g
,
in

sp
e
ct

io
n
 r

e
w

o
rk

/f
o
llo

w
-u

p
,
a
n
d

p
ro

je
ct

 a
n
a
ly

si
s.

)

•
R
e
sp

o
n
si

b
ili

ti
e
s

o
f

a
 s

p
e
ci

fi
c

ro
le

 i
n
 v

a
ri
o
u
s

in
sp

e
ct

io
n
 p

h
a
se

s

•
P
ro

je
ct

 i
d
e
n
ti
fi
ca

ti
o
n
 n

u
m

b
e
r

(I
D

)

•
W

o
rk

 p
ro

d
u
ct

 b
e
in

g
 i
n
sp

e
ct

e
d
 (

V
a
ri
a
b
le

s
in

cl
u
d
e
 d

o
cu

m
e
n
ts

,
co

n
ce

p
t

d
e
fi
n
it
io

n
s,

 r
e
q
u
ir
e
m

e
n
ts

 s
p
e
ci

fi
ca

ti
o
n
s,

 t
o
p
-l
e
v
e
l
d
e
si

g
n
,

d
e
ta

ile
d
 d

e
si

g
n
,
co

d
e
,
te

st
 p

la
n
s,

 t
e
st

 p
ro

ce
d
u
re

s,
 t

e
st

 t
o
o
ls

,
a
n
d

te
st

 s
cr

ip
ts

.)

•
N

a
m

e
 o

f
th

e
 i
n
sp

e
ct

io
n
 p

a
rt

ic
ip

a
n
t

•
D

a
te

 o
f

co
m

p
le

ti
o
n
 f

o
r

e
a
ch

 t
a
sk

 l
is

te
d
 u

n
d
e
r

“R
e
sp

o
n
si

b
ili

ti
e
s”

•
In

sp
e
ct

io
n
 l
o
ca

ti
o
n

8
/5

/0
2

8
/5

/0
2

8
/5

/0
2N
e
x
t

P
h
a
se

•
W

e
b
-b

a
se

d
 e

n
te

rp
ri
se

 a
rc

h
it
e
ct

u
re

 t
o

su
p
p
o
rt

 s
o
ft

w
a
re

 d
e
v
e
lo

p
m

e
n
t

fo
rm

a
l

p
e
e
r

in
sp

e
ct

io
n
 a

t
th

e
 e

n
te

rp
ri
se

 l
e
v
e
l

•
L
o
ca

ti
o
n
-t

ra
n
sp

a
re

n
t

a
cc

e
ss

 o
f

a
u
th

o
ri
ze

d
 u

se
rs

 t
o
 i
n
sp

e
ct

io
n

d
o
cu

m
e
n
ts

 a
n
d
 t

o
o
ls

 a
t

th
e
 e

n
te

rp
ri
se

le

v
e
l

B
R

A
H

M
S

:
a

B
R

A
H

M
S

:
a

m
u

lt
ia

g
en

t
m

u
lt

ia
g
en

t
m

o
d

el
in

g
m

o
d

el
in

g

a
n

d
 s

im
u

la
ti

o
n

 l
a
n

g
u

a
g
e

fo
r

w
o
rk

a
n

d
 s

im
u

la
ti

o
n

 l
a
n

g
u

a
g
e

fo
r

w
o
rk

sy
st

em
 a

n
a

ly
si

s
a

n
d

 d
es

ig
n

sy
st

em
 a

n
a

ly
si

s
a

n
d

 d
es

ig
n

M
a
a
rt

en
M

a
a
rt

en
S

ie
rh

u
is

S
ie

rh
u

is
,
P

h
.D

.
,
P

h
.D

.

S
en

io
r

S
ci

en
ti

st
S

en
io

r
S

ci
en

ti
st

U
S

R
A

/R
IA

C
S

U
S

R
A

/R
IA

C
S

N
A

S
A

 A
m

es
 R

es
ea

rc
h

 C
en

te
r

N
A

S
A

 A
m

es
 R

es
ea

rc
h

 C
en

te
r

M
o
ff

et
t

F
ie

ld
,
C

A
M

o
ff

et
t

F
ie

ld
,
C

A

m
si

er
h

u
is

m
si

er
h

u
is

@
m

a
il

.a
rc

.
@

m
a
il

.a
rc

. n
a
sa

n
a
sa

.. g
o
v

g
o
v

A
u

g
u

st
 6

,
2
0
0
2

IS
R

-N
A

S
A

W
o
rk

sh
o
p
 o

n

C
o
ll

a
b
o
ra

ti
ve

S
o
ft

w
a
re

E
n

g
in

ee
ri

n
g

T
o
o
lsH
C
C
:
F
r
o
m

S
i
m
u
l
a
t
i
o
n

t
o

I
m
p
l
e
m
e
n
t
a
t
i
o
n

T
h

e
R

o
ck

et
 S

ci
en

ce
 o

f
H

C
C

C
O

M
P

U
T

E
R

W
h

a
t’

s
th

e
D

el
ta

?

C
o

o
rd

in
a

te
m

u
lt

im
o

d
a

l
co

n
ce

p
ts

,
v
a
lu

es
,
p

ra
ct

ic
e

M
e
a
s
u

re
,
c
la

s
s
if

y
,
in

fe
r,

d
e
p

ic
t,

 p
ro

c
e
s
s

H
U

M
A

N

R
e
s
e
a
rc

h
 Q

u
e
s
ti

o
n

•
H

o
w

 c
a
n

 w
e
 m

o
d

e
l
a
n

 o
rg

a
n

iz
a
ti

o
n

’s
 w

o
rk

p
ra

c
ti

c
e
 i
n

 s
u

c
h

 a
 w

a
y
 t

h
a
t

w
e
 i
n

c
lu

d
e
 p

e
o

p
le

’s

c
o

ll
a
b

o
ra

ti
o

n
,
“
o

ff
-t

a
s

k
”

b
e

h
a

v
io

rs
,
m

u
lt

i-
ta

s
k
in

g
,

in
te

rr
u

p
te

d
 a

n
d

 r
e
s
u

m
e
d

 a
c
ti

v
it

ie
s
,
in

fo
rm

a
l

in
te

ra
c

ti
o

n
a
n

d
g

e
o

g
ra

p
h

y
?

•
O

b
je

c
ti

v
e
 i

s
 t

o
 f

in
d
 r

e
p
re

s
e
n
ta

ti
o
n
s
 a

n
d
 t

e
c
h
n
iq

u
e
s
 f

o
r

a
n
a
ly

z
in

g
 a

n
d
 d

e
s
ig

n
in

g
 w

o
rk

 s
y
s
te

m
s
 (

s
o
c
io

-t
e
c
h
n
ic

a
l

s
y
s
te

m
s
)

h
o
li

s
ti

c
a
ll

y
 a

n
d
 h

u
m

a
n
-c

e
n
te

re
d

W
o
rk

 P
ra

c
ti

c
e

D
e
fi

n
it

io
n

T
h
e
 p

e
rf

o
rm

a
n
c
e
 o

f
c
o
lle

c
ti
v
e
 s

it
u
a
te

d

a
c
ti
v
it
ie
s

o
f
a
 g

ro
u
p
 o

f
p
e
o
p
le

,
c
o
lla

b
o
ra

ti
n
g
,

c
o
m

m
u
n
ic

a
ti
n
g
,
a
n
d
 g

a
in

in
g
 e

x
p
e
ri
e
n
c
e
 w

h
ile

p
e
rf

o
rm

in
g
 t
h
e
s
e
 a

c
ti
v
it
ie

s
 s

y
n
c
h
ro

n
o
u
s
ly

 o
r

a
s
y
n
c
h
ro

n
o
u
s
ly

.

W
o

rk
 P

ra
c
ti

c
e
 M

o
d

e
li

n
g

•
G

ro
u

p
s

&
 A

g
en

ts

–
w

o
rk

 a
s
 a

c
ti

v
it

ie
s

–
b
e
li

e
fs

 t
ri

g
g
e
r

w
o
rk

–
b
o
u
n
d
e
d
 r

a
ti

o
n
a
li

ty
 i

s
 s

o
c
ia

ll
y

a
n
d
 c

u
lt

u
ra

ll
y
 d

e
fi

n
e
d

•
C

o
ll

a
b

o
ra

ti
o

n
 b

et
w

ee
n

 A
g

en
ts

–
a
g

e
n

ts
 r

e
a
c
t

to
 a

n
d

 i
n

te
ra

c
t

w
it

h
 o

th
e
r

a
g

e
n

ts

–
s
a
m

e
 t

im
e
/s

a
m

e
 p

la
c
e

–
s
a
m

e
 t

im
e
/d

if
fe

re
n
t

p
la

c
e

–
d
if

fe
re

n
t

ti
m

e
/s

a
m

e
 p

la
c
e

–
d
if

fe
re

n
t

ti
m

e
/d

if
fe

re
n
t

p
la

c
e

W
P

M
 c

o
n
t’

d

•
T

o
o
ls

 &
 A

rt
if

a
ct

s

–
to

o
ls

 u
s
e
d

 i
n

 a
c
ti

v
it

ie
s

–
a
rt

if
a
c
ts

 c
re

a
te

d
 i

n
 a

c
ti

v
it

ie
s

•
E

n
v
ir

o
n

m
en

t/
G

eo
g
ra

p
h

y

–
a
g
e
n
ts

 h
a
v
e
 a

 l
o
c
a
ti

o
n

–
a
rt

if
a
c
ts

 h
a
v

e
 a

 l
o

c
a
ti

o
n

–
d
e
te

c
ti

n
g

 r
e
a
l-

w
o

rl
d

 f
a
c
ts

•
C

o
m

m
u

n
ic

a
ti

o
n

–
is

 s
it

u
a
te

d

–
th

e
 m

e
a
n
s
 o

f
c
o
m

m
u
n
ic

a
ti

o
n

d
e
p
e
n
d
s
 o

n
 t

h
e
 s

it
u
a
ti

o
n
 (

e
.g

.

v
o
ic

e
 l

o
o
p
,
f2

f
c
o
m

m
u
n
ic

a
ti

o
n
,

te
le

p
h
o
n
e
,
fa

x
in

g
,
e
-m

a
il

)

–
im

p
a
c
ts

 e
ff

ic
ie

n
c
y

 o
f

w
o

rk

B
ra

h
m

s

A
g
en

t
A

g
en

t --
O

ri
en

te
d

 L
a
n

g
u

a
g
e

O
ri

en
te

d
 L

a
n

g
u

a
g
e

L
a
n

g
u

a
g
e

P
a
rs

er
L

a
n

g
u

a
g
e

P
a
rs

er

In
te

ra
ct

iv
e

D
ev

el
o
p

m
en

t
E

n
v
ir

o
n

m
en

t
In

te
ra

ct
iv

e
D

ev
el

o
p

m
en

t
E

n
v
ir

o
n

m
en

t

D
is

cr
et

e
D

is
cr

et
e
-- e

v
en

t
S

im
u

la
ti

o
n

 E
n

g
in

e
ev

en
t

S
im

u
la

ti
o
n

 E
n

g
in

e

E
n

d
E

n
d

-- u
se

r
S

im
u

la
ti

o
n

 D
is

p
la

y
s

u
se

r
S

im
u

la
ti

o
n

 D
is

p
la

y
s

S
im

u
la

ti
o
n

 H
is

to
ry

 D
a
ta

 B
a
se

S
im

u
la

ti
o
n

 H
is

to
ry

 D
a
ta

 B
a
se

J
a
v
a
-b

a
se

d

J
a
v
a
 A

P
I

X
M

L

R
u

n
s

o
n

 P
C

’s
,

M
a
c,

 U
n

ix
,

L
in

u
x
 .

..

©
M

a
a
rt

e
n

 S
ie

rh
u

is

C
o
ll

a
b
o
ra

ti
v
e
 M

o
d
e
li

n
g

B
ra

h
m

s
S

im
u

la
ti

o
n

V
R

 M
o

d
el

/A
g

en
tV

ie
w

er
E

th
n

o
g
ra

p
h

ic
 O

b
se

rv
a
ti

o
n

V
id

eo
 A

n
a
ly

si
s

C
o
n

ce
p

tu
a
l

M
o
d

el
in

g

B
ra

h
m

s
M

o
d

el
in

g

co
n

ce
p

tu
a

l
m

o
d

el
er

s

B
ra

h
m

s
m

o
d

el
er

s

D
e
s
ig

n
,
G

e
n
e
ra

te
 a

n
d
 S

im
u
la

te

M
1

B
ra

h
m

s
C

o
d

e
G

en
er

a
ti

o
n

M
3

/M
4

M
2

C
o

n
ce

p
tu

a
l

M
o

d
el

S
im

u
la

ti
o
n

/V
is

u
a
li

za
ti

o
n

B
ra

h
m

s
 R

e
s
e
a
rc

h

P
ro

je
c
ts

 a
t

N
A

S
A

•
H

u
m

a
n
-R

o
b
o
ti

c
 T

e
a
m

w
o
rk

–
T

e
a
m

w
o
rk

 &
 W

o
rk

 P
ra

c
ti

c
e
 o

n
b
o
a
rd

 t
h
e
 I

S
S

–
M

o
b
il

e
 A

g
e
n
ts

 s
u
p
p
o
rt

in
g
 o

f
M

a
rs

 E
x
p
lo

ra
ti

o
n

•
M

a
rs

 H
a
b
it

a
t

–
L

iv
in

g
 a

n
d

 w
o

rk
in

g
 o

n
 M

a
rs

•
’0

3
 M

a
rs

 E
x
p
lo

ra
ti

o
n
 R

o
v
e
r

–
U

s
e
 B

ra
h
m

s
 t

o
 m

o
d
e
l

M
is

s
io

n
 O

p
e
ra

ti
o
n
s
 W

o
rk

 S
y
s
te

m
 a

t

J
P

L

M
o

b
il

e
 A

g
e
n

ts

R
u
n
ti

m
e

•
M

o
d

e
ls

 o
f

P
e
o

p
le

 &
 R

o
b

o
ts

•
In

te
ll

ig
e
n
t

A
s
s
is

ta
n
ts

–
A

g
e
n
ts

 f
o
r

p
e
o
p
le

 &
 r

o
b
o
ts

•
S

o
ft

w
a
re

 A
g

e
n

ts

–
D

ia
lo

g
 a

g
e
n

t

–
C

o
m

m
u
n
ic

a
ti

o
n
 A

g
e
n
t

–
P

ro
x

y
 a

g
e
n

t

D
e
s
ig

n
 P

h
a
s
e

•
S

im
u
la

te
d
 P

e
o
p
le

 &
 R

o
b
o
ts

•
In

te
ll

ig
e
n
t

A
s
s
is

ta
n
ts

•
S

o
ft

w
a
re

 A
g
e
n
ts

 (
s
im

u
la

te
d
)

•
S

o
ft

w
a
re

 S
y
s
te

m
s
 (

s
im

u
la

te
d
)

E
R

A
 B

ra
h

m
s

A
T

V
 a

g
en

ts

D
ia

lo
g

 a
g

en
t

P
ro

x
y

 a
g

en
ts

D
ia

lo
g
 S

y
st

em

A
T

V

C
o

m
m

.
a

g
en

t

C
o

m
m

.
a

g
en

t

A
T

V
 B

ra
h

m
s

E
R

A
 a

g
en

t

C
o

m
m

.
a

g
en

t

P
ro

x
y

 a
g

en
ts

E
R

A

W
A

N
A

T
V

R
e
p

e
a
te

r

R
o

c
k

y
 s

e
rv

e
r

B
ra

h
m

s

D
ia

lo
g

 S
y
s

te
m

w
ir

e
le

s
s

m
ic

E
x

p
lo

re
r

E
v
a
 R

o
b

o
ti

c
 A

s
s
is

ta
n

t

B
ra

h
m

s

M
o

b
il

e
 A

g
e

n
ts

 A
rc

h
it

e
c

tu
re

M
o

b
il

e
 A

g
e

n
ts

 A
rc

h
it

e
c

tu
re

S
im

u
la

ti
o
n

 o
f

M
O

S

W
o

rk
 P

ro
ce

ss
 f

o
r

M
E

R
 M

O
S

 D
es

ig
n

C
o
ll

a
b
o
ra

ti
v
e
 D

e
s
ig

n

w
it

h
 M

E
R

 M
O

S
 D

T

C
re

a
ti

o
n

 o
f

n
ew

 s
ci

en
ce

 p
la

n
s

(b
o

u
n

d
a

ry
 o

b
je

ct
s)

a
n

d
 c

o
m

m
u

n
ic

a
ti

n
g

 t
o

 o
th

er
s

W
a
lk

in
g
 T

a
k

es
 T

im
e!

!!
!

W
a

lk
in

g
 f

ro
m

 S
ci

en
ce

 R
o

o
m

 t
o

 C
o

n
fe

re
n

ce
 R

o
o

m

IS
S

 P
ro

je
c
t

G
o

a
ls

•
E

x
te

rn
a

l
g

o
a

ls

•
a
rt

if
a
c
t
to

 s
tu

d
y
 a

n
d
 u

n
d
e
rs

ta
n
d
 w

o
rk

 p
ra

c
ti
c
e
s
 a

n
d

te
a
m

w
o
rk

 o
n
b
o
a
rd

 I
S

S

•
m

o
d
e
l
to

 b
e
 u

s
e
d
 i
n
:

•
p

la
n

n
in

g
.
IS

S
 M

is
s
io

n
 p

la
n
n
in

g
 a

n
d
 p

ro
c
e
d
u
re

d
e
v
e
lo

p
m

e
n
t

•
e
x
e
c
u
ti
o
n
.

H
C

I:
 A

u
to

n
o
m

o
u
s
 I
n
te

lli
g
e
n
t
S

o
ft
w

a
re

 o
r

R
o
b
o
ti
c
 A

g
e
n
ts

 (
e
.g

.
P

S
A

,
R

o
b
o
n
a
u
t)

 i
n
 s

u
p
p
o
rt

 o
f

te
a
m

w
o
rk

 .

•
In

te
rn

a
l
g

o
a

ls

•
E

x
p
lo

re
 u

s
e
 o

f
B

ra
h
m

s
 i
n
 r

e
p
re

s
e
n
ti
n
g
 m

a
n
n
e
d
 s

p
a
c
e

m
is

s
io

n
s

•
S

tu
d
y
 B

ra
h
m

s
 a

s
 a

n
 A

B
S

S
(D

a
v
id

s
s
o

n
,

2
0

0
2

)

M
o

d
e
li

n
g

 t
h

e
 I

S
S

 c
re

w

w
it

h
 B

ra
h

m
s

•
D

a
ta

•
V

id
e
o
s
,
p
ic

tu
re

s
,
in

te
rv

ie
w

s

•
J
S

C
 m

a
n
u
a
ls

,
p
ro

c
e
d
u
re

s

•
T

im
e

lin
e

s
,
s
c
h

e
d

u
le

s

•
O

n
-o

rb
it
 a

n
d
 p

o
s
t-

o
rb

it
 d

e
b
ri
e
fs

•
M

O
D

 s
e

rv
e

rs

•
W

o
rk

 p
ra

c
ti
c
e

 d
a

ta
 a

n
a

ly
s
is

•
C

o
n

c
e

p
tu

a
l
m

o
d

e
lin

g

•
B

ra
h

m
s
 m

o
d

e
l
a

n
d

 s
im

u
la

ti
o

n

M
o

rn
in

g
 A

ct
iv

it
ie

s
IS

S
 E

x
p

 2
,

M
a

y
 7

,
2

0
0

1

6
Au

gu
st

, 2
00

2
NA

SA
 -

 IS
R

W
or

ks
ho

p

Ev
en

t N
ot

ifi
ca

ti
on

 a
nd

M
es

sa
gi

ng
 A

rc
hi

te
ct

ur
es

 fo
r

Re
al

-T
im

e
Sc

ie
nc

e
Co

or
di

na
ti

on

El
ia

s S
in

de
rs

on
el

ia
s@

cs
e.

uc
sc

.e
du

el
ia

s@
em

ai
l.a

rc
.n

as
a.

go
v

UC
 S

an
ta

 C
ru

z
/

NA
SA

 A
m

es

6
Au

gu
st

, 2
00

2
NA

SA
 -

 IS
R

W
or

ks
ho

p

Te
rm

s
an

d
De

fin
it

io
ns

•
Co

lla
bo

ra
ti

on
 v

s.
Co

or
di

na
ti

on
–

Re
la

te
d,

 b
ut

 u
se

fu
l t

o
di

st
in

gu
is

h
be

tw
ee

n
th

e
tw

o
–

Co
lla

bo
ra

ti
on

 is
 w

he
n

pe
op

le
 w

or
k

to
ge

th
er

on
 a

 g
iv

en
 ta

sk
–

Co
or

di
na

ti
on

 im
pl

ie
s

th
at

 m
ul

ti
pl

e,
in

te
rd

ep
en

de
nt

 ta
sk

s
ex

is
t

•
Re

al
-t

im
e

sc
ie

nc
e

–
Ha

rd
 d

ea
dl

in
es

–
Cl

os
ed

 c
on

tr
ol

 o
r

fe
ed

ba
ck

 lo
op

–
Ex

am
pl

e:
 R

em
ot

e
op

er
at

io
n

of
 a

 s
ci

en
ce

pl
at

fo
rm

 s
uc

h
as

 a
sa

te
lli

te
, s

pa
ce

 p
ro

be
or

 r
ob

ot

6
Au

gu
st

, 2
00

2
NA

SA
 -

 IS
R

W
or

ks
ho

p

So
m

e
of

 th
e

Ch
al

le
ng

es

•
Hi

gh
 c

om
m

un
ic

at
io

n
ov

er
he

ad
•

Sh
ift

in
g/

ro
ta

ti
ng

 s
ch

ed
ul

es
•

Da
ta

 n
av

ig
at

io
n

an
d

as
si

m
ila

ti
on

•
M

ai
nt

ai
ni

ng
 s

it
ua

ti
on

al
 a

w
ar

en
es

s
•

Ti
m

e
se

ns
it

iv
e

na
tu

re
 o

f m
is

si
on

op
er

at
io

ns
•

He
te

ro
ge

ne
ou

s
co

m
pu

ti
ng

 e
nv

ir
on

m
en

t
•

Se
cu

ri
ty

!

6
Au

gu
st

, 2
00

2
NA

SA
 -

 IS
R

W
or

ks
ho

p

Re
qu

ir
em

en
ts

 a
nd

 P
ro

po
se

d
So

lu
ti

on
s

•
Pr

ov
id

e
‘o

ne
 st

op
’ a

cc
es

s t
o

m
ul

ti
pl

e
re

po
si

to
ri

es
 a

nd
 d

at
a

an
al

ys
is

 to
ol

s u
nd

er
 a

co
m

m
on

, W
eb

-b
as

ed
 in

te
rf

ac
e

•
No

ti
fic

at
io

n
of

 ‘a
ct

iv
e’

 r
es

ou
rc

es
...

•
In

cr
ea

se
 o

ve
ra

ll
aw

ar
en

es
s o

f m
is

si
on

pe
rs

on
ne

l:
–

Sc
he

du
lin

g
to

ol
s

–
Da

ta
 n

av
ig

at
io

n
to

ol
s–

M
is

si
on

 sc
or

ec
ar

ds
–

Ne
w

s b
ro

ad
ca

st
s

6
Au

gu
st

, 2
00

2
NA

SA
 -

 IS
R

W
or

ks
ho

p

Ev
en

t N
ot

ifi
ca

ti
on

 /
M

es
sa

gi
ng

•
Tr

ad
eo

ffs
 b

et
w

ee
n

ex
pr

es
si

ve
ne

ss
 a

nd
sc

al
ab

ili
ty

 n
ee

d
to

 b
e

re
co

nc
ile

d
•

He
te

ro
ge

ne
ou

s n
at

ur
e

of
 d

at
a

re
po

si
to

ri
es

 a
nd

 le
ga

cy
 s

ys
te

m
s

m
ak

es
in

st
ru

m
en

ti
ng

 th
em

 d
iff

ic
ul

t
•

Ne
ed

 fo
r

a
co

m
pl

et
e

an
d

ro
bu

st
 d

om
ai

n
m

od
el

6
Au

gu
st

, 2
00

2
NA

SA
 -

 IS
R

W
or

ks
ho

p

Ev
en

t N
ot

ifi
ca

ti
on

 /
M

es
sa

gi
ng

•
Re

m
ot

e
fil

e
sy

st
em

s c
an

 b
e

m
on

it
or

ed
 a

nd
lo

gg
ed

 w
it

h
ut

ili
ti

es
 su

ch
 a

s
nf

sl
og

d,
 a

ud
it

d,
et

c.
•

So
m

e
da

ta
ba

se
s s

up
po

rt
 st

or
ed

 p
ro

ce
du

re
s

•
Pu

sh
 r

at
he

r
th

an
 p

ul
l i

nf
or

m
at

io
n

w
he

re
ve

r
po

ss
ib

le
 to

 m
in

im
iz

e
lo

ad
 o

n
sy

st
em

 a
nd

ne
tw

or
k

6
Au

gu
st

, 2
00

2
NA

SA
 -

 IS
R

W
or

ks
ho

p

A
Si

m
pl

e
(?

) E
xa

m
pl

e M
et

ad
at

ab
as

e
 /

F
ile

 S
ys

te
m

C
lie

n
t P

o
rt

al

Pu
b/

Su
b

fil
e

ex
ch

an
ge

DB
 Q

ue
ry

 T
oo

ls

Pr
og

ra
m

m
at

ic
 A

PI

L
o

ad
er

da
em

on

A
na

ly
st

s
N

ot
eb

oo
k

Po
rt

le
t

W
eb

 S
ite

s

S
er

ve
r

C
o

d
e

JM
S

6
Au

gu
st

, 2
00

2
NA

SA
 -

 IS
R

W
or

ks
ho

p

Ch
an

ge
 A

w
ar

en
es

s
Da

sh
bo

ar
d

•
Ac

ti
ve

 r
es

ou
rc

es
 a

re
th

e
pr

im
ar

y
ob

je
ct

s
of

in
te

re
st

•
Ea

sy
 a

cc
es

s t
o

re
so

ur
ce

s
•

M
in

im
al

ly
 in

va
si

ve
•

Pe
ri

ph
er

al
 a

w
ar

en
es

s
•

Us
er

 p
re

fe
re

nc
es

•
Su

bs
cr

ip
ti

on
 p

er
si

st
en

ce
–

Re
es

ta
bl

is
he

s
se

ss
io

ns
w

he
n

us
er

s s
ta

rt
 th

ei
r

sh
ift

•
No

ti
fic

at
io

n
pe

rs
ist

en
ce

–
Ke

ep
s u

se
rs

 u
p

to
 d

at
e

w
it

h
an

y
ch

an
ge

s s
in

ce
th

ey
 la

st
 lo

gg
ed

 o
n

6
Au

gu
st

, 2
00

2
NA

SA
 -

 IS
R

W
or

ks
ho

p

Fu
tu

re
 A

ct
iv

it
ie

s

•
Fi

ni
sh

 th
e

im
pl

em
en

ta
ti

on
 o

ve
r

th
e

ne
xt

 y
ea

r
•

Co
lle

ct
 u

se
r

fe
ed

ba
ck

on
 s

ys
te

m
–

Va
lid

at
io

n
of

 G
UI

de
si

gn
–

Co
m

pa
ri

so
ns

 w
it

h
ot

he
r

m
is

si
on

s

•
W

or
kf

lo
w

 a
na

ly
si

s
of

Op
s

en
vi

ro
nm

en
t

•
De

ve
lo

p
w

eb
 s

er
vi

ce
s

fo
r

m
ob

ile
 a

nd
ha

nd
he

ld
 d

ev
ic

es
•

Ex
te

nd
 s

ys
te

m
 to

su
pp

or
t m

ul
ti

pl
e

si
te

s

UC
I -

 R
ed

m
ile

s

Us
in

g
Ev

en
t N

ot
ifi

ca
ti

on
 S

er
ve

rs
 to

 S
up

po
rt

Aw
ar

en
es

s
Da

vi
d

Re
dm

ile
s

As
so

ci
at

e
Pr

of
es

so
r

Cl
ei

ds
on

 R
. B

. D
e

So
uz

a,
 S

an
th

os
hi

 D
. B

.,
Ro

be
rt

o
S.

 S
. F

ilh
o

Gr
ad

ua
te

 S
tu

de
nt

 R
es

ea
rc

he
rs

M
ax

 S
la

by
ak

Un
de

rg
ra

du
at

e
St

ud
en

t R
es

ea
rc

he
r

M
ic

ha
el

 K
an

to
r

(P
hD

 ’0
1)

Po
st

 D
oc

to
ra

l S
tu

de
nt

UC
I -

 R
ed

m
ile

s

Aw
ar

en
es

s
an

d
Co

lla
bo

ra
ti

on

•
In

 g
en

er
al

, a
w

ar
en

es
s m

ea
ns

 h
av

in
g

in
fo

rm
at

io
n

ab
ou

t o
th

er
 a

ct
iv

it
ie

s
th

at
 a

ffe
ct

s
a

pe
rs

on
’s

 o
w

n
w

or
k

[D
B9

2]
.

•
So

m
e

ty
pe

s
of

 a
w

ar
en

es
s

–
Gr

ou
p

aw
ar

en
es

s
•

W
ho

 is
 a

ro
un

d
an

d
w

ha
t r

ou
gh

ly
 a

re
 th

ey
 d

oi
ng

?
•

e.
g.

, i
m

ag
es

 r
el

ay
ed

 in
 P

or
th

ol
es

–
Pr

oj
ec

t a
w

ar
en

es
s

•
W

ha
t k

no
w

le
dg

e
af

fe
ct

s
(e

.g
.,

de
ci

si
on

s
ar

e
m

ad
e

ab
ou

t)
pr

oj
ec

t c
on

te
nt

?
•

e.
g.

, s
ub

sc
ri

pt
io

ns
 in

 K
no

w
le

dg
e

De
po

t
–

Ap
pl

ic
at

io
n

aw
ar

en
es

s
•

W
ha

t’
s

go
in

g
on

 in
 r

un
ni

ng
 s

of
tw

ar
e?

•
E.

g.
, a

rc
hi

te
ct

ur
al

 g
au

ge

UC
I -

 R
ed

m
ile

s

Ex
am

pl
e:

 G
ro

up
 A

w
ar

en
es

s
th

ro
ug

h
a

Po
rt

ho
le

s
Sy

st
em

[G
LT

99
]

•
Sh

ow
s p

re
se

nc
e

of
 c

ol
la

bo
ra

to
rs

an
d

re
le

va
nt

sp
ac

es

•
Us

es
 v

is
ua

l c
ue

s
(s

uc
h

as
 th

is
th

ea
te

r
st

yl
e)

 to
co

nd
en

se
 v

ie
w

ac
co

rd
in

g
to

re
le

va
nc

e.

G
ir

ge
ns

oh
n

/ L
ee

 /
T

ur
ne

r
99

L
oo

ki
ng

 fo
r

jo
b!

!!

UC
I -

 R
ed

m
ile

s

Ex
pl

ai
ne

r
[R

ed
93

]

•
Ea

rl
y

Hy
pe

rm
ed

ia
fo

r
hu

m
an

le
ar

ni
ng

 b
y

ex
am

pl
e

•
Ex

tr
em

e
hy

pe
r-

gr
an

ul
ar

it
y

•
In

cr
em

en
ta

l
[M

in
im

al
]

Ex
pl

an
at

io
n

•
Hu

m
an

Va
ri

ab
ili

ty
Re

du
ce

d

UC
I -

 R
ed

m
ile

s

Ar
go

/U
M

L
[R

HR
98

] [
RR

00
]

W
hi

le
 d

es
ig

ne
rs

w
or

k,
 d

es
ig

n
cr

it
ic

s a
na

ly
ze

th
e

de
si

gn
 a

nd
pr

ov
id

e
he

lp
fu

l
ad

vi
ce

.
Th

e
“t

o
do

”
lis

t (
lo

w
er

le
ft

) p
re

se
nt

s a
nd

or
ga

ni
ze

s
ad

vi
ce

ab
ou

t p
en

di
ng

de
si

gn
 c

ha
ng

es
.

UC
I -

 R
ed

m
ile

s

ED
EM

 –
 E

xp
ec

ta
ti

on
-D

ri
ve

n
Ev

en
t

M
on

it
or

in
g

[H
R9

8]
Ag

en
ts

 m
on

it
or

 a
pp

lic
at

io
n

ev
en

ts

An
d

op
ti

on
al

ly
 fa

ci
lit

at
e

fe
ed

ba
ck

.

UC
I -

 R
ed

m
ile

s

Kn
ow

le
dg

e
De

po
t [

KR
Z9

7]
K

an
to

r,
 R

ed
m

ile
s,

 Z
im

m
er

m
an

n
97

L
oo

ki
ng

 fo
r

jo
b!

!!

UC
I -

 R
ed

m
ile

s

Ga
ug

es
 fo

r
Ap

pl
ic

at
io

n
Aw

ar
en

es
s

[S
BR

02
] Ar

ch
it

ec
tu

ra
l M

es
sa

ge
 P

as
si

ng
 M

on
it

or

UC
I -

 R
ed

m
ile

s

a)
 P

ro
gr

es
s B

ar

b)
 B

ar
 C

ha
rt

f)
 S

ig
na

l

c)
 L

in
e

Gr
ap

h
d)

 C
lo

ck
e)

 L
oa

d

So
m

e
M

or
e

Ga
ug

es
 [S

BR
02

] UC
I -

 R
ed

m
ile

s

Ac
ti

vi
ty

 T
he

or
y

an
d

De
si

gn
 [R

ed
02

a]
[C

SR
02

]
•

Id
en

ti
fy

 th
e

st
ak

eh
ol

de
rs

 in
th

e
pr

oc
es

s.
•

He
lp

 e
ns

ur
e

th
at

te
ch

no
lo

gy
 is

 d
es

ig
ne

d
to

th
e

us
er

s,
 o

th
er

st
ak

eh
ol

de
rs

, a
nd

 th
e

or
ga

ni
za

ti
on

.
•

W
or

k
to

w
ar

d
al

ig
nm

en
t

be
tw

ee
n

us
er

s’
 r

ew
ar

ds
an

d
bu

si
ne

ss
’ n

ee
ds

.
•

W
or

k
to

w
ar

d
al

ig
nm

en
t

be
tw

ee
n

th
e

re
w

ar
ds

 o
f

th
e

de
si

gn
er

s o
f t

he
 d

ev
ic

e
an

d
bo

th
 th

e
en

d
us

er
s’

an
d

bu
si

ne
ss

’ n
ee

ds
.

SU
B

JE
C

T

R
U

L
E

S
C

O
M

M
U

N
IT

Y

D
IV

IS
IO

N
O

F
L

A
B

O
R

O
B

JE
C

T

M
E

D
IA

T
IN

G
 A

R
T

IF
A

C
T

S

O
U

T
C

O
M

E

E
ng

es
tr

öm
 [

E
ng

90
]

A
ct

iv
it

y
Sy

st
em

 M
od

el

UC
I -

 R
ed

m
ile

s

Th
em

e
-

Aw
ar

en
es

s
In

fo
rm

at
io

n

•
Ar

go
/U

M
L

–
Cr

it
ic

s
no

ti
fy

 e
nd

 u
se

rs
 o

f d
es

ig
n

pr
ob

le
m

s

•
ED

EM
–

Ag
en

ts
 m

on
it

or
 a

pp
lic

at
io

n
us

ag
e

an
d

re
po

rt
 d

at
a

to
 d

es
ig

ne
rs

•
Kn

ow
le

dg
e

De
po

t
–

En
d

us
er

s
su

bs
cr

ib
e

to
 e

m
ai

l c
at

eg
or

ie
s

/
to

pi
cs

•
Ga

ug
es

–
“P

ro
be

s”
 (i

ns
tr

um
en

ta
tio

n)
 s

ho
ul

d
co

lle
ct

 s
pe

ci
fic

 in
fo

rm
at

io
n

ab
ou

t d
is

tr
ib

ut
ed

 a
pp

lic
at

io
ns

’ b
eh

av
io

r
an

d
pe

rf
or

m
an

ce
 a

nd
su

pp
ly

 th
is

 in
fo

rm
at

io
n

to
 n

ar
ro

w
-p

ur
po

se
d

“G
au

ge
s”

(v
is

ua
liz

at
io

ns
)

•
Ac

ti
vi

ty
 T

he
or

y
–

M
an

y
pe

op
le

 a
nd

 th
in

gs
 a

ffe
ct

 th
e

ac
hi

ev
em

en
t o

f a
n

ob
je

ct
iv

e.

UC
I -

 R
ed

m
ile

s

Ev
en

t N
ot

ifi
ca

ti
on

 S
er

vi
ce

•
In

fo
rm

at
io

n
So

ur
ce

s

•
In

fo
rm

at
io

n
Co

ns
um

er
s

(G
au

ge
s)

•
Ev

en
t N

ot
ifi

ca
ti

on
Se

rv
er

s

•
Ev

en
t S

er
vi

ce
s

–
Pu

bl
is

h
(P

os
t)

–
No

ti
fy

 (R
ec

ei
ve

)
–

Su
bs

cr
ib

e

In
fo

rm
at

io
n

so
ur

ce
In

fo
rm

at
io

n
so

ur
ce

In
fo

rm
at

io
n

co
ns

um
er

N
O

T
IF

IC
A

T
IO

N
 S

E
R

V
E

R
N

O
T

IF
IC

A
T

IO
N

 S
E

R
V

E
R

PUBLISH

In
fo

rm
at

io
n

co
ns

um
er

In
fo

rm
at

io
n

co
ns

um
er

NOTIFY

NOTIFY

NOTIFY

S U B S C R I B E

S U B S C R I B E

S U B S C R I B E

UC
I -

 R
ed

m
ile

s

Us
in

g
th

e
CA

SS
 S

tr
at

eg
y

In
fo

rm
at

io
n

So
ur

ce
: A

W
A

C
S

Si
m

ul
at

or

N
ot

if
ic

at
io

n
se

rv
er

: C
A

SS
IU

S

G
au

ge
 1

G
au

ge
 2

G
au

ge
 3

G
au

ge
 n

UC
I -

 R
ed

m
ile

s

N
ot

if
ic

at
io

n
S

er
ve

r

Ph
ys

ic
al

 E
nv

ir
on

m
en

ts

(P
or

th
ol

es
, A

ct
iv

e
B

ad
ge

s)
C

om
pl

ex
 to

ol
s:

 P
or

th
ol

es

Si
m

pl
e

de
sk

to
p

w
id

ge
ts

M
ob

ile
 A

w
ar

en
es

s

A
m

bi
en

t F
ix

tu
re

s
[i

sh
ii]

Sh
ar

ed
 A

rt
if

ac
ts

(P
ap

er
s,

 s
pr

ea
ds

he
et

s,
 d

at
ab

as
es

)

V
ir

tu
al

 E
nv

ir
on

m
en

ts
(M

U
D

s,
 c

ha
t r

oo
m

s)

A
w

ar
en

es
s

T
oo

ls
In

fo
rm

at
io

n
So

ur
ce

s

M
ob

ile
 W

or
ke

rs
(C

us
to

m
er

 R
ep

, S
up

po
rt

 S
ta

ff
)

W
ri

te
r

D
ev

el
op

er
Pr

in
te

r
D

oc
um

en
t

UC
I -

 R
ed

m
ile

s

CA
SS

IU
S

se
rv

er
AW

AC
S

Si
m

ul
at

o
r

Ga
ug

es

CA
SS

IU
S

[K
R0

1]
In

te
rc

ha
ng

ea
bi

lit
y

an
d

th
e

De
ta

il-
Va

ri
et

y
Tr

ad
eo

ff

UC
I -

 R
ed

m
ile

s

Ho
w

 e
as

y
is

 it
 to

pr
ov

id
e

in
te

gr
at

ed
aw

ar
en

es
s?

UC
I -

 R
ed

m
ile

s

Is
su

es

•
Ho

w
 g

au
ge

s
ar

e
no

ti
fie

d
ab

ou
t t

he
 e

ve
nt

s
or

 T
he

 Is
su

e
of

Pu
sh

 v
s.

 P
ul

l A
rc

hi
te

ct
ur

es
 b

et
w

ee
n

th
e

no
ti

fic
at

io
n

se
rv

er
an

d
th

e
ga

ug
es

?

•
Ho

w
 p

ow
er

fu
l i

s
th

e
su

bs
cr

ip
ti

on
 s

er
vi

ce
 fo

r
ea

ch
no

ti
fic

at
io

n
se

rv
er

? W
ha

t a
re

 t
he

 ty
pe

s
of

 m
at

ch
in

g
su

pp
or

te
d?

•
W

hi
ch

 o
bj

ec
ts

 c
an

 se
nd

 e
ve

nt
s t

o
th

e
no

ti
fic

at
io

n
se

rv
er

, o
r

Is
su

es
 a

bo
ut

 e
ve

nt
 a

nd
 o

bj
ec

t r
eg

is
tr

at
io

n?

•
W

hi
ch

 m
et

a-
in

fo
rm

at
io

n
is

 a
ss

oc
ia

te
d

to
 th

e
ev

en
ts

 s
en

t t
o

th
e

no
ti

fic
at

io
n

se
rv

er
 o

r
Ho

w
 p

ow
er

fu
l a

re
 th

e
ev

en
ts

?

•
W

ha
t a

re
 th

e
in

te
rf

ac
es

 im
pl

em
en

te
d

by
 th

e
no

ti
fic

at
io

n
se

rv
er

s,
 o

r
ho

w
 e

as
y

to
 c

ha
ng

e
fr

om
 a

 n
ot

ifi
ca

ti
on

 s
er

ve
r

to
an

ot
he

r?

UC
I -

 R
ed

m
ile

s

Co
nc

lu
si

on
s

•
Th

e
av

ai
la

bl
e

so
ft

w
ar

e
(e

.g
.,

no
tif

ic
at

io
n

se
rv

er
s)

 fo
r

bu
ild

in
g

sy
st

em
s

in
co

rp
or

at
in

g
aw

ar
en

es
s

in
fo

rm
at

io
n

is
 v

er
y

lo
w

-l
ev

el
 a

nd
pr

on
e

to
 d

es
ig

n
an

d
pr

og
ra

m
m

in
g

er
ro

rs
.

•
Su

pp
or

t f
or

 c
om

pl
ex

, h
et

er
og

en
eo

us
 s

ys
te

m
s

(e
.g

.,
m

ul
ti

pl
e

di
ffe

re
nt

, s
er

ve
rs

, i
nf

or
m

at
io

n
so

ur
ce

s,
 a

nd
 c

on
su

m
er

s)
 v

ar
ie

s,
 c

ur
re

nt
ly

de
si

gn
er

s
m

us
t e

xp
en

d
ex

tr
a

ef
fo

rt
 to

 d
es

ig
n

fo
r

ch
an

ge
 a

nd
 fl

ex
ib

ili
ty

.
•

Th
e

go
al

 is
 u

sa
bi

lit
y—

w
e

se
ek

 to
 p

ro
vi

de
 a

 s
et

of
 u

sa
bl

e
an

d
us

ef
ul

 s
er

vi
ce

s
an

d
st

ra
te

gy
 to

pr
ov

id
e

us
ab

le
 a

nd
 u

se
fu

l a
w

ar
en

es
s

ca
pa

bi
lit

ie
s

fo
r

ap
pl

ic
at

io
ns

.

UC
I -

 R
ed

m
ile

s

In
 o

th
er

 w
or

ds
 …

•
A

gr
ea

te
r

va
ri

et
y

of
 a

w
ar

en
es

s d
ev

ic
es

 …
–

Cr
it

ic
s

–
Us

ab
ili

ty
 e

xp
ec

ta
ti

on
s

–
Em

ai
l n

ot
ifi

ca
ti

on
s

–
Ap

pl
ic

at
io

n
ga

ug
es

–
Se

cu
ri

ty
 a

nd
 p

ri
va

cy
 g

au
ge

s?
–

Po
rt

ho
le

s?

…
 in

te
gr

at
ed

 th
ro

ug
h

an
 e

ve
nt

 n
ot

ifi
ca

tio
n

in
fr

as
tr

uc
tu

re

UC
I -

 R
ed

m
ile

s

Re
fe

re
nc

es

UC
I -

 R
ed

m
ile

s

Re
fe

re
nc

es

•
Gi

rg
en

so
hn

, A
.,

Le
e,

 A
.,

Tu
rn

er
, T

. B
ei

ng
 in

 P
ub

lic
 a

nd
 R

ec
ip

ro
ci

ty
: D

es
ig

n
fo

r
Po

rt
ho

le
s

an
d

Us
er

 P
re

fe
re

nc
e,

 In
 H

um
an

-
Co

m
pu

te
r

In
te

ra
ct

io
n

IN
TE

RA
CT

 '9
9,

 IO
S

Pr
es

s,
 p

p.
 4

58
-4

65
, 1

99
9.

•
Re

dm
ile

s,
 D

. R
ed

uc
in

g
th

e
Va

ri
ab

ili
ty

 o
f P

ro
g

ra
m

m
er

s’
 P

er
fo

rm
an

ce
 T

hr
ou

gh
 E

xp
la

in
ed

 E
xa

m
pl

es
, H

um
an

 F
ac

to
rs

 in
Co

m
pu

ti
ng

 S
ys

te
m

s,
 IN

TE
RC

HI
 ‘9

3
Co

nf
er

en
ce

 P
ro

ce
ed

in
gs

 (A
m

st
er

da
m

, T
he

 N
et

he
rl

an
ds

),
AC

M
, A

pr
il

19
93

, p
p.

 6
7-

73
.

•
Ro

bb
in

s,
 J

.,
Hi

lb
er

t,
D.

, R
ed

m
ile

s,
 D

. E
xt

en
di

ng
 D

es
ig

n
En

vi
ro

nm
en

ts
 to

 S
of

tw
ar

e
Ar

ch
it

ec
tu

re
 D

es
ig

n,
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g,
 V

ol
. 5

, N
o.

 3
, J

ul
y

19
98

, p
p.

 2
61

-2
90

•
Ro

bb
in

s,
 J

.,
Re

dm
ile

s,
 D

. C
og

ni
ti

ve
 S

up
po

rt
, U

M
L

Ad
he

re
nc

e,
 a

nd
 X

M
I I

nt
er

ch
an

ge
 in

 A
rg

o/
UM

L,
 In

fo
rm

at
io

n
an

d
So

ft
w

ar
e

Te
ch

no
lo

gy
, V

ol
. 4

2,
 N

o.
2,

 J
an

ua
ry

 2
00

0,
 p

p.
79

-8
9.

•
Hi

lb
er

t,
D.

, R
ed

m
ile

s,
 D

. A
n

Ap
pr

oa
ch

 t
o

La
rg

e-
Sc

al
e

Co
lle

ct
io

n
of

 A
pp

lic
at

io
n

Us
ag

e
Da

ta
 O

ve
r

th
e

In
te

rn
et

, P
ro

ce
ed

in
gs

 o
f

th
e

Tw
en

ti
et

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
(I

CS
E

‘9
8,

 K
yo

to
, J

ap
an

),
IE

EE
 C

om
pu

te
r

So
ci

et
y

Pr
es

s,
Ap

ri
l 1

9-
25

, 1
99

8,
 p

p.
 1

36
-1

45
.

•
Ka

nt
or

, M
.,

Zi
m

m
er

m
an

n,
 B

.,
Re

dm
ile

s,
 D

. F
ro

m
 G

ro
up

 M
em

or
y

to
 P

ro
je

ct
 A

w
ar

en
es

s
Th

ro
ug

h
Us

e
of

 t
he

 K
no

w
le

dg
e

De
po

t,
Pr

oc
ee

di
ng

s o
f t

he
 1

99
7

Ca
lif

or
ni

a
So

ft
w

ar
e

Sy
m

po
si

um
 (I

rv
in

e,
 C

A)
, U

CI
 Ir

vi
ne

 R
es

ea
rc

h
Un

it
 in

 S
of

tw
ar

e,
 Ir

vi
ne

, C
A,

No
ve

m
be

r
7,

 1
99

7,
 p

p.
 1

9-
26

.
•

Ka
nt

or
, M

.,
Re

dm
ile

s,
 D

. C
re

at
in

g
an

 In
fr

as
tr

uc
tu

re
 fo

r
Ub

iq
ui

to
us

 A
w

ar
en

es
s,

 E
ig

ht
 IF

IP
 T

C
13

 C
on

fe
re

nc
e

on
 H

um
an

-
Co

m
pu

te
r

In
te

ra
ct

io
n

(I
NT

ER
AC

T
20

01
, T

ok
yo

, J
ap

an
),

Ju
ly

 2
00

1,
 p

p.
 4

31
-4

38
.

•
de

 S
ou

za
,C

.R
.B

.,
Ba

sa
ve

sw
ar

a,
 S

.D
.,

Re
dm

ile
s,

 D
. U

si
ng

 E
ve

nt
 N

ot
ifi

ca
ti

on
 S

er
ve

rs
 t

o
Su

pp
or

t A
pp

lic
at

io
n

Aw
ar

en
es

s,
 to

ap
pe

ar
 in

 th
e

Pr
oc

ee
di

ng
s

of
 t

he
 IA

ST
ED

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g

an
d

Ap
pl

ic
at

io
ns

 (C
am

br
id

ge
,

M
A)

, N
ov

em
be

r
20

02
, t

o
ap

pe
ar

.
•

Co
lli

ns
, P

.,
Sh

uk
la

, S
.,

Re
dm

ile
s,

 D
. A

ct
iv

it
y

Th
eo

ry
 a

nd
 S

ys
te

m
 D

es
ig

n:
 A

 V
ie

w
 fr

om
 th

e
Tr

en
ch

es
, C

om
pu

te
r-

su
pp

or
te

d
Co

op
er

at
iv

e
W

or
k,

 S
pe

ci
al

 Is
su

e
on

 A
ct

iv
it

y
Th

eo
ry

 a
nd

 th
e

Pr
ac

ti
ce

 o
f D

es
ig

n,
 2

00
2,

 p
p.

 ?
?-

??
.

•
Y.

 E
ng

es
tr

öm
. W

he
n

is
 a

 T
oo

l?
 M

ul
ti

pl
e

M
ea

ni
ng

s o
f A

rt
ifa

ct
s i

n
Hu

m
an

 A
ct

iv
it

y,
 C

ha
pt

er
 8

 o
f L

ea
rn

in
g,

 W
or

ki
ng

 a
nd

Im
ag

in
in

g,
 P

ai
ne

tt
u

Ki
rj

ap
ai

no
 O

m
a

K
y:

ss
ä,

 J
yv

äs
ky

lä
ss

ä,
 1

99
0,

 p
p.

 1
71

-1
95

.
•

Re
dm

ile
s,

 D
. I

nt
ro

du
ct

io
n

to
 th

e
Sp

ec
ia

l I
ss

ue
 o

f C
SC

W
 o

n
Ac

ti
vi

ty
 T

he
or

y
an

d
th

e
Pr

ac
ti

ce
 o

f D
es

ig
n,

 C
om

pu
te

r-
su

pp
or

te
d

Co
op

er
at

iv
e

W
or

k,
 S

pe
ci

al
 Is

su
e

on
 A

ct
iv

it
y

Th
eo

ry
 a

nd
 th

e
Pr

ac
ti

ce
 o

f D
es

ig
n,

 a
cc

ep
te

d
an

d
to

 a
pp

ea
r,

 2
00

2.
•

Re
dm

ile
s,

 D
. S

up
po

rt
in

g
th

e
En

d
Us

er
s’

 V
ie

w
s,

 T
he

 A
dv

an
ce

d
Vi

su
al

 In
te

rf
ac

es
 In

te
rn

at
io

na
l W

or
ki

ng
 C

on
fe

re
nc

e
(A

VI
 2

00
2,

Tr
en

to
, I

ta
ly

),
M

ay
 2

2-
24

, 2
00

2,
 in

 p
re

ss
.

UC
I -

 R
ed

m
ile

s

Ex
tr

a
Sl

id
es

UC
I -

 R
ed

m
ile

s

Et
hn

og
ra

ph
y

+
SE

:
Ac

ti
vi

ty
 T

he
or

y

SU
B

JE
C

T

R
U

L
E

S
C

O
M

M
U

N
IT

Y

D
IV

IS
IO

N
O

F
L

A
B

O
R

O
B

JE
C

T

M
E

D
IA

T
IN

G
 A

R
T

IF
A

C
T

S

O
U

T
C

O
M

E

•
Su

bj
ec

ts
 a

re
 p

eo
pl

e
w

it
hi

n
a

co
m

m
un

it
y

th
at

 w
or

k
w

it
h

ob
je

ct
s

to
 o

bt
ai

n
an

 o
ut

co
m

e.

•
Ru

le
s

de
te

rm
in

e
th

e
be

ha
vi

or
of

 s
ub

je
ct

s
an

d
th

ei
r

in
te

ra
ct

io
n

w
it

h
ob

je
ct

s.

•
Di

vi
si

on
 o

f l
ab

or
 d

et
er

m
in

es
w

ho
 p

er
fo

rm
s

w
ha

t a
ct

io
ns

.

•
M

ed
ia

ti
ng

 a
rt

ifa
ct

s
he

lp
su

bj
ec

ts
 m

an
ip

ul
at

e
ob

je
ct

s
an

d
ob

ta
in

 o
ut

co
m

es
.

•
M

ed
ia

ti
ng

 a
rt

ifa
ct

s
ha

ve
 a

hi
st

or
y

w
it

h
re

sp
ec

t t
o

a
co

m
m

un
it

y.

E
ng

es
tr

öm
 A

ct
iv

ity
 S

ys
te

m
 M

od
el

Part 2: Follow-up Materials

Citations for Follow-Up Materials

de Souza, C.R.B., Penix, J., Sierhuis, M., Redmiles, D. Analysis of Work Practices of a Collaborative
Software Development Team, International Symposium on Empirical software Engineering (ISESP 2002,
Nara, Japan), V. II, October 2002.

Kantor, M., Redmiles, D. CASSIUS: Designing Dynamic Subscription and Awareness Services, Workshop
on Ad hoc Communications and Collaboration in Ubiquitous Computing Environments, ACM Conference
on Computer Supported Cooperative Work (CSCW 2002— New Orleans, LA), November 2002, available
at http://www.cs.uoregon.edu/research/wearables/cscw2002ws/papers/Kantor.pdf.

Silva Filho, R.S., Slabyak, M., Redmiles, D.F. A Web-based Infrastructure for Group Awareness based on
Events, Workshop on Network Services for Groupware, ACM Conference on Computer Supported
Cooperative Work (CSCW 2002—New Orleans, LA), November 2002, available at
http://awareness.ics.uci.edu/~rsilvafi/papers/Workshops/CSCW2002-workshop.pdf.

de Souza, C.R.B., Redmiles, D.F., Mark, G., Penix, J., Sierhuis, M. Management of Interdependencies in
Collaborative Software Development, ACM-IEEE International Symposium on Empirical Software
Engineering (ISESE 2003), September 2003.

de Souza, C.R.B., Redmiles, D.F., Opportunities for Extending Activity Theory for Studying Collaborative
Software Development, Workshop on Applying Activity Theory to CSCW Research and Practice, in
conjunction with the 8th European Conference of Computer-Supported Cooperative Work (ECSCW
2003—Helsinki, Finland), September 2003, available at http://www.uku.fi/atkk/actad/ecscw2003-
at/desouza+redmiles.pdf.

de Souza, C.R.B., Redmiles, D.F., ‘Breaking the Code’, Private and Public Work in Collaborative Software
Development, Supplement Proceedings of the 8th European Conference of Computer-Supported
Cooperative Work (ECSCW 2003—Helsinki, Finland), September 2003.

de Souza, C.R.B., Redmiles, D., Dourish, P., ‘Breaking the Code’, Private and Public Work in
Collaborative Software Development, International Conference on Supporting Group Work (Group 2003—
Sanibel Island, FL), November 2003.

Analysis of Work Practices of a Collaborative Software Development Team

Cleidson R. B. de Souza1,3 John Penix2 Marteen Sierhuis3 David Redmiles1

1Department of Information and
Computer Science

2Computacional Sciences
Division

3Research Institute for
Advanced Computer Science

University of California, Irvine
Irvine, CA, USA

NASA Ames Research Center
Moffett Field, CA, USA

NASA Ames Research Center
Moffett Field, CA, USA

Abstract

This paper reports preliminary results of a field study of a
software development team. This team develops a suite of
tools called CTAS, designed to help air traffic controllers
manage complex air traffic flows at large airports. We
observed that CTAS developers employ two main tools for
coordinating their work: a configuration management
system and a bug tracking system. These tools allow them
to coordinate their activities supporting a high level of
parallel development. Communication and cooperation
among developers with different roles is achieved using
product requests. Future results from our study will pro-
vide insights into the complexities of cooperative software
development and help to design tools to support it.

Keywords: Field Study, Empirical Studies, CSCW, Coop-
erative Work, Cooperative Software Development.

1. Introduction✝
Software development is a typical cooperative activity

where experts from different domains are necessary. In-
deed, developers of large systems spend about 70% of
their time working with others[10]. At NASA, this prob-
lem is much more difficult because of the increasing com-
plexity of the software being developed. In fact, several
efforts to improve the software engineering practices
through the dissemination of best practices and infusion of
new technologies are taking place at NASA. However,
these efforts will only be effective if they address the real
ways that people work together to develop software.

Gerson and Star[1] observe that no matter how formal
and well-defined a process may seem, there is always a set
of informal practices by which individuals and groups
monitor and maintain the process, keep it on track, recog-
nize opportunities for action and the necessity for inter-
vention or deviation. In order to understand these prac-
tices, the first author conducted an eight-week qualitative
study of a software development team using non-

✝ The authors would like to thank the CTAS group for their help during the
fieldwork and the NASA Research Grant NAG2-1555 for the financial
support. The first author would also like to thank CAPES (grant BEX
1312/99-5) for the financial support. He is also a faculty at the Department
of Informatics, Federal University of Pará, Belém, Pará, Brazil.

participant observation and informal interviews for data
collection. This paper reports our initial findings.

2. The Setting

The group observed develops an application called
CTAS (Center TRACON Automation System). CTAS is a
suite of advisory tools designed to help air traffic control-
lers manage the complex air traffic flow at large airports.
The source code is developed in C and C++ and is about
1,000 K lines long. The development team is divided in
two groups: developers and the verification and validation
(V&V) staff. Developers are responsible for writing new
code, for performing bug fixing and enhancements, and so
on. There are 25 developers, including researchers that
write their own code. The V&V staff is responsible for
testing the software and reporting, keeping a running ver-
sion for demonstration purposes and maintaining user
manuals. This group is composed of six engineers.

3. The Methods

The first author spent eight weeks at the field site. We
adopted non-participant observation[3] and informal in-
terviews[5]. In addition to field notes generated by the
observations and interviews, we collected software devel-
opment tool manuals, ISO 9000 procedures, product re-
quests for software changes (PR’s), and e-mails ex-
changed regarding the data and documents.

Initial data collection was centered on understanding
the daily work of the developers. During this stage, it be-
came clear that the configuration management (CM) and
the bug tracking tools combined with e-mail communica-
tion were central to the coordination of activities. These
results are not surprising based on previous studies by
Grinter[2]. Therefore, later data collection was focused on
understanding exactly how developers use these tools to
perform their work. The interviews focused on observing
and understanding the usage patterns of these tools.

4. Initial Findings

An important aspect in fieldwork is the interplay be-
tween data collection and analysis: data collection is di-
rected by on-going analysis of the data[9]. Our initial re-

sults of this analysis are described in this section. Further
analysis is still necessary to obtain more reliable results.
4.1 Parallel Development

We noted that software developers often engage in par-
allel development. This confirms the results from Perry et
al.[6], but contrasts with the groups studied by Grinter[2],
where developers avoided this situation. Parallel develop-
ment usually happens when more than one developer has
to make changes in the same file. Conflicts might occur
when one of these developers check the file back in the
repository, because the current version of other developer
will be outdated and his modifications might be based on
the code that was modified. To update his version, one
only needs to merge the other changes back in his code.
According to the developers, these conflicts are infrequent
and not likely to occur. We plan to use log of the tool us-
age to test this assumption.

In order to avoid these conflicts, the group adopted the
convention that before checking one file in, a developer
must send an e-mail to their mailing list describing the
files that were changed and the product request associated
with the changes. Developers even go to their co-worker’s
office to talk about the changes that they made or browse
the CM repository in order to understand these changes.

Another strategy used by the developers is the partial
check-in, i.e., to check files in, even when their work is
not completely finished. This strategy is employed by
those who work with files that are constantly changed by
several developers, which makes conflicts more likely.
This helps them to prevent those conflicts and avoid sev-
eral back merges to update their code.

4.2 Conventions

The team studied adopts several conventions in order to
cooperate effectively. Conventions are rules or arrange-
ments established in the group, common and accessible to
its members[4]. Examples of such conventions are the e-
mail that has to be sent before the check-in, or the naming
conventions that must be followed when dealing with the
CM and bug tracking tools. However, these conventions
are not properly supported by their tools which is a source
of complaints by the developers. For example, the creation
of branches in the CM tool must be based on the PR num-
ber recorded in the bug tracking tool. This creation is a
cumbersome process that could be easily automated since
this is a standard procedure.

4.3 Product Requests (PR’s) as Boundary Objects

During the fieldwork, we also identified that PR’s are
used as boundary objects by members of the team with
different roles. Boundary objects are objects both plastic
enough to adapt to local needs and the constraints of the
several parties employing them, yet robust enough to

maintain a common identity across sites[8]. In this group,
PR’s are used by end-users liaisons, developers and testers
serving for different functions. For example, when a bug
is identified, it is associated with a specific PR. Whoever
identified the problem is also responsible for describing
‘how to repeat’ it. The developer assigned to repair the
bug uses this description to identify and fix it. After that,
he must fill a field in the PR that describes how the testing
should be performed to properly validate the fix. This in-
formation is expanded by the test manager to create the
test matrices that are later used by the testers. Another
field conveys what needs to be checked by the manager
when closing the PR. Therefore, it is a reminder of the
aspects that need to be validated.

5. Conclusions and Future Work

Data analysis will be performed using grounded the-
ory[9] and analytical tools like boundary objects and social
networks. We also plan to use the Brahms work practice
modeling and simulation method[7], in order to simulate
the impact of inserting collaborative tools into the devel-
opment activity. We are particularly interested in under-
standing the consequences of the parallel development
identified in this group: reasons why these developers en-
gage in parallel development might be social, organiza-
tional, technological or combinations there of. It is impor-
tant to identify and understand these reasons so that this
practice might be improved, made more effective or safely
adopted by other development groups. Initial results indi-
cate that the branching strategy employed in the CM tool
properly supports such development, but this is still an
open question. We collected log usage data and plan to
apply statistical techniques to validate this hypothesis.

6. References
[1] Gerson, E. M. and Star, S. L. Analyzing Due Process in the Workplace.

ACM Trans. on Office Information Systems, 1986. 4(3): p. 257-270.
[2] Grinter, R., Supporting Articulation Work Using Configuration Man-

agement Systems. Journal of Computer Supported Cooperative Work,
1996. 5(4): p. 447-465.

[3] Jorgensen, D. L., Participant Observation: A Methodology for Human
Studies. 1989, Thousand Oaks: SAGE Publications.

[4] Mark, G., et al. Supporting Groupware Conventions through Contex-
tual Awareness. in (ECSCW '97). 1997, p. 253-268.

[5] McCracken, G., The Long Interview. 1988: SAGE Publications.
[6] Perry, D. E., Siy, H. and Votta, L. G. Parallel Changes in Large Scale

Software Development: An Observational Case Study. in ICSE 1998.
[7] Sierhuis, M., Modeling and Simulating Work Practices. BRAHMS: a

multiagent modeling and simulation language for work system analy-
sis and desing. 2001: Ponsen & Looijen BV.

[8] Star, S. L. and Griesemer, J. R. Institutional Ecology, Translations and
Boundary Objects: Amateurs and Professionals in Berkeley's Museum
of Vertebrate Zoology. Social Studies of Science, 1989. 19.

[9] Strauss, A. and J. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. Second. ed. 1998,
Thousand Oaks: SAGE Publications.

[10] Vessey, I. and A. P. Sravanapudi, CASE Tools as Collaborative Sup-
port Technologies. CACM, 1995. 38(1): pp. 83-95.

CASSIUS: Designing Dynamic Subscription and
Awareness Services

Michael Kantor
Institute for Software Research
University of California, Irvine

Irvine, CA 92612 USA
mkantor@ics.uci.edu

David Redmiles
Institute for Software Research
University of California, Irvine

Irvine, CA 92612 USA
redmiles@ics.uci.edu

ABSTRACT
CASSIUS is an awareness server which assists users in
designing subscriptions for maintaining awareness of
events within work, physical and social environments.
This environment is designed to work with a wide range of
awareness tools using desktop computers, mobile devices
and ambient fixtures[4]. This work investigates the
requirements for creating ad-hoc subscriptions – a
subscription that is created either by the user or a software
agent, and which only exists for a brief period of time.
Design guidelines are proposed that help address the
problem inherent in having users invest effort in creating a
subscription which may last for only the few minutes in
which they are in a specific location or context.

Keywords
Awareness tools, Notification servers, agents, CASSIUS,
ad-hoc networks

INTRODUCTION
The "Creating Awareness with Subscription Services"
(CASS) strategy is an approach for creating a ubiquitous
awareness environment [5]. The goal is to enhance people's
ability to coordinate with various actors within work,
physical and social environments by providing a usable and
useful environment for awareness and coordination. The
CASS strategy consists of a set of guidelines for the design
of software based awareness environments.

This paper begins by presenting an overview of these
guidelines and presents our implementation of this
ubiquitous awareness. We then discuss potential
extensions to the guidelines and implementation which
address the issues of designing an awareness environment
that is usable for the ad-hoc creation of subscriptions for
monitoring contextual information.

CASS Guidelines
The CASS strategy consists of a set of guidelines for
creating a usable and useful awareness environment. These
guidelines can be divided into three categories: provide
access to diverse information, remove guesswork from

specifying the information of interest and support
flexibility in the choice of awareness styles for representing
awareness information.

Provide Access to Diverse Information
Research in awareness technologies has focused upon tools
designed to monitor a single source (or a narrowly defined
set of sources) of awareness information. This has been the
case because the projects were either experimental,
investigating a style of presenting awareness information
with some demonstration source of awareness information
or because they were implemented within a context where
there was only one information source that the designer was
interested in.

In a ubiquitous awareness environment, an awareness tool
has access to diverse sources of awareness information
allowing each user to monitor the kinds of information that
matter to them. This was done by the Elvin Tickertape [3]
which could monitor discussion groups, news, email, and
other notifications sent to the notification server. To
support awareness and coordination in diverse
environments, we can not limit ourselves to monitoring a
single source of information. An awareness tool needs to
be able to obtain information from multiple sources of
awareness information, and integrate them together to give
users a broader understanding of what is happening within
their work, social or physical environments. Nor can we
limit users by telling them that the only information that
they can become aware of is news, photos of offices [1], or
any other single source.

Remove Guesswork from Specifying Information of Interest
Having access to diverse sources of awareness information
would be insufficient if the user does not know what
sources of information are available. To provide a usable
awareness environment, the user needs to be informed
(preferably by the awareness tools rather than by coworkers)
of what sources of awareness information are available,
what each source monitors, and what kinds of changes and
events can be detected. The awareness environment must
provide users with meta information describing the
awareness information accessible to the environment.

For example, if a source of information is a research paper,
the sections and subsections could be monitored for
changes, as could word or page counts. As a second
example, if users monitor for traffic problems, they need to

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

know what freeways and roads are monitored and what
kinds of traffic events are reported so that they can choose
which ones to monitor.

Without this meta information, any attempt by the user to
describe their interests involves a great deal of guesswork,
leading at best to partial success, and more likely to
frustration. Access to this type of information is a
prerequisite for a usable ubiquitous awareness environment.

Support Choice of Awareness Styles
A common problem with awareness technologies is that
they tend to provide a fixed awareness style with very little
room for selection of alternatives. In this work, the term
awareness style refers to the manner in which information
is presented to users and varies along a variety of
dimensions including:

1 . Intrusive vs. peripheral dimension: how
intrusive/disruptive is the presentation of new
awareness information? If the goal is to be
immediately notified of information as it occurs, an
intrusive style is needed. If the goal is to maintain
general awareness of ones environment, utilization of
peripheral senses may be more appropriate.

2. Mobility dimension: Can the awareness tool be used
as a person's work moves through different physical
and social contexts? Can it use mobile devices, or
does it require greater display, networking or
computational resources? Does its presentation style
require the kind of user attention only available
within an office or control room?

3. Information Representation dimension: What kinds
of information does the representation of the
information focus upon?

4 . Cognitive Effort dimension: How much effort is
needed to interpret the representation?

To provide an awareness environment that is useful, people
need to not only be able to choose what information to
monitor, they need to be able to choose how to be made
aware of the information. Ideally, they would have
hundreds of different awareness tools to choose from, and
could choose the one which best fits their work
environment, work practices and their needs with respect to
some subset of the information they intend to monitor.

Further, the user should not be limited to one awareness
tool at a time, nor one awareness tool for any source of
awareness information. As a user leaves an office setting
for a meeting, lunch or other situations, the style of
awareness that suits this new environment may change and
the user needs to have the option of changing awareness
tools to match the new environment. When the user is in
the office, there may be many sources of information, one
subset of which is monitored with an intrusive tool, and a
second subset of which is monitored with a peripheral
awareness tool.

CASSIUS
Our implementation of the CASS strategy is called
CASSIUS (CASS Information Update Server). It is a
notification server [7] which has been optimized for
usability as an awareness server. Figure 1 shows a service-
based architecture that CASSIUS implements, and Figure 2
shows an awareness source browser and subscription editor
provided with our CASSandra toolkit.

As shown in the top two services of Figure 1, sources of
awareness information must register with the server, listing
the objects that they monitor and describing the types of
events that can affect those objects. The awareness tool can
then support users browsing through lists of sources of
awareness information (shown in the top left column of
Figure 2). For each information source, the user can browse
through hierarchies of objects and properties monitored by
that information source (top center column of Figure 2).
When the user selects an object to monitor, lists of events
that can affect the object are listed, allowing the user to
optionally refine their subscription to just those types of
events (top right column of Figure 2). A single awareness
tool can monitor as many subscriptions and information
sources as suits the user’s needs and the tool’s awareness
style.

Representation of Arbitrary Information
A key issue in our design involves the representation of
awareness information from any information source. If the
designer of the awareness tool does not know in advance
what the source of awareness information is, how can the
tool represent that information? The answer is that all
notifications, regardless of what software sent them, must
be formatted using data fields that have a fixed
interpretation shared by all CASSIUS awareness tools and
information sources. The awareness tool need not
understand the meaning of the data sent in a notification,
but does need to understand its nature, that one field
contains verbal/textual descriptions of the event, another
field quantifies the extent of change, etc… Our design
attempts to account for the information needs of a broad
range of awareness styles by using the notification fields of
Table 1.

Sample Applications
We currently have a WebDAV server (CassDAV), and an
AWACS simulator which send notifications to CASSIUS,

Figure 1: CASSIUS service architecture

and we are working on a CVS repository and a Portholes
implementation [1]. In the case of WebDAV and CVS
repositories, the monitored objects are files and folders,
which are described to the server so that the user, using an
interface such as that presented in Figure 2, can browse
through a representation of the file system to find and
select files and folders to monitor. Notifications report on
the nature and extent of the changes or operations
performed upon the files and folders.

In the case of Portholes, which creates awareness by
distributing photos of people at work in their offices, the
monitored objects are groups and individuals, the
notifications indicate the extent of changes between
successive photos, and contain a URL to the photo.

To monitor these and future sources of awareness
information we have a growing body of awareness tools
including simpleScroller (a tickertape such as was
illustrated by Elvin [3]), EventLister (a debugging tool to
help developers see the notifications that their code sends)
and BiffArray (Figure 3). We are also working on an email-
based tool for sending digests of events, and are planning
to adapt our mobile awareness technology called
MiniPortholes.

BiffArray
BiffArray (Figure 3) is modeled on Xbiff, a common mail
awareness indicator in unix windowing environments. It
provides a row of Biffs, where the graphics within the icon
show the most recent event to come from the objects being
monitored. Rather than a mailbox with flag up or down
graphic (as was done in XBiff), it shows the GenericEvent

field (see Table 1) of the most recent notification to be
received. As there are five values of Generic Event, there are
5 images used to represent the different states. Each biff
in the display can be configured both in what it monitors
and in what sounds it uses to notify the user [2].

Each biff can monitor a different source of information. For
example, if you have six biffs, two could monitor files and
folders that you work with, two could monitor coworkers,
one could monitor activity on a chat group, and the last
could monitor the state of your group's printer.

Figure 3: BiffArray: Visual and Audio Icons

Mobile Awareness
MiniPortholes (Figure 4) is a mobile awareness technology
implemented in J2ME. It allows users to subscribe to
maintain awareness of individuals such as coworkers and
family. When this tool uses the CASSIUS server, it
enables users to not only subscribe to monitor other
MiniPortholes users but also monitor all types of
CASSIUS information sources. This means that system
administrators can monitor their servers, salesmen can
monitor their inventory, parents can monitor their children,
and in fact, a parent who is a system administrator and

Figure 2: CASSandra information source browser and subscription editor

salesman can monitor all three simultaneously – hopefully
not while driving.

While currently using a simplified version of CASSIUS,
we hope to integrate MiniPortholes with CASSIUS soon.

AD HOC AWARENESS INFORMATION
The high level goals of this work (the creation of a
ubiquitous awareness environment) are important whether
one is talking about work (awareness and coordination
among coworkers, often distributed both spatially and
organizationally), family (awareness and coordination with
family members scattered around a city) or a physical
environment (awareness of problems such as upcoming
traffic, weather, riots, parades, statistics related to a
sporting event you attend and special deals at your favorite
coffee shop just down the street). Effective support of
these diverse environments requires:

1) Creation of ad-hoc subscriptions, whose life span may
be as little as 10 minutes (and where the time to
specify the subscription must be comparably short).

2) Location based awareness servers that awareness tools
connect to on-the-fly to discover new sources of
awareness information.

The principal of what must be done remains unchanged: 1)
the users must be provided with meta information telling
them what information sources are available and what types
of information can be subscribed to within each
information source, and 2) users choose awareness styles
for each type of information. However, in this new

environment, extensions are needed in how these services
are provided.

Extension 1: Detecting and Logging Information
Sources
In our current implementation, users can view lists of
information sources on the servers that they have
permission to access. If we introduce location-based
awareness servers (perhaps for sending traffic awareness to
people on freeways) and time-based awareness servers (a
server which only exists for a short peiod of time, such as
for the duration of a county fair, or a festival), the nature of
these lists must change. To effectively provide users with
lists of information sources that they can monitor, mobile
awareness tools need to be able to

1. Detect the presence of awareness servers as they come
into range,

2. Obtain lists of information sources from these servers
that users can browse through,

3. Store the lists of information sources and information
about the awareness servers (such as that it was
running on a traffic monitoring server, or on some
stranger’s PDA),

4 . Categorize the stored information according to the
nature of the awareness server (group all traffic
awareness servers together, group all PDAs running
their own servers together), and by the information
source (all information sources that monitor a calendar
get grouped together, regardless of what awareness
server it came from).

Extension 2: Usability in Ad Hoc Subscriptions
A key issue in supporting ad hoc subscriptions is the
efficiency with which the subscription can be created. How
much examination of the display and selection of options
must be done to allow the user to monitor traffic for the
next 15 minutes? To address these problems, additional

Figure 4: MiniPortholes, mobile awareness

Table 1: CASSIUS Notifications

Summary One line textual summary of the change

GenericEvent An event name chosen from a list of
generic event names. Generic event names
are shared by all information sources and
enable awareness tools to understand the
general nature of the event even if they
can’t interpret the specific nature of the
event represented by the Event field.
C u r r e n t l y s u p p o r t s “Activate”,
“Deactivate”, “Increase”, “Decrease” and
“Change” (the last being a catch-all for
events not fitting other categories).

Event An event name specific to the information
source and to a type of object within the
information source. Events reporting on a
section of a document might include “Text
Added”, “Text Removed”, “Subsection
Added”, and “Subsection Removed”.

URL Optional link to more information about a
notification. Leads users to text, images or
information source specific data files.

Person Optional person associated with event.

Place Optional place associated with event.

Object Identifies the object or property that has
changed.

AccountPath Identifies the information source.

NumericalValue Optional numerical value to quantify the
change.

guidelines have been created for the design of information
sources and awareness tools.

Support a Spectrum of Complexity
Location and time based awareness servers should provide
simple options for subscribing. While it should be
possible to carefully refine long term subscriptions so that
the awareness tool doesn’t waste time presenting unwanted
information, support is also needed for the fast and less
precise task of creating short-term subscriptions.

For example, a person at a county fair can subscribe to the
fair’s scheduled events and be notified each time a new
event is about to begin. Or the person can be more careful
and look at the objects under “Scheduled Events” in the
object hierarchy and subscribe to only be notified when
musical events are about to start. Both subscriptions are
useful. One requires more time and thought – time which
people spending all day at the fair are more likely to invest
than people attending for only part of the day.

This scaling is supported in CASSIUS in the form of
notifications that can be propagated up the object hierarchy:
a notification of changes to a file in a CassDAV server will
result in notifications being sent to users monitoring the
file (users who have carefully refined their subscription),
and will also propagate the notification up to users
monitoring any of the containing folders.

One new design principal for information sources is
therefore to design the hierarchy of monitored objects to
explicitly support both users who have time to carefully
refine subscriptions by browsing deeply through object
hierarchies, and to have high level, rapidly accessible
objects for use in creating ad hoc subscriptions.

Consistency Across Related Information Sources
Subscriptions need to be generalizable across related
information sources. For example, if a user subscribes to
be notified of traffic problems while on one segment of a
highway, there is a strong likelihood that when moving to
a different segment of the freeway, the user will want to
subscribe to the same or similar categories of information.

Support for this would require consistency across
information sources that monitor the same types of
information. For example, each traffic information source
would have the same high level objects in its hierarchy,
and only when you work your way down to monitoring
certain on/off ramps do the object hierarchies of the
different sources begin to look different.

Implementations of this (under the current CASSIUS
architecture) would leave it to the awareness tool to

1) Note that two information sources are similar,

2) Determine that the user has subscribed to a certain set
of information in the first information source,

3) Either automatically subscribe the user to similar
information in the new information source, recommend
it to the user, or make the information very easy to
find and subscribe to [6].

An alternate approach would utilize the categorization and
logging of awareness servers and information sources

discussed in the prior section. It would allow users to look
at a variety of related information sources and design a
subscription that specifies what to do if information
sources of that type are encountered in the future.

CONCLUSION
We have designed a set of guidelines for creating
ubiquitous awareness environments, and provided an
implementation of this environment. However, without
strict guidelines in the design of information sources and
awareness tool that work within this environment, the
environment will only be usable for static subscriptions;
subscriptions to information sources that will be a part of
the user’s life for an extended period of time. To make this
environment usable for the creation of ad hoc subscriptions,
information sources need to have both high level objects
for rapid subscription and low level objects for refined
subscription, sources of a common type need to utilize
common object hierarchies, and the awareness tools need
to be able to log, organize and recommend subscriptions
based on information retrieved from the awareness servers
that it encounters.

ACKNOWLEDGMENTS
This effort was sponsored by the National Aeronautics and
Space Administration (NASA) Research Grant NAG2-
1555. The U.S. government is authorized to reproduce and
distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of NASA.

REFERENCES
1. Dourish, P., Bly, S. (1992) Portholes: Supporting

Awareness in a Distributed Work Group In CHI'92
ACM, pp. 541-547.

2. Gaver, W. W., R. B. Smith, and T. O'Shea (1991)
Effective Sounds in Complex Systems: The ARKola
Simulation In CHI'91, New Orleans.

3. Fitzpatrick, G., Mansfield, T., Arnold, D., Phelps, T.,
Segall B., Kaplan, S. (1999) Instrumenting and
Augmenting the Workaday World with a Generic
Notification Service called Elvin In ECSCW'99
Copenhagen.

4. Ishii, H., Wisneski, C., Brave, S., Dahley, A., Gorbet,
M., Ullmer, B., Yarin, P. (1998) ambientROOM:
integrating ambient media with architectural space In
CHI’98 ACM, Los Angeles, pp. 173 - 174.

5. Kantor, M., Redmiles, D. Creating an Infrastructure for
Ubiquitous Awareness, Eight IFIP TC 13 Conference
on Human-Computer Interaction (INTERACT
2001Tokyo, Japan), July 2001, pp. 431-438.

6 . Maes, P. (1994) Agents that Reduce Work and
Information Overload in CACM, 37, 31-41.

7 . Ramduny, D., Dix, A. and Rodden, T. (1998)
Exploring the design space for notification servers In
CSCW'98 ACM, Seattle, pp. 227-235.

A Web-based Infrastructure for Awareness based on
Events

Roberto S. Silva Filho, Max Slabyak, David F. Redmiles
Information and Computer Science, University of California, Irvine

Irvine, CA 92697-3430 USA
+1 949 824 4121

{rsilvafi, mslabyak, redmiles}@ics.uci.edu

ABSTRACT
The ability to be aware of other people’s work in a collabo-
rative environment is essential to improving the coordina-
tion of the members of a group. In this context, events
originating from many sources have to be filtered and
combined in order to provide the right information to the
right person at the right time. As the Web becomes a popu-
lar and ubiquitous way to integrate different information
sources, an infrastructure that allows the filtering, combi-
nation, abstraction and routing of awareness information is
required. In this paper, we describe DEAL (Distributed
Event Awareness Language), an event-based infrastructure
and language that supports the development of awareness
applications in the context of distributed collaborative en-
vironments. The requirements of the infrastructure are
discussed as well as the language syntax. Our motivation
was to design a language and a set of usable and useful
strategies and web services that provide usable and useful
awareness capabilities for the development of awareness
applications.

Keywords
Event Notification, Distributed Awareness, Event Process-
ing Languages, CSCW, Web Services.

INTRODUCTION
In a broader sense, awareness refers to people’s ability to
sense relevant changes in their environment. In the spe-
cific context of CSCW, awareness is usually related to the
perception of the direct or indirect changes in the compu-
tational and social environments originated by other peo-
ple in the group. These changes are usually communicated
through different computational resources, devices and
applications. Awareness is an essential element in distrib-
uted collaborative environments. Individuals and groups of
people need to be aware of what other members of the
group are doing, in special, the activities of these other

members that directly or indirectly affect each individual’s
work. For example, a manager needs to be aware of the
progress of the tasks assigned to her subordinates, the
presence of other members of the group in the workplace
in order to see a demo, the arrival of a co-worker in a re-
mote site, in order to start a chat session and so on. These
activities can be modeled as events, atomic asynchronous
messages that represent changes in the computational and
social contexts.

The CSCW literature describes many ways to provide
awareness in a collaborative and potentially distributed
work environment [15]. Some examples include periodic
pictures of a co-worker’s office as provided by NYNEX
Portholes [16], notifications about changes in shared arti-
facts, provided by the BSCW system [17], application
monitoring gauges as described in [5] and so on. In order
to integrate and combine the information coming from
those different sources, allowing the processing, routing
and filtering of such information, an event processing in-
frastructure is usually adopted [3].

Today’s Web Services infrastructure focuses on providing
a common set of protocols for the development of web ap-
plications, defining a web-based middleware for the devel-
opment and integration of distributed web services [19]. In
this infrastructure, the SOAP protocol is used as a remote
procedure call mechanism for services communication; the
UDDI implements a service location mechanism and the
WSDL allows the description of the interfaces of the web
services. This infrastructure alone, however, does not pro-
vide all the functionality necessary for the implementation
of more sophisticated web applications [11]. In this con-
text, event-processing services supplement this basic infra-
structure providing the ability to integrate, process, select
and route events originated from different nodes in the
Web. In an event notification service, producers and con-
sumers of information are separated by an event middle-
ware that integrates these two parties, allowing different
consumers to subscribe to information coming from many
event producers. This event routing layer decouples event
producers from their consumers, allowing the dynamic
addition and removal of these components in the system.

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE COPY-

RIGHT NOTICE.

Specifically, previous work analyzes the use of event noti-
fication servers in CSCW applications [4].

In this paper, we present DEAL (the Distributed Event
Awareness Language), an event-notification infrastructure
and language to support the development of distributed
awareness applications for the Web. The DEAL environ-
ment extends the basic functionality provided by event
notification servers such as Khronika [9], CASSIUS [8],
CORBA Notification Service [12], ELVIN [6] and SIENA
[1] to cope with the richer set of requirements of awareness
applications. This is accomplished by the use of a powerful
and usable event language that allows the definition, proc-
essing, combination, filtering and routing of events com-
ing from heterogeneous sources (programs, applications,
components, people, mobile devices and so on). The
DEAL language syntax and resources were inspired in the
features provided by event processing languages such as
GEM [10], Yeast [2], EDEM [7] and READY [18]. Us-
ability and simplicity with expressiveness were some of the
principles considered in the design of the language. In
special, the following scenario provides a set of require-
ments and motivations that guided the design of the lan-
guage and infrastructure.

SCENARIO AND MOTIVATION
Consider an IT company with many branches in different
cities over the country or even the world. Many people
cooperate in different projects at the same time, perform-
ing different roles (manager, programmer, tester, designers
and so on). Each project usually is carried on by a dynamic
group of people whose interaction varies according to the
group’s current focus. At the beginning of a project, for
example, designers and project managers are more active,
whereas more towards the end, the activities concerning
programmers, engineers and testers are more prominent.
The work can also be split between different branches of
the company. One branch, for example, deals with the
product support while the other deals with the design and
implementation. People join and leave groups as neces-
sary. The group work is usually supported by different
tools, such as configuration management repositories,
word processing, CAD, databases and so on. These tools
are used to produce and manage the evolution of the arti-
facts being developed, as well as their meta-information
(documentation, specifications, metrics and so on). In this
scenario, different people need to be aware of other group
member’s activities.

An indirect way of being aware of other people or group
activities is to gauge the evolution of the artifacts they pro-
duce or modify. The kind of information one is interested
in depends on her role in the organization. For example,
programmers and engineers may want to be notified when
some modules in a software project repository are ready for
integration or when some change request is issued and
consolidated in a defect report database. Managers, on the

other hand, can gauge the activity in certain project by
visualizing a graph with the number of changes in the pro-
ject repository over the day.

In this dynamic work environment, mobility and heteroge-
neity is another concern. Computers are no longer limited
to users’ desktops at their workplaces; instead they are
increasingly mobile and ubiquitous. Users can interact
with a collection of computational devices ranging from
non-stop servers, workstations, and motion sensors to
portable devices as laptops, mobile phones and PDAs. In
this mobile environment, awareness applications have to
adjust their intrusiveness and information delivery policies
to comply with different contexts (time, place, physical,
organizational, administrative roles so on). For example,
managers may want to be constantly informed about the
progress of their projects using their portable computers.
The level of attention required by the user, however, is
dependent on her context. For example, one may want to
be immediately notified about a meeting when she is in her
office. This same information, however, may not be very
important when she is at home or on a business trip.

Information persistency is another important issue. A man-
ager, coming from a business trip, for example, may want
to gauge the progress of a project by analyzing the event
history of the preceding week. This requires having a way
to store events during a certain period of time so they can
be delivered when the user’s computer is on-line again.

Not all events, however, should be stored for further analy-
sis. People usually do not want to be notified about transi-
tory and ordinary events. For example, the arrival of some-
one in her office or the temporary unavailability of a
printer, that ran out of paper. This requires a mechanism
to discard old events and filter irrelevant information.

Finally, meaningful events are usually a result of or are
expressed as a combination of more ordinary events whose
occurrence usually obeys some predefined patterns. For
example, the turning on of the light of someone’s office
followed by the typing of some characters in the computer
keyboard may indicate the arrival of this person at her
workplace.

REQUIREMENTS FOR AWARENESS APPLICATIONS
The previous scenario illustrated many features that our
event-notification infrastructure must support such as the
integration of heterogeneous event sources, the need to
compose events, the ability to filter information, events
expiration time and mobile applications support. More-
over, the appropriate delivery of an event depends on the
user context, timing constraints, roles and priorities. The
notion of groups is also required.

Functional Requirements

To cope with these requirements, the DEAL event lan-
guage and infrastructure was defined to provide the follow-
ing features.

Subscriptions: Logical expressions that provide the ability
to select a subset of events based on their content or type.
They allow the routing of events to the right person at the
right time, with the appropriate priorities based on the user
context, group, role and other properties.

Abstraction: A mechanism that combines different events
into higher-level notifications in order to provide more
meaningful awareness information. Event abstraction can
use the following strategies:

• Pattern matching: The ability to subscribe to event
sequences and patters. It is the basis for abstraction
and reduction. It may detect events in a specific order
or out of order.

• Reduction: Translates sets of repetitive events, ex-
pressed as a pattern matching expression, into local
state variables or higher-level events. This is specially
required in monitoring applications, to prevent event
flooding. A reduction consists in creating a new event
indicating that an event pattern was detected.

• Aggregation: Is a more elaborated case of reduction
in which the event generated is a composition of some
of the attributes of the events in the detected pattern.
Events are combined in a higher-level event which
summarizes the content of the events in the pattern
expression.

Event Condition Action (ECA) Rules: Special types of
subscriptions that allow the execution of external applica-
tions or general actions whenever a logical condition is
evaluated to true. For example: an action can add or re-
move subscriptions or even other rules; generate aggre-
gated events, change policies, and invoke external applica-
tions in response to an event pattern detection. Rules can
be used to evolve the behavior of the application in re-
sponse to changes in the user environment.

Time constraints: Express Delivery intervals, time to live,
as well as timing and temporal relations. Some events need
to be detected within certain time interval in order to have
some correlation. Transitory conditions may also be ex-
pressed by events with expiration time.

Subscription Priorities: Subscriptions are dependent on
global, group and local contexts, allowing the adjustment
of the information delivery according to the needs of the
information consumers (or users).

Groups: Subscriptions and rules can be associated to
groups, which are first class entities in DEAL language.
This allows the broadcast of events, the definition of
shared policies and contexts.

Hierarchical description of event sources: One of the
neglected issues in some event infrastructures is the ability
to answer the question “What can I subscribe to?” and
“Which events are produced by each source?” The DEAL
infrastructure provides the ability to browse through differ-
ent event sources and to identify their events by keeping
meta-information about which event sources are available
and what events they produce.

Quality of Service Requirements
Apart from the main language features, the DEAL infra-
structure allows the specification of different qualities of
service and policies as follows.

Persistence of events and subscriptions: Events and sub-
scriptions are persistent by default, allowing the support
for mobile applications and pull delivery policy.

Mobility support: Clients are allowed to explicitly indi-
cate their intent to move to a new location, allowing the
infrastructure to perform the necessary migration opera-
tions such as the update event routing tables, the buffering
of events or change the current qualities of service. This is
performed by the move-in/move-out commands. Apart
from these explicit commands, the infrastructure deals
gracefully with the sudden disconnection of the event
sources consumers.

Event Delivery Policies: During the specification of sub-
scriptions and filters, one can specify which delivery policy
to adopt, whether pull or push.

Security Policies: Authentication of groups, consumers
and producers allow the event-processing infrastructure to
prevent unauthenticated clients from receiving unauthor-
ized events.

THE EVENT LANGUAGE
This section describes the DEAL event language. Exam-
ples are presented to illustrate its use and syntax.

Logical Expression Operators: >, <, >=, <=, == as well
as starts_with and ends_with.

• MyType:ev1.name starts_with “Ro”

Subscriptions: Defined using the subscribe keyword, and
removed by the unsubscribe command. Whenever a sub-
scription is evaluated to true, a notification is produced
having the list of events used in the subscription expres-
sion.

• subscribe mySub SomeType:ev1.name ==
“Mike” and OtherType:ev2.counter == 2

• unsubscribe mySub

Event Type Definition: Creates an event type, a structure
supporting: boolean, string, long, int, as well as other Java
basic types

• type Type1 {name: string, age: int,
is_present: boolean}

On-the-fly event declaration and instantiation:

• Type1:ev1 = {“john”, 22, true}

ECA Rules: Described by the use of the keyword rule,
which uses the do command to define the action to be exe-
cuted when the rule is matched.

• rule myRule ev1.name == “check-in” and
Local.time > 12pm do run myApplica-
tion.exe

In this example, the run is a reserved word that allows the
execution of external applications.

rule otherRule ev1.name == “turn-on-light”
and ev2.name = “workstation-activated” do {
type MyAbstrac = {name: String};
MyAbstrac ev3;
ev3.name = ev1.name + ev2.name;
notify ev3; }

Rule Activation: Activates and deactivates rules according
to the context using the enable or disable commands.

• rule activateRule1 Local.time > tomorrow
do enable rule1

• rule deactRules ev1.description = “end
of meeting” do disable rule1 rule2 rule3

Temporal Expressions: Express time constrains between
events. Time triggers and ranges: at, by, in, within.

• at 10pm - matches after the next occurrence of 10
pm

• by 10pm - matches from now until the next occur-
rence of 10 pm

• in 2 hours and 10 minutes – matches after 2
hours and 10 minutes from now

• within 3 hours – matches permanently in a pe-
riod between now and 3 hours ahead

Time Period expressions: today, daily, weekly, monthly,
yearly:

• at 10 am daily
• at monday weekly

Event Validity Check (time to “live”): Is a special attrib-
ute, present in all events, which expresses its expiration
date and time. The expiration condition can be evaluated
using the expired keyword:

• expired ev1
• ev2.expiration < today and

ev3.expiration < tomorrow

Pattern Matching: Performs the matching of a sequence
of events (repetition, sequence and optional).

• Enforced order: ev1 then ev2 then ev3
• Optional order: ev1 and ev2 and ev3
• Matching of repetition of events (0 or more and 1 or

more): repeat (ev1 and ev2) 2 times

Groups: The keyword group allows the definition of sets
of users, the keywords add and remove perform the addi-
tion and removal of users to a group, whereas the operand
in checks the pertinence of users in groups.

• group g1 { user1, user2, user3}
• add g1 user4 // adds sub4 to group g1
• remove g1 user2
• ungroup g3 // removes the group
• user1 in g1

Groups can be used as parameters of the notify command
to broadcast events, as in the example

• rule r1 ev1 then ev2 then ev3 do notify
ev1 to g1

Roles: A role is a group of users. Groups are used to repre-
sent roles. This allows users to perform different roles.

Contexts: Contexts are name spaces that define scopes
where some properties, rules and subscriptions are valid.
Local and global variables (or properties) can be stored in
the local, group or global contexts. In addition, the con-
texts provide a set of predefined environment variables
that allow the access to information as local time, host-
name, user name and so on. The contexts are accessed
through the special types Local and Global.

• at 12 pm and Local.mycounter == 12

• at 12 pm and Global.members > 5
Local and global rules can be defined. Expressions can use
values of these contexts. A rule is associated to the local
context scope using the local modifier. Global rules can be
defined using the global modifier.

• local rule myRule at 12 pm and mycounter
== 12 do enable rule1

In this example, mycounter is a variable in the Local
scope. Each group has a special context associated with it.
Group contexts are accessed by the group name, for exam-
ple: g1.size expresses the size of the group.

Group rules can be defined using the group modifier fol-
lowed by the group name, before the rule declaration.

Attributes can be added or removed from a context using
the addcontext and remcontext keywords.

• addcontext Local name:string

Events and Subscription Priorities: Special attributes in
the events, which are used by the system to perform event
routing. They can be used in subscriptions by accessing the
reserved attribute priority.

• rule adjustPriority Local.time > 6 pm do
ev1.priority = ev1.priority –1

DESIGN
The DEAL architecture is described in Figure 1. The sys-
tem is implemented as a wrapper around a notification
server infrastructure such as CASSIUS [8] or Siena [1].

The event-processing kernel implements the DEAL func-
tionality using the resources provided by the event notifica-
tion server. Applications interact with the infrastructure
through a programmatic API while end-users can use a
command interpreter shell or a more sophisticated GUI.
The interaction with the system can be intermediated by
Web services interfaces such as SOAP or by lower-level
protocols as HTTP/CGI. The architecture of the system can
be distributed, using the resources of federated notification
servers, according to the features provided by these sys-
tems. In special, Siena provides a scalable web-based con-
tent-routing infrastructure.

Distributed Event sources (Instrumented software
components and programs)

Other Event
Source

User API or shell

Notification
Server (Siena or

CASSIUS)

Application Application

Consumer Side
EDEM agents

Event Producers

Consumer applications

Application
Event Source

User API or shell

Event Processing
Kernel

Event Language
Interpreter and API

Notifications Subscriptions

Events

Figure 1 Design of the DEAL infrastructure using an
event notification server

IMPLEMENTATION
DEAL is being implemented using the Java (J2SDK1.4)
programming language and the CASSIUS notification
server. CASSIUS was chosen for its ability to manage and
provide access to a hierarchical list of event sources and
their associated events. It also provides a subscription edi-
tor GUI that facilitates the interaction with the end users.
For using the HTTP/CGI protocol, CASSIUS allows
DEAL to be integrated with different event sources dis-
tributed over the Web, providing an event-based infra-
structure for awareness information.

RELATED WORK
In this section, we summarize the main systems that in-
spired the DEAL language.

EDEM
EDEM (Expectation-Driven Event Monitoring) [7] is a
user interface validation and monitoring tool. EDEM uses
agents to monitor GUI event patters according to design
use expectations. The agent description language is very
complete and allows the detection of event patters, the ma-
nipulation of local context (in the monitored site), the
definition of higher-level events (abstraction), the collec-
tion of repetitive events (reduction) and so on.

The EDEM architecture is defined in order to collect us-
ability data. Since agents execute together with the appli-
cation being monitored, the system was not designed to
monitor events coming from multiple distributed applica-
tions.

Yeast
The Yeast (Yet another Event-Action Specification Tool)
[2] is an event-action system used to automate tasks in a
UNIX environment. Yeast allows actions to be performed
when event patterns and environment changes are de-
tected. It allows the association of temporal constraints to
events, borrowing its syntax from the at and cron pro-
grams of UNIX systems. Sequential and out or order event
pattern detection is supported. User-defined actions are
executed whenever an event pattern match occurs. These
actions can originate new events or start different applica-
tions. Yeast allows the definition of rules to be defined,
activated or deactivated at runtime. This flexibility is pro-
vided by a shell script interface that integrates the UNIX
shell commands with yeast pre-defined keywords.

The system is very complete, providing many features that
can be used to support the development of awareness ap-
plications. It, however, was developed to operate on UNIX
environments, being limited at monitoring its specific re-
sources and objects such as processes, files and user logs.
Users can define their own events but their types are not
enforced. There is no advertisement of the event types pro-
vided by an event source. Event sources are not primary
entities in this model. There is no explicit idea of subscrip-
tion and subscriber. The event language does not allow the
creation and manipulation of local variables, limiting the
support for local and global contexts. User groups are not
supported.

Khronika
The Khronika [9] is a centralized event notification service
created to increase people awareness about their environ-
ment. One of the objectives of the system is to bridge the
gap between computational and real-world events. Each
user of the system can specify sets of pattern-action sub-
scriptions that are used to automatically notify the user
when an event pattern is detected. Khronika also allows
the direct browsing of the events in the repository. Events
have expiration time and remain on the server database as
specified in their validity (days, hours or brief intervals).
The event language allows queries by time interval, event

types and substring matching. Similar to Yeast, there is a
mapping between English expressions as "today", "tomor-
row", "now", "Thursday afternoon", and so on, to more
precise time constraints. Access control lists and user
groups are used. These restrictions are made simple for
usability purposes.

Khronika does not provide the ability of abstracting and
aggregating events. There is no support for different event
sources, including mobile devices as well as the ability to
activate/deactivate subscriptions (or rules) based on envi-
ronment changes. There is no notion of user groups.

Gem
GEM [10] is a generalized event language for real-time
distributed systems monitoring. It allows the event se-
quence detection and the specification of rules that can be
activated or deactivated according to other rules. For being
designed for real-time monitoring, rules can include spe-
cial time constraints concerning incoming events delays. It
also allows the use of event order constraints in event ex-
pressions, such as the specific order events should occur
and the acceptable delay between them. Events can be ab-
stracted and generated based on contents of other events.
There is support for abstraction.

The GEM language itself was not defined for usability. It
does not provide support for context and groups.

READY and CORBA
READY (Reliable Available Distributed Yeast) [18] is a
general-purpose event notification service based on
YEAST. READY adds to YEAST the ability to handle
compound event matching, quality of service and other
event constructs, in an implementation that extends the
Standard CORBA notification server [12].

In its porting to CORBA [13], READY lost the simplicity,
elegance and easy-to-use interface of the Yeast model. Its
language became more complicated, being based on the
OMG Event Notification Language. It also lost the timing
constraints neutrality and elegance of Yeast.

CONCLUSIONS
DEAL is an event processing language and system de-
signed to provide awareness information in a heterogene-
ous distributed system. The system was designed to cope
with current distributed systems characteristics as mobility,
heterogeneity, timing, as well as CSCW aspects as groups,
context and priorities. In order to do so, it combines char-
acteristics of different event processing, monitoring sys-
tems and awareness driven notification servers. It was spe-
cially designed as a distributed awareness service that can
be integrated in many Web applications. This is accom-
plished by the use of the HTTP protocol. The event lan-
guage was designed to be useful and usable, providing a
high-level way to interact with the system. A prototype is
being implemented in Java using CASSIUS as the basic
notification service.

ACKNOWLEDGMENTS
This effort was sponsored by the Defense Advanced Re-
search Projects Agency (DARPA) and Air Force Research
Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-00-2-0599; by the National
Aeronautics and Space Administration (NASA) under
contract NAG2-1555; by the National Science Foundation
under grants 0083099 and 0205724. The U.S. government
is authorized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA, the Air
Force Laboratory, or the U.S. government.

REFERENCES
1. A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. De-

sign and Evaluation of a Wide-Area Event Notification
Service. ACM Transactions on Computer Systems,
19(3):332-383, Aug 2001.

2. B. Krishnamurthy and D. S. Rosenblum. Yeast: a gen-
eral purpose event-action system. IEEE Transactions
on Software Engineering, Vol. 21, No. 10. October
1995.

3. D. C. Luckham. The Power of Events: An Introduction
to Complex Event Processing in Distributed Enterprise
System. Pearson Education. ISBN 0-201-72789-7. Bos-
ton MA 2002.

4. D. Ramduny, A. Dix and T. Rodden. Exploring the
design space for notification servers. Proc. of the ACM
CSCW’98. pp. 227-235. Seattle, 1998

5. De Souza, C.R.B., Basaveswara, S. D., Kantor, M.
Redmiles, D.F. Lessons Learned using Event Notifica-
tion Servers to Support Awareness. Human Computer
Interaction Consortiun’02- Winter Workshop, Jan 31 to
Feb 3, Fraser, CO. 2002

6. Fitzpatrick, G., Mansfield, T., et al. Augmenting the
Workaday World with Elvin, Proceedings of 6th Euro-
pean Conference on Computer Supported Cooperative
Work (ECSCW 99), Kluwer, 1999, pp. 431-450.

7. Hilbert, D., Redmiles, D. An Approach to Large-Scale
Collection of Application Usage Data Over the Inter-
net, Proceedings of the Twentieth International Confer-
ence on Software Engineering (ICSE '98, Kyoto, Ja-
pan), IEEE Computer Society Press, April 19-25, 1998,
pp. 136-145.

8. Kantor, M., Redmiles, D. Creating an Infrastructure for
Ubiquitous Awareness, Eight IFIP TC 13 Conference
on Human-Computer Interaction (INTERACT 2001
Tokyo, Japan), July 2001, pp. 431-438.

9. L. Lovstrand. Being selectively aware with the
Khronika System. Proc of ECSCW'91. 1991.

10. M. Mansouri-Samani and M. Sloman. GEM: A Gener-
alised Event Monitoring Language for Distributed Sys-
tems. In ICODP/ICDP'97. 1997.

11. M. Stal Web services: beyond component-based com-
puting. CACM Special Issue: Developing and integrat-
ing enterprise components and services .Vol. 45, Issue
10. pp. 71-76. October 2002

12. Object Management Group. Notification Service Speci-
fication v1.0.1. August - 2002.
http://cgi.omg.org/docs/formal/02-08-04.pdf

13. OMG Common Object Request Broker Architecture –
(CORBA/IIOP) v.3.0. formal/2002-06-33.
http://cgi.omg.org/docs/formal/02-06-33.pdf

14. P. C. Bates. Debugging heterogeneous distributed sys-
tems using event-based models of behavior. ACM
Transactions on Computer Systems. Vol 13. Issue 1.
Feb 1995.

15. P. Dourish and V. Bellotti. Awareness and coordination
in shared workspaces. ACM Proc. of Conference on
CSCW'92. Toronto, Ontario, pp. 107-114. 1992

16. P. Dourish, and S. Bly. Portholes: Supporting aware-
ness in a distributed work group, in Proceedings
CHI'92, Monterey, CA, ACM/SIGCHI, 1992.

17. R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D.
Kerr, K. Sikkel, J. Trevor and G. Woetzel. Basic Sup-
port for Cooperative Work on the World Wide Web. In-
ternational Journal of Human Computer Studies 46, pp.
827-846, 1997.

18. R. E. Gruber, B. Krishnamurthy, and E. Panagos.
High-level constructs in the READY event notification
system. In 8th ACM SIGOPS European Workshop on
Support for Composing Distributed Applications, Sin-
tra, Portugal, September 1998.

19. Web Services Activity. 2002
http://www.w3.org/2002/ws/

Management of Interdependencies in Collaborative Software Development

Cleidson R. B. de Souza1,2 David Redmiles1 Gloria Mark1 John Penix3 Maarten Sierhuis4

1School of Information
and Computer Science,

2Departmento de
Informática,

3Computacional
Sciences Division,

4Research Institute for
Advanced Computer Science,

University of California,
Irvine

Irvine, CA, USA

Universidade
Federal do Pará
Belém, PA, Brasil

NASA/Ames Research
Center

Moffett Field, CA, USA

NASA/ Ames Research
Center

Moffett Field, CA, USA

Abstract
In this paper we report results of an informal field study
of a software development team conducted during an
eight week internship at the NASA/Ames Research Center.
The team develops a suite of tools called MVP, and is
composed of 31 co-located software engineers, who de-
sign, test, document, and maintain the different MVP
tools. We describe the formal and informal approaches
used by this group to manage the interdependencies that
occur during the software development process. Formal
approaches are legitimated by the organization, whereas
informal approaches emerge due to the needs of the de-
velopers. We also describe how the software development
tools used by this team support these approaches and
explore where explicit support is needed. Finally, based
on our findings, we discuss implications for software en-
gineering research.

1. Introduction

Software development is typically a collaborative ac-
tivity in which experts from different domains work to-
gether to produce a software artifact. Indeed, formal and
informal communication account for more than half of
developers’ time [21], and cooperative activities account
for about 70% of this time [30]. Therefore, breakdowns in
communication and coordination efforts constitute one
major problem in software development [3].

One of the reasons that cooperative software develop-
ment is difficult is the large number of interdependencies
that occur. These include interdependencies among activi-
ties in the software development process, among different
software artifacts, and finally, in different parts of the
same artifact. One example involves the design document
and the requirements specification—if the specification
changes, the design normally needs to be changed as well.
Another example involves dependencies among parts of
the same artifact, such as program dependencies—
syntactic relationships between the statements of a pro-
gram that represent aspects of the program’s control flow
and data flow [22].

Software engineering has already identified the need to
manage these interdependencies and has been developing
formal approaches to deal with them. For example, soft-
ware development processes describe, among other
things, when each artifact should be created during the
software development effort. Such processes would pre-
scribe that the requirements specification to be created
before the design document to minimize problems due to
the dependency between these documents. Design tech-
niques have also been developed. Examples of such tech-
niques include information hiding [19], which tries to
minimize dependencies in the implementation by using
the concept of coupling, and design patterns [7], which
give dynamic (runtime) program dependencies explicit
representation as static program structures, making them
easier to manage. In addition to formal approaches, soft-
ware engineering tools have been built to support the
management of interdependencies. An example is con-
figuration management systems that deal with dependen-
cies in the source code.

Informal approaches are also used to manage the in-
terdependencies. These practices exist because no matter
how formal and well-defined a process may seem, it will
always be incomplete, and also because formal ap-
proaches have practical limitations [8]. Informal ap-
proaches are as important as formal approaches and need
to be understood if one wants to provide support for soft-
ware development. Informal approaches solve problems
not addressed by formal approaches, so formal and in-
formal approaches complement each other. An example
of an informal approach is the use of formal communica-
tion channels in software development organizations to
deal with dependencies among components of the same
subsystem when the developers are co-located [9].

In this paper, we describe an informal field study that
analyzes both formal and informal approaches used by a
software development team to manage the interdependen-
cies that occur during software development. We classify
this work as an informal study since it consists primarily
of observations made by the first author during an eight-
week internship during the Summer of 2002. The formal

approaches identified here are those legitimately adopted
by the organization, such as the software development
process; the software development tools used, namely the
configuration management (CM) and bug-tracking tools;
and other approaches, such as the division of labor, for-
mal meetings, and so on. The informal approaches are the
emerging practices adopted by the team to deal with these
interdependencies, such as the adoption of conventions;
partial check-ins; problem reports (PRs) that cross work
boundaries; and the role of e-mail as a coordination
mechanism. Our observations build on Grinter’s work
[9]; we identify several other informal approaches and
analyzed the role of formal approaches in the manage-
ment of interdependencies. The identification, analysis,
and support for formal and informal approaches are es-
sential in improving software development efforts. Inter-
dependencies affect the coordination success because
they decrease the certainty of a project [13].

2. The MVP Software Development Team

The field study was conducted in cooperation with a
team that develops a software application, which for the
purposes of this paper we call MVP (All names were
changed to preserve anonymity). MVP is a suite of 10
different tools developed at NASA/Ames Research Cen-
ter. The MVP source code is approximately one million
lines of C and C++.

2.1. Team Organization

The MVP team is divided in two groups: developers
and V&V staff. Developers are responsible for writing
new code, fixing bugs, adding new features, and so on.
This group comprises 25 members, 3 of whom are also
researchers who write their own code to explore new
ideas. The overall experience of these developers ranges
from 3 months to more than 25 years. Experience in the
MVP group ranges from 2.5 months to 9 years. This
group is spread along several offices across two floors in
the same building.

V&V members are responsible for testing and report-
ing identified bugs, keeping a running version of the soft-
ware for demonstration purposes, and maintaining the
documentation (mainly user manuals) of the software.
This group comprises 6 members, half located in the
V&V Laboratory, and the rest in several offices on the
same floor as the laboratory. The V&V Lab and the de-
velopers’ offices are located in the same building.

2.2. The MVP Software

Each of the MVP’s 10 tools uses a specific set of
“processes.” A process, for the MVP team, is a program
that runs with the appropriate run-time options. It is not

formally related to the concept of processes in operating
systems and/or distributed systems. MVP’s processes
typically run on distributed Sun workstations and com-
municate using a TCP/IP socket protocol. Running a
MVP tool means running the processes required by this
tool with their appropriate run-time options. Processes are
used to divide the work among the developers (see sec-
tion 4.3).

3. Methods

As an intern with the MVP team, the first author was
able to make observations and collect information about
several aspects of the team. Additional material was col-
lected by reading manuals for the MVP tools, manuals for
the software development tools used, formal documents
(such as the description of the software development
process and the ISO 9001 procedures), training documen-
tation for new developers, problem reports, and so on, as
well as talking to colleagues. Some of the team mem-
bers—the documentation expert, V&V members, testers,
process leaders, and process developers—agreed to let the
intern shadow them for a few days to better learn about
their functions and responsibilities. A representative sub-
set of the MVP group was interviewed. Interviews lasted
between 45 to 120 minutes. A total of seven interviews
[15] were used to find out about the usage patterns of
various tools. The data has been analyzed by using
grounded theory [28].

4. Formal Approaches

Formal approaches are those legitimately adopted by
the team to support the management of interdependencies.
They facilitate the software development effort by im-
proving the coordination of activities. These approaches
have long been studied in the software engineering and
organizational research literature (e.g., [6, 26]), so we will
mention only aspects of these approaches in the context
of the MVP team.

4.1. The Software Development Process

The MVP team uses a formal software development
process that prescribes the steps needed to be performed
by the developers. For example, the following steps must
be performed by all developers after finishing the imple-
mentation of a change. Initially, they should integrate
their code with the main baseline. After that, must test
their changes to check if their integrations have inserted
bugs in the code. Finally, after checking-in files into the
repository, developers must send e-mails to the software
development mailing list describing the problem report
(PR) associated with the changes, the files that were

changed, and the branch where the check-in will be per-
formed, among other pieces of information.

The MVP software process also prescribes the usage
of code reviews before the integration of any change and
design reviews for major changes in the software. Code
reviews are performed by the manager of each process.
Therefore, if a change involves two processes, a devel-
oper’s code will be reviewed twice: once by each man-
ager. Design reviews are recommended for changes that
involve major reorganizations of the source code; their
use is decided by the software manager.

4.2. The CM and Bug Tracking Tools

We observed that MVP developers employ mainly two
software development tools for coordinating their work: a
configuration management (CM) system and a bug-
tracking system [2, 9, 11]. These tools are integrated so
that there is a link between the PRs (in the bug-tracking
system) and the respective changes in the source code (in
the CM tool). Both tools are provided by one of the leader
vendors in the market. Other tools, such as CASE tools,
compilers, linkers, debuggers, and source-code editors,
are also used.

A CM tool supports the management of source-code
dependencies through its embedded building mechanisms,
which indicate what parts of the code need to be recom-
piled when one file is modified. In this case, we use
Grinter’s classification of dependencies: “Compile-time
dependencies occur when a sub-system is being com-
piled. Build-time dependencies occur when several sub-
systems or the entire system is being linked. Run-time
dependencies occur when the executable is running [9].”
According to this classification, CM tools support com-
pile and build-time dependencies. Similarly, a bug-
tracking tool, when associated with the CM tool, supports
the tracking of changes performed in the source code dur-
ing the development effort.

Two members of the MVP team play important roles
in the usage of these tools: the configuration and release
manager and the bug-tracking manager. Both help in the
administration of the tools and try to relieve the develop-
ers of some of most common tasks (e.g., the CM manager
created a command interface on top of the CM tool to
make it easier for MVP developers to use). The CM man-
ager provides full-time support for the CM tool, and the
bug-tracking manager is also an MVP software devel-
oper. Both managers have been receiving training in those
tools, and other developers are trained before starting
work in the group. Their training includes the software
development tools and the MVP software development
process.

The MVP team employs several advanced features of
the CM tool, such as triggers, “winking in” techniques to
reduce compilation time, labeling, and branching strate-

gies. Indeed, the branching strategy employed is one of
the most important aspects of a CM tool because it prin-
cipally affects the work of MVP developers. It is a way of
deciding when and why to branch. This strategy affects
the task of coordinating parallel changes. According to
the nomenclature proposed by Walrad and Strom [31], the
following branching strategies are used by the MVP
team: (1) branch-by-purpose, in which all bug fixes, en-
hancements, and other changes in the code are imple-
mented on separated branches; (2) branch-by-project, in
which branches are created for some of the development
projects; and (3) branch-by-release, in which the code
branches upon a decision to release a new version of the
product. The branch-by-purpose strategy is employed by
MVP developers in their daily work, whereas the other
strategies are used only by the CM manager. In other
words, the developers themselves create new branches for
each new bug fix or enhancement, but branches for pro-
jects and releases are created only by the manager.

The branch-by-purpose strategy supports a high-level
of parallel development by allowing developers to work
on different branches at the same time, thus avoiding
problems that exist in other strategies [31]. According to
this strategy, each developer is responsible for integrating
his or her changes into the main code, which is often
called “push integration” [1]. The changes are then avail-
able to all other developers. Therefore, if one bug is in-
troduced, other developers will notice it because their
work will be disrupted. Indeed, we observed and
collected reports of different instances of this situation. A
developer who suspects there is a problem introduced by
recent changes will contact the author of the changes to
check the change, or to provide more information about
it.
4.3. Other Approaches: Meetings and

Division of Labor

MVP developers employ other formal approaches to
manage the interdependencies in the software. For exam-
ple, the V&V group holds weekly meetings to discuss
problems, deadlines, etc. These meetings are also used for
official announcements, such as trips, dates of new re-
leases, demonstrations, audits, and so on. Likewise, the
entire MVP team (developers and V&V staff) holds bi-
weekly “software pre-design meetings.” In these meet-
ings, formal announcements are also made, but the most
important part of the meeting involves the discussion of
new PRs. In this case, the developers each announce their
new PRs, describing them through their number and
headline. In general, the headline provides enough infor-
mation about the nature of the PR, but other developers
might ask for more details. This is an opportunity for de-
velopers to discuss their work, obtain help, and be aware
of what is happening in the team. For example, it is not

uncommon after a developer reports a PR that another
developer mentions that the problem has already been
fixed. PRs that are almost finished might also be an-
nounced to warn others about possible “weird” behavior
in the tools. Finally, during these meetings the software
manager will decide if design reviews are necessary.

The MVP software development team also adopts a
clear division of labor based on the processes that com-
pose each MVP tool. Each developer is assigned to one or
more processes and tends to specialize in it. There are
process leaders and process developers, who mostly work
only on a particular process. This is important because it
allows the developers to understand the behavior of the
process more deeply and become familiar with its struc-
ture, therefore helping them to deal with the complexity
of the code. Indeed, during the software development
activity, managers tend to assign work according to these
processes. However, it is not unusual to find developers
working in different processes under various circum-
stances (e.g., before launching a new release, a developer
might be assigned to fix bugs in other processes). Devel-
opers also work in different processes due to the continu-
ity of the work. Sometimes bugs that seem to be located
in a process and therefore are allocated to the developer
who works with this process are later discovered to be
located in another process. In this case, it is better to let
the developers finish the work because so much time was
invested in it. Thus, this allows developers to gain a com-
prehensive view of the whole MVP software.

5. Informal Approaches

Informal approaches are the practices adopted by the
MVP team to deal with the interdependencies that occur
during the software development process. We call them
informal because they emerged naturally in response to
the needs of the team and are not taught to new members.
The approaches that we identified are discussed below.

5.1. Problem Reports Are Boundary Objects

In our analysis we identified that PRs are used to fa-
cilitate the management of interdependencies of develop-
ers from different groups and with different roles. In other
words, PRs are “boundary objects” in the sense of Star
and Griesemer [27]: objects whose common identity is
robust enough to support coordination, but whose internal
structure, meaning, and consequences emerge from local
negotiations between groups. Indeed, PRs are used by
end-user liaisons, developers, and testers for different
purposes.

Consider the following. When a bug is identified, it is
associated with a specific PR. Whoever identified the
problem is also responsible for including information
about ‘how to repeat it’ in the PR. This description is

used by the developer assigned to fix the bug to specify
the circumstances (adaptation data, tools, and their pa-
rameters) under which the bug appears. After fixing the
bug, this developer must fill a field in the PR that de-
scribes how the testing should be performed to properly
validate the fix. This field is called ‘how to test.’ This
information is then used by the test manager, who creates
test matrices that will be used later by the testers during
regression testing. The developer who fixes the bug also
indicates in another field of the PR whether the documen-
tation of the tool needs to be updated. Then, the docu-
mentation expert uses this information to determine
whether the manuals need to be updated based on the
changes the PR introduced. Finally, another field in the
PR conveys what needs to be checked by the manager
when closing it. Therefore, the PR reminds the software
manager of the aspects that need to be validated.

In short, the information provided by the PR is used by
the developers to manage the several interdependencies in
the software being developed. For example, since the user
manual of an MVP tool depends on part of that tool’s
source code, so changes in this source code need to be
reflected in the manual. The information about such
changes is provided to the documentation expert through
one of the fields in the PR.

5.2. Naming Conventions

Developers share repositories containing the source
code (the CM tool) and information about changes in this
code (the bug-tracking tool). As a result, the team estab-
lishes naming conventions that must be followed when
dealing with these tools. Conventions are common and
accessible rules or arrangements established in the group
that act as a means to merge the different perspectives and
work styles involved in handling shared objects [14].

An example of a convention is the naming convention
used in the creation of branches in the CM tool: it must be
based on the PR number recorded in the bug-tracking tool
as well as on the developer’s name. This allows the rela-
tionship that exists between a change and its correspond-
ing PR to be clearly represented, therefore facilitating
identification by MVP developers. However, these con-
ventions are not properly supported by these tools, which
is a source of complaints by the developers. Indeed, creat-
ing and naming branches is a cumbersome task with four
or five different tedious steps that could be automated
because they follow a naming convention.

5.3. E-mail Conventions

As mentioned before, the MVP software development
process prescribes that after checking-in code into the
repository, a developer needs to send an e-mail to the
software developers’ mailing list. However, we found out

that MVP developers perform these activities in the re-
verse order—they will send e-mail before, not after, the
check-in. By doing so, MVP developers allow their col-
leagues to prepare for the changes. Indeed, developers
might even send e-mail to the author of the change asking
for a delay of its check-in. We also found out that in this
same e-mail developers describe the impact that their
changes will have on others’ work. A developer who
reads these e-mails might walk to the co-worker’s office
to ask about the changes or, if the change has already
been committed, browse the CM and bug-tracking sys-
tems to understand them. The following list presents
some usual comments sent by MVP developers:

“No one should notice.”
“(…) only EDP users will notice any change.”
 “Will be removing the following [x] file. No effect on re-
compiling.”
“Also, if you recompile your views today you will need to
start your own [z] daemon to run with live data.”
“The changes only affect [y]-mode so you shouldn't notice
anything.”
“If you are planning on recompiling your view this evening
([current date]) and running an MVP tool with live [z] data,
you will need to run your own [z] daemon.”

Sending e-mail before the check-ins with the descrip-

tion of the impact of the changes is an important conven-
tion because it allows other developers to prepare and
reflect about the effect of their colleagues’ changes in
their current work. Because they are aware of some of the
interdependencies in the source-code, they might conse-
quently adjust to these changes.

In addition to the flexibility that allows the description
of the impact of the changes, e-mail provides asynchro-
nous communication, which requires storage of the mes-
sages until their delivery to the recipient. This is used by
MVP developers to learn about what changed in the code
in a certain timeframe. For example, these e-mails were
used by a developer to catch up with the changes that
occurred while out of the office. They contained informa-
tion that allowed the developer to identify changes that
did not affect current work, but might affect future work.
The following comment from another MVP developer
supports this:

 “(…) all of the sudden you were working and everything
was going great and an e-mail comes through, you look at
it, it does not mean a lot, you blow it (…) you keep working
and one hour later things were broken. Why is that not
working? Oh, that last check-in! You go back to that e-mail:
who did this? And maybe you can go talk to that person:
‘you broke something’ (…)”

The information in the e-mail is also important be-
cause it informs (or reminds) developers that they have
been engaged in parallel development. Often, developers

are unaware of parallel activity because they do not check
the version tree that displays information about other de-
velopers working on the same file. The information in the
e-mail is usually enough to tell the developer whether
these changes should be incorporated right away or
whether they can wait until just before check-in. In either
case, the latest changes must be “merged back” into the
developer’s version of the file. In general, if one file has
been checked-in several times and a developer has the
same file checked-out, he or she “merges back” the
changes indicated in the e-mail to avoid working with an
outdated file.

The asynchronous nature of e-mail could be problem-
atic because developers might miss important notifica-
tions about changes. However, during the field work, we
did not notice any such problems. Furthermore, sending
e-mail before a check-in is also used by other developers
to support expertise identification and as a learning
mechanism. Developers associate the author of the
change with the “process” where the changes are being
performed. In other words, MVP developers assume that
if one developer constantly and repeatedly performs
check-in in a specific process, it is very likely that the
developer is an expert on that process. Therefore, another
developer needing help with that process will look to that
developer for help:

 “[talking about a bug in a process that he is not expert] (…)
I don’t understand why this behaves the way it does. But,
most of these PR’s seem to have John’s name on it. So you
go around to see John. So by just by reading the [PR] head-
line of who does what, you kind of get the feeling of who’s
working on what (…).So they [e-mails] tend to be helpful in
that aspect as well. If you’ve been around for ten years, you
don’t care, you already know that [who works with what],
but if you’ve been here for two years that stuff can really
make difference (…)”

In addition, the simple fact that developers read the e-

mails sent by other developers to check for the impact of
others’ changes facilitates learning about the MVP soft-
ware. Interestingly, the two developers who reported
these aspects of e-mail were relative novices at MVP,
with 2 years and 2.5 months experience there.

5.4. Holding onto Check-ins

As mentioned, MVP developers add to the e-mail the
description of the impact of their changes in other devel-
opers’ code. The two most common types of impact
statements are changes in run-time parameters of a proc-
ess and the need to recompile parts or the whole source

code1. The former case is very important because other
developers might be running the process that will be
changed. The latter case is described because when a file
is modified, it, as well as the other files that depend on it,
will be recompiled, and this recompilation process is
time-consuming—up to 45 minutes. Developers are
aware of the delay they might cause to others; therefore,
they hold check-ins until the evening. According to one
of the developers:

 “(…) and the other thing that you find is that when people
also know that if they are going to check-in a file they will
do in the later afternoon … you’re gonna do a check-in and
this is gonna cause anybody who recompiles that day have
to watch their computer for 45 minutes (…) and most of the
time, you’re gonna see this coming at 2 or 3 in the after-
noon, you don’t see folks (….) you don’t see people doing
[file 1] or [file 2] checking-in at 8 in the morning, because
everybody all day is gonna sit and recompile.”

Holding onto check-ins is an informal approach

adopted by the MVP software development team to mini-
mize the problems caused by the interdependencies that
exist on the source code. However, this is possible only
because MVP developers are aware of the existing inter-
dependencies.

5.5. Engagement in Parallel Development: Partial
Check-ins and “Speeding Up” the Process

We also noted that MVP developers engage very often
in parallel development. This happens when more than
one developer has the same file checked-out. Conflicts
might occur when one of these developers checks-in this
file back into the repository because the other developer’s
version will then be outdated, and any changes that de-
veloper makes will potentially be inappropriate. To up-
date the version, the developer needs to merge the other’s
changes back in his or her code. This operation is called
by the developers “back merging,” and in CM terminol-
ogy is named “synchronization of workspaces.” Due to
the need to perform these back merges, a new depend-
ency between artifacts is created during parallel develop-
ment. This dependency occurs between any version of a
file that has not yet been checked-in and the new version
of this same file created after the check-in (i.e., the cur-
rent version of a file checked-out by a developer is now
dependent on the new version checked-in into the reposi-
tory because the former needs to incorporate the changes
of the latter before being checked-in). This is another
example of dependency in software development.

1 The CM tool used by the MVP team allows developers to choose if
they want to incorporate others’ changes, meaning that they are able to
decide if they want to recompile the code or not.

Conflicting changes are more likely to occur in files
that are accessed by several developers at the same time.
For example, in MVP software, some files are used to
define programming language structures that are used all
over the code. Different developers often change these
files, which means that they have a high degree of parallel
development. These files are especially important because
there is a significant correlation between them and the
number of defects reported [20]. MVP developers re-
ported that they do not avoid parallel development in
these files because conflicts are infrequent and not likely
to occur. But, without access to the CM tool, it was not
possible to statistically test this claim. MVP developers
accepted parallel development because it was necessary
to achieve high productivity. However, we identified that
they adopted a strategy to deal with files with a high de-
gree of parallel development. To minimize the possibility
of conflicts, developers would perform “partial check-
ins,” which consists of checking-in some of the files back
into the repository, even when the developers have not
yet finished all their changes. This strategy decreases the
number of dependencies that occur, and consequently
reduces the number of necessary back merges. Note that
partial check-ins are variations of the formal software
development process, which establishes that check-ins
will be performed only when the changes in all files are
finished.

Finally, according to Grinter [9], software developers
might rush to finish their work when they engage in par-
allel development because they want to avoid merging.
We identified that developers will rush only when they
are testing their changes right before check-in. As one
developer plainly pointed out: “This is a race!” According
to the software development process, this testing is neces-
sary to guarantee that the changes will not introduce bugs
into the system. We observed that this testing is very in-
formal. For example, developers will sit in the V&V
Laboratory and compare the current version of the MVP
with the one with changes. In short, MVP developers do
not use regression testing at this moment. That will be
used by the V&V staff before creating a new release of
the software. This means that techniques that minimize
the number of test cases necessary to validate the changes
in the software (e.g., [23]) cannot be used by MVP devel-
opers to determine whether the tests they need to run can
be impacted by changes that another developer makes.
These techniques can be used only by the V&V staff.

Although we observed that some check-ins introduced
errors, we do not have evidence that these errors were
introduced due to this “racing.” Similar to partial check-
ins, “speeding up” the process is employed by the MVP
developers to avoid the additional work necessary to deal
with the extra-dependencies that occur during parallel
development.

6. Computational Support for Informal
Approaches

Figure 1 summarizes the formal and informal ap-
proaches used by the MVP team to manage the interde-
pendencies that occur during their software development
activities. As mentioned before, formal and informal ap-
proaches complement each other, so problems not solved
by the formal approaches might be solved by the informal
ones. For example, none of the formal approaches used
by the MVP team addresses the issue of how to manage
the crossing-boundaries dependencies that occur when a
change is committed into the repository. This problem is
solved by the MVP team by adopting a particular PR
structure that provides information for developers with
different roles (see section 5.1).

Figure 1: Formal and Informal Approaches Adopted by
the MVP Software Development Team

The tools used by the MVP team assist some of the in-
formal approaches. For example, the CM tool allows
software developers to perform partial check-ins. In con-
trast, due to the lack of tool support, developers need to
rush to finish their work when they are testing their
changes. In this section, we discuss the existence (or lack)
of support for informal approaches in more detail. In ad-
dition, we discuss implications for software engineering
research when there is a lack of support.

6.1. Problem Reports as Boundary Objects

Bug-tracking tools are flexible enough to allow their
managers to define the fields that will compose a PR. In
addition, these tools allow a manager to specify a simple
workflow describing when each one of these fields needs
to be filled in [12]. By doing that, they allow the creation
of PRs with fields that contain information that is useful

to developers who are members of different groups. In the
MVP team, the information in these fields describes how
each developer’s work is going to be affected by the PR.
This means that these tools allow PRs to be defined and
used as coordination mechanisms to manage interdepend-
encies during software development.

6.2. Support for Naming Conventions

Following conventions for dealing with shared objects
(or repositories) implies additional effort; hence, technical
support often is needed [14]. As mentioned before, MVP
developers follow a naming convention in which the
name of the branches in the CM tool should be based on
the PR number recorded in the bug-tracking tool. MVP
developers have complained that the task of creating
branches is very cumbersome, with four or five different
tedious steps to be performed. Because this task is based
on a convention, it could be automated. Unfortunately,
the current integration between the CM and the bug-
tracking tool does not support that. That is a major source
of complaints repeatedly reported by the MVP software
developers during the interviews.

6.3. Support for E-mail Conventions

NASA requires ISO 9001 certification for all software
development efforts, which means that all changes in the
software must be documented, reviewed, and formally
authorized before the changes are integrated in the code.
In other words, developers need to be accountable for
their work. The MVP team chose to use e-mail as a for-
mal communication channel in the organization, as
clearly mentioned in the software development process.
Indeed, some of the tasks (such as requesting and answer-
ing code reviews) were performed by using e-mail. These
tasks require the use of software development tools such
as source-code editors, CM tools, and so on. Unfortu-
nately, e-mail is not integrated with these tools, which
means that developers need to move back and forth be-
tween e-mail and the other tools in order to get their work
done. Integration of e-mail with software development
technology seems easy to implement; it is also very prom-
ising because more and more software development or-
ganizations are seeking certifications such as ISO 9001
and CMM (Capability Maturity Model). This aspect was
identified during the field work and later corroborated by
MVP software developers during the interviews. In addi-
tion, e-mail messages exchanged among developers are
also used to identify expertise in parts of the source code,
as well as a history mechanism to identify changes that
happened in the past. Again, this information could and
should be properly organized and indexed in order to fa-
cilitate these activities.

Management of

Interdependencies

Formal

Approaches

Informal

Approaches

- Software development process
- Software development tools
- Pre-design and V&V meetings
- Division of labor, etc.

- PRs as boundary objects
- Conventions
- Holding onto check-ins
- Partial check-ins

6.4. Holding onto Check-ins

The informal approach of holding onto check-ins is
used to avoid disrupting others’ work. The support for
this task provided by CM tools is appropriate because
these tools allow a developer to check files in or out and
merge different versions of them at any time. However,
this approach is useful only if the developer who is going
to check-in some code is aware that his or her work will
cause the recompilation of other files. This suggests that
software visualization tools (e.g., [4]) that use existing
information from the CM tool could be used to support
the identification of these files by novice developers who
are not aware of the interdependencies in the source code.

6.5. Partial Check-ins

A check-in is called “partial” by the MVP developers
when it is performed without a code review to avoid sev-
eral “back merges” due to the file being changed by sev-
eral other developers at the same time. CM tools support
partial check-ins because they usually do not impose con-
straints about when check-ins might be performed, allow-
ing one to check-in code into the repository at any time.
However, the current trend of integrating CM tools with
software process technology [5] might disrupt that. We
recognize this integration is essential because it allows the
efficient automation of repetitive tasks (such as building a
software release) [12]. Nevertheless, the enforcement of
the process that usually goes along with this integration
must be managed, because it has long been recognized as
problematic [29]. CM tools must be flexible enough to
allow software developers to use workarounds that devi-
ate from the process in order to properly deal with the
problems that they face. One example of such work-
arounds is the partial check-in. Another approach is to
update the software development process to reflect the
need for partial check-ins, and consequently legitimate
them. In this case, similar to holding check-ins, the in-
formation already present in the CM tool could be used
by software visualization tools [4] to allow novice devel-
opers to identify files with a high degree of parallel de-
velopment that need to be partially checked-in.

6.6. Speeding Up the Process

MVP developers rush their activities during the devel-
opment process to minimize the number of dependencies
between their code and recently committed changes in the
repository (section 5.5). Current CM and bug-tracking
tools create the need to speed up because they shield a
developer’s workspace from other developers’ work-
spaces to support parallel development. Although it is
desirable to isolate one developer’s work from others, it
does not allow developers to coordinate their check-ins,

and hence avoid the need to re-do their work. To the best
of our knowledge, no existing software engineering tool
solves this problem. However, a promising approach re-
cently emerged with tools that attempt to break the isola-
tion of CM workspaces (e.g., [24] and [17]). These tools
achieve that by distributing the CM commands happening
in a developer’s workspace to other selected workspaces.
These tools focus on the actions of the developers (con-
veyed as CM commands) because they want to avoid con-
flicts between the files that two or more developers have
checked-out. In addition, we argue that these tools need
to provide information about the “status” of other devel-
opers’ work. By doing that, they allow a developer to
identify who is about to check-in code into the repository
and, therefore, to coordinate their work, so that a devel-
oper does not need to rush. We believe that this can be
achieved by extending these tools to collect information
from sources other than the CM tool, such as e-mail, the
bug-tracking tool, the software process specification, and
so on.

7. Discussion

As mentioned before, a formal process description can
never completely represent all variations that might occur
in a software development effort [8]. Therefore, as the
data have suggested, informal approaches need to be
adopted to complement the formal approaches to properly
support the management of the interdependencies that
occur in the software development process. However, to
properly support cooperative software development, we
need to unveil these informal approaches and provide
computational support for them to minimize errors and
improve their performance. One of the reasons these in-
formal approaches are important is the high level of paral-
lel development that occurs in large-scale collaborative
efforts [20]. Indeed, the engagement in parallel develop-
ment identified in this field study helps to substantiate the
results of Perry et al. [20] that describe high levels of par-
allel development, but contrasts with the groups studied
by Grinter [9, 11], in which developers avoided this situa-
tion. Technical improvements in merging techniques from
1995 to 2002 [2] might be the cause of divergence from
Grinter’s earlier observations. Grinter, however, does not
clearly describe the branching strategy used by the team
studied, whereas the MVP team adopted the “branch-by-
purpose” strategy. According to Walrad and Strom [31]
this “strategy supports a high level of parallel develop-
ment by allowing developers to work on different
branches at the same time. Therefore, this might be an-
other explanation for the difference between the two
groups. Finally, an organization’s structural properties
(e.g., reward systems, policies, norms, and so on) are
other factors that influence the adoption and use of col-

laborative tools [18]. The two organizations studied are
different, hence they are very likely to have different
structural properties, which might explain the different
levels of engagement in parallel development.

Meanwhile, this field study supports Grinter’s [9] find-
ing that during parallel development developers will rush
to finish their changes. However, while the developers
studied by Grinter will speed up because they want to
avoid the complexity of merging, MVP developers rush
because they do not know when another developer might
check-in some code that will lead them to another set of
tests. In both studies, developers describe their dilemma:
they want to produce high-quality code, but they also
want to finish their changes fast.

The MVP team needs to perform extra work to suc-
cessfully manage the interdependencies in the software.
This extra work is a form of articulation work necessary
to coordinate, negotiate, mesh, and schedule their activi-
ties [25]. It is different from recomposition work [10],
which is the coordination required to assemble software
development artifacts from their parts, because recompo-
sition work focuses on choosing the right components to
create a software artifact due to source-code dependen-
cies, whereas this extra work focuses on the management
of all dependencies that exist in a software development
effort.

Finally, in this informal field study we identified an-
other approach used by software developers to identify
experts. Whereas McDonald and Ackerman [16] describe
the usage of change history data (equivalent to PRs in the
MVP team), novice developers in the MVP team use the
broadcasted e-mail messages prescribed by the software
development process. The importance of finding experts
for problem-solving in any organization and the complex-
ity of the MVP code suggest that the operation of sending
e-mail before a check-in is essential.

8. Conclusion and Final Remarks

This paper reports the findings of an informal field
study conducted at the NASA/Ames Research Center
during the course of an eight-week internship with a
software development. The results of this field study de-
scribe the formal and informal practices adopted by team
members to manage the interdependencies that occur dur-
ing software development. Formal approaches are those
legitimated by the organization; the informal ones are
those that emerge naturally due to the needs of the devel-
opers. Examples of formal approaches adopted by the
team are the software development process, some soft-
ware development tools, design meetings, and a clear
division of labor. The informal approaches that we identi-
fied are partial check-ins, problem reports that cross work

boundaries, holding onto check-ins, e-mail and naming
conventions, and the action of speeding up the processes.

In this work, we also indicate current and nonexisting
computational support to the informal approaches. In-
deed, partial check-ins, problem reports that cross work
boundaries, and holding onto check-ins are work prac-
tices currently supported by CM and bug-tracking tools.
E-mail and naming conventions and the action of speed-
ing up the processes are adopted by MVP developers due
to the lack of tool support. We believe that these interest-
ing research areas should be further investigated. Pointing
out these areas is an important contribution of this paper.

Finally, we are planning a future study in a different
organization. We seek to identify similarities and differ-
ences in the formal and informal approaches that we iden-
tified here and to learn how the ones that we identified are
used in a different context.

Acknowledgments

The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for financial support. This effort was also spon-
sored by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Mate-
riel Command, USAF, under agreement number F30602-00-2-
0599. Funding also was provided by the National Science Foun-
dation under grant numbers 0205724 and 0083099. The U.S.
Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright anno-
tation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of DARPA, the Air Force Laboratory, or the
U.S. Government.

9. References

[1] Appleton, B., Berczuk, S., et al., "Streamed Lines: Branch-
ing Patterns for Parallel Software Development," Proceed-
ings of Pattern Languages of Programs (PLoP'98),
Washington University Technical Report #WUCS-98-25,
1998.

[2] Conradi, R., and Westfechtel, B., "Version Models for
Software Configuration Management," ACM Computing
Surveys, vol. 30, pp. 232-282, 1998.

[3] Curtis, B., Krasner, H., et al., "A Field study of the Soft-
ware Design Process for Large Systems," Communications
of the ACM, vol. 31, pp. 1268-1287, 1988.

[4] Eick, S. G., Graves, T. L., et al., "Visualizing Software
Changes," Software Engineering, vol. 28, pp. 396-412,
2002.

[5] Estublier, J., "Software Configuration Management: A
Roadmap," Future of Software Engineering, pp. 279-289,
Limerick, Ireland, 2001.

[6] Finkelstein, A., Kramer, J., et al., Software Process Model-
ing and Technology: Wiley, 1994.

[7] Gamma, E., Helm, R., et al., Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addi-

son-Wesley, 1995.
[8] Gerson, E. M., and Star, S. L., "Analyzing Due Process in

the Workplace," ACM Transactions on Office Information
Systems, vol. 4, pp. 257-270, 1986.

[9] Grinter, R., "Supporting Articulation Work Using Configu-
ration Management Systems," Computer Supported Coop-
erative Work, vol. 5, pp. 447-465, 1996.

[10] Grinter, R. E., "Recomposition: Putting It All Back To-
gether Again," Conference on Computer Supported Coop-
erative Work (CSCW'98), pp. 393-402, 1998.

[11] Grinter, R. E., "Using a Configuration Management Tool to
Coordinate Software Development," Conference on Organ-
izational Computing Systems, pp. 168-177, 1995.

[12] Grinter, R. E., "Workflow Systems: Occasions for Success
and Failure," Computer Supported Cooperative Work, vol.
9, pp. 189-214, 2000.

[13] Kraut, R. E., and Streeter, L. A., "Coordination in Software
Development," Communications of the ACM, vol. 38, pp.
69-81, 1995.

[14] Mark, G., Fuchs, L., et al., "Supporting Groupware Con-
ventions through Contextual Awareness," European Con-
ference on Computer-Supported Cooperative Work
(ECSCW '97), pp. 253-268, Lancaster, England, 1997.

[15] McCracken, G., The Long Interview: Thousand Oaks, CA:
SAGE Publications, 1988.

[16] McDonald, D., and Ackerman, M., "Just Talk to Me: A
Field Study of Expertise Location," Conference on Com-
puter Supported Cooperative Work, pp. 315-324, 1998.

[17] O'Reilly, C., Morrow, P., et al., "Improving Conflict Detec-
tion in Optimistic Concurrency Control Models," 11th In-
ternational Workshop on Software Configuration Manage-
ment (SCM-11), Portland, Oregon, 2003.

[18] Orlikowski, W., "Learning from Notes: Organizational
Issues in Groupware Implementation," The Information So-
ciety, vol. 9, 1993.

[19] Parnas, D. L., "On the Criteria to Be Used in Decomposing
Systems into Modules," Communications of the ACM, vol.
15, pp. 1053-1058, 1972.

[20] Perry, D. E., and, Siy, H. P., et al., "Parallel Changes in
Large-Scale Software Development: An Observational
Case Study," ACM Transactions on Software Engineering
and Methodology, vol. 10, pp. 308-337, 2001.

[21] Perry, D. E., Staudenmayer, N. A., et al., "People, Organi-
zations, and Process Improvement," IEEE Software, vol.
11, pp. 36-45, 1994.

[22] Podgurski, A., and Clarke, L. A., "The Implications of
Program Dependencies for Software Testing, Debugging,
and Maintenance," Symposium on Software Testing,
Analysis, and Verification, pp. 168-178, 1989.

[23] Rothermel, G. and Harrold, M. J., "A Safe, Efficient Re-
gression Testing Selection Technique," ACM Transactions
on Software Engineering and Methodology, vol. 6, pp. 173-
210, 1997.

[24] Sarma, A., Noroozi, Z., et al., "Palantír: Raising Awareness
among Configuration Management Workspaces," Twenty-
fifth International Conference on Software Engineering,
pp. 444-453, Portland, Oregon, 2003.

[25] Schmidt, K., and Bannon, L., "Taking CSCW Seriously:
Supporting Articulation Work," Journal of Computer Sup-
ported Cooperative Work, vol. 1, pp. 7-40, 1992.

[26] Shull, F., Carver, J., et al., "An Empirical Methodology for
Introducing Software Processes," Joint 8th European Soft-
ware Engineering Conference and 9th ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
pp. 288-296, Vienna, Austria, 2001.

[27] Star, S. L., and Griesemer, J. R., "Institutional Ecology,
Translations and Boundary Objects: Amateurs and Profes-
sionals in Berkeley's Museum of Vertebrate Zoology," So-
cial Studies of Science, vol. 19, pp. 387-420, 1989.

[28] Strauss, A., and Corbin, J., Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded
Theory, Thousand Oaks, CA: SAGE publications, 1998.

[29] Suchman, L., Plans and Situated Actions: The Problem of
Human-Machine Communication. Cambridge: Cambridge
University Press, 1987.

[30] Vessey, I., and Sravanapudi, A. P., "CASE Tools as Col-
laborative Support Technologies," Communications of the
ACM, vol. 38, pp. 83-95, 1995.

[31] Walrad, C., and Strom, D., "The Importance of Branching
Models in SCM," IEEE Computer, vol. 35, pp. 31-38,
2002.

Opportunities for Extending Activity Theory for Studying
Collaborative Software Development

Cleidson R. B. de Souza† and David F. Redmiles

School of Information and Computer Science
University of California, Irvine

{cdesouza, redmiles}@ics.uci.edu

Abstract
Activity theory is an analytical framework that has been
used successfully to understand and explain collective
work. Software development is, of course, one particular
kind of collective work. We used activity theory to analyze
the observations one author made during an internship
with a large-scale software development group. We also
made some observations about how well suited activity
theory was for the analysis. We briefly describe the work
setting and the analysis. Then we describe the experi-
ences we had, which indicate possibilities for further de-
veloping activity theory for studying collaborative work.

1. An Experience with Collaborative Soft-
ware Development

The first author spent eight weeks during the summer of
2002 interning as a software developer on a large-scale
software development team. As a member of this team, he
was able to make observations and collect information
about a variety of aspects, including the organization of
the team, the formal and informal practices that this team
adopted, and the tools they used. The software develop-
ment team was formed to develop a software application
we call MVP (not the real name), which comprises 10
different tools that are deployed in different parts of the
United States. The source code is approximately one mil-
lion lines of C and C++.

Each of the several different tools that compose MVP
uses a specific set of “processes.” A process for the MVP
team is a program that runs with the appropriate run-time
options. Processes typically run on distributed Sun work-
stations and communicate by using a TCP/IP socket pro-
tocol. Running a tool means running the processes re-
quired by this tool, with their appropriate run-time op-
tions.

The software development team is divided into two
groups: the developers and the verification and validation
(V&V) staff. The developers are responsible for writing
new code, fixing bugs, and adding new features. This
group comprises 25 members. The V&V staff are respon-
sible for testing and reporting bugs identified in the soft-
ware, keeping a running version of the software for dem-

 †

Also at the Department of Informatics, Universidade Federal do Pará,
Belém, PA, Brazil.

onstration purposes, and maintaining the documentation
(mainly user manuals) of the software. This group com-
prises six members.

The MVP group adopts a formal software develop-
ment process that prescribes the steps that need to be per-
formed by the MVP developers during the software de-
velopment activities. For example, all developers, after
finishing the implementation of a change, should integrate
their code with the main baseline. In addition, each de-
veloper is responsible for testing the code to verify that
his/her integration did not insert bugs in the code, or
“break the code,” as this is informally characterized by
MVP developers. After using a configuration manage-
ment (CM) tool to check-in files into the repository, a
developer must send an e-mail to the software develop-
ment mailing list describing the problem report (PR) as-
sociated with the changes, the files that were changed,
and the branch where the check-in will be performed,
among other pieces of information.

2. An Activity Theory Analysis
Activity theory allows a variety of ways to analyze phe-
nomena. In this work, Engeström’s activity theory model
[4] was used in the analysis of findings. This model is
presented in Figure 1. Activities are associated with ob-
jectives called “outcomes.” People working within a
community share activities. They work to create objects
and rely on tools referred to as artifacts to support their
activity. Rules instantiate division of labor and practices
of the community.

Figure 2 is basically an “instantiation” of the frame-
work described in Figure 1 as applied to the MVP soft-
ware development team. The main outcome of the soft-
ware development activity is high-quality MVP software
(i.e., bug-free software that is easy to evolve, delivered on
schedule, and meets the customers’ specifications). Of
course, this includes executables, source code, bug re-
positories, manuals, specifications, and so on. The object
of this activity is the MVP software while being modified.
This includes, for example, the changes being introduced
in the code, reported bugs not yet solved, and so on. The
mediating artifacts, or tools, are the set of tools used by
the team to manipulate the object so they achieve their
goal or outcome, such as CM and bug tracking tools,
e-mail, and the like. Rules consist of formal practices

Figure 1: Elements of the Activity Theory
Framework (see [4]).

Figure 2: The Software Development Activity as Ap-
plied to the MVP Team

(e.g., software development processes) and informal prac-
tices (conventions, workarounds, and so on) used by the
MVP team. The community is the whole MVP team,
which is organized according to a specific division of la-
bor: There are mainly two groups, namely, developers
and V&V staff. But the members of these groups also
adopt a division of labor. Specifically, there are process
leaders and process developers, the configuration and
release manager, the software manager, and testers.

2.1. Tensions and Their “Fixes” in the MVP

Team
Contradictions are important aspects in an activity be-
cause they might be used as sources of development ([6],
pg. 34). In other words, contradictions trigger reflection,
thereby helping in the improvement of the activity. Con-
tradictions reveal themselves as breakdowns, problems,
tensions, or misfits between elements of an activity or
between activities. In our case, we identified several ten-
sions within the software development activity developed
by the MVP team, but, in addition to that, we also identi-
fied the fixes that the team adopted to solve them. We
identified tensions between different elements, such as
between the object and the community, and between the

rules and the community.
In the first case, the tension between the object and

the community exists due to the effects that the object
(e.g., changes in the MVP software) will have on the
community. For example, if a change (the object) is in-
troduced in the source code, other members of the MVP
team (the community) might need to be informed because
they may need to perform additional tasks (e.g., update
the documentation) due to that change. The tension exists
because developers are not aware of some interdependen-
cies in the software and, therefore, how other members of
the community are affected by their work. Despite that,
the community must support the evolution of the software
and guarantee that the software delivered is not inconsis-
tent with the specifications, manuals and other artifacts.

In the second case, the tension exists basically be-
tween rules and the community because one rule suggests
that a developer should perform a specific action, but
he/she does not want to perform that action out of con-
cern for the effects of the action on the rest of the com-
munity. For example, if one developer decides to check-
in his/her code into the repository, the other developers
(part of the community) might need to recompile their
code in order to work with the latest version of the soft-
ware, and this compilation process is time-consuming.

2.2. Tensions between the Object and the Com-

munity
In this case, tensions emerge in the software development
activity due to the concern about how the object will af-
fect the community. For example, when the source code
is modified, often it is also necessary to modify other
software artifacts, such as manuals, documentation, speci-
fications, and so on, or inconsistencies will arise. Al-
though inconsistencies might have positive effects in
software development, in general they are not desirable
[10]. The MVP software development team already rec-
ognized the need to handle this problem (tension) and
adopted two different and complementary practices to
deal with it: Formal reviews are adopted in the software
development process to handle inconsistencies in the
source code, and problem reports are structured in such a
way that the inconsistencies between source code and
other artifacts are easier to manage. Both practices are
explained in the following sections.

2.3. Tensions between the Rules and the Commu-

nity
These tensions occur because a rule might suggest that a
developer should perform a specific action, but the devel-
oper does not want to perform it due to concern about the
effect of this action on the community. As mentioned
earlier, an example of such tension occurs when one
developer needs to check-in his/her code into the
repository, but the other developers would then need to
recompile their code in order to work with the latest

Subject

Rules Community Division of labour

Object → Outcome

Mediating Artefacts

Subject
(developers)

Rules

(software process,
conventions)

Community
(MVP team)

Division of Labour
(developers and V&V
staff)

Object (MVP software)
→ Outcome (MVP SW
without bugs, etc)

Artefacts (CM tools,
bug tracking, e-mail)

their code in order to work with the latest version of the
software. Because this compilation process is time-
consuming, the developer needs to decide whether to fol-
low the rule and thus cause the whole community to
recompile, or to not follow the rule, at least for a while,
thereby minimizing the impact of his/her actions in the
rest of the community. Typical fixes adopted by the MVP
team include changing the order in which some rules are
executed or performing additional actions along with the
rule to minimize the disruption to the community.

Furthermore, tensions between these components also
arise due to the impact on the community in the execution
of the rule. In other words, the developer is concerned
that he/she needs to perform a rule but actions of the
community (such as check-ins or check-outs) will impact
his/her performance of the rule. In this case, those ac-
tions influence how the developer performs the rule.
Note that in this case, the division of labor also influences
this tension because it prescribes how developers should
be organized in the community, therefore allowing two or
more developers to work and check-in in concurrently.

3. Implications for Activity Theory
3.1. Modeling Human Activity
In software development terms, section 2 of this paper
developed a model. The process of developing this model
has more similarities to software modeling than one might
expect. In particular, we began by choosing a modeling
language that seemed appropriate for our application—
the language of activity theory, and in particular
Engeström’s terminology and diagrammatic notation. We
then built an instance of a model in this language that
served as a first approximation. We then refined it
through several iterations. We reached a point at which
analysis of the model yielded explanations consistent with
the data, as presented above.
 Iterative refinement of the model appeared to be an
open-ended process. However, the actual observations
made during the internship acted in a sense like a “test
oracle.” Namely, we reached a stopping point when all
observed phenomena were accounted for. Moreover, the
focus of activity theory on identifying tensions and con-
flict were useful for understanding what we observed and
for highlighting areas where software tools and practices
might be improved.
 In sum, the attempt to model the human collective ac-
tivity of collaborative software development did not seem
straightforward at first, but required a first approximation
and successive refinement. Although frustrating, the chal-
lenges did not seem greater than other kinds of modeling,
and the results were informative. In the next subsection,
we make some observations on how this process may be
improved and identify research areas for the methodol-
ogy.

3.2. Activity Theory: Where Next?
Activity theory has been applied to the design of software
systems, and research to date has indicated its usefulness
toward collecting requirements for software system de-
sign (e.g., [1] and [8]). However, to the authors’ knowl-
edge, this paper represents the first application of activity
theory to studying collaboration among software devel-
opers; previous studies have examined only the collabora-
tion between end users and software developers. Thus, we
had to struggle with a finer degree of detail of activity
than previous works with respect to the development of
software.
 One challenge that presented itself was the notion that
a single activity might be consistent when observed as a
single instance, but might be a source of tension when
there were multiple instances of that activity. For in-
stance, in the case of a single developer, even when work-
ing with end users and other team members, the activity
of checking-in a module revision is consistent within it-
self. However, multiple instances of this check-in activity
create a tension we observed as developers sped up their
work to be the first to check-in. This part of the model
and the more general issue of multiple instances of activ-
ity is one place for further research into the application of
activity theory and a potential contribution to improving
the methodology.
 Another area for research in activity theory is akin to
dependency analysis in software testing. Namely, as we
identified different activities that comprised the general
activity of evolving a software system, we began to ob-
serve many interdependencies. For example, rules for
applying a specific software tool led to other activities,
each with their own associated set of rules, subjects, other
tools, and so on. We were intrigued by the notion that a
kind of dependency analysis might be developed to help
an organization more precisely account for the potential
impact of making changes to tools and practices. This
kind of work, however, would be a long-term goal. A
related issue is that of adoption. Understanding the his-
tory of how elements in the activity theory models
evolved (e.g., tools, rules, division of labor, and so on)
can better enable the responsible introduction of new
tools, including involving end users with tool introduc-
tion. The basic premise of introducing changes into peo-
ple’s work is the ability to develop the fullest understand-
ing possible of that work. Activity theory, even in its pre-
sent state of development, is successful in that regard.
 Finally, a new line of research is beginning to present
itself around the concepts of reflection and awareness.
Specifically, various researchers have begun to recognize
the value of simply reflecting back to a group or organi-
zation the actuality of its various objectives and activities.
In a previous study, we used this kind of reflection as a
matter of course in reporting findings, but the process of
performing this “reporting” led to improvement in the

process of software developers collecting requirements
and in the organization’s members better understanding
one another’s roles [2]. Other researchers have observed
similar effects, including those at a small scale. Namely,
some researchers are developing software tools to help
people coordinate their collaborative work by reflecting
the current state of a collaborative activity or the state of
actual collaborators. Some instances are Portholes sys-
tems that reflect the state of collaborators [3] [7],
configuration management tools that reflect who is
working on what modules [9], and tickertape tools that
reflect all activities in a work environment [5]. Thus,
another open area is better understanding and better
reflecting of actual activity (through manual and
automated means) back to participants in that activity,
and understanding ways this has positive effects on the
collective work.

4. Conclusions
Our experiences in performing the analysis presented

briefly in this paper as well as previous experiences of
our own and our colleagues have shown many positives
to activity theory. It is open ended, which, although a
challenge, allows for the introduction of new ideas and
refinements. It is noninvasive, using open-ended inter-
views or even more informal observations of work such
as presented in this paper. It readily yields to iterative
refinement. When more detail is needed in a model, addi-
tional activities may be named and analyzed. Finally,
there seems to be some overlap in object-oriented analy-
sis. Although the present authors do not wish to overem-
phasize the similarities, the overlap is helpful for people
with object-oriented experience to engage in learning the
methodology. Thus, although there is still a great deal of
craft involved in becoming acquainted with and applying
activity theory, we have experienced many positives in
our analyses in different work settings and anticipate the
methodology becoming more refined and documented.

Acknowledgments
The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for financial support. This effort was also
sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory,
Air Force Materiel Command, USAF, under agreement
number F30602-00-2-0599. Funding also was provided
by the National Science Foundation under grant numbers
CCR-0205724 and 9624846. The U.S. Government is

authorized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright anno-
tation thereon. The views and conclusions contained
herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA), the Air
Force Laboratory, or the U.S. Government.

5. References
[1] Bodker, S., Through the Interface: A Human Activity Ap-

proach to User Interface Design, Hillsdale, NJ: Lawrence
Erlbaum, 1991.

[2] Collins, P., Shukla, S., et al., “Activity Theory and System
Design: A View from the Trenches,” Computer Supported
Cooperative Work—Special Issue on Activity Theory and
the Practice of Design, vol. 11, pp. 55-80, 2002.

[3] Dourish, P., and Bly, S., “Portholes: Supporting Distributed
Awareness in a Collaborative Work Group,” ACM Confer-
ence on Human Factors in Computing Systems (CHI '92),
Monterey, CA, 1992.

[4] Engeström, Y., “Activity Theory and Individual and Social
Transformation,” pp. 19-38, in Engeström, Y., Miettinen,
R., and Punamäki, R-L., “Perspectives on Activity The-
ory.” Cambridge, UK: Cambridge University Press, 1999.

[5] Fitzpatrick, G., Mansfield, T., et al., “Augmenting the
Workaday World with Elvin,” 6th European Conference on
Computer Supported Cooperative Work, pp. 431-450, Co-
penhagen, Denmark, 1999.

[6] Kuuti, K., “Activity Theory as a Potential Framework for
Human-Computer Interaction Research,” pp. 17-44, in
Nardi, B., “Context and Consciousness: Activity Theory
and Human-Computer Interaction.” Cambridge, MA: The
MIT Press, 1996.

[7] Lee, A., and Girgensohn, A., “NYNEX Portholes: Initial
User Reactions and Redesign Implications,” ACM Confer-
ence on Human Factors in Computing Systems (CHI '97),
pp. 385-394, 1997.

[8] Nardi, B., and Redmiles, D., Eds. Computer Supported Co-
operative Work, The Journal of Collaborative Computing,
Special Issue on Activity Theory and the Practice of De-
sign, Vol. 11, No. 1-2, p. 1-11, 2002.

 [9] Sarma, A., Noroozi, Z., et al., “Palantír: Raising Awareness
among Configuration Management Workspaces,” Twenty-
fifth International Conference on Software Engineering, pp.
444-453, Portland, Oregon, 2003.

[10] Spanoudakis, G., and Zisman, A., “Inconsistency Manage-
ment in Software Engineering: Survey and Open Research
Issues,” in Handbook of Software Engineering and Knowl-
edge Engineering, vol. 1, S. K. Chang, Ed.: World Science
Publishing Co., 2001, pp. 329-380.

“Breaking the Code”, Private and Public Work in
Collaborative Software Development
Cleidson R. B. de Souza1,2 and David F. Redmiles2
1Universidade Federal do Pará, Brazil and 2University of California, Irvine, USA
cdesouza@ics.uci.edu, redmiles@ics.uci.edu

Abstract. As a cooperative effort, software development is especially difficult because of the many
interdependencies amongst the artifacts created during this activity. In order to minimize problems created by
these interdependencies, some software development tools create a distinction between private and public
aspects of work of the developer. Technical support is provided to these aspects as well as for transitions
between them. However, we present empirical material collected from a software development team that
suggests that the transition from private to public work needs to be more carefully handled. Indeed, our analysis
suggests that different formal and informal work practices are adopted by the developers to allow a delicate
transition, where software developers are not largely affected by the emergent public work.

Private and Public Work in CSCW
Software engineers have sought for quite some time to understand their own work of software
development as an important instance of cooperative work, especially seeking ways to provide better
software tools to support developers (Curtis, Krasner et al. 1988). Indeed, they created different tools,
such as configuration management (CM) and bug tracking systems, to facilitate the coordination of
groups of developers (Grinter 1995). However, software development is especially difficult as a
cooperative endeavor because of the several interdependencies that arise in any software development
effort. To minimize these problems, CM systems adopt design constructs (like branches and
workspaces used in configuration management systems) to shield each individual from effects of other
developers’ work. These workspaces enforce a distinction between the private aspects of work
developed by the software engineer and the public aspects that occurs when this developer shares his
work with the other developers. Similar approaches have been taken in other categories of
collaborative applications (e.g., collaborative writing and hypermedia systems), which have adopted
this distinction between private and public work in order to facilitate collaboration. This is usually
done through the provision of separate private and public (or shared) workspaces. Private workspaces
allow users to work in different parts of a document in parallel and contain information that only one
user can see and edit allowing him to create drafts that later will be shared with the other co-workers.
On the other hand, public workspaces allow all users to share the same information or document.

When support for private and public work is provided, it is also necessary to support transitions
between them. The central issue in systems maintaining separate workspaces is how information or

activity moves between them, and similarly, the central mechanism around which CM systems are
built is the mechanism for moving information between public and private conditions – checking in,
checking out, merging. In cooperative working settings, people selectively choose when and how to
disclosure their private work to others, i.e., they want to be able to control the emergence of public
information (Ackerman 2000). CM tools and collaborative authoring tools provide support for these
transitions. In collaborative writing, for example, one can basically copy the content of a private
workspace and paste into the public workspace. On the other hand, in CM systems, more sophisticated
tools involving merging algorithms and concurrency control policies need to be used because of the
aforementioned interdependencies in the software.

Transitions between private and public work (and vice-versa) are particularly important in
cooperative work and can lead to problematic situations when overlooked. Indeed, Sellen and Harper
(Sellen and Harper 2002) describe some case studies of companies that had problems because they
underestimated the delicacy of this transition. Despite that, insufficient analytical attention has been
given to this transition by the CSCW community. In this paper, we will examine this issue with
empirical material collected from a collaborative software development effort. The team observed used
three software development tools for coordination purposes. However, these tools alone were not
sufficient to effectively support the team; participants needed to adopt a set of formal and informal
work practices to properly support private, public work and transitions between them. The adoption of
these different work practices suggests that the computational support provided by these systems to
support the emergence of private information is still unsatisfactory.

Setting and Methods

The group studied develops an application called MVP (not the real name) and is divided in two teams:
developers and the verification and validation staff (V&V). Developers are responsible for writing new
code, for performing bug fixing, enhancements, and so on. There are 25 developers, including
researchers that write their own code. The V&V team (6 engineers) is responsible for testing the
software, keeping a running version for demonstration and maintaining user manuals.

The first author spent eight weeks during the summer of 2002 as a member of the MVP team.
During that time, he was able to interview developers, make observations and collect information
about several aspects of the team. He also talked with his colleagues to learn more about their work.
Additional material was collected by reading manuals of the MVP tools, manuals of the software
development tools used, formal documents (like the description of the software development process
and the ISO 9001 procedures), problem reports (PR’s), and so on.

MVP Practices to Handle Private and Public Work

The main tools used by the MVP team to coordinate their activities are the configuration management
(CM) and the bug tracking tools (Grinter 1995). Branching in CM tools are used to create shields
between developers’ workspaces isolating one’s work from others (Conradi and Westfechtel 1998). On
the other hand, merging mechanisms are created to allow one’s work to be combined with other
developers’ work. In other words, branches support private work, while merging mechanisms support
the transition from private to public work. Finally, building mechanisms in CM tools support the
public work because they allow developers to automatically recompile the code in order to incorporate
changes recently committed in the repository.

In general, we identified that the private and public work are properly supported by the software
development tools and by the software development process adopted by the MVP. However, except for

the merging mechanisms embedded in CM tools, the transitions between private and public are
improved through informal work practices because of the need developers have to manage the
interdependencies. Examples of these practices will be briefly discussed in the following paragraphs.

We called the first practice “holding onto check-in’s”. Developers will hold onto check-in’s (and
merges) when they realize that their work (in this case, their changes in the software) will imply in the
recompilation of the whole source code. They avoid that because they know that the recompilation
process is time-consuming usually taking between 30 to 45 minutes. This means that other developers
will waste their time waiting for the recompilation of their local copies.

After making their work public by merging it back into the repository, the software development
process prescribes that MVP developers must send an e-mail to the whole software development group
informing about the new changes in the system. However, these developers will send this e-mail before
committing their changes and will also add a brief description of the impact that these changes will
cause on their colleague’s work. In this case, because of these e-mail messages, other developers might
reflect about the effect of their colleagues’ changes in their current work and prepare for that. This is
possible because they are aware of some interdependencies in the source-code. The convention (adding
impact statements in the e-mails) is the second practice identified.

A third approach identified was the “partial check-in”, which consists of checking-in files back in
the repository, even when the developers have not yet finished their entire work. This is used to deal
with parallel development in files that are changed very often. This practice allows developers to
reduce the work necessary to make their work public, as it minimizes the number of updates that they
need to perform in their files before merging them into the main repository.

Finally, we also identified that problem reports (PR’s) are used by different stakeholders (e.g., end-
users liaisons, developers and testers) to manage the software interdependencies. For example, when a
bug is identified, it is associated with a specific PR. Whoever identified the problem is also responsible
for filling in the PR with information about ‘how to repeat’ it. This description is used by the developer
assigned to fix the bug to specify the circumstances (adaptation data, tools and their parameters) under
which the bug appears. In short, MVP members use the information from the PR’s in many different
ways, according to the role they are playing.

Conclusions

We briefly described some of the work practices adopted by software developers to properly handle
the transition between their private and their public work. MVP developers employ these practices
because of the interdependencies that exist in the software. As mentioned before, the adoption of these
practices suggests that computational support is necessary in cooperative software development tools
to support the emergence of private information.

References
Ackerman, M. S. (2000). "The Intellectual Challenge of CSCW: The Gap Between Social Requirements and Technical

Feasibility." Human-Computer Interaction 15(2-3): 179-204.
Conradi, R. and Westfechtel, B. (1998). "Version Models for Software Configuration Management." ACM Computing

Surveys 30(2): 232-282.
Curtis, B., Krasner, H. and Iscoe, N. (1988). "A field study of the software design process for large systems."

Communications of the ACM 31(11): 1268-1287.
Grinter, R. E. (1995). Using a Configuration Management Tool to Coordinate Software Development. Conference on

Organizational Computing Systems, Milpitas, CA, 168-177.
Sellen, A. J. and Harper, R. H. R. (2002). The Myth of the Paperless Office. Cambridge, Massachusetts, The Mit Press.

“Breaking the Code”, Moving between Private and Public
Work in Collaborative Software Development

Cleidson R. B. de Souza1,2 David Redmiles1 Paul Dourish1

1School of Information and Computer Science

University of California, Irvine

Irvine, CA, USA – 92667

2Departamento de Informática

Universidade Federal do Pará

Belém, PA, Brazil - 66075

{cdesouza,redmiles,jpd}@ics.uci.edu

ABSTRACT
Software development is typically cooperative endeavor where a
group of engineers need to work together to achieve a common,
coordinated result. As a cooperative effort, it is especially difficult
because of the many interdependencies amongst the artifacts
created during the process. This has lead software engineers to
create tools, such as configuration management tools, that isolate
developers from the effects of each other’s work. In so doing,
these tools create a distinction between private and public aspects
of work of the developer. Technical support is provided to these
aspects as well as for transitions between them. However, we
present empirical material collected from a software development
team that suggests that the transition from private to public work
needs to be more carefully handled. Indeed, the analysis of our
material suggests that different formal and informal work
practices are adopted by the developers to allow a delicate
transition, where software developers are not largely affected by
the emergent public work. Finally, we discuss how groupware
tools might support this transition.

Categories and Subject Descriptors
H.4.1 [Office Automation]: Groupware; H.5.3 [Group and
Organization Interfaces]: Computer-supported cooperative work;

General Terms
Human Factors

Keywords
Private work, public work, collaborative software development,
qualitative studies.

1. INTRODUCTION
Software engineers have sought for quite some time to understand
their own work of software development as an important instance
of cooperative work, especially seeking ways to provide better

software tools to support developers [6]. Indeed, they created
several different tools, such as configuration management (CM)
and bug tracking systems, to facilitate the coordination of groups
of developers [14]. However, software development is especially
difficult as a cooperative endeavor because of the several
interdependencies that arise in any software development effort.
To minimize these problems, current CM systems adopt design
constructs (like workspaces and branches used in configuration
management systems) to shield each individual from effects of
other developers’ work [5]. These workspaces enforce a
distinction between the private aspects of work developed by a
software engineer and the public aspects that occur when this
developer shares his work with other developers. Similar
approaches have been taken in other categories of collaborative
applications (e.g., collaborative writing and hypermedia systems),
which have adopted this distinction between private and public
work in order to facilitate collaboration. In these applications, this
is usually done through the provision of separate private and
public (or shared) workspaces. Private workspaces allow users to
work in different parts of a document in parallel and contain
information that only one user can see and edit allowing him to
create drafts that later will be shared with the other co-workers
[7]. On the other hand, public workspaces allow all users to share
the same information or document and edit it concurrently.

When support for private and public work is provided, it is also
necessary to support transitions between them. The central issue
in systems maintaining separate workspaces is how information or
activity moves between them, and similarly, the central
mechanism around which CM systems are built is the mechanism
for moving information between public and private conditions –
checking in, checking out, merging. In cooperative working
settings, people selectively choose when and how to disclosure
their private work to others, i.e., they want to be able to control
the emergence of public information [1, 26]. CM tools and
collaborative authoring tools provide support for these transitions.
In collaborative writing, for example, one can basically copy the
content of a private workspace and paste into the public
workspace. On the other hand, in CM systems, more sophisticated
tools involving merging algorithms and concurrency control
policies need to be used because of the aforementioned
interdependencies in the software.

Transitions between private and public work (and vice-versa) are
particularly important in cooperative work and can lead to
problematic situations when overlooked. Indeed, Sellen and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GROUP’03, November 9–12, 2003, Sanibel Island, Florida, USA.

Copyright 2003 ACM 1-58113-693-5/03/0011…$5.00.

Harper [28] describe case studies of companies that had problems
because they underestimated the delicacy of this transition.
Despite that, insufficient analytical attention has been given to
this transition by the CSCW community. In this paper, we will
examine this issue with empirical material collected from a
collaborative software development effort. The team observed
uses mostly three tools for coordination purposes: a configuration
management tool, a bug-tracking system, and e-mail. However,
these tools alone were not sufficient to effectively support the
team; participants needed to adopt a set of formal and informal
work practices to properly support private, public work and
transitions between them. The adoption of these different work
practices suggests that the computational support provided by
these systems to support the emergence of private information is
still unsatisfactory. Based on these results, we draw more general
conclusions about the implications for computer-supported
cooperative work.

The rest of the paper is organized as follow. The next section
discusses the idea of private and public work in computer-
supported cooperative work. Then, sections 3 and 4 present the
settings and the methods that we used to study the software
development team. After that, Section 5 describes the set of work
practices adopted by the team to properly deal with private, public
work and transitions between them. Section 6 presents our
discussion about the data that we collected. After that, Section 7
discusses implications of our findings in the design of CSCW
tools. Finally, conclusions and ideas for future work are
presented.

2. PRIVATE AND PUBLIC WORK
In this paper we examine the distinction between private and
public work in collaborative efforts. The need for this distinction
is widely recognized in CSCW research. According to Ackerman
[1], for example, people “(…) have very nuanced behavior
concerning how and with whom they wish to share information
(…) people are concerned about whether to release this piece of
information to that person at this time (…)”. Another reason that
makes people care about the release of information about them is
that they “(…) are aware that making their work visible may also
open them to criticism or management (…)” (ibid.). Furthermore,
one does not make his entire work visible because he wants to
appear competent in the eyes of colleagues and managers by
making their work more complicated than necessary [26]. Indeed,
people are not interested in all information that is provided to
them. As Schmidt [26] points out:

“(…) in depending on the activities of others, we are ‘not
interested’ in the enormous contingencies and infinitely faceted
practices of colleagues unless they may impact our own work (…)
An actor will thus routinely expect not to be exposed to the
myriad detailed activities by means of which his or her colleagues
deal with the contingencies they are facing in their effort to
ensure that their individual contributions are seamlessly
articulated with the other contributions.”

To summarize, people have several contextualized and different
strategies to release their private information, and they expect that
others will do the same, not overloading them with public
information that is not ‘relevant’ to their current context or

activity. Note that this private information might be
collaboratively constructed [16]. In this case, the information is
public for those involved in its “construction”, but it is private to
the other members of the cooperative effort.

CSCW researchers have already recognized the need to support
these findings. Indeed, a typical approach to address that is to
provide support for private and public (also called shared)
windows, or workspaces, to support the collaboration among users
[30]. Private workspaces allow users to work in different parts of
a document in parallel and contain information that only one user
can see and edit, allowing him to create drafts that later will be
shared with the other co-workers [7]. On the other hand, public
workspaces allow all users to share the same information or
document so that, changes in the document are automatically
visible to all users. The usage of these workspaces mimic
conventions carried over non-technological work, where no one
wants to search or look at anyone’s private desk or drawer, and
conversely wants no one to search theirs, but accepts that when
they occur in public spaces. Indeed, Mark and colleagues [21]
report how conventions about the use of private and public
workspaces implicitly evolved from conventions formed in face-
to-face non-technological work after the introduction of a
groupware tool.

Often, other mechanisms are present in collaborative systems to
make other actions’ visible as well. For example, grey ‘clouds’
were proposed in the collaborative editor Grove to indicate where
other co-writers are editing the text [9]. Furthermore, it is also
well-known that, in some settings, making others’ work public
facilitates the coordination of the activities [16] [17] and enables
learning and greater efficiencies [20]. Examples of tools that
explore such approaches include Portholes [8] and Babble [10].

The underlying distinction between private and public work also
implies that in collaborative efforts transitions between these two
aspects occur. However, while notions of “public” and “private”
have been incorporated into software system design, insufficient
analytical attention has been give to the transitions. Field studies
such as those of Bowers [4] or Sellen and Harper [28]
demonstrate that overlooking these transitions can be problematic.
In Bower’s study, the disclosure of private data brought about
dilemmas of ownership and responsibility among the employees
of the organization studied. In Sellen and Harper’s study, when
the companies tried to go paperless deploying a new information
system, the employees’ ability to control when to disclosure
information was lost and these employees boycotted the system.
This happened because paper, as a medium on which work was
performed, allowed their owners to avoid sharing information
with their co-workers until they felt that the information was
“ready”.

Note that the setting where the collaborative effort takes place is
important. For example, in a control room, all workers are
collocated, which allows them to use intonations in their voice
and/or body language to make their actions visible to other co-
workers [17]. On the other hand, Whittaker and Schwarz [34]
report an ethnographic study where a large wallboard (containing
the schedule of a software development project) is used by the
team, which is spread along different cubicles and offices. The
public location of this wallboard allowed developers to access

information about who was doing which tasks at which times,
among other things. In other words, in this setting, information
about others’ current actions was made public by checking and
updating the schedule displayed in the wallboard.

In collaborative software engineering, this distinction between
private and private work is not only desirable, but necessary and
often enforced by tools. This occurs because of the several
interdependencies that arise in any software development effort.
In other words, each part of the software depends, directly or
indirectly, on many other parts. Furthermore, these
interdependencies are not strictly defined in the artifacts
produced, and often are not even known by the developers. To
handle this problem, software engineers created tools, such as
configuration management (CM) and bug tracking systems, to
facilitate the coordination of groups of developers [14]. Current
CM systems adopt design constructs (like workspaces and
branches) to shield the work of individuals from effects of other
developers’ work [5]. Basically, these workspaces “create a
barrier that prevents developers from knowing which other
developers change which other artifacts” [25]. Therefore, CM
workspaces allow software developers to work privately.
Furthermore, CM systems provide mechanisms to support the
transition from private to public work when developers want to
make this transition. To be more specific, when a developer
finishes his work in his private workspace, he can publicize his
work to other software developers through check-in’s, check-out’s
and merging operations. Despite this support, several problems
arise in any software development effort. Indeed, based on
empirical data that we collected, we identified a set of formal and
informal work practices used by a team of software developers to
handle these problems. The setting where the data was collected
and the methods used to analyze this data are described in the
following section.

3. THE SETTING
The team studied is located at the NASA / Ames Research Center
and develops a software application we will call MVP (not the
real name), which is composed of ten different tools in
approximately one million lines of C and C++. Each one of these
tools uses a specific set of “processes.” A process for the MVP
team is a program that runs with the appropriate run-time options
and it is not formally related with the concept of processes in
operating systems and/or distributed systems. Processes typically
run on distributed Sun workstations and communicate using a
TCP/IP socket protocol. Running a tool means running the
processes required by this tool, with their appropriate run-time
options.

Processes are also used to divide the work, i.e., each developer is
assigned to one or more processes and tends to specialize on it.
For example, there are process leaders and process developers,
who, most of the time, work only with this process. This is an
important aspect because it allows these developers to deeply
understand the process behavior and familiarize with its structure,
therefore helping them in dealing with the complexity of the code.
During the development activity, managers tend to assign work
according to these processes to facilitate this learning process.
However, it is not unusual to find developers working in different
processes. This might happen due to different circumstances. For

example, before launching a new release all workforce is needed
to fix bugs in the code, therefore, developers might be assigned to
fix these bugs.

3.1 The Software Development Team
The software development team is divided into two groups: the
verification and validation (V&V) staff and the developers. The
developers are responsible for writing new code, for bug fixing,
and adding new features. This group is composed of 25 members,
three of whom are also researchers that write their own code to
explore new ideas. The experience of these developers with
software development range between 3 months to more than 25
years. Experience within the MVP group ranges anywhere
between 2½ months to 9 years. This group is spread out into
several offices across two floors in the same building.

V&V members are responsible for testing and reporting bugs
identified in the MVP software, keeping a running version of the
software for demonstration purposes and for maintaining the
documentation (mainly user manuals) of the software. This group
is composed of 6 members. Half of this group is located in the V
& V Laboratory, while the rest is located in several offices located
in the same floor and building as this laboratory. Both, the V&V
Lab and developers’ offices are located in the same building.

3.2 The Software Development Process
The MVP group adopts a formal software development process
that prescribes the steps that need to be performed by the
developers during their activities. For example, all developers,
after finishing the implementation of a change, should integrate
their code with the main baseline. In addition, each developer is
responsible for testing its code to guarantee that when he
integrates his changes, he will not insert bugs in the software, or,
“break the code”, as informally characterized by the MVP
developers. Another part of the process prescribes that, after
checking-in files in the repository, a developer must send e-mail
to the software development mailing list describing the problem
report associated with the changes, the files that were changed,
the branch where the check-in will be performed among other
pieces of information.

The MVP software process also prescribes the usage of code
reviews before the integration of any change, and design reviews
for major changes in the software. Code reviews are performed by
the manager of each process. Therefore, if a change involves, e.g.
two processes, a developer’s code will be reviewed twice: one by
each manager of these two processes. On the other hand, design
reviews are recommended for changes that involve major
reorganizations of the source code. Their need is decided by the
software manager usually during the bi-weekly software
developers meeting (called pre-design meetings).

3.3 Software Development Tools: CM and Bug
tracking
MVP developers employ two software development tools for
coordinating their work: a configuration management system and
a bug tracking system. Of course, other tools are used such as
CASE tools, compilers, linkers, debuggers and source-code
editors, but the CM and bug-tracking tools are the primary means

of coordination [5] [12] [14]. These tools are integrated so that
there is a link between the PR’s (in the bug tracking system) and
the respective changes in the source-code (in the CM tool). Both
tools are provided by one of the leader vendors in the market.

A CM tool supports the management of source-code dependencies
through its embedded building mechanisms that indicate which
parts of the code need to be recompiled when one file is modified.
To be more specific, CM tools support both compile-time
dependencies, i.e., dependencies that occur when a sub-system is
being compiled; and build-time dependencies that occur when
several sub-systems or the entire system is being linked [12]. A
bug tracking tool, when associated with the CM tool, supports the
tracking of changes performed in the source code during the
development effort.

It is important to mention that the MVP team employs several
advanced features of the CM tool such as triggers, techniques to
reduce compilation time, labeling and branching strategies.
Indeed, the branching strategy employed is one of the most
important aspects of a CM tool because it affects the work of any
group of software developers. This strategy is a way of deciding
when and why to branch, which makes the task of coordinating
parallel changes easier or more difficult [33]. According to the
nomenclature proposed by Walrad and Strom [33], the following
branching strategies are used by the MVP team: (1) branch-by-
purpose, where all bug fixes, enhancements and other changes in
the code are implemented on separated branches; (2) branch-by-
project, where branches are created for some of the development
projects; and (3) branch-by-release, where the code branches
upon a decision to release a new version of the product. The
branch-by-purpose strategy is employed by MVP developers in
their daily work, while the other strategies are only used by the
CM manager. In other words, developers create new branches for
each new bug fix or enhancement, while branches for projects and
releases are created by the manager only. The branch-by-purpose
strategy supports a high degree of parallel development but at the
cost of more complex and frequent integration work [33].
According to this strategy, each developer is responsible for
integrating his changes into the main code. This approach is often
called “push integration” [2]. After that, the changes are available
to all other developers. Therefore, if one bug is introduced, other
developers will notice this problem because their work will be
disrupted. Indeed, we observed and collected reports of different
instances of this situation. When one developer suspects that there
is a problem introduced by recent changes, he will contact the
author of the changes asking him or her to check the change, or
for more information about it.

4. METHODS
The first author spent eight weeks during the summer of 2002 as a
member of the MVP team. As a member of this team, he was able
to make observations and collect information about several
aspects of the team. He also talked with his colleagues to learn
more about their work. Additional material was collected by
reading manuals of the MVP tools, manuals of the software
development tools used, formal documents (like the description of
the software development process and the ISO 9001 procedures),
training documentation for new developers, problem reports
(PR’s), and so on.

All the members of the MVP team agreed with the author’s data
collection. Furthermore, some of the team members agreed to let
the intern shadow them for a few days so that he could learn about
their functions and responsibilities better. These team members
belonged to different groups and played diverse roles in the MVP
team: the documentation expert, some V&V members, leaders,
and developers. We sampled among MVP “processes”,
developers’ experience in software development and with MVP
tools (and processes) in order to get a broader overview of the
work being performed at the site. A subset of MVP group was
interviewed according to their availability. We again sampled
them according to the dimensions explained above. Interviews
lasted between 45 and 120 minutes. To summarize, the data
collected consists in a set of notes that resulted from
conversations, documents and observations based on shadowing
developers. These notes have been analyzed using grounded
theory techniques [31].

5. PRIVATE AND PUBLIC WORK IN
SOFTWARE DEVELOPMENT
As mentioned before, software development tools like
configuration management systems support private, public work,
and transitions between them. Despite using a CM system the
MVP team faced several problems when dealing with these
aspects. In this section, we present the formal and informal
approaches adopted by this team in order to properly perform their
work, i.e. develop software. In the sections that follow, we will
explore these situations separately: private work, the transition
from private to public, public work, and the transition from public
to private.

5.1 Private Work
Configuration management tools allow developers to work
privately through the implementation of workspaces and branches
[5]. These workspaces isolate the changes being created by one
developer from other parts of the code. In this case, a developer’s
‘work-in-progress’ is not shared with other developers.
Furthermore, these workspaces allow a developer to work without
being affected by the changes of other developers. Indeed, when
new changes are committed in the repository by other developers,
the CM tool lets the user decide if he or she wants to grab these
changes. In case one wants to incorporate the changes, he may
recompile the software using the embedded building mechanisms
on these tools. In case a developer does not want to incorporate
the changes, one can continue working and, if necessary,
recompile the software with the appropriate run-time options that
do not grab these new changes. Of course, this is a risky course of
action because it might lead the developer to work with an
outdated version of the files, which might potentially make his
work less ineffective.

Mechanisms embedded in CM tools are able to identify syntactic
conflicts between the developer’s ‘work-in-progress’ and the
changes committed into the repository, reporting whether or not
the ‘work-in-progress’ is affected by these changes. However,
because CM systems rely on syntactic features of the domain such
as files, suffixes and lines of code, they can not identify semantic
conflicts [11]. This means that except for these conflicts, current
configuration management systems provide extensive and

automated support for maintaining the isolation between the work
performed by one person from other’s work [5].

However, when software developers engage in parallel
development, problems arise in the CM tool. Parallel
development happens when more than one developer needs to
make changes in the same file. This means that the same file is
checked-out by different developers and all of them are making
changes in the different copies of this file in their respective
workspaces. As one might imagine, parallel development might
lead to conflicts. They might occur when one developer checks-in
his changed version of the file back in the repository, because the
versions of the other developers will become outdated. In this
case, the changes of these developers might become inappropriate
because they are based on a code that is not the latest. To solve
this problem, a developer needs to update his version of the file
by merging the other developer’s changes into his code. The
developers term this operation “back merging”; in CM
terminology, it is named “synchronization of workspaces” or
“import of the changes”. Conflicting changes are more likely to
occur in files that are accessed by several developers at the same
time. Indeed, in the MVP software some files are used to describe
programming language structures that are used all over the code.
This means that several different developers often change these
files. In this case, “back merges” are problematic because CM
tools face difficulties when they need to perform several merges at
the same time. To overcome this problem not avoiding parallel
development, MVP developers adopted a strategy to deal with
these files: they perform “partial check-in’s”, which consist of
checking-in some of the files back in the repository, even when
the developers have not finished all their changes yet. This
strategy reduces the number of “back merges” needed, therefore
overcoming the limitations of CM tools. In addition, they
minimize the likelihood of conflicting changes.

In addition to “partial check-in’s”, MVP developers adopt a
different practice during their private work: they “speed-up” to
finish some of their activities during the development process to
avoid merging. This does not happen all the time though, it occurs
only when MVP developers are testing their changes. This activity
is performed right before the check-in operations. As one
developer plainly pointed out: “This is a race!”. According to the
software development process, this testing is necessary to
guarantee that the changes will not introduce bugs into the
system. We observed that, this testing is very informal: developers
will sit on the V&V laboratory and compare the current version of
MVP with the one with changes. MVP developers do not use
more formal techniques, such as regression testing techniques, at
this moment. These will be used by the V&V staff before creating
a new release of the software.

In contrast, the bug tracking tool does not provide support for the
private work of software developers. All the operations made in
the problem reports managed by this tool are publicly accessible
to all other software developers. For example, when a developer
is assigned a bug, he needs to fill some information about the bug
indicating how he will proceed to fix that bug. MVP developers
usually write the information to be added to the bug tracking
system outside the tool in a private file only accessible by
themselves. Eventually, this information is added to the bug-
tracking tool by the developer, which will automatically make it

available to all members of the MVP team. Furthermore, the tool
does not avoid that two developers work on the same PR, as
reported by one of the developers. Developers themselves have to
deal with this problematic situation. The MVP group tries to
avoid this problem through the software development process,
which prescribes that the software manager is the one responsible
for assigning PR to developers. Any assignment needs the
approval of the manager. Organizational rules however interact
with this process. According to these rules, the software manager
can not assign work to the contractors working for the MVP
group. This assignment has to be done to the manager of the
contracting company, who will be responsible for assigning the
work to the developers.

5.2 Moving from Private to Public Work
In this section we discuss the work practices used by the MVP
team to support the transition from private to public work, as well
as how the software development tools used by the MVP team
support this transition. This transition might occur in two
situations: when a developer asks for code reviews, or informal
comments, in his code; or when a developer commits his work
(source-code changes) into the CM repository.

In the first case, MVP developers want to grant others access to
their code, meaning that the work will be visible to them so that
they can comment on it. In this case, MVP developers simply
need to change a setting in their CM workspaces. Although their
work is now public, it is not shared by the other developers,
meaning that it will not impact other developers work.

In the second case, after a developer commits his work into the
CM repository, this work is made public and shared meaning that
it is visible and might impact the work of the other developers. In
order to publicize his work, the author of the changes has to
perform, at least, four different operations1:

1. Check-in the files that he wants to publish in his own
branch;

2. Check-out the same set of files from the baseline;
3. Merge his changed files with the checked-out files

available in the baseline; and
4. Check-in the new files generated by the merging

operation into the baseline.

From the technical point of view, these tasks are not difficult
since check-in’s, check-out’s and merges are typical operations in
CM systems and, therefore, supported by nearly every tool in the
market. This means that CM systems provide adequate support
for these operations. However, this support is problematic when a
developer is, or was, engaged in parallel development. As
mentioned in the previous section, MVP developers adopt “partial
check-in’s” to deal only with files with high levels of parallel
development. Other files are not “partially checked-in”. In this
case, if a developer is engaged in parallel development and other
developers had checked-in the same files in the baseline before
him, then he will need to perform “back merges” before merging

1 These operations might be different in other software

development teams since they depend on the branching strategy
adopted by the team.

his code into the baseline. “Back merges” are supported by the
CM tool through the presentation of version trees of the files
being merged, which allows developers to identify the need for
this task through the observation of the versions on this tree. After
that, the operation is a simple merge. Again, the situation
becomes problematic only if several “back merges” need to be
performed.

During the transition from private to public, there is nothing that
other developers need, or are able to do to facilitate this process.
The work of performing the transition needs to be done by the
author of the changes that will be publicized. However, because of
the several inter-dependencies that exist among the several parts
of the software (e.g., source-code, manuals, specifications, design
documents, and so on), this does not mean that these developers
will not be affected by the transition. Indeed, in order to minimize
these effects, the developer who is going to perform the transition
follows a set of formal and informal practices to facilitate the
management of the interdependencies. These practices need to be
adopted because the tool support to the developers affected by the
private work being publicized is minimal. These formal and
informal practices are described below.

The Software Development Process

As mentioned before, the software development process adopted
by the MVP team prescribes the usage of code and design
reviews. One of the reasons reported by the MVP developers for
using these formal reviews is the possibility of evaluating the
impact that the changes under review will have on the rest of the
code. The most experienced software developer of the team, for
example, reported that design reviews are used to guarantee that
changes in the code do not “break the architecture” of the MVP
software. By breaking the architecture, she means writing code
that violates some of the design decisions embedded in the MVP
software. Code reviews, on the other hand, are responsibility of
process leaders, who can evaluate the impact that the changes will
introduce in their processes before they were committed in the
main repository. This helps each and every process leader to
coordinate the work of other developers working in the same
process.

E-mail Conventions

In addition to formal reviews, the MVP process prescribes that
after checking-in code in the repository, a developer needs to send
an e-mail about the new changes being introduced in the system to
the software developers’ mailing list (see section 3.2). However,
we found out that MVP developers send this e-mail before the
check-in. Moreover, MVP developers add a brief description of
the impact that their work (changes) will have on other’s work in
this e-mail sent to the software developers’ mailing list. By
adopting these practices, MVP developers allow their colleagues
to prepare for and reflect about the effect of their changes. This is
possible because all MVP developers are aware of some of the
interdependencies in the source-code, but not all of them. As an
example of this ‘preparation’, developers might send e-mail to the
author of the changes asking him to delay their check-in, walk to
the co-worker’s office to ask about these changes or, if the
changes have already been committed, browse the CM and bug
tracking systems to understand them. The following list presents
some comments sent by MVP developers:

“No one should notice.”
“[description of the change]: only EDP users will notice
any change.”
 “Will be removing the following [x] files. No effect on
recompiling.”
“Also, if you recompile your views today you will need
to start your own [z] daemon to run with live data.”
“The changes only affect [y] mode so you shouldn't
notice anything.”
“If you are planning on recompiling your view this
evening and running a MVP tool with live [z] data you
will need to run your own [z] daemon.”

These e-mails are also important because they tell (or remind)
developers that they have been engaged in parallel development.
Often, developers do not know that this is happening2. The
information in the e-mail is usually enough to tell the developer if
he needs to incorporate these changes right away in order to
continue his work, or if he can wait until he is ready for check-in.
In both cases, the developer needs to “merge back” the latest
changes into his version of the file.

Sending e-mail before a check-in is also used by other developers
to support expertise identification, and as a learning mechanism.
Developers associate the author of the e-mails describing the
changes with the “process” where the changes are being
performed. In other words, MVP developers assume that if one
developer constantly and repeatedly performs check-ins in a
specific process, it is very likely that he is an expert on that
process. Therefore, if another developer needs help with that
process he will look for him for help:

“[talking about a bug in a process that he is not expert]
(…) I don’t understand why this behaves the way it
does. But, most of these PR’s seem to have John’s name
on it. So you go around to see John. So, by just by
reading the headline of who does what, you kind of get
the feeling of who’s working on what (…).So they [e-
mails] tend to be helpful in that aspect as well. If you’ve
been around for ten years, you don’t care, you already
know that [who works with what], but if you’ve been
here for two years that stuff can really make difference
(…)”

On the other hand, the fact that developers read e-mails sent by
other developers to assess the impact of others’ changes in their
code contributes to their learning experience within MVP. Note
that developers who reported the aspects described in this section
had little experience working at MVP: the first with 2 years and
the second with 2 ½ months.

Problem Reports

The problem reports (PRs) of the bug-tracking tool are used by
different members of the MVP team who play diverse roles in the
software development process. Basically, when a bug is

2 Differently than the developers reported by Grinter [14], before

checking-out a file, they do not check the version tree that
displays information about other developers working on the
same file.

identified, it is associated with a specific PR. The tester who
identified the problem is also responsible for filling in the PR the
information about ‘how to repeat’ it. This description is then used
by the developer assigned to fix the bug to learn and repeat the
circumstances (adaptation data, tools and their parameters) under
which the bug appears. In other words, the information provided
by the tester is then used by the MVP developer to locate, and
eventually fix the bug. After fixing the bug, this developer must
fill a field in the PR that describes how the testing should be
performed to properly validate the fix. This field is called ‘how to
test’. This information is used by the test manager, who creates
test matrices that will be later used by the testers during the
regression testing. The developer who fixes the bug also indicates
in another field of the PR if the documentation of the tool needs to
be updated. Then, the documentation expert uses this information
to find out if the manuals need to be updated based on the
changes the PR introduced. Finally, another field in the PR
conveys what needs to be checked by the manager when closing it.
Therefore, it is a reminder to the software manager of the aspects
that need to be validated.

In other words, PR’s provide information that is useful for
different members of the MVP team according to the roles they
are playing. They facilitate the management of interdependencies
because they provide information to MVP developers that help
them in understanding how their work is going to be impacted by
the changes that are going to be checked-in the repository.

Holding check-in’s

As mentioned earlier, MVP developers add a brief description of
the impact of their changes to the e-mail sent to the developers
before checking-in any code. Two types of impact statements are
used more often than others: changes in run-time parameters of a
process, and the need to recompile parts or the whole source code.
The former case is important because other developers might be
running the process that will be changed with the check-in. The
latter case is used because when a file is modified, it will be
recompiled, as well as, the other files that depend on it and this
recompilation process is time-consuming, up to 30 to 45 minutes.
Developers are aware of the delay that they might cause to others.
Therefore, they hold check-in’s until the evening to minimize the
disturbance that they will cause. According to one of the
developers:

 “(…) people also know that if they are going to check-in a
file, they will do in the late afternoon … You’re gonna do a
check-in and this is gonna cause anybody who recompiles that
day have to watch their computer for 45 minutes (…) and
most of the time, you’re gonna see this coming at 2 or 3 in the
afternoon, you don’t see folks (….) you don’t see people doing
[file 1] or [file 2] checking-in at 8 in the morning, because
everybody all day is gonna sit and recompile.”

The transition from private work, then, is recognized as a point at
which the work of a single developer can impact the work of
others. Developers’ orientation is not simply towards the artifacts
but towards the work of the group. The subtlety with which the
transition is managed reflects this consideration.

5.3 Public Work
The work of one developer becomes public when it is visible to
all other co-workers. This happens in two different circumstances:
when a developer changes the settings of his workspaces to grant
others access to his code and after a developer commits his
changes into the repository of the CM tool. These situations raise
the question of how the MVP developers handle the new public
work (changes)?

In the former case, the work is public but not shared, which
means that it is not going to affect other developers’ work.
Therefore, MVP developers do not need to take any step in order
to handle the public work, because it will not affect them.
However, in the second case, MVP developers might need to
adapt their work based on these changes. Indeed, MVP developers
might need to recompile their changes (work) in case they choose
to incorporate the new public work or they might need to change
the run-time parameters of a process that was altered by the
changes. Based on our data, we found out that the configuration
management tool provides some help to MVP developers handle
this situation. As mentioned before, these tools have building
mechanisms that help MVP developers, upon request, to
incorporate the new changes and identify syntactic conflicts
between the developer’s ‘work-in-progress’ and the new changes.
However, these tools are not able to detect semantic conflicts
since they are purposely created to be independent of
programming languages [11].

The bug tracking tool, on the other hand, provides support for
public work because all the operations performed in the problem
reports are automatically visible to all MVP developers. In
addition, this tool implements some accounting features that
record the history of a PR including all operations performed on
each one of them.

5.4 Moving from Public to Private Work, or
“Breaking the code”
According to Walrad and Strom [33], the branch-by-purpose
strategy adopted by the MVP team (see section 3.3) assures
continual integration of the code, therefore minimizing problems.
However, this strategy needs to be complemented by some form of
notification that informs all developers that a check-in happened
(and therefore that some integration took place). As mentioned
before, this is achieved in the MVP team through the e-mail
notification sent before the check-in’s. Therefore, whenever a new
change is introduced in the repository, all developers are notified
about it. This affords an easy detection of problems caused by the
introduced changes. In other words, if a change introduces a bug
in the software, other developers might be able to detect it
because: (i) they are aware that a change was introduced in the
code by another developer; and (ii) they usually integrate the new
introduced changes in their own work. If any abnormal behavior is
identified in the software after a check-in, whoever identified that
will contact the author of the check-in to verify if the problem is
happening because of the check-in. If that is the case, the software
is called “broken” and the code that was checked-in must be
removed from the repository, corrected, and checked-in again
later. In other words, the publicly available work needs to be
made private again. The CM tool supports this transition because

it provides rollback facilities that allow one to remove committed
changes from the repository.

6. DISCUSSION
The notions of private and public work and workspaces are well
known ones in the design of collaborative systems. However, our
empirical observations draw attention to the complex set of
practices that surround the transition between public and private.
Private information has public consequences, and vice versa.

The different formal and informal work practices arise in the
MVP team, especially, because of the interdependencies among
the different artifacts created during the software development
process. Indeed, these interdependencies make the process of
publicizing work so important. A developer can not simply
carelessly publicize his work, because this will cause a large
impact in other developers’ work: some of them will need to go
through their testing again, others will spend a lot of time
recompiling their changes, others can need to change their own
code in order to adapt the new checked-in code, and so on.

Since the MVP developers are aware of some of these
interdependencies, they explicitly work to minimize problems that
emerge in the relationship between their different working needs.
Artifacts such as problem reports facilitate the management of
interdependencies of developers from the different groups and
with different roles. Problem reports are “boundary objects” in the
sense of Star and Griesemer [29]; objects whose common identity
is robust enough to support coordination, but whose internal
structure, meaning, and consequences emerge from local
negotiations between groups. Viewing PR’s as boundary objects
draws attention to their role in managing loosely-coupled
coordination, and how each developer is able to interpret the
information in the PR’s that is useful to their current work.
Critically, this is achieved without changing the identity of each
PR along the whole software development process. Indeed, each
PR keeps the same unique identifier.

Interestingly, these formal and informal work practices require
that the author of the changes performs most of the additional
work. However, this author will not get any benefit from that.
Indeed, sending e-mail notifications, holding check-in’s, and
filling the appropriate PR’s fields during the implementation are
all operations performed by the author of the changes and none of
them facilitate or improve his work. There is one developer
performing the extra-work who does not gain any benefit of this
extra work, and fifteen other developers who benefit from his
work3. That is exactly one of the situations that lead groupware
applications to fail [15]. In this particular software development
team though, this does not happen. MVP developers are aware of
the extra-work that they need to perform, but they are also aware
that this same extra-work is going to be performed by the other
developers when necessary, and this is going to help each and
every one of them in performing their tasks.

On the other hand, MVP developers also adopt informal practices
during their private work. The first one, called “partial check-

3 The MVP group is composed of 16 developers. One of them is

performing the check-in; therefore 15 others are being helped by
the extra-work.

in’s”, is especially important because it is used to handle files
with a high degree of parallel development and changes in these
files positively correlate with the number of defects [23]. “Partial
check-in’s” are variations of the formal software development
process, which establishes that check-ins only will be performed
when the entire work is done. They are necessary because of the
software development tools adopted are unable to properly handle
merging in these files. This is the same reason, according to
Grinter [14], that led other team of software developers to either
avoid parallel development or rush to finish their work. On the
other hand, MVP developers rush because they do not want to
repeat their testing when another developer checks-in some code
into the repository. In both studies, developers describe their
dilemma: they want to produce high-quality code, but they also
want to finish fast their changes.

 Holding onto check-in’s is another informal approach adopted by
the MVP developers during their private work. It is adopted
because they are aware of some of the existing interdependencies
in the software and they want to minimize the impact that their
changes will cause on others’ work. To be more specific, they
understand that some changes cause a lot of recompilation, which
might lead other developers to spend time “watching” the
recompilation.

All this extra-work performed by the different members of the
MVP team is another form of articulation work [27] that occurs in
cooperative software development. It is different from the
recomposition work [13], which is the coordination required to
assemble software development artifacts from their parts.
Recomposition work focuses on choosing the right components to
create a software artifact due to source-code dependencies, while
this extra work that we report focuses on the management of all
interdependencies that exist in a software development effort.

After any code is checked-in into the CM repository, the other
MVP developers are able to detect problems, or, detect if the
MVP software is “broken”. As noted in other settings such as ship
bridges [19] or aircraft cockpits [20], this can be achieved because
work artifacts and activities are visible to all. By creating a public
space, the CM repository supports collective error detection and
correction.

7. IMPLICATIONS FOR TOOLS
Software engineers have been developing tools to help co-workers
in analyzing the impact of others’ work in their own work. In this
case, the support is provided to the developers after the transition
from private to public work has been made. This approach, called
change impact analysis [3], uses several techniques. One example
is dependency graph approaches, which focus on determining the
impact of the changed code (product) in other’s part of the source
code. These approaches are usually based on program
dependences, which are syntactic relationships between the
statements of a program representing aspects of the program’s
control flow and data flow [24]. In other words, they focus only in
determining the impact of the changes in the product in the rest of
the cooperative effort. Although powerful, these techniques are
also computationally expensive and very time-consuming to be
used by developers in their daily work. Consequently, they do not
completely support the transition from private to public work, and
as we’ve seen, this is a very subtle step in cooperative software

development. Although these techniques have their limitations,
they are evidence that the dependencies between developers'
working activities are a cause for concern and attention. We argue
that other cooperative efforts, especially those with several
interdependencies, could greatly benefit from such approaches, if
they were arranged to support the emergence of public
information.

Recent approaches in software engineering attempt to provide
useful information to developers so that they can better
coordinate. In other words, these approaches try to increase the
awareness [7] of software engineers about the work of their
colleagues. They differ, however, on the type of information that
is provided. A first approach is based on the idea of facilitating
the dissemination of public information by collocating software
developers in warrooms [32]. In this case, companies expect to
achieve the same advantages that the public availability of others’
actions has brought to other settings such as ship bridges [19],
aircraft cockpits [20], transportation control rooms [17] and city
dealing rooms [16]. Indeed, early results of this approach have
been encouraging [32]. However, there are practical limitations in
the size of the teams that can be collocated, which suggests that
tool support is still necessary. Indeed, new tools like Palantir [25]
and Night Watch [22] adopt a different approach that focuses on
constantly publicizing information(like CM commands) collected
from a CM workspace to other workspaces that are accessing the
same files. In this case, instead of focusing in the transition
between private and public aspects of work, these tools basically
eliminate the private work by making all aspects of the work
publicly available to others. However, as discussed in section 2,
the need for privacy and for controlling the release of private
information is an important aspect in any social setting; which
therefore needs to be addressed in the design of cooperative tools.

Finally, our data suggests that a software developer might use
different sources of information at different times in order to
assess the current status of the work. As mentioned before, the
MVP team uses information from e-mail messages, the
configuration management tool and the bug tracking system. By
reading e-mail, MVP developers are aware of future changes in
the CM tool because somebody else is going to check-in
something. By inspecting only the CM tool, a developer can be
aware of partial check-ins in the repository that are not reported
by e-mail. And finally, the bug-tracking tool, through its PR’s,
provides information about how a developer’s work is going to be
impacted by the problem report associated with the check-in.
These are three different tools that a MVP developer has to use.
We believe that a possible improvement is to use event
mechanisms (such as event-notification servers) to integrate these
different sources of information, and then provide a unique
interface and tool to assess the relevant information. Furthermore,
abstraction techniques [18] could be employed to generate high-
level information (e.g., status of the work) from low-level
information like recent check-ins and check-outs, e-mails
exchanged among software developers, information added to the
bug-tracking tool, etc. This is an interesting research area that we
plan to explore.

8. CONCLUSIONS AND FUTURE WORK
This paper examined the transitions between private and public
work based on empirical material collected from a large-scale
software development effort. The team studied, called MVP, uses
mostly three tools to coordinate their work: a configuration
management (CM) tool, a bug-tracking system, and e-mail. These
tools provide support for private and public work, as well as some
technical support that facilitates the transition from the former
aspect to the latter. However, MVP developers also adopted a set
of formal and informal work practices to manage this transition.
These transitions are necessary to facilitate the management of the
interdependencies among the different software artifacts. The
following practices were identified and described in the paper:
partial check-in’s, holding onto check-in’s, problems reports
crossing team boundaries, code and design reviews, “speeding-
up” the process, and finally, the convention of adding the
description of the impact of the changes in the e-mail sent to the
group. These practices suggest that analytical attention needs to
be given to these transitions in order to enhance our
understanding of cooperative work. Furthermore, computational
support also needs to be provided so that this task can occur
properly.

We plan to study other software development teams in order to
understand how they deal with the aforementioned transition and
their work practices to perform that. By doing that, we expect to
learn important characteristics that can help us in understand
other cooperative efforts.

9. ACKNOWLEDGMENTS
The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for the financial support. Effort sponsored by the
Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-00-2-0599. Funding also
provided by the National Science Foundation under grant numbers
CCR-0205724, 9624846, IIS-0133749 and IIS-0205724. The U.S.
Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), the Air Force Laboratory, or the U.S.
Government.

10. REFERENCES
[1] Ackerman, M. S., "The Intellectual Challenge of CSCW:

The Gap Between Social Requirements and Technical
Feasibility," Human-Computer Interaction, vol. 15, pp.
179-204, 2000.

[2] Appleton, B., Berczuk, S., et al., "Streamed Lines:
Branching Patterns for Parallel Software Development,"
vol. 2002, 1998.

[3] Arnold, R. S. and Bohner, S. A., "Impact Analysis -
Towards a Framework for Comparison," International
Conference on Software Maintenance, pp. 292-301,
Montréal, Quebec, CA, 1993.

[4] Bowers, J., "The Work to Make the Network Work:
Studying CSCW in Action," Conference on Computer-
Supported Cooperative Work, pp. 287-298, Chapel Hill,
NC, USA, 1994.

[5] Conradi, R. and Westfechtel, B., "Version Models for
Software Configuration Management," ACM Computing
Surveys, vol. 30, pp. 232-282, 1998.

[6] Curtis, B., Krasner, H., et al., "A field study of the
software design process for large systems,"
Communications of the ACM, vol. 31, pp. 1268-1287,
1988.

[7] Dourish, P. and Bellotti, V., "Awareness and Coordination
in Shared Workspaces," Conference on Computer-
Supported Cooperative Work (CSCW '92), pp. 107-14,
Toronto, Ontario, Canada, 1992.

[8] Dourish, P. and Bly, S., "Portholes: Supporting Distributed
Awareness in a Collaborative Work Group," ACM
Conference on Human Factors in Computing Systems (CHI
'92), Monterey, CA, 1992.

[9] Ellis, C. A., Gibbs, S. J., et al., "Groupware: Some issues
and experiences," Communications of the ACM, vol. 34,
pp. 38-58, 1991.

[10] Erickson, T. and Kellogg, W. A., "Social Translucence: An
Approach to Designing Systems that Support Social
Processes," Transactions on HCI, vol. 7, pp. 59-83, 2000.

[11] Estublier, J., "Software Configuration Management: A
Roadmap," Future of Software Engineering, pp. 279-289,
Limerick, Ireland, 2001.

[12] Grinter, R., "Supporting Articulation Work Using
Configuration Management Systems," Computer Supported
Cooperative Work, vol. 5, pp. 447-465, 1996.

[13] Grinter, R. E., "Recomposition: Putting It All Back
Together Again," Conference on Computer Supported
Cooperative Work (CSCW'98), pp. 393-402, Seattle, WA,
USA, 1998.

[14] Grinter, R. E., "Using a Configuration Management Tool to
Coordinate Software Development," Conference on
Organizational Computing Systems, pp. 168-177, Milpitas,
CA, 1995.

[15] Grudin, J., "Why CSCW applications fail: Problems in the
design and evaluation of organizational interfaces," ACM
Conference on Computer-Supported Cooperative Work, pp.
85-93, Portland, Oregon, United States, 1988.

[16] Heath, C., Jirotka, M., et al., "Unpacking Collaboration:
the Interactional Organisation of Trading in a City Dealing
Room," Third European Conference on Computer-
Supported Cooperative Work, pp. 155-170, Milan, Italy,
1993.

[17] Heath, C. and Luff, P., "Collaboration and Control: Crisis
Management and Multimedia Technology in London
Underground Control Rooms," Computer Supported
Cooperative Work, vol. 1, pp. 69-94, 1992.

[18] Hilbert, D. and Redmiles, D., "An Approach to Large-scale
Collection of Application Usage Data over the Internet,"
20th International Conference on Software Engineering
(ICSE '98), pp. 136-45, Kyoto, Japan, 1998.

[19] Hutchins, E., Cognition in the Wild. Cambridge, MA: The
MIT Press, 1995.

[20] Hutchins, E., "How a Cockpit Remembers its Speeds,"
Cognitive Science, vol. 19, pp. 265-288, 1995.

[21] Mark, G., Fuchs, L., et al., "Supporting Groupware
Conventions through Contextual Awareness," European
Conference on Computer-Supported Cooperative Work
(ECSCW '97), pp. 253-268, Lancaster, England, 1997.

[22] O'Reilly, C., Morrow, P., et al., "Improving Conflict
Detection in Optimistic Concurrency Control Models,"
11th International Workshop on Software Configuration
Management (SCM-11), Portland, Oregon, 2003 (to
appear).

[23] Perry, D. E., and, H. P. S., et al., "Parallel Changes in
Large-Scale Software Development: An Observational
Case Study," ACM Transactions on Software Engineering
and Methodology, vol. 10, pp. 308-337, 2001.

[24] Podgurski, A. and Clarke, L. A., "The Implications of
Program Dependencies for Software Testing, Debugging,
and Maintenance," Symposium on Software Testing,
Analysis, and Verification, pp. 168-178, 1989.

[25] Sarma, A., Noroozi, Z., et al., "Palantír: Raising Awareness
among Configuration Management Workspaces," Twenty-
fifth International Conference on Software Engineering, pp.
444-453, Portland, Oregon, 2003.

[26] Schmidt, K., "The critical role of workplace studies in
CSCW," in Workplace Studies : Recovering Work Practice
and Informing System Design, P. Luff, J. Hindmarsh, and
C. Heath, Eds.: Cambridge University Press, 2000, pp.
141-149.

[27] Schmidt, K. and Bannon, L., "Taking CSCW Seriously:
Supporting Articulation Work," Journal of Computer
Supported Cooperative Work, vol. 1, pp. 7-40, 1992.

[28] Sellen, A. J. and Harper, R. H. R., The Myth of the
Paperless Office. Cambridge, Massachusetts: The Mit
Press, 2002.

[29] Star, S. L. and Griesemer, J. R., "Institutional Ecology,
Translations and Boundary Objects: Amateurs and
Professionals in Berkeley's Museum of Vertebrate
Zoology.," Social Studies of Science, vol. 19, pp. 387-420,
1989.

[30] Stefik, M., Foster, G., et al., "Beyond the Chalkboard:
Computer Support for Collaboration and Problem Solving
in Meetings," Communications of the ACM, vol. 30, pp.
32-47, 1987.

[31] Strauss, A. and Corbin, J., Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded
Theory, Second. ed. Thousand Oaks: SAGE publications,
1998.

[32] Teasley, S., Covi, L., et al., "How Does Radical
Collocation Help a Team Succeed?," Conference on
Computer Supported Cooperative Work, pp. 339-346,
Philadelphia, PA, USA, 2000.

[33] Walrad, C. and Strom, D., "The Importance of Branching
Models in SCM," IEEE Computer, vol. 35, pp. 31-38,
2002.

[34] Whittaker, S. and Schwarz, H., "Meetings of the Board:
The Impact of Scheduling Medium on Long Term Group
Coordination in Software Development," Computer
Supported Cooperative Work, vol. 8, pp. 175-205, 1999.

