Final Report on
Collaborative Software Engineering Tools Workshop and Follow-Up

Project NAG2-1555

Edited by
David F. Redmiles, PhD

Institute for Software Research and
Department of Informatics
University of California, Irvine
Irvine, CA 92697-3425 USA
redmiles@ics.uci.edu

ISR Technical Report # UCI-ISR-03-14

December 2003

Abstract: This report documents the project “Collaborative Software Engineering Tools
Workshop and Follow-Up.” Under this project, a workshop was held at NASA/Ames on
August 5 and 6, 2002. Additional research followed up on the workshop. Hence, the
report contains these two components: materials from the workshop and a series of
research papers that document our follow-up activities.

The workshop brought together technical staff of NASA/Ames and faculty and
staff researchers from University of California's Institute for Software Research (ISR).
The goal of the workshop was to generate a joint understanding of collaborative software
engineering tools informed from four perspectives: 1) technology, 2) theory, 3) field
studies, and 4) specific NASA problems.

The follow-up work included an intern working at NASA and providing some
analysis of observations during the course of that work. The analysis was carried out
collaboratively between personnel at NASA/Ames and UCI/ISR. Additional
experimental software development was performed at UCI examining the role and
architecture of event notification servers and awareness. Also, some initial explorations
about extending field study methods were done.

Since the workshop, a web site has been maintained at
http://wwwe.isr.uci.edu/events/NASA-Workshop/

Table of Contents

Part 1: Workshop Materials

Part 2: Follow-up Materials

Part 1. Workshop Materials

Agenda
Monday, August 5
10:30 - 12:00 Scope of Collaborative Software Engineering
Introductions all around (15 mins)
Introductory Remarks
David Redmiles, UCI/ISR Faculty and
John Penix, Computer Scientist, NASA Ames

Challenges in Distributed Collaborative Space Mission Design
Gloria Mark, ISR Faculty

ScienceOrganizer: A Collaborative Information Management Tool for Scientific
Teams
Richard M. Keller, Senior Computer Scientist, NASA Ames
Discussion (15 mins)
12:00 - 1:00 Lunch

1:00 - 2:15 Quantification and Visualization

Palantir: Increasing Awareness among Distributed Workspaces
Andreé van der Hoek, ISR Faculty

Visualizing Software Instability
Jennifer Bevan, UC Santa Cruz Graduate Student

Source Code Instrumentation and Quantification of Events
Robert Filman, Computer Scientist, NASA Ames

Visualization of Software and Development
Paul Dourish, ISR Faculty

Discussion (15 mins)
2:15 - 2:30 Break
2:30 - 3:45 Collaboration Studies and Tools

Exploring the Relationship between Project Selection and Requirements Analysis
Mark Bergman, ISR Graduate Student

Past and Future of Postdoc
Chris Knight, NASA Ames

A Field Study of Collaborative Software Development Teams
Cleidson de Souza, ISR Graduate Student, NASA Ames Summer Intern

How do we go where no one has gone before?
Issues in the development of Autonomous Operations for Space
Kanna Rajan, NASA Ames
Discussion (15 mins)
3:45 - 4:00 Break
4:00 - 5:00 Architecture and Synthesis
US/France Coalition Warfare as a Model of Dynamic Architectures for Cross-
Organizational Software Engineering
Richard N. Taylor, ISR Director and Faculty

(no slides available)

Formal Peer Inspection Information Architecture
Gilda Pour, Faculty, San Jose State University

Software Design Modelling and Code Generation Tools
Jon Whittle, Computer Scientist, NASA Ames
(no slides available)
Discussion (15 mins)
Tuesday, August 6
9:30 - 11:30 Event Infrastructure and Wrap up
From Simulation to Implementation - An overview of the Brahms Research and
its application to Work Practice Analysis and Software Agents
Maarten Sierhuis, Senior Scientist, NASA Ames
Event-notification and Messaging Architectures for Real-time Science
Coordination
Elias Sinderson, UC Santa Cruz Graduate Student, NASA Ames Summer Intern

Using Event Notification Servers to Support Awareness
David Redmiles, ISR Faculty

Discussion on Common Themes (1 hr 15 mins)
Moderated by David Redmiles and John Penix

11:30 - 12:30 Lunch
After lunch, a subset of people will meet to make future plans. Subset includes

David Redmiles, John Penix, Michael Kantor, Susan Knight, Debra Brodbeck, at
least 1 more UCI faculty, and 1 or more NASA or JPL people.

Participants

NASA Ames

e Martha DelAlto, md@ptolemy.arc.nasa.gov

e David Bell, dbell@arc.nasa.gov

e Robert Filman, Computer Scientist, rfilman@arc.nasa.gov

e Rich Keller, Senior Computer Scientist, rkeller@arc.nasa.gov

e Chris Knight, Computer Scientist, cknight@mail.arc.nasa.gov

o Jeff Lee, jmlee@arc.nasa.gov

e Kenneth I. Laws, klaws@email.arc.nasa.gov

e Masoud Mansouri-Samani, masoud@email.arc.nasa.gov

e Larry Markosian, zaven@email.arc.nasa.gov

e Peter Mehlitz, pcmehlitz@email.arc.nasa.gov

e Owen O'Malley, Computer Scientist, owen@email.arc.nasa.gov

e Joan Pallix, jpallix@mail.arc.nasa.gov

e John Penix, Computer Scientist and Workshop Organizer,

jpenix@ptolemy.arc.nasa.gov

e Tom Pressburger, ttp@email.arc.nasa.gov

¢ Kanna Rajan, Senior Researcher, kanna@ptolemy.arc.nasa.gov

¢ David Roland, droland@mail.arc.nasa.gov

e John Shupe, jshupe@mail.arc.nasa.gov

e Maarten Sierhuis, Senior Scientist, msierhuis@mail.arc.nasa.gov

e Jon Whittle, Computer Scientist, jonathw@ptolemy.arc.nasa.gov
ISR/UCI

e Mark Bergman, Graduate Student, mbergman@ics.uci.edu

e Debra Brodbeck, ISR Technical Relations Director, brodbeck@uci.edu

e Eric Dashofy, Graduate Student, edashofy@ics.uci.edu

e Cleidson R. B. de Souza, Graduate Student, cdesouza@ics.uci.edu (currently on

summer Internship at NASA Ames)

e Paul Dourish, Faculty, jpd@ics.uci.edu

e Roberto S.S. Filho, Graduate Student, rsilvafi@ics.uci.edu

e Michael Kantor, Post-Doctoral Researcher, mkantor@ics.uci.edu

e Susan Knight, ISR Corporate Relations Officer, sknight@uci.edu

e Gloria Mark, Faculty, gmark@ics.uci.edu

David Redmiles, Faculty and Workshop Organizer, redmiles@ics.uci.edu

Richard Taylor, ISR Director and Faculty, taylor@uci.edu
André van der Hoek, Faculty, andre@ics.uci.edu

ISR/UC Santa Cruz

e Jennifer Bevan, Graduate Student, jbevan@cse.ucsc.edu
e Elias Sinderson, Graduate Student and NASA Ames Summer Intern (2002),
elias@cse.ucsc.edu

Other

e Dale Martin, Clifton Labs, Inc., dmartin@cliftonlabs.com

e Lantz Moore, Senior Software Engineer, Clifton Labs, Inc.,
Imoore@cliftonlabs.com

e Gilda Pour, Faculty, San Jose State University and NRC Research Associate,
NASA Ames, gpour@email.sjsu.edu

e Jason Robbins, Collab.Net, Inc., jrobbins@collab.net

sa14iuntuoddp pup ‘sa1pn4s ‘Abojouyda] Youpasay 17N

sa14lunjdoddp pup swa|gqoud YSVN
uo14pJoqo||0o buitdoddns pup buiApnis ul sa14N21441Q

2d02G 2y} Jo spoadsy

uoI4DINP3 [PNLNW
Youpasad Aq pawJojul buijias pjJom [pay

S|00| 2JDM}}JOS PUD UOILDJIOGD||0D buipubisuapun

doysyaom
2y4 Jo 2doog pup s|pog

/NP2°19n°us" mmm//:dity

‘W24SAS DIUJ0JIDD JO ALISUBAIUN Y4 UIY4IM
YoJUD252Yy 2J4DMLJOG UO PasN20J UOI4DZIUDbJO Ao 2yt S JST

‘sdiysaaujaod Youpasad
ybnouyy Abojouysa4 uor{pw.iofur
pUD 2.DM{J0S 20UDAPD 0|

_‘_U._mwmwm w._m.eau..—om 10} w_uq_u_umc_ ”MM—

BIUIOJI[ED) JO AJISIdAIUN

JSTI / 2UIAIT DN
J0422J1Q SUOILD|2Y [DIIUYI2 |

¥22gpouJg pJgaq

JSI / 2UIAT DN Sewy YSVYN
J0SS2J04d 24D120SSY 4S14U219G Ja4ndwo)
$9|lwpay p!Apq Xluad uyor

sjoo] Buudauibug aiemljos
aAn3eIOqe]|09) Uo doysyiopm

aUj BUIOE 0 Ajsian|

UOISSNISIP 2J40W J0J %D2Jg
UOISSNISIP O S24nUIW G
suolysanb
buiAJ1up|2 bulpn|oul S24NUIW GT 2JD SY|DL
salhuiw g1 Jnoy T Ajjonsn
SUoISS2g

S$2145160

ZNJ) DIUDS ON
PoayaLiym sawof '3
S21/1IoN
320 J2p UDA 2upuy
S21/1IoN
1429035 4oM
(d3dv) woubouq
ABJ2U3 pUD U2MOJ P2IUDAPY 'U042241Q
pup buluaaulbu3 4o |00Y2S /1N
U2s|2NWDS 4402G
S21/1IoN
wn|quasoy ‘S plADQ
oy “4daQ SO pup $71/19N
uospubya1y " vugqaq
S2I/1IoN
S?|lWpay "4 plADQ

“buidaauibuy

40 |00YIG Y4 pUD SLJY Y4 JO [00Y2S/IIN
Auuag uowig

$21/1oN

%JOW DIIO|9

S$21/10N

Dsqo)} paJjly

ubipdwoy)-buUDgUN 4D SIoUl||T 40 ALISUaAIUN
Jassbg s27

OUD|IW Ip 031Ud24!|0d

p}4266n4 osuoy|y

$21/1oN

ysiunoq |nog

uobiyoiw Jo AisuaAun

UDWJ2YDY HJDW

JST 40 J042241Q pUd SOI/IDN

JojAp "N p4oYydIY

A4|noo4

SJU2A] PUD 241G g2\ JST UO UO14DI[14}D 24040du0)

sJosuodg youpasay

241S-U0 SUO14DLUS24d YouD252J YST
diysmo||24 youoasad Luapn4s 240NpoUg
102foud youoasau paJosuods 24p40duo)

S24D1|144V YduD25Y

J2U4JDg 24040du0) Wod4 buipuny [ouda4ur

(942 '¥SVYN 'vddvQ/qoq ‘4SN)

$224n0S AULSNPUT JO {UWUJDA0S WOJS buipuny [puJ24X]

SWD2| YoJD2S2y

2A11DJ0gD|[0) buljgpu2 sdiysuauidpd Youpasay

¢P2A|0AU] 42D sajupdwod ubd moH

(2A140USIUIWPD

pup |D2IUYI24) SU2qWaW }JDIS G~

SJD|OYIS buILISIA 2
S4{uapnis ‘qQ'yd of

S24D120SSy A4|nop4 G

4X24U0D ALISJaAIUN Y4 UIYHIM

S2|1Wpay *4 pIADQ ystnogq [nog
buipuvysaapun 2.pM}}0S

V_UOI J2p UoA WLU—:\

uoipoNp3] buruazuibuy auomijog
%201 J2P UDA 2Jpuy

:ow_w:—:um 4400G8 Lo_\,U._. ‘N ULUJu_d
winjquasoy 'S pioq s2|1wpay ‘4 PIADQ
2uN§2241Yddy 2UDM}JOS

1429095 4{DM

2042WWo0H

31U0J4423|3 pup uoiisinboy auomijog

Po2Y2LYM wiL
142902G Lo J2s509 527
04426604 osuo4|y UDWUXDY HJDW

204nog uadp

wn|quasoy ‘S pIADqQ 04426604 osuoy|y
UOIDIILILON JU2A] 2|DIS-4aUda4uT

PORYRHYM WL JoADL "N PDYIRY
s2|1Wpay "4 PIADQ 05q0) P2y
pipawJadAH

S2|1Wp2y "4 pIADQ Auuag uowis
D50) a4y ystnogq nog

UoI19DU24uT Ja4ndwo)-uownyH
%20H J2P UDA 2Jpuy

JojAp] N pJDYIIY UOSpJDYDIY ‘[Dug2q
wn|quasoy °s pIDQq s3|1wpay "4 pIADQ
siuawuodiAug juawdojaaaq
PD2Y2HYM WIL 20H 2P UDA 24pUY
4uawaboubyy uol4ounbIju0)
S2|1Wp3Y PIAOQ

HJOW D1I0[9 SqO) padyly
Ys1unoq [nog UDWI32Y HJOW

3}JOM 2A140u2d00) pajuoddng uaindwon
wn|quasoy ‘S pIADQ UOSpJDYDIY ‘[DUg2q
buiysa| pup sisAjpuy

|W4Y YouD2S24/NP2° 19N usl MMM/ /:diiy

sasoydw3 youoasay

/NP2°19N° s mMmm/ /:d 44y

126G-¥28 (6¥6) 0922-v28 (6¥6)
np2°'1on&)4Ybiuss Np2'19N@¥22qpoJdq
4221140 J0}2241Q
SUO14D[23 24DJ0du0) Suo11D|2y |D21IUY22 |

4ybiuy * [uosng "uq ¥929poJg "y bJgaq

UOIOWJOJUT 240w JO

22130 SJosuIbuT JaIYD VSN 824n0s — ApNis 66T & Wolj parejodenxa sarewnss uo paseq

1502 aJeMmyos si 326pnq uol|jiq

G 1$ lenuue s,yYSYN JO sJejjop uoljjiq |$ 970

9P02 92.4N0S JO Saul| uoljjiw 0Oz Isea| je
(sulejuiew pue) 3snh uoijeaado ul sey YSYN

9JeM)YO0s

puluiejuiew Jo/pue ‘BUIAJLIDA ‘Bulansse

‘buido|aAap ‘bBuibeuew awi) J1dY3 Jo

Ajlaofew ay) puads 32J4010M 10JILJIJUO0D
pue JURAJDS |IADD S,YVSYN JO %0 | J9AQ

xUOIICAIIOW

O

" $9ss920.d pue spoyjaw ajeridoaddeu; 40 ayenbapeu
Hu1)Sa) pue ubiIsap Juaidiynsuj
Swied)} U33M}a(uoljedIuNnwwo)d J00d
9JeLId]ul 34eMY0S
aJempuJey pue sjudwadainbad Huipuejsaapunsiy
DISII 9JBMYOS |BIIIID JO S92.4N0S

Japue Jejod sIep

_ 13)1q40 djew]) SIenw
paje|aJd a.4eMYos aJe sdeysiw dedso.ae g/ | :uonedisse) asne) deysiyy
SJ0.JJ9 9.JeM)Jos ajeuiwlo pue a_u:w_u_ 0] spoyjisu
pue sjoo)} mc_no_w>w_u >n SYSLI |eI1}LID uUoisSiu 9Inpoy h

. S]00] BuliaauIbugy a.1emyos Juabijjayuj

X1udd uyor "aa
doysy.10M sjooJ Bulia2uibul 2.1emos aA1pe.10qejjo)

swa)sAg xojdwao) 103 Bupsauibug

SJ3

HulIa9auIbulz dueMYPOS JUdIISaY ST

Ansnpuj s|00] Huladauibul
9sedsousy aJemyos 6unndwo) 4SN
pue SUOISSIN VSYN JuabI|Id3u] Aungepuadaqg ybiH 1D12/VSYN
uonasuj pue uonepijep Abojouysay salbojouyda] MaN

juswdojanag [00] pue OB ANjigepuadag [ejuswepuny

S100

g

A!A\—._F e Peg 1581 I
Uy)2
e i }
T e WA
i A/
Sjoo) 3S yoieasay
pa3RIa-ySiy Anpqepuadag
D
MBIIAIDIAQ 1I9/0.1d

bulrisauibuy 9.1emipyos ualIsay

(OHY) SMIIAD. 3P0 pue ubisap aaemyos
9Al1leJa0(qe[]0d }J0ddns 0} JUSWUOJIAUD dAlIjRIO0(R]|0D
e 0jul S|00] HulIsa] pue uonedyLIdA 9y} Jo uolyedbajul
SlJomauwie.d)
9Aljea0qe]]1 02 UM Burjeabajul Aq sassadoad
uoIsSIW YSYN Ojul S|00)} padueApe JJI3su] :uoljnjos
uoljeaoqe|jod Joj y1oddns buo.ays
9pIA0Id JOoU Op S|00) BulIRaUIBud d.Jemyos Buiysixy
wia|qo.ad siy) buipunodwod ‘swed) Adeuljdidsipiinw
painqlaisip Aq pado|9A3IP USYO SI DIeMYO0S YSYN
SJOJJ9 |eI1}1JI JO 92JNn0S uowuwod

e S| SWPea) UaM]a([UOoIILIIUNWWOISIA :Wajqo.dd

<

RE]

S]00] bulidauibuy a.1emyos aA1pe.10qe[|o)

i

ZYd2.e3sad Jey) op oM Op MOH
Z9UOP 3 03 SPIdU YdJaedsad Jeym
¢9]0J
e Aejd ued jey) aAey am op Abojouydal jeym
Zsuolnjos jerpuajod awos aJde Jeym
iswd|qoud S, YSYN 2Je Jeym
juoljejuasa.ad siyjy snoadw]

U

jeo9 doys).1om @

SMIIADJ IP0I pajnqlaisip ‘pajioddns-j00) ajqeu’
SSOUIAIIIYD BuIsa) aAoaduw|

saniqeded sisAjeue syusawdJinbad 312A2341] AlJea ppy
:s9ss9%0.d

214129ds 0)jul S|00) dSnyuUl 0} SUOISSIW YHM HJIOM
SyJomauwiedy uonedogqe|jod pajngiasia -
$|00) 92.n0S uddo pue [elRJaWWO) ~

ABOJOUYDI) |00) JJe JO D)r)S 9DrUDAD] pue d)edbaju]

Hulaa3uIbul

sjuswdJdinbay jew.ojul/[ew.ao4 pajedbaju|

BuI)S9] pue UoIILIYIIDA DJEMYOS PIADURAPY

S|00} SIsAjeue pue Hujjapow pajsueApe aJanjey

yoeo.uddy
sj00] bulidauibuy a.aempyos Juabijjoyuj

i B

s13

S)9dx3y ajowady

(MELIEYE](]
1201

sjoo}
pajewolny

§S920.4d MIIADI

ss920.d ojul paJajuad
5100} sisAjeue . —-uewny
unnqasia

BHunyeabalu|
9NSS| Y2Jaeasay

@

aNss| yoJaeasay

@@

$5920.4d M3IAaU
USALIP-MOIDIOM

<.

&& SMIINDY IJeMYOS IAI1L.10qe[[0) PIINGLIIsId @

]

aJnjonJajs

[
;9ARY UONEIOGR|[0) PAINGLISIP Wea) e 3UlaP J0UULRD 3[LI0] UIAD °,,SWOOLIEM,, U]

dno.a6-031-dnouab SSOp ubISIP UO S}IBYD JeYM IWRUAD 3Je sdIySUoIe|a. [eI20S

ALQH 9ZIS—-||eM ‘9zIS-3Ji] s9joJ ajdipInw

"6°9 HIJOM paINqLIISIP pue pajed0j|0d 10} ubisap saJayds Hupjaom ‘swea) ajdipinw o) buojaq ajdoad

aA1e_JIOqR||0D JYBUd(ULI S3IBOJOUYII) JeYM AZZny a4 S3IEpUNOY Wea)
:x3|dwod

iUBISap aAIjRIO0qR||0d 3dUdN|UI
aJouwl Jej sl jJom dnoab pajedrojjod pue pangliisig

LooJdJem, e Jo sasuepJoye ay) ued MoH

MJ0M ubisap dnoub pajedojjod pue pajynqglaisia sa.JnjonJjs/diysaaquisw wea) d|gels,, sswnsse
U310 YJoM dnoub HuladPISUOI J0J YJoMdwWe.l 4

S)S9.9)U| Yyd.Jdeasay AN

$9.Nn32N43)S JJ0M dno.9g diweuAq

‘ (200C “1Me :200C
SUIAJ| ‘eruJoyi|e) Jo AysIaAlun {0002 “"Ie 19 A3|sed]) uoneIOo||0I |edipe. :saIpnis [earidwy -

I elIo|9 (Cle 19 seldy :Adojedoqe]|0) AIdA0ISIQ (pJojuels
:S92edS)I0M DAINIRIDIUI (666 | ‘ZHD4]S :puel-] “H9)
SWO0O0.J BUIIB3W IIU0J)DI|D JO UoILIdU3Db Mau :[sajdwexy -

JUSWUOJIAUD
[edisAyd swes uj buiubisap aAlyedoqe]|o) e

(866 |
‘193Ul {666 | “I€ 39 3]Sq.I9H) uonelIuNWWOod ‘uolyeahajul
‘Buiuonisued) :swajqo.dd uoneuip.aood :saipnjs jeariduwy -
JUD WAOIDAIP BIEMYOS I0]D
-3Y)-punoud,, ‘walsAs A|yojal :dde padeys qv) :sojdwiexy -

:m_mwn_ UOISSIN wumn_m 925ue)sIp sso.Joe ubisap aAlje.oqe||o) e
9AljeJdoqge]jod ul mwm_._w__mr_u :m_mw_u p33)e20[|0d
pue paiynqgiJjsip -spua.Jd) omj

SUOIJESJIALOD 3JOWD.I
JO S3[1} DALM “3)IS 3J0WA. YIeD Jo sade) olpne %@ 03PIA -

S9}IS 9)0WAJ BUIAIDISUO HJOMPIDI] o
pajnquisip osje ‘pajedro]|od aJde 3jdoad uaym :Apnjs jJuaJdan)
UDAD uonew.ojul ssadxo.d pue apueyirxa 03] SYJom)du -
0S|y e MBIIAIRUI
dno.b ‘saJajeuuorisanb ‘GuideljoapiA :jusawiiadxa ALAH
(866 | ‘Uew || M) SHI0MIDU AJUNWIWOD [eN)IIA P93)29]]03 sjoejiy
(0002 ‘19be7) suol}jeod SMIIAIIIUI P.NIINJIIS-IWDS Y)dap-Ul UDDIUDAIS
(966 | .In0je1) AJ03Y]).I0M)3U-10)0L Papod suoljes.taAuod Jeqapis
(666 | ‘1@ 39 wo.ajsabul) ,syou), syjuouw
(ssaJd uj “|e 13 IpJeN) SHJ0M]aU |euoisualul 994Y3} .10} WOoO0o.dJeM BUIAIDSAO NJOMPIDI] e
$).I0M}3U |eID0S JO S9dA) SWOS o :Apnjs 1sJ14

dnouab
e UIYJM SHJOMIDU dlweUuAqg

uonelIUNWWOoI Jo sjauueyd
Jeqapis pue ujew uj ‘oym Yim s)oeaajul oym sisAjeuy e

ABbojOpOYyiaNN

S)JOM)DU |eID0S e
Joun yoys Ajgexaewadd e yans uj jesodoud
(1aubem uolssiw 3deds e 3xnpo.ad 0) wed) e 3|qeus J3Yy)a60)
pue 1piuyds “je 39 p|ayadunoy ‘uosyiaqoy ABojouyda) pue uonel’o]|od jeaisAyd ued MOH e
““1e 39 JadJeH ‘uewydns ‘yny pue YyjeaH ‘6'9) -
*2)9
‘s)oeJINdEe JO 9Sh UoWIWO0I ‘suolAeyaq buisnfpe
‘6ula0}iUOW :p3}LI0||0I UDBYM UOIILIDU| e

sanoy
Quiu Jnoqge ul uoissiw ddeds xajdwod e subisop X wead] e

(SULappiI9) 90u3SaAId-0) 9qo.d sJep ‘69 ‘sjesodouad
uoissiw aseds mau Bulubisap ul YSYN 0} sjueynsuod
(suappi9 ‘uenqiys ‘ssne.js) SplIom [e1d0S e |eudaljul se dAUIS 0) 1df 9U) Je pawIo) X wead] ‘G661 U] e

AJ03Y] punoJbdeg sawos S)IOMIDU JIWRUAP YHM
NJOM ubISap pa3ed0j||0d Jo djdwex3

(olpne papeabap) IBuUJIdY)3
yqebI9 ybnoayj Juas 0IPIA pue olpne Yjoq :z Aeq
*239 ‘suolydo J9ayjlo puly
‘9jennobHau ‘suondwnsse uolysanb :}Payspeauds (be| puodas g°) }Puddy)3
wo.y uoljew.aojul ssa20.d 0} pasn sJeqapis HgebiI9 ybno.ayj Juas 03IPIA ‘Ul JUIS A|3d3dIp olpne: | Aeq

*UOISS3S JNOY-33.Y) € Ul S3)nuIwW (| |-2 Si abue. sJeqapis 31oddns 03 ‘suaquinu suoyd ypum ‘sauoydslal

‘1eqapis ul saynuiw gz s)eads JaauIbud "HA
L BB ’ o jesod o.ad uoissiw 3133nys adeds |edy

S9)NUIW £G 0] SPU0IIS M3J WO.1} PA)Se| dARH SW00J OM) 03] 1ds X Weay

(AM1qerieA abJej) 86 olpne + SWo0. Ud3dM}a(A})IAI}Ie MOYS 0)
:UOISSOS JnoYy-o9a.y} @—.__.:.__U papod Joquinu "BAY «MODPUIM,, B Se ALAH @F__\SOF_m Uud3uds .2/ X 8¢ | abJeq

. X Weal yNm ALQH 321
sJeqapis :bupl.iomiau [e1dos _ay17 BuIsn ApnIS AJojesoldx3 uy

uonew.ojul
Buizijens;y odwLw west Spaeoqapym taded

MBIA paJeys ~EplsE e Ae|dsip 211qnd

weJabouad

uonew.ojul
Japes| weaj uonezijensiaA J1q.40

bHuizijensin

juabe FuisnIo LSRR 193yspea.ds 139430 Yde3 0} W00 SS04Ie
Hupjeads aJe sjudwinalsuj ‘aaped] wea] ‘ubisaq uUoIssIN

Moy o wea) aJanuj aquuasgns-ysijqnd

‘s91.9)3eq Jajsuow Hiqg pasu

11:9M 3SIM.IBYI0 U3 II'M &ubi auy
Burinp uamod Aue 396 am ue) :saiydeds “6Ju0) 03 J9MOd

suoneIs}yiom
}JOM SJ3Y10 JOJUOWN Jaquiaw weaj |enpiAIpu|

uondung:y J9ALIQ/J0}edN) uonejudsaJaday
WOoO.lIeM 9Y] Ul pas() Jeqgoapis snoauejuods J10j
suoljejuasaLday jeuaayxd bunjaomiaN buneniuj :ajdwex3

3JOM)}3U |RID0S pUE JIU0J}IDD “Bupliom IS
U99M13(q Y3.I0j pue ydeq dA0w 0} :Ad) sI Aiqixal4
}nsaJd ayj) ysnfiou ‘gjeuone.

ubisap ul AjiAiea.d J1oj Ajjunyioddo sAowidd ubisap ay) aJnjyded jey) suoijejuasatdad jeu.da)xy
Aew Inq ‘peo| sasea uojjewoine yinw ooj

Buissa0.d uopew.oyul o
UBeWINY pUE UOI}RWO}NE JO 3durjeq 91e21|3d PeOJIDA0 JNOYHM (Shoauejuods pue jeuonuadjul)
’) SUOI)eSJIDAUOD Jeqapls J10j J1oddns ssajweas

Joddns Abojouyda) Huo.Jdm 3y} yym asue)sip J9A0

UMOD Yeauq AJISea }JOM Pajedo]|0d ul SHJOMISN OIIOM SI9430

Jojiuow 03 A)jige s.9]doad 9b6e.U3AI] OM Ued MOH

SJUSWIUOJIAUD NJIOM pa3inqlasig
P91EJ0]|0D Ul }I0M }e SHIOM]}ON }oddng 0] salbojouydaj
MON J0j} saniunyaoddQ

129UU0D 0] ABM SSI|WILAS PISN e ash Abojouyda] -

UM jeads 03 Oym pue)saapun o) paoN e Bupjaomiau |eos -

:92Ue)sIp Sso.Jde s.eqapls J0j sjuswadinbay MOJj uonew.oju] -
uonouny

SP ||9M Se u01)}daduod :sjuswaJinbay -

LWoo. Jayjo uj 21120} UNOH o
9/doad 6uiq.n}sip INOYIM Jeqapis [eI0] e pjoy 03 }NIYYIQ,,

ISIXD Aewl 9AIND BujuJaed] y

200z 1dy
sJeqapis J0) pasn 03PIA ‘awll} ay) Jo %0¢ > uebhaq ‘eipues ‘uual ‘jleys.de “1dr bUIApnils e

(BunIomIdU,, £91240QP[|0d JOM JO S3I3YdS,, JUSIIYIP UBYM
fuipaoddns Joj poob se Jou ;W00 IJ0WJ suaddey jeym ‘,)10M Jo d43yds,, e paJapisuod
u1 AjIAI}OR BUIAISS(O 10 SUBSW SB PAsn OJPIA e 9q Jybiw swiea) paNguIIsIp SLAIBUM e

ubisaQ 3A1ILI0GR||0) PIINQLIISIQ
92U3s34d33] YbIH JO Jenuarod 3yl dno.a9-03-dnouJg oM Juddan)

JISSeN ejAeN
‘sowilI9 Bno(‘swe.dqy 9A9)S :Apnj)s Judddn) e

X Weaj e

1dr
“I9]99UM ©223(3Y ‘0319q0 qog ‘oll0]43(Q [ned e

0] SyUeyL

13]U3D YoIeasay saWy YSYN
UOISIAIQ S92U3I0S euoneindwo)

SJOVIY ‘soliiag ueq
iuaeyny yedaaqg
JIVS ‘UdiyY 9A3)S
oyjeAJe) 119qoy

SOVIY ‘smaJpuy epur
emeIysIN plAeq
SSO ‘buely) uar-buig

SSO ‘uadjan)s ue| SSO ‘lleH piaeqg
UoSuems Yoy 3JIOM umeys
SSO ‘snjud A A36.UDS J3JI9) U2y

\.& 1ye1s 108loid ¥se@aouslos ot

AoBeseuraleysapaoualds//.diy

|[0J3U02 pue Bulloliuow juabijd1ul
uoneuawIadx3 a10way paisisse-luaby «
310MWeal J1411Ud1IJS dAIeI0gR||0D
SnouoJydouAs pue snouolyouAise :S3ali0leloqge||0D .
uolrebineu pue ‘uolreziensia
‘Buixapul 1uabijjiul :SS329Y uOolew o] Juabi||a1y] «
abpajmouy a1j11ua19s Jo AlljIgeadel) ‘uoleAlasald
‘ainides :juswabeuepy abBpajmouy 21}11UBIIS «

DiLain

Egﬁ\ ,ﬁsmvf?
4 Seol JJeaso
/ ¥ Yaleasoy booif

121U8) YoJeasay sawy YSYN
UOISIAIQ S92U319S [euolelndwo)
Baly UYoa] SWSISAS 1URISISSY pue aAlleloge||0D
dnoio uoneibaiu| pue Bulieys uonew.iojul

‘ad‘ud “Js8|IdN ‘N preyory

Swea| 21jualds J0j |00 Juswabeue|y
uolTew.oju| aAneIoge||0D v
:19ziueblOaoualds

doysyJom Bulisauibul aremljos aAleIoge||0D

SuiBs) paloid MUSIIS 0] BULIBYS UOGBUNOI)

yseqgeousos o E

jey) ‘6udUIdU0D 0IpNe/03PIA
‘BUIAIYDJR pUR UoIINQLIISIP [Iew] ‘sSaudJemy ‘buinpayds
924n0say pue dnoJg ‘suepuaje) ‘MoI0M ‘S|00) uoe}Nsuo)

S9JIAISS UO
1}ed]UNWWo)/uoijeulpioo)/uoije.oqejo)

uoljeUdWIIRAX3 pue ‘|oJju0d ‘Bulioyuoy
SjuswinJjsuj d3IU3INS ‘.
A

IO e 1o
‘uonejouue ‘Guixapul ‘|eAalaad ‘uoneziueb.io

sn|d ‘s9)oN ‘ejeq ‘syusawndoq ‘s|9pow ‘sabewr|

Bulaeys .
pue BUIAIYDJR UOIIPUWLIO]| @

a%ﬁ&\ Swea) 21J11ua1dS painquisip Joj uoddns EV\@%&

ainjoninseljul :198loud ¥So@oduslds hoik |

wa)sAs eipawadAy onuewas

SITEEE o] .
[eIqOJOIN =

e MR $924n0sal Buowe sdiysuoineas :S)UIT e
ST , $924N0SaJ UOIjeWIOUI :SBPON

Y Jed [euolteN N

luswnoop
SUOSMO|P A

AN IO
[]

sjuswndoq jusawinJIsul
sjosejeq o
SaJdnjn) e 109(oud
SJUDWIDINSLIWN o juswiainseaw
sabeuwl| e

a|dwes

.J9M uOleW.IOojul, 10 ¥J0OM]IBU Pa12aUU0IId31UI UR
ul uolrewJsojul 19afoud surejurew Jaziueb1Oaoualds

\

URDIGID-

7 Aloyisoday B 1 .o uonewoju| 103001, (@,
Al uoljew.oju] 43ziuehaQaduaids . Y/ 19ziueb10a2uU310S ayl bk

& ow-a &

'S9IN}ND-[RIQOIOIN

saninoe
UOI199]|02 Blep PaleIDOSSE pue ‘YI0MQe| ‘YI0Mp|al) S,Wwea)
193l0.4d Jo A101SIy syoel) :walsAs . Alowaw 193(oid, W

uonewJojul parejailaul
01 Ssa22e pidel sajgeus :abe)ul]-SS010 Sainjea .

3I0MIBU JNUBLISS B »
aoeds uonew.lojul eipawiadAy e .
wia1sAs Bulreys-juswinoop e «
aseqelep e «
:J0 Allreuonouny ayl Buiuiquwod [001 pUgAY W »
(*918 ‘sainynd [e1qoJoIW ‘sJUBWINISUl ‘sjuswaInseaw
‘sayis ploy ‘sejdures Buiquosap) SPJ0Jal J1J1IUBIJS JO SadAl snolea
pue ‘sjuswndop ‘syaselep ‘sabeuwl -- sonpoid uonewolul

i

qge] Adodsoln

sabew| 8doos0IdIW UOIIIB|S «
1ep Juswiladxa pue sejou e«

‘elulojIeD efeg

Smuhowcwm./ N
SjusWaINSeaW « A N
sobew| « : N
S810U pIal) « @] A\O.\mv N,
®® ~
Sy, -

sisAfeuy ereq Areuiwijaid Y, N 1099l0ud snosuaboualay sal0ls :swea)l 10a(oid 2141IUaI0S

® U0Y3I|0D BlRd Plal- Bty e painqiisip 1oy Areiqy| fexbip / Aioysodas uoewIoul UY

7 TS - 7 P %
s IO\ ge] pue plai4g e s) ﬂ_,za,V\@Mm
m\ 91413USI9S PAINQLIISIQ UOTIBAIION \M% w\ ¢19zjuebi0adua|as s Feym s

I OR= 4 & e

BYI0 |e—

[BBuoImoE [+«
W] [0 Je—
— (2R
JOSUSS0 1D1W 20 [«—
yde Borewo Jyo seb |« yde 6o J10eds
[2] [ans]| T
yde ibo 101w
E CO_HG‘ZCMUCOO 20
=T Juewdinbe

abew o1ycde Holoyd

JUBWINJ0

$90IN0S9Y UOITew Joju |

JusWe Inseswl

DL W

%s?s.a,A_m_tmvo_v..moo;:omomco_HEhoE_._m%« @m
laziuebi0aoualds Jo sadA] -

(1ey10) abew| (4

abew o1yde Holoyd |«

[ans j«
I T \,_ [wouinie |

$ uo-palunow
ouroop | rpomag i

woJj-pareal}nd

T4N-92uanbas-onauab-sey Ag-parennno

21Ny no

Vi OW=a

g amsg sy, /' S$921n0Sal Jo sadA) Jaylo pue

.21N1N9, Usamiag S)ul] pauonoues ok

P

A

9|14 abew | gpRl
‘wewdinb3 00-70-€0 -palejosiareq
00/¥2/T B1ep abew | NSV :wnipsaw ymmols
ynws'y :Ag-usxeL "2 SN3J020.01W SNUS)
¥59- abew |- N3S PRl Ulws 'y :Ag-pereAnind
‘9 puod @1 U019 ||0D €¢T21MND-elqooIN

00/772/T ®Tep uondR||0D
sauor 'S :Ag-pa1m| 0D

¥59- 8|dwes-Te |-[e1qo DTN

'S90IN0Say uonewloju| Jo sajduwexg

(s)aselep ‘syuawndop ‘sabew “6°9) S9I . Paydene,, ALY Ue) o
(3113wnu Jo xa} ‘lediohaled) elepeiawl uleuo) e
(7239 sjuswinaIsul ‘syuawndop ‘sabew ‘sajdwes ‘sdia) ‘sqe] ‘saMs pIay “6°3)
SHUDWID.INSLIN ‘SIIINI(‘SJUDAT ‘sade|d ‘©9]1d0dd
:uonewJojul 241323ds-323fo.d Jo s9dA) SNOLIRA 311253 e

"GPP
00-70-€0 :petejosiateq
NSV :WNIpaW Ymo i

*U2 SN3j020.dIW SNUSS)

0 ...r 34 abew !

AewIdinb3 | —

002/t B¥epabewl | j1-painiold

yHws'y :Ag-uese L yuws -y :Ag-peteanind
Xe7T—obeW [-INIS
XECT—8beW|-IN3S £ZT0IMND-Iqo BIN

T ivppy
9 puod @S UOI198|[0D _ ‘
00/7¢/T ®¥ep uolle||0D

seuor 'S :AQ-pa109|10D
¥G9- o[dwreS-Te N-[e 1o DTN

ujewop 3Y13U3IIS Y] Ul S32.4N0SI. UoIeW.I0jul 3Y) Jo

sisAjeue ue uo paseq wea) }23foad e 0} paziwoisnd aJe sdiysuone|dy
diysuoneja. ayj Jo aJnjeu ay) aziiadjoe.deyd jey)

SYUI| paweu Jo sueaw Aq paje|aJd.ajul 3Je S32.4n0sayY Uoew.Ioju] ¢

F DELIBLIL .
saiiag gueasay sy ; f Eﬁeﬂi

& L0004

(.Sapou,) S821N0Say uonewWIoU| P

V4 owea §

DB

sy gueasag sy . A v Di0ioi0:
7 Dioinoo
% «SAHUll,

S921n0say Buowe sdiysuone|oy

[vv

L =
5 e pr—
iy
- asanisaseg] sl iuomy
sj99yspeauds e 5
suonedlqnd e P T |_B3ebireu 03 311>
sojou qej e o mw%
syuawInLysul e ; " : !ﬂu#u.ﬂg. =1 egadesn
3 . sPI9y | . i uopew.Iojul
SONS PIoy o ejep mepenps nnpenigy Chamy] asnEiin gg&.uﬂ. sy
sa|dwes e T ATV
s2.4n3[n3 o o senumaipensE- | pauyapadd e
VIS ST oM
s)asejep e ap sschog R] uonebireu
sepewts | 7 mapmaroy| | U21UBAUOD o 19z1ueBI0a9Ud19S
T TR 5 — -
pJoday s spJoday -
uopRWLIOM) = T . .ﬂ.._w pajeray] 193U DUB SRR —— __.:Ey ,wy = =
pafoud | - - 0} yul] Aedsying N == -
_ TR PN
ssa20e Juapuadapu) SCWTAFTINESY T Juwea3 anewy
w.iojyeqd, 7
iposonaon Bl | e Ejme 00] uoleIoUU Buipreoqalyp\ aAITeIoqe||o F—
paseq-qom - p1034 I I I .
% 5 =
p1034 adAp plora PEVEILEY) =
sayuap] U3y MOU 3IB3II o 105340104 Y2.4pS
7 i 7 =
sauag qauEssay s g Josoune Hapiag GasEasay Y 5 jooun
F\ Josmou.lg J9ziuebaQaduaids \@fm _\ Jojerlouuy abew| pareys @fm
k«H .UwyﬂWn k«H ow=a w
1X=2qu09 Ul

:usawdinba
@ é Juewdinba uoneuwlojul 193foid /// soesoM losuas
£q-poanpoud kq-poanpoid 991}JO 1JOSO0IDIN
‘Juswainseaw % 19(|0J1U0D al0oWay

Sjuawainseaw 10SUaSO0I2IN
‘sebew SUdWINIOP

...................... abew
S palelouue
=pajean> \u So m.m_.:_
- ‘sjuswalnseaw
1111111111111111111111111111 " kg-poveyo> Jojejouuy awn-eal
ye-puncy abew|
adnas-sey d .
e g puog s @D -~ Paeus WSS
1050415 Jo-1oquiam abew X uolneluswiiadx3

O1IUBIOS

d1234 wnIpaw NS pajsisse-1uaby

:JUswnoop gha

7 = - 7 o \
E_Euq&whuﬁ;eﬂ....m : O—HGEQ— o..—.: — omiaigs Enm E.qq&m&ut;eﬂ....m o Toiator

/ : i % alemijos Huioejialul

w\ 123(0.d JO oM BuIAj0AT =% _\ ook

puriopuow
JOUJD o
BuUIINPaYdSs o

/ ~ uoneuipaood

; < juswiIdx
abeyoed EwE:._um:_) juabe ||€JOAO0 e

/M 31qe) Buluonisod
|043u0) 3j0WY 9snoyuas.t9

(T RIIENETER] INETY 1Y
uoljedy1you 43sn e
9nbaJ Juawiiadxo e

6uib60| o

uabe
9be.d0j)s eyep o }

uonejuawitadxy

juabe
S um;:m_um

juabe J9ziuebuaQ
Jaziueh.gadsualds EB]ITETRIN
ERTINENT] \@A MW\%\
Huriopuopy/dnyas o
Adoysoday Juawiaadxg weay wfu:m_um
ejeq juswiaadxy
SR T S m\. E@HW\A CO_ 12) C@E_‘_ng mMmmmlf e
W S uonel d () A
21J11USIDS palsisse-1uaby et
g D] _“T.ﬂ_.u. J _ = m juanbaiule
EYE WO BRI WBLEAS w I,H.M”MM ,.Mh wum‘_wUO_\/_o
= = —
5Eon_Ee:msem__.un,“._,w,wui__ W — !LJmm uu.miw mN._” —m. v—wmwﬁ EWZ\DW< °
—— (ofoad sjuaby aqoy. >
\ ‘ BIA) S21pN)s HOjeue pue uoeNWIS SIBW A

(wedabouad Abojoig [ejuswepuny
RIA) Apn)S |043U0) elae|eN YSYN/HIN o
sJa)Jewolg
30 Apn)s ay3 Joj a3njysu| A6ojoIqOI)ISY IST o
qe] AdodSOJDI U0J)IDT DYV e
uonebiysaAu] deysiiy S)3 e
dno.9 snd04 sO1wouahod] |YN e
dnoJog swia)sAS0I7 [eIqOJIIN DYY e v

a|gel m:_co:_woa) ainrew
9 10SUBSOUDIN °O :sJdasn yoiid alow

e

1211504 W PRI
[g W e

T R o e P o

SIS - W I0TUISINN BADAX) JIIQIIUANDT 5

SEuqha-ﬁEE..m\. mMmmM“f S saueg queasay s m\. mmwmmm
\ 13]]011U0D) 910WaY J0SUSSOIDIN 'qﬂ > \ Slawolsn) Jaziuebinaoualds

A -
o UE?N ﬂ; o o= w

AJoji1sodau
WD

7\

oeds)Jom s,uaj|l 93edSJ0M S,9)3d

H @A BAn

OLIEUS0G 1UawdOo[oAd(] [ed1dA] v

npa‘nn saip{ew.ese‘adpue}
QUIAJ] ‘eluJOjIe) JO A)ISJDAIUN
UJJe3S9Y 9.eM)0S .10} 93Nn}i)su]
euwlies e)yiuy “|90H J9p URA 94puy

$90edsyI0 M\
ND PaIngLisi(] suowe

SSaURJEMY SUISEIOUT :INUR[E]

JoejIlJe J3yjoue Jo JoiAeydq 3y} HulAjipouwl Joejyae auo o) sabuet)

Ad0)isodau
4D

7\

9deds)Jom s,udjil 97edsSHJ0M S,9)13d

B El

SIOI[JUO7) 109JTpU]

Joejnde awes ay) 0} sabueyd buidde|daAaQ

AJojisodau
4D

7\

2ceds}JaoMm s,uj|3 9ceds)JoMm S,919d

6U1333S PIzZI|ed)UIIBIP pue panquaisip e ui Ajje1dadsa
‘I1I9M AJ3A SII13U0D 334 1pU] pue }23JIp SISSAIPPE UoIIN|0S J3Y}AN

Allenuew paAj0Sa. 9 0) paau
jey) swdjqoud 3643w 0) Huipea| ul papywi] -

auwil) dwes ayj je
suos.Jad Auew Aq pabueyd aqg ued yoejiyie uy -

nsiundo =
NJOM [9]jeded Aue Buimojje jJou uj pajyiwig -

9w} duo Aue je uos.aad
9uo0 AJuo Aq pabueyd aq ued Joejiyde uy -

D1ISILISSOd W

sayoeoxddy D [euonIper],

Allenuew paAjosaJ aq 0) pasau jey)
swajqoud abJaaw 03 buipea] uil payiwii -

auwil) awes 9y} je suos.aad
Auew Aq pabueyd 9q ued joejnde uy -

nsiwndo =
JJaom
|I9]1eJed Aue Huimojje Jou ul payuwi -
9uwll) 2uo Aue je uos.aad auo
Aluo Aq pabueyd aq ued Joejiyle uy -
J1)SIWISSOd m

sogoroxddyy D) [eHonIper;

S)211JU0D }123JIpUl pue 123JIp
JO Jaquinu ay) asnpad Ajpuedyiubis
0] |e1juajod 3Y) sey ssauaJdeme Yons =

OlIom
JUSJJIND S, 9UO0 U0 sabueyd JO J23149)
isobueyd ayj jJo peduwr ayj sl Jeym -
(epeuw bulaqg abueyd Jo Izis/unowe)
ssobueyd ay) Jo A21.19A9S 9Y) SI JeUM -
Juoym
Aq pabueyd Huiaq a.de syaejiyde Yaiym -
ssaulJeme 3deds)Jom snonuijuo) m

yoeorddy

Huibueyd aJe s12doj|aA3p
J2Y30 S)aejirde JeyMm Jo abpajmoud| SOpIH

uoljejosi pegq -
sjoejn.e o) mwm:m:u jenjoe SoplH +
uoljejosi pooo -
:U0I)e|0SI JO SpU] OM)
SOpIAO0.d A)ljead Ul dedsHJoM N V¥V B

TOTIBAIISq() A3

“uaj|3 10] MaIA “mueed B

aoedsyrop\ Sunendo

9Jeds).JoM S ulj

!

JusipP N

i

PIIOM 34} JO
M3IA S,ud]|3

uonezijensip
S.u9djll

E AJoyisodad 9JedSHJ0M S,9)9d

WD

i H

JOAJAS) uaP WO

IEI addeJam Juaa
! {

PIMOM 9y} jJo
MBIIA S,919d

sisAjeue
peduwi/A}NJ9AD

uonezijensip
s.919d

=y ﬂﬁ@@ﬁﬁﬁ.ﬁ V3 WHQ.@T.\?

“uaj|3 10] matA “mueed B

ooedsyI0 X\ oY1 Ul saduey) SUTye

SS9.460.d ul }JOM JuUdLIN) =

(Quapuadap abenbue] pue)
JAISUAXD 00] A|9)1] In(‘SASAjeue pajieIap AJDA +

93.) XPJUAS Joeaysqy -

jJuapuadap
abenbue| Jng ‘sabueyd |e.anijdn.d)s saJINSeaxn

9JU3.d3JIp paseq uajo] -
9je.Jdnddeul Jng ‘a|dwis <
9po0d JO Saul] -
9je.anddeu) Ing ‘9|dwis <
SOl JO JoquIinN -
swiyjlaobje pasodo.d =

o3 o oy g apew bulaq abueyd Jo (3ziIs) Junowy =

...u”_m ?uum ?Upm mﬁm\ﬁmﬁj& %pﬂ@.\wvm

ejepelawl 9AISU9IX3 m
Joedwi abueyd 10 AJIDAIS 49d Hul)ios -
s9Jeds)JOM IBSIM-died -
uoljezijensiA [enjde SNSJIIA 3.4N1IN.)S elep [eudaju] -
ajgqejeds =
sawie.aauwi) ‘SJUdAD ‘SU9d0[DAIP JULAD|D. JO UOI}ID|BS -
a|qeanbyuo) =
|eaiydeab Ajny ‘aejngey ‘aeq-||o.ads -
SSOUDAISNJIUI JO | DAI] SNS.IDA UOIjewLIojul Jo Junowy -
w3 101 worp mwered S} O-3pe.d) JUIJIIYIP YHM SMIIA JUdJdyiq =

Awhm.mw O ﬁr@% (] Soimnl¥o Uo .ﬁHﬂNﬂJ\wﬂwﬁ

1910 AQ) sadueyD) IO\

suoijezijensiA jeuonippe dojaaaq
sjaeyi)de punodwiod pue Jiwo3e Yyjoq .oy
swiyjliobje sisAjeue joedwi pue AJLISA3S Juswajdw] -
SWID)SAS D JUSJIBYIP YHM 3jeuabaju] -
}JdOM 3dnind =
9J4n3ny Jeau ul pauueld 3q 03 Apnjs ase) -
SI2IJU0I }I3JIpul
pue }29.Ip JoM3} Ul S)|nsal Jnipuejed Jo 9s =
FENRTTEIY,
WD JO 9dA) 93} Jo Juapuadapul sl Jipuejed =
sasAjeue Jpeduw pue A)JIIAIS sapiAoad T -
P IJU0d asim-died smoys -
s9oeds).om KD panqgLi}sip 0} ssauaJdeme sbulaq -
3ey) 2dAjojoud e sjJnuejed =

mﬁoﬂmﬁ:uﬁou

Ssa.60.d ul JJ0oM Jud.n) =

(Qudpuadap abenbue|
pue) xajdwod Ing ‘s3{NSa. IIuUeWIS ‘9s1234d AIDA =

sisAjeue Aouapuadaq

jJusapuadap
abenbHue| 1ng ‘BDAIII3YD pue Jdje.dndde Ajjenualod «

s9JeJ193jul pabuey)
9je.dnddeul yng ‘vrdwis =
9p02 Jo saul| buidde|aaAQ
9je.anddeul Ing ‘O|dwis <
S9|l Jo Joquinu buiddejuanQ
swiyjlaobje pasodo.d =

}JOM JUIJLJIND S,9U0 U0 sabueyd Jo)03 =

sajqeandaxy

awil]-uny
Bayos.y
4b1w3

SWI)SAS saJanjeaq s3|14 924nos syusuodwo)

(3.n32931Y24Y) spusuodwio) pauoisIdA 0'¢ 1dvX

ubisaqg
MIIAYDIY

jJuswAo|daq
WYS WONN
SOIML USJM

Husa] walsAs uonejusdwajdw)

abeuaN
Jiuejed

sTsATetry 1oedur

wuwmm«qwaﬁxﬁ%@@.

*9p02 Jabisuelul ¢ synopuey cmc_om,m_.,.u

'$§820.1d 8oueUBJUIBW BY} JO wwocm>zo‘¢tms

8y} Japuly Ued ainjas)iyole alemyos Bunsixs-ay e
‘sjuswiaunbaJ u sabueyo sjedionue 1o ‘sjuswalinbal -
ajeinooe Ajoads ‘sjuswiaiinbal j9aw 0} ainjied =
Joeyiue pajuswiajduwi

oy} pue juswuouiiAus Bugessdo sy) usemaq:
sayl|iqiiedwooul Jo }|nsal e se skedsp Emzﬁom

Aed8(81EM}J0S :W8S|J0Id

‘21BMJ0S BAI0AS A[[ENEWIOJNE 0} S)dwapy —
"UOIN|OAS JO S[OPOW PUB SOLJAW [9AS}-ss8904d
9)eald 0} eJep UO[JEILIPOL IEM}jOS SaZAjeuy =
*** JOU}I® UOIN|OAS IBMJJOS s

sasA|eue joedw aB6ueyd 1onpuod Jo (Ayxajdwoo’
‘Bui|dnod ‘uoisayod) soLjeW apod ajesauab -
0} uoisiAal a|Buis e Jo sydetB souspuadap sesp. =

" sishjeue alemyos ojels

UyoJeasay paje|ay
-

Npa-0SoN‘20S@UeAS][
ZNnio) eJUBS ‘BlUIOJR) JO ANISIBAIUN
ueAag Jejluusp

Aigelsu a1emyos Buizifensip YAl

‘sIsAjeue pasnooj Joalip Ued uoneziensia ay ._.1
'Sa}|IqeISU| SIEMYOS
9zAleue pue azi|ensiA 0} |00] B ‘YA _mwoaea
"SH0Ya UBISapal a1eM)jos 108IIp ued aBpajmouy yong =
" SOlI|Igejsul, Se paquUasap aq ued suolfal asay] 1_
'SU0IBaJ 8IEM}OS SOUBUBUIBL
-ybiy ‘onews|qold Ajissejo pue Apjuspl ued ejep
UOEDLIPOW [BILIOISIY JO SISAeue ue :sisayjodAH s

|esodold pue sisayjodAH

Kioysodai

Kiousodai

VAl

W3S

auibug 10)e13Ua9)
vaco_HmN__m:mS uoday

A A

uoieziiold Aujigeisul -
uoije|naeD oUB - uoie|nae) JUB N Mey -
uoneaynuap| Aujigelsul - % uoieIauaD)
Bunay|i4 » uoeziewIoN - ydeis) aguapuadag-
18zAreuy Anjgelsu uowseq Josssdoidald
IRV VAYZY

Jopnp.

seonpai ‘sabpa sepiH
("010 ‘uoneso| apod) ﬂm@.
JO 1X8]U09 [BqO|D wc_ﬂmm_ :
Inofe|
ydeib souspuadap woy) -
pejesoush dew soeung: -

(€ Jo g) uoneziensiA Ayjigelsu|

"SBUIY JUBIBYIP Ul PEISBIBIUI BB SIOSN JUBIaYI] ~
‘BJep abueyo.

J0 Bunebaibbe pue Bulis)l YA| S|0Ju00 Jasn
*AYm J0U Inq ‘JeyM ‘Biaym ‘Usym sa.inbal z:@..m H.
fyleuonouny 91seq Joj ejep juswabeuel
aBueyo psoueApe alinbal Jou S80P YA

" NWLOD,

swies ay) Buunp spew ssbueyo pue ssbueys-
paje|ai-eouspuadap usamiaq saysinbuisip YA

**asneoag Juaiapid S| YA

uopoun; ‘ajy ‘Alojoaig =
poyjaW ‘ssejo _mmmxomm_m“)
:SOpoU paje|as o -
Buusisnio [eneds sasney
‘diysuonejas [earyosedisy .
Buisn pauonisod sepou
ydesb souspusda(-«

(€ Jo |) uoneziensip Ayjigelsul
<

swiyLobe uonebaibbe Jo ‘Yipim

aul| ‘10j0d Bunoauip Aq uorezijensia |0Juod ued Jasfy =
"SJOYILILLIOD JUBIBYIP JO JBquinu pue AjLiaAss YBIH «) Ik

¢ UONUSJU0D 8210} 84Njo8}IYdIe WalsAs seoq —
"SIONILIWOD JUBJBYIP JO JAqUINU UO Paseq Uoie.lo|o) e _‘

¢ UONUSJUOD 8210} UMOPYEBI] Y%SE) $30Q =
uswidojeAsp

9A1eJ0qe||09 Jo uorejuaws|dwi UaAf -

B U0 Yoeqpas) apinoid pue azAjeue Ued-yA| -

Juswdojars(] aAleIoqe|j0) U] S

‘suonsanb -

alnin} yIm lews-
‘sejepdn snjejs pue wweme_a

VAl Jo} 895

JUBIH Y2JESSTY JUSPNIS XINISN ;om.vm_
e Aq pepuny sem ajep 0} peje|duoo siomey] -

;suonsany

JO Ueds sajousp oocﬂw_c .
‘SOlI}oW 9|(e||0Ju0D-Jash
8JoUsp YIpIm pue Jojo) -

o I =
K___J_...H "ydelb-
e aouspuadap bulhpspun’jo-.

— \ sabpa moj|o} saniqe)suy|
U= Y ‘dew 80BUNS AU}

- UO plejiano aJe suolbes
Rilqelsul paiyisser) -

(€ Jo ¢) uonezijensi Ajjigeisul

‘suolBaJ Ayjigesur oyioads Jo co;So_e& e
Uidap-ut Joj suonezijensiA [euoippe apiaoid i = -

ae_woae

UOISISAQNS Ul P02 80N0S BABC 8|pUBY A =
UOI}ONASUO Japun s y/A| }daouod-jo-jooid 'y -«
‘sulajjed

abueyo [eanoysly Buikyisselo pue Buiknuspr -
Aq (Wnwiuiw e se SAD) swisisAs [053U09 -
abueyo ul palois elep ay) abelang) ||im <>_

uoISnjou0?

m—;

1 (pa)buel) Eﬁmmou paxiWw Sawo02aq ualo
m_tmocoo JuaJayip 10} 9pod ayl ‘Bulwwelhold euolIUSAUOD U|
_ f ..;mEEm\Am Buiuuni pjing 01 pasodwo9 g 1SNW SUIBIUOD
1/ i \ saoe|d Jo A1alieA e Ul sa|npow 1ualaip 01 Alddy
INJ-SS0JD SUIBIUOD
\ Aandepy

7
A Anjigesnay -
w \ Anngeajong —
M Aljiqeurejurey —
191190 Sasiwo.id Suiaou09 Jo uoneredas «
asiuadxa Jo uonnguisiq —
SlusWwa|a
mv_ 1] Apjeam ‘areredas se s1daou09 WaISAS Jualayip Buizijeay —
SuJaduo09d
,5 uonesedss Jo reyl siajdiduiid Bulleauibus [ejuswepUN) Y

X3

SuJaouo) Jo uoleredss

yoddns Ayt 9
¢ uonoun4

poddns A1 9 et /%&:m A 3

guomoung | T uonoun4

uoddns A1 %
 uonouny

[+ aymAiens sowe

: Siusuodwiod 914199ds 0] dew
_ \.%E sjuswalInbal A

SuaWR.INbaJ rUOIOUNS

e Al By

14 ¢ ,
X :
b ¢

_

& .amw_ ‘oung T .cmm aun4

7 box oung %

:euonoun4

Sjuawalinbay
mco:oc:n UON pue [euonoun4

'V'S'N GEOV6 VO ‘PIdId NaljoN
19]UaD YoJeasay Ssawy YSYN

AOBeseU"dIe [reW @ UueW|i

SOVId
uew|id "3 Uagoy

AoBeseurole’rewa @ punianey

ABojouyda] [ansay

punjaAeH snepy

SJUaA3 Jo uonealnuend pue
uoleIuUaWNIISU| 8p0D-921N0S

99uo0 Je ||e Aejdsip 10} sabueyd liay)
l1aying p|noys ssunnou Aejdsip Jayio j0 8doas sy} ul paj[ed ssulIN0l
>m_gw__u 1daoxa ‘sabueyd Jo sy nsal ayl moys pinoys saunnol Aejdsig —

g SSE|d SIY} Ul SJUBWa|a 03 S|[ed Jo S}nsal ayl aysed —
\.J [Sjuswiadueyud 3dueWI0}Iad
. 193lgo siy1 jo siueaidal apinold —
P \ Aingerey
f Aoud Ag wayl Bulpuey s|es bunrem ayl dn anand
%o _\ 901AJ3S Jo Allfend
_ [euofoesUel} 89 P|NOYS SUOIIJE 8SAY] JO S1d3}8 Ayl —
L A|snoaue}nwis
1303[qo g|buis e uo y 10 ‘6 '} spoyrew jo Aue |[ed siasn a|diynw 33| J,uog —
i { uolezIuoJIyouAs
_ 'sse|d ayi ul s1o8lgo
~, JO 9JIAJS B 0} SS8I9B YIed U0 JUN0JJE S,19sn 3y} }gap shkemly —
Bununoooy
.. SS909e aseqeiep Huimo|je a10jaq %29yd A111NJ3S ay] |[ed shem|ly —
. Aunaas

SUJ92U0D 8JeMm1os Jo sajdwex]

/
(410) 1omawrel4 ainjoniiseldjul 193lqo —

sjuawalinbal
[euonounj-uou aAalyoe AjeonewsalsAs
uBd UOI1I9SUI 82IAIBS dlewoIne eyl s)ylomawel

uolTesaIuNWWod ay} Jo SapIs yioq upQ —

sjuauodwod
feuonouny usamiaq yred uoneaiunwwo ayl
01Ul S82IAIas Buiiasul Aq panaiyoe ag ued salll||

Si1saylodAH youeasay
J)lomawel4 ainyoniiselyu] 199lgo

(ewbeud) suonoalul paiisap Buiqrosap 1o}
abenbue| uonealyoads |aas|-ybiH ewbeld

s|ea ybnoiyl
suolrelouue anlasald S1xa1u09 pealy |

(snieis
Buioe.; ‘pi-1asn ‘Alionid sbessaw “6°9)

sl19ad a91AI8S 0] sia1oweed ssed 0] S22IAIBS
pal1dalul mojje suoledIunwWwWwod pajelouuy
a|geinbijuod AjjeaiweuAp ale siojoalul —

poylawyoalqo Ag ate sio1oalu; —

s193(q0 wlojlun ‘21819sIp ale si0328fu] —
™

ks’ \'1

sjusauodwod usamiaq
syred a1eoIUNWWOD Y] Uuo Joireyaqg Bunosluj

seap| 410 A3 i

1

1
1 1
| t suongesuel | ' E
i

Uo1reAJesaY moSo@ow;

__ __ __
Eco_ao__%m | E.Emzmsso_ E

uomera e

— Hpny % Buoel |

o BUBYINY

'SINBS

Alicerpy

Anjige|eny

*
3]

‘ Eo.t

SuewelInbal A1l

"walsAs ay3 1noybnouyy
Alanisenlad pa)oAul 8q 1SNW S83IAIBS Byl

Swyl1ioBe 991AI8S SAIIRUIS][E JO)OS
01193]8s xa|dwo9o e saA|oAuUl Ssalll|l Bulioddng

*

o3

‘sSwiylliobe adIAlas Jo
mco;mc_QEoo Aq pajuswajdwi ate syuawalinbal Ay

Sal]l|| pue Sa2IAISS

X3

*

P>

,
b\ enend 111011d SSed
iz uonouny < i uo :oc:u_
[ar2q | (0o |

L

Wb A enend
€ uoouny

< IT uonoun4
[] SN

5 J_ _","wH ccQEoo [euonouny usamiag syled uoneIUNWWOI 8y} Ol
_., \ co:mo__..w_ S92IAIBS 1Bsul 1ey)
_

/

i mHTmco&c 2 [EUOIDUN) USSMISQ SUONEIIUNWWOD By} OJUl S8IAISS au) Bunasul
g |
Lo f .

H sylomawiel) Buiensuowsp st 410

Ag w 0| [euonouny) wWoJj pajeredas aq ued b__mco:oc_& m.o._Emm E@_mc_ >ovm

—
voddns A1 9 (<

¥ uondung

uoddns A1

\ Z uonoun4
1oddns A1

€ uonouny

yoddns A1
< T uonouny

susuodwod jeuonouny uiyum uoddns A Xiw subisap feuonipel .

suonedunNWwo) 1uauodwo)d
Ul S89IAJI8S YlIM 81N12311Y21Y

9JIAISS
jo Ayrend

, yd

Anoes | |Aupigesbeuen| | Anjiqerey

Yiomaweld |0

y
u “_ /D‘/D S M |
% :
I uoneoldde S9IIAIBS
,m painguisig uonesidde dojarsp saly109ds 1991142y
siswwelBold urwoq Auil pue uonnqisia

&E,mco&Eoo painquasip e Aq pamo||o} SI Ad1j0d eyl ainsua .
Ty £a110d A311N23as e aulap o
‘uoneluswsa|dwi o1 saloijod [euolreziuebio depyy «

SS920.1d 410

A/

'Y Suo119e 8yl YlIM 4 O Suoilde aseq ay} JO UolIndaxa
a3yl xiwJaiul 01 abuelre walsAs ayl ||Im MmoH :Buineapy —
) "18y10 yoea pue sweliboid aseq yium 1oeiaiul Aayy op
/ MOY ‘Sl Jeyl "V Suollde ay) Jo 8dejialul ay) SI JeUA\ :9deuaiu] —
‘pPaijioads 8g UBD D SUOIIPUOI JO SPUIY JBYM :uoiedyiuend —
r'a * :Wa1SAS OV ue
m ilo} _4 uswsa|dwi pue Jaubisap 8yl 10} UIBIUOD JO SuolsuswIqg
{
| |

w_
\?\ :Jozom wJojlad ‘sasiie 9 uollpuod Jansuaym ‘4 sweiboud uj
| Sjuawalels painuenb
BuiAjdde uoneiou 1191jdxa urejuod 3,uop ey sweiboud
Ul pazijeal Sluswalels 8sayl JO 108449 8y} aAey puy =
swelboud (Jeaul|
‘leuoilusAu02) 1noge sluawalels pailliuenh Ajjesiaaiun
alels 01 9|ge aq 01 SI JOV 40 92UasSsa Jnewwelbold =

uoneosoAu| 1a1dw
pue uonealjnuend

olwreuAp si uoirelnBblyuo)
aoueisul poylawy/Axoud Ag s1 uoneinbiyuod %

[= [(synsal 6oj ‘ainjrey
- vuo Aneu-69) A|Buis Jo (sreonusyine/uoiresnuayine 1senbal
\ . +1dAioppprdAious 69) sired ul 8yelado ued s103108[ul S 4|0 &

SI0MISN

SEEE
Ydd02D

w “_q _ 1uswabeuep
I/

9921AI8S Jo A1end

| uine>osud

Awjigeray
-l

[\

SaIX0.d a|geinbijuo)d

"pauiquwo9 aq isnw

/. Jeyr siuswae weiboud jo ajqunleisnl ‘Jataid noAk J1 10 «
/ ,Em._,.._moa aseq ayl 01 dew suia9u09 ajeredas ayl MoH —
\ SuJdou09d aresedss —

.11 weliboid aseg —
ssaldxa 0] paaN
ey ¥ soluadoid asay) Apoquia
el swalsAs Buiuuni Bulonpoud ssajaylianau

/ aliym sanuadoud onrewalsAs buissaidxa
\k_mﬁmao_mm 10} ABojouydal bulisaulbua arem)jos =

B e e
—
RS
<

[waisAs Bulwweibold paiusii-10adsy ue sI 4|0 =

..,_An_o<v Bulwwelbolid pailualiQ-109dsy

sebueyd reinioniis weiboud ;uondeoxg —

9p09 3yl ul smopeys —

‘weltboud ayy Jo ainonis

J11e1S 8yl woJj patiajul Aldwis ag ued eyl

|S1UBAS 9soU) 01 siajal AjaJaw uolnealnuenb onels

eyl pue ‘olweuAp ale ,Si1uana, bunsalayul (e
omoE_mv eyl sisayrodAy ayl Bunojdxa Ajpuaiin)y «
MO0 “B'3
‘uoinosaxa welbolid Jo 8sInod ayl
c_ cmao_ws Jeyl suans Buiyorew :uonealnuenb siweulg —
s|ea ‘6’3 .
welaboud uswidads ayjl Jo ainonus
o:oEEAw 8y} WoJj 8|qeuladsip :uoiredynuenb onels —

usamMlag paysinBullsIp am ‘YoM JaljJes u| «

.
!

dolrealynnuend slweuAqg pue 21eIS

20| e uo Bunrem

SJUsWIaYe]S 9ZIUOIYIUAS pue e
, SJUBWIAEIS yored

uondaoxa ue Buiyoed

Sluswalels Mouy |

uondadxa ue Bumoayl

. 10900 Teu Jo} S1019N1ISU0D By L

aoue)Sul Ue buizieniu

JUSWIaYeIS [euonipuod ay L

[euonipuod e uo buiyouelg

sjuawarels dooT

doo| e ybnoiyr Bulpho

S|[ed weiboidgns

welaboidgns e Bupjonu

, RN
a|qeLieA Tey) 0} sjuswubissy| 1o 3|qeLeA e jo anfea ay) Bulkjpon

, piay
a|geLieA 1ey] 0] SouUaI9lay| 10 3|geleA B Jo anjeA ay) Buisssooy

SN20| 9119e1UAS

INEYE!

1907 JUBAT pue SjUaAg

uonew.ojsues; weiboiqd —
fuiwweiboid-elaN —
sylomawel{ —
|buiddeam olweulAg —
co_E_:a_cmE apoo-alkg —
J|dwop —
wsiueyossuw
uoneiuswsdwy
,co::_omm: 101)Ju0) —
Bullepio —
Aunaisin -
9p02 aseq pue
§)19adse Buowe uonoesalu| =

uonesldde
Buissaldxa 10} xeluAs =
91N1oNJIS |BJIX3T e
aweu Ag .
sasse|ogns
uoneaoinuenb jo adoos —
MOJ} [0JIUOD
XeJUAS 10e11SqQY o
SS990® plald .
S|[ed POYIBIN
siuiod ulor —
pamojje ale sjuawalels
paunuenb reym +

sabenbue
dOV buidojanaq ul sadloy)d

‘sJalaldialul 19eIIsSqe JIsyl auljap

H co_u suoniulyap abenbue| ‘Alereunuojun
abenbue| e Jo BBEBE_

Hom:mgm 3yl 01 19adsal Ylim aJe SJuaAg «

uoIINJ9Xd

~welboud e ul sjuana Jo A1031S1y ayl ||e JIBA0

Ajnuenb o1 a|ge aq 01 sI uoneanuenb
Ul SSOUSAISSaldXa JO awaIxa ay *

Hcmrc_l_maxm_ o Wwa 11X

q_w,:o:om pue S1uaAa asayl 01 19adsal Yyum
swelboid wiojsuel) 01 WalISAS e ajeal) «

'9p02 821N0S Ul (3|qISIA apewW ag ued

_ |l 10)' pa10a|4al SI JUBAS Ydka Moy aulwlislaq «

"S]USA3 3S0Y] UOo
mco:om pue sjuaAs Jo abenbue| e auljaq *

awibaJ yoleasay

1SV

é 3p09
asked
©eNer 92IN0S

wiojsuel |

suondossp
uoJe-jueny

M3IA [21N10911Y2I1Y

alaymAue uaddey

pIN09 ‘8|qIssadde Ajgelfa.l 10N Jlous ue Bumolyy

sanmwiud ui-ing Buisn

Aa1 ued Inqg ‘a|qissedde A|gelfal J0N abelois Buieal4

s|[ed weiboidgns 39e1S ayl uo mojaq buieg

a|q1ssod aq Aew uoneziwole
! .1nq ‘a|qISsadae A|qeljal 10N peaiy) Buiuuni syl buiddems

| Jonol m_mzmcm MO[} Blep pue [0J1U0D

(sa9211S) s1uawalels Jayloue
0] yred ay1 uo anjea e builbueyd

splal
asoy1 Jo Aue Jo uonesupow A1aA3| splell [elanas uo sreaipaid e bunsa)

SUOIIeZIUOIYIUAS
JO pua pue Ajnou s,J8Y10 Jem 20| e Jaye Bulnsay

| SN20| 9119eIUAS ELE]

1207 pue SJUaAg 30N

[8A8] 8p02-91AQ Byl —
[9A3] 8P09-82IN0S By —

Je wliojsuel] ued ‘ener 1oH «

SaAllRUIB]|Y [euollewlojsuel |

[1

‘sbuinea|ialul a|npayas Buliojdxa

Aq sweiboid papealiyinjnw alepifea =
‘Sjuswalinbal

Jasn jsurebe suolndaxa adel) alepleA -«
‘speaJyl bunadwoo
“_“_,, AQ s821n0sal pateys 01 Ssadoe Ag

‘pasned swa|gqo.id Buipeayl-nnw 198189Qq *

|

Buibbngag weiboud

31040

111 271S430] 2L
BITISHO|TL
:uR|go id

271 >T7 00| Uo Joplo asodwi| :uonnjos a|jdwex3

JopJo JUSIBJ}IP U1 8SaU) %00| pue
'S30JN0S3J PaJeys 00| pue ssaode
Spes.U) USUM INJ20 Ued Yoo |pesp v

S)o0|peaq

'

‘wbipesed
mc_EEEooE [elouab e se dOv bulA|ddy =
: ‘uaddey sbuiyl peq ased ul
_omE;_c_ 9(ued suoloe eyl os ‘uonhreiado
mc::_u swelboud Jojiuow 01 4OV bulA|ddy =
{ ‘swelboid jusiinouod
mc:m_o__m> pue buibbngap 01 OV bulA|ddy =

suoneolddy

| 4]

' ;sdejiano Aidwas wouy sadel elep [enuslod

' Jajul pue sa|gelieA SSad2e Ayl uaym umo
wcmmEH S)20| leym aAIasSqQ :Sadey eleq =

"'S9|0A0 WO} SHo0|peap

_m_EBoa 19Ul pue pasealal pue uae)] aJe

' SYJ0] Japl0 Jeym ul aNIasSqQO -SHa0|jpea -

swa|qo.id buipeaiyl-ninn
19919

{
{

! (Cgo’xand)sAocwSI* SpeSIYL
vAﬂnovaﬂﬂonﬂoﬂhm Jopus usym
Pl {

4 d P { (Cgo‘xand) jyoorIppe - speaaylL

! () ssToApput3 -ydean
! (Cqo’s3poT) sebpappe ydeid
Ino) syoorr3sb-speaay] = S)YDOT 39S
9IYL3IUSIIND *PRIIYL = IIND pPesaIylL
} (Ego) ezTuoayoudls usaym
}juot3oejzsgyoorpesq 3oadse

dOv buiA|ddy

{()ontea 3®Enm>'

K (zA)ppe” 1A

f;mAvmsz> MouU=TA

T.1 pesiyl

{

{¢x uanjysxa}()39b jur
{¢#()3sb-a + x = x} (A ®nTeA)PPE PIOA
!T = X Jut

}entep ssero

/' 8oeiereq Yylim weliboid eaer

{()sSnTep mau=za fﬁ

K (zA)ppe” 1A

.f; ! ()enTeA MaU=TA

T1 peadyl

{

{{x uanisx} ()1e6 JUT DPSZTUOIYOUAS
{#()3sb A + x = X} (4 SNTBA)PPR PTOA DOZUOIUOUAS

‘T = X Jurt
}entep sselo

I/ yo0|peaq yim weiboid ener

St a|qeLen

T agfew Jo ** ¢ :selepdn yioq Jele 1nsoy

T peaiyL
pafeus

0:X

'SS300e SNOBUR) NWIS JUSASId 0] PaSN ST LS ILRYISLWU ONje
pue ‘911IM B S| SS30J. SUO 1SE9| 1/e
‘D10e 1R/ PaJeUs B SS300 Ve

SpeaIU1 OM] UBYM SIN300 83l Blep Y/

/ saoey eleg

\Ahm>vmmmnhuﬁﬁmxom£o suTyYOeWS31®e3s
.emuﬂnzmﬂ IeA’zanod)ojepdn- surydewsiels
;“«Muvmﬁnﬂﬁunwunﬂv pesayl = Iand pesIyl

(Cgo’xand) saowSa * sSpeSIyL

|
) Rﬂnnhuﬁmnuﬂo ‘pesayr = IaInd pesaaylL

{
{

2 } (®3TaMST‘IeA)O3SS9DDR USYM
P

{

(Lgo) ®zTuoayouds Jopus usym
! Y

"SY00|peap |eansl
8 m_o_mem 10} ‘pasn aq Aew siy] "uaxel

puels 0] Ja|NPayds ayl asnea ||IM SIyL +

it ‘spoylaw
: %mN_coEoc\Am JO S|[ed pue sjuswalels

\W J0| B IoA”UayYM YI1IMS 1XalUu0J e axew
¢ 1\ ch_wo

/: ¥ w:mN_coEoc\Aw [[e 10 1U0J} Ul JUswWalels

L / { iy p|9IA paziwopuel e Jo [[ed e 14asu| =
LIk 1 " i 3
f ¥} (Cgo’xand) yoorIppe speaxyl " :
._ \Js () pesayzauezano-peeTyL = 1and pesIyr It S)20]| Ylim paloajold ase sassadoe
L[] } (Lqo) ez Tuoayouis usym 3! %, |geleA |e eyl awnsse :a|dwexa a|jdwig -«
i m., f/ m., \
} 4 Y vnoﬂuomumnmumgmumn aoedse A %
ﬁ 1 1
/ dOV buifjddy / buinpayos alojdx3
\\ ‘ \\
e bedwo)) wuy1oBe esel .
w;mmc_chm; ose= N A il 2 ,,
.H auswduyal = [pJ ,& o {
Ev 8l jonge ou = [ot @ Ev ey s {
wwwn _.; .fﬂ.v\w m zredsz // ¢ ()we3sAsesold
SN, peaiyl mau) pif (pealyl isiy) Im‘pl 2L P ! (u®S0TD 30U pPTp we3lsis,)3xodsy
{/ &. i3 {/ &. kol } (@gs01d (02) ATTEN3USAS
L\. Pl p anISN[oX8 k\. ‘;.m seTTdWT HSOID OQ) Iouusym
_J. G (peaJy mau) Im \ ka3 \:
/i @ r \ ! (43T®83T &q pesold we3sis,)3jxodsy
L b 1} (@80T0 oa Arsnotasad jou pue HSOTD) USUM
! /. ! ﬂ i }sjusweatnbayyosyy 309dse
5 | Y%,
{ { \ 7
! \ A\
\ | \ | I | \
ds J \m d.. 3 \m
y H,,,mc_comEBEm B pue 19sX%007 V Y /7 siuawalinbay 19sn 1sureby
J { " J I
4 \.,,m 9|qelleA yie4 104 g \.% Sooel] uolnoax3 bunepleAa
/

sz (doV 1o} 15q) sebenbue| dOv
‘Hunuawiiadxs 10j JuswuoliAua ue Buidoaaaq e
\ d

OV 01 yoeoudde paijnnuenb paseqg-luanl —
waisAs OV ue ‘410 —

dOV —
pPoluasSald

SyJewsal Bulpnjouo)d

sjuiod
c_o_ Se Sjuana uo Aydinpy pue Jaem

Buipuig pue sanuewWssS [eloireys(q
uapuodsallod :siojesado uonisodwod
uolepuUNo} |9A8]-UJd2UO0D ‘|8 18 UOS|aN

ny Jaddis —

‘0

6

®,

6

SN

w L\

& J, . .

,n,_‘_v [W,

¥ _jw
b/ ¥
/iY \

£ ¥ o

uoljewlojsuell JAX ‘e 18 J8buoyos —
1joypns pue japeld ‘1@qundjo —
uonew.Jojsuely weiboid ybnoiyl dov
Bulwwelboidelsw ‘|e 18 I8p|OA 8Q

0
o

‘0

%

)I0M pale|ay

SUOI}DB UMO JINOA 104 IXS3U0D e SopInoid e
SJ19U30 JO suopnoe ay3 Jo sbuipueisiapun aApReyenb e
SsauaJeme JO 3|0J 3y} —
[ewIOUl pue [ewlo) —
uoeJoqge||od JO SaIpNIS Wol) e
ouspuadapiaul Jo Ajixadwod —
duesIp Jo pedwi ayy -
uonoeIaul pue ysej Jo Ayxsjdwod —
JUSWAOISASP 21eMYOS JO SBIPNIS WO} e

MO Apea.je aMm jeym

so11031sodal SAD Ul AJIAIOR Y] MIIA —
‘| 39 ‘s|jim 219 Jo ddom wo.y paydope —
1JOS93S e
SJ930 JO suonoe ay3 JO Ssaualeme —
ejiJe ayy ul ssbueyd Jo ssauaieme
1oeJIe 3U) SI 9segapod ay3 ‘syoaloid abuej ul
juswdojaAap a1emyjos panglLasip ‘ajeds-abue)
,9bJe| oY1 ul sssualeme, pueisiapun 03 buiAly e
SI930 Jo AjiAioe ayy Jo buipuejsispun aAissed —
SSoua.Jeme UO SNJ0J YydleasSal MISO e

J0S99S

200Z 3snbny ‘Juv VSYN

npa‘1pn*soi@pdl
SUIAIT DN
UD1easay 21emyos 10J 93nIsu]
ysunoq |ned

AJIAIDDY pue 2aem)yos
JO uoljezijensiaz

WOOARA pue 1J0Sa3s :S109[0.d oM e
Juswabebua pue ssauPAIIP e
201oeld palpoquia ue se uopRdelajul e
uonoeIajul palpoquis —
Luasaud,, uonendwod bupew e
uonendwod Jo uaadxs Sy} —
punoJbpeq |ed13a10ay) e
s9ssa00.4d uey) Jayjed spejijue uo sndoy —
[enydaosad <- aAubod —

soyoeoidde [enSIA e

yoeo.Jadde

KNS Acthiity Viewer,

File

8006

seesoft

| }_;! :". ,.¥1J1.||'.=.i. |k|.h-m.1.'] J{I'... AL L o AL Ll RULL) LA i”il! N ! Ll S0 4 0

|l|4| ||| ”l'i \lmli g;‘ Jul”éﬁll T L T

gkl
|5n| |h Ll ‘ |J| L (11 “5 IHIﬂhﬁ.{iniu 1
J Lol LJA" JUW| [|L.]l.J|LL |

m’uhwu v ||!i.‘ Il

LT GEEB02AM

il Ol | I
I“'“_' |""'k' _ﬁlmlm WHKRIRLA aiil:l_ﬂ_ﬂﬂh |

wtolmy, A <vEE

L | il |
W0 0 0 o A, A0 f |
fﬁ' §§.I | L i —)
1010k o), L I it | { \ ‘ l
o | : B : jJ ll x z ? il"I!AIEJJ' | i :lflii | i Ji
o T T T i . | v ol
o _ ; B | SRR AT Y
o (0L) AR 5l L0 a0 H | |
E % :l.! S [A ol ijlv jy !Il.|.|| JRILEURIR g al
E IR lll’l|.||l. ¢
: ilj i.aj! 2 'L_ skl [J..!:‘l_ FJ; g [1 [
| I ; , {
| L Hil L'.,!l_i._gl_liﬂ _||_ ,

;I.i'l L

TR Em!.k.ﬂﬂ ! ':..JIE!

:i!l Ll sl

eoe

seesoft

T @ seesaluviewer

Seale:

CVS Activity Viewer

Flie

‘808

seesoft

% I [ﬁﬂllllnll h#ﬁhll.]:ﬂ]:ll

£ indented £ Time @ user Size
— “folders” are folders whether local or networked

e but mechanism is how we understand the world
— how to give people a picture of what's happening?

— the temporal organization of social action

— understandings of cause and effect
¢ manifesting computation

¢ interface abstractions hide mechanism
— temporal dynamic coupling

kaffe/kaffe/main.c: 1. 31-Mar-1998. cvs: /*

vavoom

1daoxa

JUAS

audewiod

m AUoDadAy

. LIE |y ARIE

W U>UBIgpUoIUn

] AEARIDLS

I U7UR/3pUuOd

LBy yIE]S

] AsLopeo]
| JBAPRO|
B AU W

I WyiLE
N LB SSE2

e

WIOOABA

uog rll_

peauy Lues (]
pssEID rll_
cs5R|D rll_
Zs55B|D rll_
TssB|D rll_
SSB|D4RISN|D _all_
LoD WLWAS _all_
153 | [RJ2Uab
3}y

eAE[

WIOOABA

—

eAer

S|} SSe|D palipowun e
SUOI1eZ|[eNSIA BWI}-[DJ DIWRUAD e
uonndaxs weiboid eael aziensin e
auIydoew |enMiA |ensiA 33 SI WWOOABA —
punoJe bulA| wayy Jo Ayua|d s,8194] e

uo bujob s,3eym 1no Buipuily Ul 3S9193Ul PIISOA e
ule|dxa 03 YdIym JO SWID) Ul S|opow sy} pueisiapun am e

siowuwesboud a21A0U UO SND0Y —
WOOARA :uoijelo|dxa |eniul e

WOOARA

%I

mooL

%00T A % O 1 § | H L 98

[{vssepgasa Lesauab
558043150 D §353 1 [BI2uaD

U0 113 WLAS §153 1 [R43 Ul

wopuRY[~ s|[ED moys o [aeys |sjquens

oY

WOOAPRA

AJIndas ylomiau buliojdxs Apuatind —
Sysey pasieinads 210w Uo SNJ0j
SUOIESI[BNSIA 10B11SCe 2J0W UO SNJ0J
SI9SN PUD UO SN0} e
:0] sI Abajeays bunsaaajul alow e —
swelboud Jybu ay3 aney Asyy se Buo| se “JUBIUDAUOD INQ e
Moey e si siswwelbosd uo sndoy ayy —

uonelojdxa |ediuyday Ajea ue S| WOOABA e

WIOOABA

HaduopseTusungaad [

sJlydeananne D -@
1a3iuzuodweDd [@

aueyshual -
sa|URdolds5E|D D -@

JAZABUYSSE|D

asiedsg

| H
J3y|EL m_

<=]

peaiy1r2y] &

XT -

UD DY LWAS ﬂ_.@ -
< [
:_MEG

ummtm._mcmmﬂ_ _

wruld-e
Ayunoas 7] @
U0y [J-0
u)NEOuc_};Dé
1A3sno04 Dé
sa1ydesn [T -@ _

1war3 [@

xg -
RN

WOOARA

yoeoudde |eai3aioayy JO uonessuowsp —
UOIDRSIP puUe 9DUddN|SURI} UDDMID] aduejeq —
2onoead yam uonesbayul —
suoisanb uado e
AjljIges|jew pue ssaualIp —
924N0SaJ dAIRUIPJI00D Alewlid se 21emyos —
Joejie se a1emyos buniojdxe e
AJIAIIDR DAIRIOR||0D e
J0IARYD(Q 21EMYOS e
JO sbuipuejsiapun aAnRejjenb —
uoieJIoqe||0d 21UD-ssad04d uou —
uooeIsjul jewlojul 1o yoddns WwalsAs e

SUOoISN|dU0)d

SISAjleuy syuswaJinbay
Juanbasgns awedy SUoISIAP UOIPD|SS J3[0ld =
¢SIsAjeuy syuswalinbay
0} 93kJ2J UoI13|9S 103[01d SS0P MOH =
uod9|es
109[01d SMOJ|0} Ajjeuoniped] SisAjeuy syuswalinbay =
19(oud e J0j SjuleIsuod
pue ‘spaau ‘sjuem ,siapjoyayels buluiwiaeg =
SISAjeuy sjuswialinbay ‘usy] =
dojaaap pue puny 03 103[loud e asooy) =
sao1040 109(0ud suiwialeqg =
uoID9|aS 109[04d 15414 =

uonew.o4 103loid |eniut ﬂ

SuaWNJ0p

pajejad JO spalpuny
suonejuasald

[ealuyoa)] pajielsp §
sbunsaw dnoib [ew.oy
pue |ew.lo-1Was $§

pue SM3IAIDIUI PaININIIS
-IWSS |[enplAlpul 9
uoneAlasqo juedpiped
s U0 Jo (Apjoam

salpms
SISAjeuy sjuswalinbay

nis Ul ou Jsowly =
Ajjeouidws
paulwexs usaq

sey uonddes afold =

Jay1abo)

jou Inq “Ajlenpialput

palpn)s uaaq aAey

SISAjeuy sjuswaJinbay
pue uonoses a(old =

sawn €-7) sypuow G =
nyis ur uoneuw.oy afoud
|eniul Apms 03 SpoyIs|

oiydelbouylg Aiddy =

SPOYISIN YoJeasay

Npa*1dN*SoI@dewb ‘npa‘idn*soi@uewbiaqu
BUIAIT ‘elulojijed Jo AJsiaAiun
*1da@ 20uaIds J9Indwo) pue uonewlour
Yle euoln ‘uewbiag e

SISAjeuy sjuswialinbay f
pue uoI303J9s 103[04d UaaMIq
diysuone|oy ayy buliojdxg

¢SMBIA SISAjeue sjuawalinbal
JU.1IND 0] JUSIBYIP JO Jefiwis ASy) 248 MOH =

¢SIsAjeue syuswadinbal

pue uoP3Ias 1a[0.d ‘uoidNIISUOD

221040 103foud usamiaq sdiysuonea.l
|ednpado4d 9|qissod aJe Jeym ‘qou J1 =

éploy sisAjeue

sjuswalinbas bulwoyad usyy pue UuoDI|SS

109(oud Bupjew ‘saoioyd 109foid Buluiwiiep
1541} JO J3pJ0 Y] seop ‘aonoead uy =

suoisan() Yoieasay *

sdajs ssa%0.1d

[oued pa3d1j0S
saulpeap usAlb pue s1ebpng s|2A> pafoid panoje Aq psulelisuo) uonafes paeog UOIDBS [PUBd PaMBIASY sjesodo.d paulaq
) a|qissod se salbojouyda) ,siapirold Auew se Bunepijen djiym ss9004d UOIDDRS (/s oyj0u) 1204 MaIASY Juswdojeasq |esodold MaIARY 1994 3jepipue) sjuswalinbay
'SoWay) pue sIojeJisiuipe aY) JO Spasu ayj AJsies pue adueeq 03 JUBM 13foud pue Abojouyosy | sisibojouyds | awny leud 1afold ue|d pafold WaSAS Jsad sjesodo.d ABojouyos] 3daduo)
23epljeA Jyb1y aoeds 0} sa16ojouyda} MU JUBA ay3 ajowoud pue 3sissy dWN P
saulpeap afo.d pue syunowe pleme YA Aq paulesisuod - i
53500 JuaidojaAsp ABojouyda} BuiZiwiulw S)IYM ‘Wedlls SNUSASI Fr—— (ot .
wus) Buoj e bunean ARy ‘paiepiieA ybyy soeds saibojouydsy iy jueem ([ST TS B T Ny N
Aji[euoipuny [e21UY23) S|RZIWOISNO-IWSS sa1bojouyda) pajefps SI9PINOId TS~ Ly
“aads bulpiroid 3jiym saulepinb abesn pue sjujeaisuod asi0a.d AlaA aaeH | Sdedsoloe mau Jo siapjing ABojouyda | .
saul|peap 1afoad pue s3ebpnq Juby Aq paurensuo) SwaysAs aeds LoISSIW
sjuswLadxa 3|qeus Jo 20UdDS Jo siabeuew — N
S350 Wa3SAS UOISSIL SDUBIDS 2InINY JaMO] PInom 3eyy ABojoutday mau Juepy pue ‘S13p|ing ‘s)SHUBIDS saway
SjUIRLISUOD pue Spasu 1By} Ul aspaid pue 3didxe Ajeaiuys) ‘s1aubisap ‘s1auueld UoISSIiy (s)waloig |
ssa1buo) sn ay3 wouy saulepinb Adijod pue Aeyebpng Aq paulelisuo) uoISEp JIBYY pap3PRs
1500 BuZIwuIW 3Iym ‘B6esN UOISSIW 3DUBIDS BPIM YSYN JuBWa|dLl 0} S30IN0S3. 4
10} 3|qe|ieAR 3wo03q 03 salbojoulpa) mau Jo Ae.le g|gedldde Ajpeo.q Juep |euoneziuebo ubisse 03 Y
Burpilyuod Ajlensn | Ajoyine ay3 Yim sioxew | siojessiuiwpy
pue ‘anbea Jeymauos ‘|esausb aq 0} pud} SHUIRISUCD pUB SPadU ‘syuep | Uoispap [9A3] Jaddn ySyN VSYN
3|1J0id sjuawInbay |esauan uondunsaqg | sojoy qeq juawdojaAsp ueld 103foud Ul pasn ow 9 e sweal}s afoid

9[0A2 uondaes 33f0id Jad "ow QT-6~ e

Sjusawalinbay pue sa|0y

SS320.d UOI129]9S 103[04d

uonew.os pafoid
[eniul nys uy Jo wioy padojaasp Ajybiy e si ssaooad uoides diN ®

uolssIw uonepljeA e —309(oid mau e Jo

siseq ay3 awodaq ued aepipued Abojouydal mau yoe]
2)epl|eA 0} saibojouyoa)

MaU Yoiym Buisooy) :ssa20.1d uodgas diN

(£ 4L €« € TdL) se1bojouydasy mau bunnjew sspnpul siyl =
SUOISSIW 2DUIDS 24NNy

S,WVSVYN 03 Juepodwi pawaap aJe jeyy saibojouyday
Mau 3epijeA 1ybiy aoeds :uoissiw s,welbold dIWN SY.L
BIUJOJI|ED UIBYINOS Ul pa3edo| Alojeloqge| Yyoieasal
(uonessiuiwpy 20eds pue sJiINeUOIdY |euoneN)
VSVN e ul dnoib v :(1dr) A1ojeloqe uoisindoud
319 33 18 (dWN) wedbold wniuudjjiiy MaN 3y L

S)IS PRl 9yl

A7
siawoisnd
N1da0u0D

1awoIsny |

/
(o) siwo1sng away L

N \

v1deouod

\
\
(dIN) s

{ fawn | to

@..

AT

n
woouod \) HpwDp
- |

\NC Py

SBojouyos L diN S,

//+\

2.

() s1epinoid
ABojouyda L

N 3d2@2u0) Joj si N ue|d
J29f0.d ‘suejd 323foad
9jepipue) N jo auq

N
weau)s 23foad

JIPINOId WOy N }daduo)
Joj saibojouyday

m:_uwnEmwumm?wﬁw

x.z._m

9oy gqeq

sysibojouydaj SJUabY/S10)0Y

dAIN W jo aug $s920.d :“'dAN

SI9pINOId SJ9pINOId

ABojouyday] 1 Jo auQ ABojouydaj :'q
sJawojisn)

sawdy] uoissiy d jo auQ ww_wﬂ_wmﬂwm
/SIdUMQ

sJojeJisiujwpy VSYN $59204d :0d

3]0y ss920.4d

uonP3I9S 103[0.1d pue S9|0Y

uoId9|es
109(0.4d |euly J0j SNSUSSUOD jING SS9004d BARIIRAWO0D
‘uado ‘pajuswiNdop-||oM ‘da3s-IINW ‘DAISUDIXT =

auo Jo uondwnsse
|euonipeJy ayy 03 pasoddo se ‘sypafoid sjdiynw aq pjnod swWodINQ =

yied aloid 51buis — sisAjeue sjuswadinbau jeuonipes sajney =
2uo ums_. jou dfma
sjuswaJinbas aAnnadwod gjjeled s|diinw puno4 =
uono9|as
19load pawlojul pue ‘spafoid pawel) pue payiuspl sjuswalinbay =
SjuswWalinbal pajdses pue pajeald spafold =
|euondadipiun
Jou ‘|euonoalipiq si sisAjeue sjuswalinbau
pue uono3Ies ‘sadloyd 10aloud usamiaq diysuone|ey =

(V¥DdIN) SIsAjeuy sjuswalinbay
9ARRdwWOo) [3jjeied 3dnNiA

syuswalinbal aAnebau Ajjenadss
‘uoIsap UoIL|S 13[01d Ul pasn ale syuswalinbal |aA9] a[old =
sjuswaJinbal s,30afoud yoea
soulyaJ os|e sweays 1afold usamiaq uonnadwo) =
sjuawa4inbal
19foid susaybn pue uoniuap P3foid sawel) uodafRs Abojouydsa =
SJuIRIISUOD pue S1500 ‘AjjIgeded
[ea160jouyd3] BUnRSIXa paJisspun pue pajuem Jo UoReduUSp! Aleg =
sjuswalinbal weays Joaloid saulyas pue
SwiIoJul sajepipued >mo_occumu usamiaq uonnadwo) =
syuswiaJlinbal s jawoisn)
away] Ag pauyap (sidoouod) sweadys pafoud |eluy =

SISAjleuy SjuswadIinbay pue uoilda|es
109[01d usamiag diysuoneoy

4

9J0J.19)Ul J43sh Jeljiuie) ‘9sn-0)}-Ased e
BUIUOISIDA/BUDIO0] (3]dWIS) e
Ss)si| Buljiew pajedabajul e

(4ad <-9d4jo
SW) UOISISAUO0D JUBWNIOP djjewiolne o

J0J3U0D SS922P JusaWnIop-4ad e

S)sl| ‘sdnoJab ‘joajuod
SS9JJPk pabeuew-43sn A|939|dWod o

Jasmo.q
goMm Aue Buisn Bulaeys Juswindop e

$9.N}e34 :20pP3)Ssod JuaJdJan)

(S9JIAIDBS IM) uoneabajul

uoljedijdde J0j ssadde dnnewwedpoad
paseq-sp.Jdepue)s uo siseyduwo o
94N)23)1Yd.de Jejnpowl/Jail-1inw e
SS9220 JAIYI.e [Iew-3 J0) dINN/dVNI e

(s102030.d Ae}|3@ “1SVA

“IOVv Huipnjoul) suonjedijdde/sdopisap

uJapouwl ojul uolje.abajul
«doJp-pue-pe.p,, 10} AVAGIM e
:dopjsop ay) yym uoljedbajuj

salbojouyda]
:9.4Nn3Nn4 20p31sod

‘Huipeay si uone.aoqejjod
JUSWINI0P 3J3YM pue dJ0p)sod
JO MIIAIDAO0 NUIW-UIDdYY VY

J0p)Sod
JO 3Jnjin4 pue jsed ayl

Y

A3jiag yaleasay sauly %%vo,
4 D

¢

£3Joddns-49sn 314 G'| ‘S19dO|9A3pP 714G’ | o
NOOM)se| sobessaw j[lew-3 000° L~ o
ejep Jo g909 e
}99M)se| ul pobho| SU9SN GET o
(AOBeseu 008Z~) SUN0dde dAI}Ie 00SH~ e
s.J0jedoqe||0d YSYN pue YSYN .10} 99.4) e
G6. Ul UD)JIM-3
‘$6. Ul SISIPUDIIS wedbo.dd wniuud|jin
MON 33} J0j SOWy Je podo|dAd(Q e

abesn :20p1Isod Juadan)

pog [= mausnbag | 44w g _|_| _m = s =
‘PuoENNdds yame s o1 smesds Sumpume
wnpe puss e i Appgrandds 2 e (AW 0SRM “HIRM IDAN DEE-TR0E dV0R) seopenpn sataeg qup Bumpmassy
D TEEE GIE 4 0
....... “AmEgys dRAIL [AIEASAY] SRILATAE AN
ymeg [« pyawou wes|= | T g 6 B0 | W D
|| T T, e T T FIRR G WL T B)
= O TH =l |y e Py 0pisod ket sseu 2 dopasodsdiy [T ssaggns

F-BF -5 v o peuid (T F Q- + - s

=&

JOYS U33.0S >._‘owm.w__no

(S)UOISSIW Y}HM MJ0oM 0] Buidoy o
9JeMYO0S

‘WIJSAS ‘oseqelep poauMO-YySYN e

sbid eauinb BUl|IM e

9AIYD.Je |edlI0)SIY WI3)}-BUuo] e
SjuUaWINdop Jo

A}OLIBA OPIM P JO UOI}DJ||0D 3b.e| o

9se(J9sn 3bJae| e

soniunl}ioddQ
:9.4njn4 d20p3lsod

SUoISN|DU0) «
NJOM 2J4nin4 «
sbulpuld [eiyuj
ADBOJOPOYION «
SV1):6uinas auyl «

MBIIAIDAQ

$]003 JO ped)sul ‘sassad0.d ul JJOM *
*s19do|aA9(g pue AR A:sdnouab om] =
* 1€ :S19d0|9ADP JO JaqWINN *=
:wed] JudwdolaAa(Qq «
*J01000000°1 "
‘eAef 0) pajaod Huiag aJe s |N9 “++)pue) =
:9P0I II.dN0S »
"S|00) JUDIIYIP 0 | JO pasodwiod SISy «

"(SV1))
WI)SAS uoljewoiny NOJVHL 123ua)

:builas ayl

JOJUI) YdJedsay SowWy/VSVN:
uJalu| Jowuwns sawy/vSvyN

pue jJuapnjs djenpe.g uiAd| N,
zSINYJ3IS ualJee
Xludd uyor
z1©€ZN0S 9p uospiIad|)

(SHNSaY [eryul)
swea| Juawdo|aA9(q 94eMY0S

9Alje.10qge||0) JO ApN)S PIdId V

‘syiodJje
JUDIDYIP 9 Ul PISh U3 sey } UdY) DUIS «

"eaJe |eujw.d)
93U} JOJ WI)SAS uoijewolne a.anynj
9y} se yv4 ayj Aq uasoyd sem)l 1661 U] ¢

‘s)1odJdie ab.ej

Je MOJj diyjed) Jie abeuew 0} S.a3]|0J3U0D

J1ed) Jie djay 0} paubisap sawy/VSYN
Je podo|9AdP S|00) Uoljewolne JO IMUNS Y «

"(SVDD)
W3)SAS UOIIRWOINY NODVYL J23Ud)

:buipyas ayl

"M op A9y} AHM Ajpueaodwi ysow
pue ‘op A3y} 3J43YM ‘uaym ‘moy ‘op Saado|dA3p Jeym *
P93123]10D S)ILJIYIP |BIDAIS =

Po31J9]|0) ejeq »
*s9)nuw
0Cl 0} Gp woJy Buibued MOU [IJUN SMIIAIDIUL § ©
sonbiuyd’a] MalAdduU| =
*$9]0J JUDIDYIP YHUM SJ3do|aAdp Huimopeys,, ¢
uoIleAIdsqQ yueddnaed =
Uuoli}d9]|0) ejeq o
‘ob
0] S)99M dJOoW JNO0J ‘MOoU [IPUN PI31} BY) Ul SYIOIM dAI{ =

Apnis piai4 «

ABoO|OpPOYION

|00} bupjdedy bHnq 9y}
ul sbnqg 9y} JO SII}JIDAIS pue sanilaolid =
:]00)}
WD 2U3 UM IOM 0) SMIIA pue sydue.q
m:_amw._u JOJ SUONUIAUOD m:_EmZ u
:sojdwiexy «
"AI9AI1)23Y)9 9jedadood Jybiw
sJasn A9y} jeyj oS S|00)} 3S9aY) 9snh
0) SUOIJUDAUOD)dope sJ2do|aAa(«

s}Insay [eniu

*Uo 0S pue ‘uolje.dauab yuodad
‘S9sed|a.d JO uoledUNUIPI ‘|OJJUO0D UOISJIA *
:9)1] SHSe) WS Jo uonewolne
apiaodd |00) Bupjoed) bng ay) pue) 9yl
*s)jsonbaJd abueyd pue apod 32.4n0S J0j
S91103}IsodaJ paJdeys 3pIAodd S|00) ISIY] o
*W)SsAs bupjoed) bnq =
pue ijuswabeuew uoneanbyuod =
:S]00) Jueldoduil JSON «

s}Insay [eniu

*'ss920.1d jey) ui1 bnqg e xi 0} sey auo
udyMm pasn Jlaje] SI uonewJojul siyjl ‘ssadoud
Jeym Joj djqisuodsad SI oym aJaeme d3q ued
A3Y3} jey) 0s ‘suado|aAap Mau AQ |00) Buluaed)

e Sse pash osje S| |[lew-9 ‘puey J9Yl}o 3ayj uQ -
isuoneoyniou
9pinoad 0) |00} DAIPDIYD jsow By} M S| ®

:jlew
-9 BuIsn uoneslunwwod juejsodw] «

s}INSay |eniu

*Abojouyda) siy) do|9Adp ‘Adessoddu | =
*dnoub siyj 40} y1o0ddns
ABojouyd?d) Joj sjuswJdinbad Ajyuapi =

:Jeob ajewidn «
[9pouw Judbe-1jjnw swye.dag =
AJo9y] papuno.c =
elep 9y} Jo SIsAjeuy «
"S$)[99M 3.JoW € J10J UOI}I3||0) ele(»

NJOM 9.n)n4

"Ul-)29Y2 93 3.10}9(

JYb1a suaodojoAlp AQ Juds |lew-3 =

{UOIJUDAUO0D Bulweu SNOIAD.I =
:sojdwiexy «

‘pajewiolne

Jjou aJde sJadojoAldp Y} Aq
po)dope SUOIJUDIAUOD 3Y) ‘UIAIMOH

s)INSay |e1iu|

juawido|aAa([|3]jeJed asuajuj «

"}JOM
SI9U)O JO SSOUIJEME SIPIAO.I] *

NQ S9seId IWOS Ul d1pewd|qo.dd =
jlew-3 BuUIsn UoEIIIUNWWO) «
SUOIJUDAUO) JO IS »

pbupje.)
bng pue W) HBuish uoneuipJIo0) «

S}INsSay JOo Adewwing JJoys

FJOM 9NN
S]00} 9S9Y) YHM swa|qo.d "
pue :s19d0o|2A3p 9y} Aq pash S|00) jJueldodw| =

S)INSaJ [eI)U] «
SPOYIaN

'SQWY/YSVN e p2do|2Aap 3d3foad |njssaddng =

-SVL) »

SUOoISN|DU0)

i [TIE3SAY S
20/5/8 Scllr e -

SM Buz ms/qejjo) uefey euuey

uoeJ0qe||0I J9JUII-JIJU| e

sy SR g [23011D SI UOIIEPI[EA PUR UOHEIYIIDA o
‘Plemy 1B3A 3} JO 31eMYOS o om0 uaskl sey a4emyos Jo A)xajdwo) e
6661 S:VSVN SUIM 150 1O Ju3by 330wy o o DL A $2160]0POYI3W SIEMYOS (;19119q) JOMIN o
6661 ‘12-2 | Ae JUBWILIDAXT JUDHY DJ0WIDY o sy - asnay 9JeM)oS e
de UHWS uiwelueg
NND suowuwlis pey
/jusbe-ajowau/syrafoad/Aobeseudaedl//dy suy »ofnmes 1Noos I
Ide anenbnoy sejoydIN
sy ﬁwmm:m,%x
de nespigey ba19
ININIH3dX3 Sy ek IS awi) S9YL) UOILI YIS dJeMpJRY MIN e
sewy Iled Asureg
feN B : s)yobpnq Jajybi] e
INIOV 310IN3d BV OpENOEmE d 326pnq 433yb11
sawy SWIOW [Med U.IN}9.J 9JU9IJS 9.0\ o
couy Rl el (4d1 ‘€S0 ‘VSIT) Yeadadeds panqrisia -
e ve M Ano (ISW ‘4IN) SJIB UO Sas.JdAed) abued buo] -
oy Bugsoy w0y, (4NOLNOD) SI2WOD BUISIA -
sewy Kopjeuey gog
u e g L ANx9|dwod IO e
ok ronues @penod s suoissiw adeds (43)daaq e
W e10nq Ueq AlJ pue 3s9] ‘pling ‘ubiSap 0) sawi) ped| J91I0Ys e
Ide afoa preyory
sowy skeloq 'y Aobaio
NIND SIe N00S JEIUETS) \\l./. . \\:4./,
R WIYD VOIS yoJseasay | yoJeasay |
E O oS TV SJ9ALIQ JUDIN) il
20/5/8 z0/5/8 v

SM bu3z ms/qejjo) uefey euuey

(nobeseudaepuefey-euue))

J9JUd) Y2.1e2s3Y sawy YSYN

pa.y S$J1)0qoy pue Awouoiny
Awouojny ye.daseds pea Q:Q.G
uefey euuey

£940J9(
9uob sey U0 ou 3J3YM 0B 9M Op MOH

JEIETS) T,

yoseasay h“\ !
sawy |

SM 6u3 MS/qejj0) uefey euuey A
o4V uefey euuey

weoj aJ3usids

pl'l4 SLLIOW [ned

Idr anbepjey a.4491d
o4y Aysyauey qog
1dr o)y suepy
plil4 uossuor Ly
o4y uolbuIbp3 M
dr Jsatey) ua
o4y eujsaug uyor
1dr eqeg uely

uejd A}AndY S|e09 UOIIPAISSGO
pay1ads Ajnd 19A37 YBIH

JEIIETS) T,

43N 10J NIIdVYIN woreasont (]

sewy |

20/5/8
SM Buz ms/qejjo) uefey euuey

ubISOp J0J SpOYIDoW dAIJRIOQR|I0) e

SISOUJUAS 2.1eM)O0S .10) Spoyjaul JO Aedde Uydiy e
uone}dl|y o) sjooL e

SWI)SAS showiouojne J0j ARA J0J SPOUYIdW |[eWIO] e

JEUELE Y
1 yoreasay | !
SpoaN >

20/6/8
SM bu3 mMs/qejjo) uefey euue)y

sdo uoissiw Buranp s3SUIIIS +00C e
(1dr) Jejs uolssiw +00€ o
aseyd ubi1sap ay3 Bulanp sISNUBIIS JO S,0] e

Yaw -
S9.N)|ND pue sduo0z
-9} SSOJDP djJ0qe]||0D 0] SAeM pul) 0) 3166NJ)S o
|epnJd
HUIWO0D9(dJe Spoylaw uol}isinbdy abpajmou) e
9sea.Jdul 9y) uo saydeo.adde paseq-|opowl JO UOIJON e
Aojdap/3s9)/plinq/ubisap 0} ,SS920.d,, e JO UOIJON e
JUSWAOIDAIP M/S U] [RPJJUDI DWO0IIA] sey HuIsa] e

DIEE
@ S}]/NsaoyY EEMMWMM .

20/S/8 20/S/8

(Se} /o))
>u.__m36 Ewum>m []O13UO0D youneT 3 1noxosy)d

21emyos aAoldwi pue jJuswdojaAsp
21eMos ul sysi a3ebniw sdisH

uodadsug 1934 jew.io4
judwdojaAdq 24empyos

20/S/8

doys)Jopn s|00] bulidauibul a1emyos aA13eI0qe||0D suonedo| [ea160] pue |edisAyd JuasayIp ul pa1edoT —
sw.ofeld JuaJayip uo pa1edoT —
S$2IN1ON.AIS pue SJew.o) eyl —

5|00} pue SUSWNJOopP uodadsu e
9104 yoea 10j SaiI|iqisuodsal Juasayiq —

(10303dsu7 ‘pea ealy 1onNpold ‘103etapo
ol =HUOH_F_UL< :O_HNE._O.._._._H 10Ny 1oNpo.d Mo ‘6°9) s9j0. JustalIq —

uonoadsug 199 |ew.i04 syuedpned e

(p,3u0d) uonoadsug 1934 jew.io4
JusdwdojoAdq 241emypos

20/S/8

uonoadsul Jaad

|ew.o) juswdolaAsp alemyjos poddns
0} 24n03)IYdJe paseq-ga\ 2|giXa|4 pue
31qIsuaxa ‘9|geziwoisnd e dojeAsp 0]

aARIqo

20/S/8

1SIPPaYD uodadsug S,103elapoly uondadsug -
1SI]YP3YD uoidadsu] pea eady 1onpoUd -
1SIP3YD uondadsu] s,4o030adsu -

1SIpPPRYD uoidadsur S,JoyINy 10Npo.id YoM -

S1SIPaY) uondadsu] paseq-s|oy e

sjudwndoq uonpadsug

20/S/8

1SX pue ewRYOS X o
burieauibus a1emyos paseq-jusauodwo) e

yoeo.addy

20/S/8

w0} ASAINS uonoejsies uonodadsug

Hoday ainsoD/Atewwung uoidadsul

w0y 607 10959Q uonoadsur J9ad

passalppe Jo/pue pamalAal

9q 0} paau jeyy sanss! uado Jo 3s1| Jo Alewwng
(saping

13sn ‘spJepuels *bH°9) s|eldje|y ou4a49Y Jo bunsi
INETINEYY)

1SIPPRY) buluue|d uonRdadsu] J99d

WJ0J UOIRJIAUT uodadsur 4934

(p,3u0d) sjusawndoq uonadsusg

20/S/8

1SIpjoaYD uoidadsur 31PNpold YI0M — 2INPad0ld 1S9 -
1SIpjoayD uondadsug 1oNpoUdd YIOM - ueld 1S9 -
1SIpjoayD uoidadsur 31PNpodd YI0M - uondadsu] apo)) -
1SIPPPRYD uonoadsur 3onpodd Yo - ubisaq pajielaq
1SIpjoayD uodadsug 31onpoUd YoM - ubisaq [oAa1-ybiH
ISIP/YD
uonoadsu] 1oNpo.d JHoA-uonedlnads s,Juswalinbay
1SIPP3YD 19NPO0Id HI0M-IUSWND0Q
SISIP3YD uoRdadsur 1oNpold YoM

(p,3u0d) sjusawndoq uonpadsug

()

uoipaadsu] 4aa

20/S/8

P

uonedo| uondadsu]

LSOI|IgIsuodsay,, Jopun pajsi| Xsel yoea Joj uois|dwod Jo ajeq
juedpnJed uondadsul ay3 Jo sweN

(*saduds 3533

pue ‘s|o0] 1s9] ‘sainpaooud 1591 ‘sueld 191 ‘apod ‘ubisap pajielap
‘ubisap |aAs)-doy ‘suonediinads syuswadinbal ‘suoniulyep 1deouod
‘syuswindop apnpul sajgelep) pajoadsul buiaqg 1onpoad o

(@1) 4equinu uonedyiuap! 33[0ld

saseyd uoiadsul snoLieA Ul 9j0J d1y19ads e Jo sanjigisuodsay
(*sisAjeue 109foad

pue ‘dn-mojjo4/x10mal uoipadsul ‘bunesw uodadsul ‘uoneledaid
uonadsul ‘mainiano ‘buiuueld apnjpul sajgeliep) aseyd uondadsu]
(*1ojel19pow pue ‘1oyadsul pes| eale 1onpold ‘1oadsul ‘doyine
1onpoud d4om apnpul ssjgeriep) uedpiped uodadsul ay3 JO 9]0y

20/S/8

juduodwio) 3sIPPaY) uondadsul paseg-210Yy
9|dwiex3y

ELE]

9slidJajua ay] 1e S|00] pue SjuUsaWnNIop
uonnadsul 0] s1asn paziioyine

JO SS200E juaJiedsue-uoniedoT

|2A3] 3s1idi]ua a3 Je uonpadsul Jaad

|ew.io) juswdolaAsp alemyjos poddns
0} 91Nn309)IYydJe 3sidinua paseq-gaM

aseyd X°N

_Eu_au ,.a_ SPEROBIONRRY

IE__IE
E_IE
IE_IE
E_IE
IE__IE
IE_IE

Ayanay Awdae))
e 1agaq
_H_H__.-nu—lﬂhl.). —-_utw_-:_u.—j u—hEm —-_w.—nﬁ— —hlwmnH

LEELT) O peaT eany 1anpoig wonaLI0)) wopduosay paja womEdeT 133ja(] Taqum)] 133Ja(]

monaadsuy jo adiy

s
13pI0IAY [10jRISPOTA

[= - F ar(
Joyiny

panadsu] Swag 1npos] oA,

807 199)3(1 wondadsuy 1334

sse201d ‘o1dep ddndead ‘sanfea
: ‘s3d22u0d [epowINW

‘Japul ‘Ayisseld .w..:mwws_ﬁj djBUIPI00))

IO Y S IV

h%:eah@vr\vom .ﬂ@ QQ:Qmum “—Qv—uam Q:,H “:Em
’ «”

‘AIsnouo.iyoufse

10 A|snououyouAs saijinnoe asay) buiwioLad
aliym aousliadxs buiuieb pue ‘buneaiunwiiiod
‘bunjeioqe|joo ‘ejdoad Jo dnoub e jo SaniAl3oe
pajenjis aAljog|jod Jo souewlioLiad ay |

uonuyaQ
1089 yoveasay sauty \ swyedg
J eomdrid oM -,
v &

700z ‘9 ssnsny
sjoog
Sur2au1Susy
aampfos
2anyv.10qn]10)
uo doysy.io4
VSVN-4ST

PaIduUdd-uBWINY pue A[[BONSI[OY (SWIISAS
[B21U093-0100S) SWAISAS JI1om FurugIsap pue uizAjeue
J10J sonbruyo9) pue suonejudsaidor pulj 03 S19AAQO »

¢ Aydeiboab pue uoijoeiajul

|ewliojul ‘saljiAI}oe pawnsal pue pajdnuiajul

‘Bunysel-ipnw ‘sioineyaq ,)sel}-4o,, ‘uoijeioqe|joo

s,9|doad apnjoul am jey} Aem e yons uj asnoeid
yJom s, uonieziuebio ue [opow aM Ued MOH -

13)U39 yaseasay Sauy swyedg

/4
V\ uor11sang) YoILasAY a,

Jy10Mm Jo Aouaroya sjoeduun
(jrewr-o “‘3urxe; ‘ouoydarey
‘uonedIUNWWOD J7J ‘dooy 9010A
*3°9) uonenyis ay) uo spuadop
UoNEIIUNWOD JO SUBIUW O}

PpojemyIs st

uonBIUNWWO) -«

108} plIom-[ear Sunosjep
UOIBI0[B dARY S)ORJI)IE
uoreo0] € 9Aey Sjuade

Aydeidoanyuswuoaiauy

SOIIAIIO Ul PAJEDIO SIOBJI)IE
SOIIAI}OR UI Pash S[00}

SIEJRIY P S[00L, .

13J139 Yaueasay sauy \

\w

4 P AU0d NdM

swyeisg

«# .. sis@poy
v a:_&im _mc:eu_

m,.o_oﬁ w m:::ﬁm_

ul pasn

ul u?

splald

LTI i B
Jo Buija pow j aw
|ELLLIny

[OUWIS SWYRLY Zupapofy swye.

EER

aaipedd yiom

SurppoIA _n.:%u:w\v

paje|ns Bulasgo ., SISHBPOW aaiaedd Hioe Bulaasqo
uope|nwis - SWASAS HOF . — wayshs
asnoeld YoM w SI3[poHL [emydaaiiod stsk &:<=hmv—> Apano g ue wny
AMIIAIUISV/[APOIA W £ : d .w
ul pasi . umts?._ 590 dtydeasouy)

J/ SUuIjopoJN QA1IRIOQE[[0)) “-

13J19 Yeasay sauy \

ooe[d JuoIofJIp/oW) JUSISPIP —
ooe[d owres/ow) JUSISPIP —
ooeyd JuoIolJIp/own) owes —
ooerd owres/ow) owres —
sjuaSe IoYI0 [HIm
JOBISIUI PUE 0] JOodI SjuaSe —
SJUISY UIIM)I(Q UONRIOQE[[0D)

paurjop A[jermyno pue
A]Te100s ST Ajfeuonel papunoq —
Jlom 193311 spareq —

SONIAT)OR SE JIoM

SJuI3Y % ma-.o._U .

141039 yreasay sauy \

%

SUIOpOJAl 2011081] IO @

swyeig

0L T SR PR O ettt sl conse | [T R AR L 936 e @8 e o

ﬁ : ek <] R
XIun e
‘s.Dd uo E:M

AEM

| seq __s__a_sm_. bsmmﬂ.rowﬂsimw

sfefdsyq uoyeMWIS 1Hsn-puy

duisuy :ccu_zz:m E?& R18I(] -
yudmuoIAug JudwdopAq ..oZUE&E E< eAef

RENN L @ws:wn.ﬁ uewmmé Aep

adensue] coazo.ha-a:ewaw "
| Wy | 2 T amr oB=g = i] BarY AS P
as&ﬁa&@%sv S ME“.-NLN

quSm o,

1df
18 WRISAS JIOA\ suoneIdd(UOISSIJA [9pOowW 0) swyelg S —

IOAOY uoneIo[dxy SIBN €0, e

SIBJA U0 Surjlom pue SUIAI] —
1B1IqeH SIBIN

uoneojdxy siej Jo 3untoddns syualy o[IQON —
SSI 29U} pIeOqUO 01}0RIJ JIOA\ 29 JIOMWEd], —
NIOMUWES [, O1}0qOY-UBWNY

_ﬁzs__gws,\ <m<z ”—“ m”—oo .—OHAH mEcEm
S/ :
¥ [oIeasay swyelg 1/

SUWHEE ALY (porenuuis) Swo)sAS o1em)jos .
(porenuus) sjudaly 2I1BMIJOS o
SIUBISISSY JUSSI[[AIU] o
$10q0Y 29 91doog parenwils .
aseyd udiso(q

juage Axoly —

PPOIN emdosuo) ktl O e som
P — : sjuady ohm&@om .

s10qou 29 9jdoad 10y s1Ualy —
SIUBISISSY JUSSI[[AIU] o
$10q0Yy 29 91dood JO S[OPOIN »
swnuny

syuase A LW , sjuade Axoad|

UONEZI[ENSIA /0D RIS ﬁ
A
o= = 01)BIIUIL) IPO)) SWIYeIg | ﬂ\
— - e Juade Joeiq

Judde ‘wo)

<>

sjuase AXoAg

== swryeag Vi

E

Rse vaa

és:s_ﬁéas,\ swyesg a§§§§§<\ swyesg
/ euIIQ pue eIduadn ‘udiso@ 4 QIUA3V 21190 &
\@v\i IS pue) D ‘ugdI Ql..\ \@v\ 1ud3VY J[IqQOIN «,

! yues

| wweay) woddng wea)
ﬁ Qﬂwn.uﬂﬂn%%ﬁad - ol Bupauanhbag pajesfan
Bumueld Aunpay 3ou19S 5 -— Q
i |
\ dnoas Bunjiop
X ‘II‘ suoperado s \‘
wxshsgng
sesdmuy
Bupsouivg

5, wnsAsang

1._;Iu.u._..ms.in e D /

= uomEmEEy |

senoy wusgR %,
“oRdauL o Gy 2
opuRE-S |
T =
L —
sy ez

WO EuspEsEy
Al WEVN

WEs L Swonelsdo sl
POy |OARI0D) UorSSIN

P

sdaM s

10j

an USISA(SO AN

$S3201J NI0A\

SO Jo uoyemuig

iy

B[BAI350(55955V 80018 J4 dway)ges 4

d 00:06:F 7007/67/6 Wd 00:0¢:€ 2007/6%/6

HO0YFJOMIDTNG

Wd 00:06:% 2007/62/6 , Wd 00:01i7 T003/6T/6

puodsal jouued pue

1oday Surmaraay Bd

ueld bELc 13ug Supeay 40 o
_ x Ju

B ; 110dag UMY _SE&\ JIE)g ”STm\am.a.v_uEu.;

E_Sm.._mpom.ﬁr._k 4

tonmm.uaaBon._muzum__.{._sm Py 7 Py 7

|
m “_B\ I8

I

a1epdn uelg EE& 13ug Aleupuyeld B2 JUAWSSassY 1304 108 JO PUA [E:

a1epd]"IB[f)OV 18U WAL ;J& JUaS5asSy 1807 TOSJOPUT TEN0B)

i

.____-"__m“_q 1004/6%/6 | s_n:_;a;u N_:_m,,_g.a | Nd _:_"2“_.” 2:523 | Hd _:_:_m"m Sﬁ,,,.:; | Nd _:_"__;N N____ﬁﬂ,_,,m | E._,____::",_. S__ﬁ.;,m

31N}09}1YdJ1y Sjueby 9JIqON

swyeig
juejsissy o130q

ﬁ

Jasojdx3g

oy eAg

waysAg bojeiq
swyeig
1an13s ooy
J9jeaday
ALV
NVM
EI0)

L1d SO dH yim
u31S9(J 2A1RIOQR[[0D)

TONEIOT 0L 8AOW AW i

LeAl[eH[eNUa) 0017 8P 0} Z-AARAIBISTINOS [BPId JA 7

UONEIOT 0L AA0W AW i AW
Z-BARANEISTINOS [~ 3P1E"0) L XARANEISUINOS [SP[d J& 7 PN

BAIY 0L 940K B

WOOYJUO) 2A0W J&

BUNIINHMOS BO

BUNION DMOS I

X .:s;_zm mog g u_,_m

7:4 Aunamg mynog g Bpig

UOREOT 0L 840U AW i TOHEOOT 01 240W AW i au i AW

e 7 AeaATEHIENULD 1001 W)z 4 3PIG 0}

47 3pId i i Z-R&E; 478pId J& i pry i By

4-3p1d 01" A-Y4®

BAIV 0L 940K B0

WOOYJUOY BAOW -y

FUNISH A0S B

3UNIBHDHOS T4

-)n;:nlnz:muw,naI;,Nwm\mgmwuﬂ‘»«nninmE,am g Briafy i
: b w

By i Py i

Py i

BAIY 0L 3AOH B

WOOHJUO) AAOW Ja

SUNAIHDHOS B
Sun88HDMOS J4

N i NQE—,H mov—&rﬁ Nﬁ—v——ﬂ\f/

w_u_m | i

X ?E_Ew o g u_u_m Bpig ,aaw

Z-A ?Eﬁm Tanog g u_zm

uone|nwWiIsS pue [opow swyelg
Bullepow [enideouoy) .
sisAjeue ejep aonoeid YIOA\ o
sIones AOIN -«
SJolgap HgJo-1s0d pue HGIo-UQ .
$O|NPaYos ‘sauldWI]
sainpaoo.d ‘sjenuew DG .
SMaIAJBIUI ‘sainjold ‘SOBpIA .

eleq -

13jlia] yoieasay Sauy \ swyeqg

SUEAT AT
¥ momn gs1 oy Sulopoy @

SI9Y)0 0) SUNEITUNWIWO0D pue

(53931qo ATepunoq) sue[d 90UIIOS MU JO UOEIL)

aurejuesasdey yurd) sousiog ualy

‘35N 2)e] 10j B18L] UB|d Jo Uoljeal))
z

| UDJd 12135 Zj05 Yy

O BADd|0g LR Jniag aRpdn)
L UBd Y0 205 Y 13N 3 E-L-U OO
<1 J3feT> <~ 133780 HONOL| —
aviong | | M om0l Lo o $ 2 =
-~ - " | afay By
e mgm_um wﬁﬂm e » £
palgo-aan)
g4 | ga | aBIew Ueld & 41955 B Ry Ry Ry Rry
® | B B1ePIEA™8| | UB|d 1% 0521057y 43I 0L IBYD W05 BINBBHDAOS &D ® ®
34 | qa | aepuese S noonromos g UR|d-GAIASq0"SSASSY0UAI0S ([

oM 30matog

JIBYD) E08 JusBy

TWO0Y3INITITOY)

TWOONHION 30TAIAG

(Z00z ‘uosspireq) SSgVy ue se swyesg Apnig «
SuoISsSIW
aoeds pauuew Bunuasaidal ul swyelg Jo asn alojdxg .
s/eob jeuisjul
" yIomwes)
1o poddns ul (jJneuoqoy ‘YSd ‘6°9) sjuaby onoqoy
10 a1emyog juabij|aju] snowouoiny J|DH "UOINIBXD

Juswdojonsp
ainpaosoud pue Buiuue|d uoissiy SS| Buruuerd .

.Ul pasn 8q 0} /jepowl «
SS| pieoquo yiomweal
pue saoljoeid YIOM puejsiepun pue Apnis o} Jogjiue .
sjeob jeuis)xg

;&&2&%&5&%\\ ml—\mow HOD_AOHAH mmH “..mkm
7 a

1007 ‘L KB\ ‘T dXJ SST SONIADRIY SUILIOTA

¥

oppin ted parBumeEaiam d | red Tewrew ed ed i ed |—ex daars :ed
[M M
JsepTeRgeany w0

T PoMEuIMES0IoM I M | an WounT M an an | an JeeRTeRaq Jmin T

a|npopaIAIg eaiyBumig g | afnpopy

ed LT

Haudnyoeg:ed | ced JeTTeT

1SEPJ{PaIgIARY (BD
I ISeIYPaIq M iIM M

WAWAnyaeg gmigm | s YounT JmiJm M OQTHI J# iym

sayujug

ANPopINLIIG

&

daags :ed

wawdnioeg:ed | :ed JeaTea | :ed qFATTET

ISEPEAIgaARY (ED
e ISBIHEIIq M M g

TAWInHIed JMga | gm WOunT MM | gm FATAT M M

doys oM US| - VSYN ooz snbny g g
ISIXd -
Sy se) Juapuadapadlul
‘ardninw yey)
30qo. 40 saljdwi uoneuip.aoo) -
9go.ad dceds ‘9)i||9)es yse} udAlb e uo
e se yons w.ojyeid Jay3}ab603) yJom ajdoad
9J2U3IIS e Jo uonedado udyMm sl uoljeaoqej|o) -
Jjoway :9jdwexy - oM} 3y}
dooj)oeqpady ud9M3aq ysinbunsip
J0 |0.Jju0d paso|) - 0} |NJasn Ing ‘paje|dy -

saul|peap pJeH - uoneuip.oo)
9JUJIJS oWll])-|e3dYy e *SA uolje.doqe]|jo) e

suoniuyag pue swaaj

v D

doysHIOM YSI - VSYN Zo0z snbnyg T

s)seIprOoJI(q SMON -SI00) uonebiAeu ejeq -
SpP.Jeda.0ds UOISSIN - S|00} Buinpayds -
:]Iouuosaad

UOISSIW JO SSOUDJPME ||RJDAO ISLIAIIU| o
***$92.1N0S3. DAINIL, JO UOIJLIYIION e
9JeJ.I9]Ul paseq-gaM ‘uowwiod
e J9pun s|00] SisAjeue ejep pue sal103}isoda.l
9|di3jnw 03 ss9ddk ,d0)S U0, IPIAO.I e

suoljnjos
_ basodoud pue sjuswaJinbay

- o

doysHIOM HSI - VSYN z00zsnbnyg T

sauwly YSYN / ZznJa) ejues dn
AoDBreseu-dJerjiewasel|d
npa*IsdN 3asd@sel|d
uosJapuis sel|y

uoljeuiIpJo0) 3IU3IDS W] -|eay
J0J S9.1Nn323)1YydJy buibessa
pue uol}edlJIJON JUSAT

v D

o
doys>IoM YS| - VSYN ooz ysnbnyg g

iAJINJ3G o w\.
JUSWIUOJIAUD Hulndwod SN03UIHO0.ID)IH e

suoljedado
UoISSIW JO 3.Jnjeu 9AI}ISUIS swi]

ssaud.Jeme jeuoljenyis buiuiejuiey
uonejiwisse pue uonebiAeu eyeq
S9|npayds buijelo.d/buiyiys
pPe3ayYJaA0 uonediunwwod ybiH

sobuajjey) ayj Jo sawos

v D

doysIIOM HSI - VSN z00zsnbnyg =

JJomiau
pue Wwoa)sAs uo peoj aziwjujw o0} ajqissod
JOAIJIYM uojewaojul [ind ueyy Jayjed ysnd e

doysHIOM YSI - VSYN Zo0z snbnyg T

NEE

ER Y

S9JUd.J3Jaud Jasn e
ssauaJdeme [eaaydiuad e
SAISPAUI AJJEWIUIN o

uo pabbhoj yse| Aay)y
9Juls sabueyd Aue yum
9jep 0} dn su3sh sdad) -

319 BIys 0) SS9JJ0k Ase] e
. . J19Y) }de)S SJ9sh uaym)saJajul
pyipne ‘p6Hojsju se Yyons sain yum pabboj SUOISSas SaYsI|qeIsaay - 10 s323[qo Adewad ay)
pue paJojiuow 3q ued SWIISAS 3|1} oWy e 2oudjsisdad uondiaasqgns e 3.JP S924N0SA. IAIPIY e
buibesso pJeoqyseq
/ UOI}EI1JIJON JUDAT ssaudJemy abuey)
® v ®
doys oM US| - VSYN 200 ‘¥snbny 9 Qgﬂ,:/ doys oM US| - VSYN 200 ‘¥snbny 9 Qgﬂ,:/
o~
M‘.
[opouwl

ujewop)snqo. pue 333jdwod e .Joj paaN

HNI2IYIPp way) bupusawn.aisul
s9)ew SwWa)sAs Adeha| pue sallojisoda.l
ejep Jo 3Janjeu SNO3UDIHO0.UI)IH e

p3]12U023. 9q 0] paau Ajljigejeds
pue ssauaAIssa.1dXa U9aM)a(Soape.] e

buibesso
/ UOI1}eIlJ1J0N JUIA]

@.

walsAs 3|4
| 8seqelepelsiy

apoD Janias Japeo

a1dwex3 (¢) a|dwis v

doys}IOM YS! - VSYN Tooz snbnyg g v
o~

suolssiw J93yjo
UyIm suosiedwo) -

W

s9)Is 9|dijnwi yoddns ubisap
0) Wd)SAS pudlxy e IN9 Jo uonepleA -
S9JIAJP playpuey wa)sAs uo
pue 3jiqow J0j} }2eqpoaa) J9sn }I3]|0) e
SDIAIDS M dOJdA3Q e JB3A JX3U aY)
JUSWIUOJIAUD sdQ JOAO uonejuawajdwi
JO siISAjeue MOIPIIOM o 9yl usiuld e

S3I}AIDY dJ4nyn4

v o

abneb jeanjdayydde “6°3 e
£9J4eM0S Bujuun.d ui uo Hulob s, JeyM e
ssauaJdeme uonedlddy -
yodaq abpajmou) ui suondiadsqns “6°9 e
Zudjuod yafoad
(3noqe sapeuw aJe SuoISIAP “H 3) S}I3ye 6PIIMOU)] JEUM o
ssaua.Jdeme 1d3fodd -

pasnpay
Anpqerep
uewny e

uoneuejdxy
[lewuin]
[TETITEN 11

S9]|0Y}104 Ul paAe|aJ sabew] “69 e Ajenuesb
ibuiop Aay) aae Ajybno. Jeym pue puno.e si OyMm e -I3dAy
ssauaJeme dnoag - QWA o
ssauaJeme JO sadA) awos e Aq w_u_”_._mmxh
. uewny Jo
[269Q] M1OM uMo s,uos.aad e m_uosgu.__ >m_
S)294Je Jey) SSI1IAIIIL U0 Jnoge uoljew.iojul s— Ale3 o
BulARY SURIW SSAUDJIEME ‘|RIDUIB U] = = =
so[lwpay - 1Jn so[IWpay - 1N
uoI)e.10qe||0) pUe SSaUIJeMY [€6pPoY] JoulRe|dX7
uapnjs |e.10320q 3s0d
(10. @ud) ojue) |9eydIN
J9YD1e3s3Y JUBpN)IS jenpeabaapun
yeAqels xey "9JUPAI|DJ

S.913.1v3S3Y JUBPNIS 9)eNpe.I9
oyji4 'S 'S 0)19qoy “g " lysoyjues ‘eznos aq "g 'y uospia|)

J10553J0.1d 31LI1I0SSY
sa|lwpay piaeq

ssauaJdemy
}Moddng 03 SJ9AU3S UOI}edIJON JUDAT Bulsn

so[Iwpay - DN

0} BuipJodde
MBIIA ISUdpPUOD
0} (31A3S J9)edY)
SIYy} se yoans)
S9ND |BNSIA SIS o

saoeds

JUBAD|DJ pue

sJojedaoqe||od jo
92Udsa.Ad SMOYS e

[661L19]W9)SAS S9|0Y)i0d e
YybHno.Jayj ssauaJdemy dnouds :ajdwexy

iiigol oy bu _v_oo._/A

66 Jauin /997 / uyosusbiio

saIwpay - DN

Py,

SUOEDOT |[R RTINS |

PR e JOJUOW Buissed aBeSSI [L.INIIUYIIY

USHES0T 49 PRTACES SIMSUT 1301 m1 o [(eawn [quans
| - 1 -
r 7 @ oo | i | | &
A A Sl ML LENCEHNIY 1R EHTEITH |
Il | T I wra | —
dpage] _._ 1| wdag Ajpen 1Y JEYL 3A0|E Ajua jou dym F
| ETEWOLNE eS8 Ain 30 u ___.va..;:. “ _ 3 A o Bwog — _ AR | epaes
“MOAG TUBLILE0 [BIO(IPPE JHUA B5ER|d _EE.L) E
uwsipun ~ S 0N ~ EOESWE | TOLENIVW| | | ESQSTXRIN | TEROSTAMTH,
abdineig ~ aniby A HGNRAL SIEHPIY AeAl o o= | _astass | seaemis |
T [_E.Eqi." B
[Y] LR ° il =
ﬁ covaans | oo || g 0,55-..2__ s | 7| |t || ssaseity |
51 JUSNDASANS U} SPEUS SO HS SHIEPIITAUL |SARA 40 APG DL BUTLISI meqsciin|zowaoey | = || [m k@hﬁi
:8Besseu wopeadxy T ___ || [t | | Taastarean | Teastanm| |
> LAGIIH W plavG | 381 puas | I T p— = |
caname | ooy || 00 : 4 = ne 1w
CHPQUEN | SXNRIYH| Lol
| E _ oy oonawn || [mvea] v | [ionvea | | | ([09] | o
. [rman L e
XIeqpas) ajeydey Ajleuondo puy | Fa |
[Farv i [0 _n.._._i
T mimaa [weeg
FLims el
v fa = [ey e [rodies
B et i FD [/ | T B0 TeARTArS0S 303y EaaEnmps Ton 43T 30daptrs 3 omen i wsaeeE R |

S)UdAD uonedijdde Joyuow syuaby - _— Sreaes m sn .z._.,

2] e
so[iwipay - [INn

sajuwpay - [N

[864H] buluoyuoy [Co4dS]
JUDAT UdALIg-uoeIadx]y - WIa3 ssouldJemy uolnedijddy Jo0j sabneo

‘sabueyd ubisap
puipuad ynoqe
?dIApe saziuebuao
pue syuasaJd (Y|
J9MOJ))sl| 0P
0),, Y]l "dJIApe
|nydjay apiaoad

Wes HouIE
el spadey ususgmduoany Teemceade geasan |
| eouayoay eneuy puE 4O it 508

sofussom |
ETIRBC R (o 51| B oun usap Apypeps dpg
v apaPay e O W) O PRPPE SIHILOD [BLOTE |

) 0y fprbi jaty pug wropasfuey LETue. |

appe aae selessan awog odey
pue ubisap sy} s s oy o) suisdas smaiboic R o I L R MoEN_E smMHE oy g
9zAjeue S21)1d st i g 40p posbis easnbinigy onoden soeon. R E Y IeEmOn] u ap woy |

ubisspoom | WFETTTT o e e ” ey & Bumoores Hery sdussagy |

e A
e e
s1aubiIsap ajIuM =

. SOBUSHAE DUALIVI UL SEADOLY
surmasd savata

RN BRI SN s
SuB3j SUTY SuBE 593 UT Ja6dd3 Tevmy

g
i 5
8
=
=
=]

L e 308 w3 pooE eoTE TTTA [e Jawdos ATimainh wew Sy sopdoy fi gL L H]
a w0 3w ATme up 26 03 AT P OTebe srl W3 R apdnmm £ peoussaga ‘s s ey
-] 3 5 = 3. I -
2 iy TH S3010 2 WD saFessapa
° oot ss v g —a e el (UONEUNONU IR puy
e analyy oy g ey Do gogs e colang ©f ea1don 1o a1 esnyomer |1

FBBEL"| U T HEnEI N 3oday A A yEnonp ssmosg |

ARSI MEA []

s1s) aassmoxg adoy, [

| mmag [w0 [| tsaum

Q=TT
..nu.__ E:k:n:.“ sncuy [SEAUD AWML MOG AIIAD EHOAILIEANE SAag1ay

~IOUL M o

TR P P

oapes “oecdon e _.l..u-.-u.l.B_-..._._ s
soqur sont B 00 o swepdpasges Wpal]
A JO FAEME UTEIRI 9 e Q_.S s1as[) o mﬂqaﬂum.ﬂ:m

M) PR |DE s

=
obuston FoBaen wy o

so[iWpay - [INn

sa[IwIpay - IDN
/6 ULRLUIBLULLIZ ‘S3[ILUpay ‘Jojue

[0044] [864HY] TNN/0bIY s [16241 30d9@ 96pajmou

'Spaau ssauisng pue
.SJ9sN pua ay) yyoq pue
92IA3p 93] JO SsJaubisap ayy
10 SpJemadJ aY) uaamiaq

PO WeisAS AlAnoy [066u3] wousebug HCOE_._O__M pJeMO] JIOM e

‘'Spaau ,ssauisng pue

¥0gv140 ALINAWNOD N SPJEMA. SI9Sh UDIMIDq
NOISIAIQ
yuswubije paemo) HJOM e
‘uoneziuehuo
FNODLNO*+—103rd0O 103rans Q_._H _U—._Q nmo_w_u_o_‘_wv_ﬂum

J9Y)0 ‘s.Jash ay)
0} paubisap s1 Abojouyda)
ey} 9dnsud d|oH e

'ssas0.4d a3
ul suapjoyaels ayy AJjuap| e

S1OV4I1dV ONILVIAIN

So[iWipay - [dNn

[209S)]
[ezopay] ubisaq@ pue A10ayL ANARDY

aqusqns -
(3A1923Y) AJIION -
(3sod) ysiigqnd -
S9JIAJSS JUSAT

JBWNSU0D JBWNSUoD JBWNSU0D
uorewou | uoiewLou| uolewou|

SJIAJDS
UOIIEIUIION JUDAT

q H3AH3S NOILVOI4ILON Q

(sobne9) suswnsuo)
uonew.oju|

ro-rwco

82.N0S uolpwIou|

$92.4N0S uoljew.aou|

So[IWpay - IdNn

9JIAJIS UOIJLIIJIION JUDAT

A0 (P

(

EAEE ouiunyfE

ydedg auil (@

peot (d

EAEE nod/sswaal B

ey Jeg (q

0 AUANLD OR]
leubis ¢ 17 I=

o iererens | J10G SSDAD0U (€
+09
* Fog _
. L1500 0F Ly ol guang
00} Apaoty YEH —
_ %I
diaH a4 _

FEiEE — ss=boy mmu 7

diay e [

FOF L
05

£ = 8

so[Iwpay - DN

[2049S] sobneo 340 2WO0S

*9A123[(O0 ue JO JUDBWIAIIYIE 3] }Iaye sbuiyy pue ajdoad Aueyy -
Adoayl AyAndy

(suonezijensia)

«Sabneo,, pasodand-modaeu 03] uorjewniojul siyy Ajddns

pue dduew.i0413d pue J0iAeYyd(;suonedijdde pajnglaisip ynoge
uoljewiojul 2y123ds 3231|102 pjnoys (uonejusdwnaisul) ,S9qo.dd, -

sobneo) e
s21d0} / s9110633]e) [Iewd 03 3GLIISINS Su1ash puy -
jodaq abpajmou)
SJ12ubisap 0] ejep yodad pue abesn uonedijdde Jopyuow sjudby -

W3d3
swa|qoud ubISap JO S.I3Sh pud AJijou SOINI) -

TAN/0BIY

saIwpay - DN

uoew.1oju] SSauUaJemy - awayl

SSaUa.leM W__go_\,_

mumm_u I aozué_u aldwis

Bluld ewnoog Jsdopreg BIUM

0 e

sajoylod 1001 X3 |dwo)d

S|00 | SSaUB Jlemy

353

(31215 Hoddnsl'dey Jewosn))
SIYIOM3[IQOIN

(seseqerp ‘sieauspes.Ids ‘sieded)
S1%e41Y pareys

(swooi eyd Sanin)
SIUBWIUOJIAUT enUIA

(seBpeg annov ‘sejoyniod)
SjuBWIUOJIAUT [eaIsAyd

Sa0.1N0S uolrew loju|

So[IWpay - IdNn

;ssauaJdeme

paje.bHoajul apirnodd
0}) SI ASseo MOH

u abneo ¢ abreo

2 abrmeo T abreo

N\

/

SNISS VD oS UOIEDINON

A

A

JORINWIS SOV/Y 92IN0S UOITRWIOJU|

so[Iwpay - DN

Aba3jea3s SSY) 9y} buisn

sabneg

©

@ AgnoN

SUOLJEIYTION

Awareness Tools

oquosqng suonduosqng s @

suondrosqng

uonmuyag pou_‘n—o 30.}@ m.un;,H auyad

$)08[qQ) a|qequosqng Ma1A spalgo aquasa
83517 399090

15177 20INOG MITA @ 12151321u)/12)5150y

@ Information Sources

JSI7] 22IN0g

saIwpay - DN

JOAJI9S SNISSV)

Jd
HE:EG

SOVMV

Joopeda]l

A)olIeA-|1e)9(q 9Y) pue A)jigeabueyd.aaju]
Nnunul cnicocwWn

‘suonedijdde Jo0j sanijiqeded

SSaua.JeMme [njasn pue djgesn apiaoud

0) AB3)e.)s pue S9IIAJIS |[NJash pue a|qesn Jo
)9S e 3pIA0Id 0) NO3S aM—A)ljIqesn SI [eob 3Yy] e

"Al1qIX3a]) pue abueyd Joj

ub1Sap 0} 11043 LJIX3 puadxa)snwi sJaubisap

AJJUddand ‘saldeA (SJ2Wnsuod pue ‘s92.nos

UOIPWLIOJUI ‘SIDAIIS “JUIdYIP 3|di}nw “H9)
SWI)SAS SN03U3H0.1339Y “Xa|dwo)d J0j Juoddns e

'SJ0JJ9 bulwwedbo.ud pue ubisap o) auouad

pue |9A3]-MO]| AIDA SI Uoljew.ojul ssauaJaeme

Huije.aod.aodul SwW)SAs Bulpjing J0j (SIIAIIS
uonelnou “H9) d4eMYos djgejieAe dY] o

So[iWipay - [dNn

suoIsn|puo)

S9JU3.19)9Y

So[IWpay - IdNn

sJayjoue
0] JIAJIS UOIILILIIoU B WOy abueyd 0) ASea Moy J0 ‘SI9AIIS
uonedyiou ay) Aq pajusawajdwi S93LIJUI 3] R JBUM e

{SJUDAD 3] aJe [nj1amod MOH J0 JIAISS Uoijedlijou ayy
0] JUIS SJUIAD 3Y) 0) PIILIDOSSE S| UOIJLWLIOJUI-RIBW YIIYM o

iuonedaysibad 1230 pue JUIA3 Jnoge sanss|
JO “I9AJ3S UOIILIYII0U 3Y) 0] SJUIAD PUIS UL SIIAO UDIYM o

ipajsoddns
Huiydjew Jo s9dA) ay) aJe JeUM ¢I9AUIS uonedyiou
UJea .10j IIIAIIS uondiadsqns 9yl SI [NJUOMOd MOH o

isabneb ayj pue
JOAJDS UOIILIPIIOU DY) UDIM)D(SINJIDNYIIY |Ind "SA ysnd
JO 9NSS| Y] JO SYUDAD 3Y) Jnoge payiou aJe sabneb MOH o
sojwpay - N

SONSS|

aJanjonJjse.jul
uoIILIII0U JUSAS ue ybnoay) pajedbaju -

ésojoyyaod

Zsobneb Adelid pue A31.1nJas

sabneb uonyedddy

suonelyiyou jlewy

suonej}radxa Apjigesn

SO

""" §9JIN9Pp SSIUa.Jeme JOo >uw_._m> ._wumw._m Y o
so[Iwpay - 1N

"* SPJOM J3Y]0 U]

—— So[iuIpay - DN

SapI|S eJIx3

—— S9wIpay - DN

"ss34d Ul 2002 ‘bg-2C AP ‘(Aley] ‘ojuaay
2002 IAY) 22Ud43ju0) HUDIOM |BUOIIRUIDIU| SDIRLIDIU] |BNSIA PIIURAPY YL ‘SMIIA (S13sN pu3 ay) bunuoddns *q ‘sajiwpay
*200z ‘Jeadde 0} pue pajdadde ‘ubisaq JO 9213Ie.d BY) pue Aloay] AJAIDY UO anss| [e1dadsS ‘NIOM dAneI2d00)
pajtoddns-aa)ndwo) ‘ubisaq Jo ad112e.d 9Y) pue A1oay | ANAIIIY UO MDS) JO anss ads 9y 0) U0NINPOJIU| *Q ‘S|IWPY
'G6 1- 121 'dd ‘066 | ‘BSSRIANSBAAS ‘Bss:A) ewi outedefay) nyjauled ‘Guluibew)
pue 6uplIoM ‘Bujulea Jo g Jaidey) “ANAIDY UBWINY Ul S}IBJIIY JO SBUjuRS S|dIIINIA |00] B S| UBYM "WQa3sabul ‘A
“¢é-éi "dd ‘Z00g ‘ubisaq Jo 9d132e.d 3Y) pue Au0dYy] AJAIIIY UO anss] [e1ads HJOM dA13RI2d00)
pajoddns-aa3ndwo) ‘saydua.L SY) WO.1 MIIA V:uBISaQ WISAS pue AJoay] ANAIIY " ‘S3lIWpay S ‘epinys “d ‘suljjo)
Jeadde 03 ‘Z00Z JIGWISAON ‘(YW
‘abplqu e)) suoned)jddy pue HulIaauIBu3 21EMYOS UO 3DUDIJUO0) eUORUIdIU| ILSY] 2U) JO SBUIPaaI0.d aY) ul Jeadde
0} ‘ssauademy uonedijddy 310ddng 0} SI9AISS UOIILIYIION JUSAT Buisn *@ ‘SaIWPayY “@'S ‘edqemsaneseg “g-y*)‘eznos ap
"8~ IEL "dd ‘100 AInf ‘(ueder ‘0A)0L ‘ 100Z 1VYILINI) uondetau] J9yndwo)
—UBWINY UO 32U3J3JU0) € | D1 dI41 U613 ‘ssauasemy snoynbiqn .10j 84nynaisequ] ue bupeas) *q ‘sajwpay “w ‘Jojuey
"9g-61"dd ‘2661 ‘. J9qQUISAON
‘YD “QUIAU| “DURMYOS Ul UM YdJe3sdY SUIAL] DN (VD ‘DUIAI]) wniSodWAS 34eMYO0S BIUIOJIIR) 266 | dY) JO SBuIpaadodd
“Jodag 36pa|mou)y 33 JO IS YBNOJLY] SSAUSIEMY 123[04d 03 AIOWIW dNoI9 Wo.4 Q ‘SINIWPSY g ‘UUBIIBWIWIZ “IN ‘Jojue)y
'Sk 1-9€ | dd ‘866 | ‘G2-6 1 IMdY
‘ssa.1d A191206 49Indwo) 333 ‘(ueder ‘0)0A) ‘86, 35D 1) HulI9BUIHUT S4EMYOS UO IIUSIDJUO) [EUOHRUIDIU| YID1JUIM] B}
10 s6UIPaa0.4 ‘}oUJIdIU| BY) JBAQ BIeQ d6eSn uonedliddy JO uo1}29]10) 3ers-ab.e] 0) Yoeoaddy uy “Q ‘so|IWIPaY “a ‘MRqIIH
'68-6.2"dd ‘000 Alenuer ‘z°0N ‘i "|JOA ABojouydal
91EM)OS PUE UOKRWION] “TNN/OBJY Ul 36UBYIIIU| IIWX PUE ‘92UJaypy TAN ‘Woddns aARIub0) *q ‘s pay “r ‘suiqqoy
062-19¢ dd ‘866 L AINf ‘€ "ON ‘G *|OA ‘BuidauIbuz

84EMYOS PaJRWOoINY ‘UBISIQ B4NIIINYIIY JEMYOS 0} 11AU ubisaq Gy 3°Q ‘sall @ “MBqIIH “r ‘suy
*€2-19 "dd ‘€66 | 11MdY ‘WDV ‘(SPUBRIIIYIDN UL ‘WepII)swy) SBUIPIII0IJ IIUIIBJU0) €6, IHIYILNI ‘SwISAS buindwo)
uj s40)2e4 uewny ‘sajdwex3 paule|dx3 ybnoay AULWIOLIR SIdWwWel 60.d J0 ANjiqelieA ay) Hudnpay *q ‘sajiwpay
*666 | ‘G9b-8Sh "dd ‘ssa.d SOI ‘66, LIVHILNI uondeIaju| 19)ndwio)
—UBWNY U] ‘92U3J3)3.d 43S PUE SI|OYI0G J0} UbISaQ :AN204d1d3Y pue J1qnd uj Hulag | ‘Iauan] “y ‘937 v ‘uyosuabaiy

S9JU3.13J9Y

—— S9IuIpay - DN

*‘Ajunwwod
e 0} }039dsaJ yum Auaojsiy
e 9AeY S)oejidie BUIRIPON e

BPON WaisAS A1IANDY wolssbul -53WI07)N0 UILIGO pue

ALINAANOD $)29[qo d)e|ndiuew s)dafqns

o s31ny d|3y spoejiyae buneipay e
*SUOI}Ie JeyM suiogaad oym

S9UIWJI)DP Joqe] JO UOISIAIQ e

JINODLNO*+—LO3rd0 1ozrans *§329[(0 YUM uodeI)Ul
J19Y} pue s)23[qns jo
JoiAeYyd(q Y} DUIWLIDIDP SOINY o
S1OV4I1dV ONILVIAIN *3WI0J)N0 ue ujey}qo o0} WHUQ_.DO
UMM IOM Jey) AHunwiwod
e ulyym 91doad aJe s)d3fgqns e

A103y] ANAIDY
:3S + Aydeabouyi3j

Part 2: Follow-up Materials

Citations for Follow-Up Materials

de Souza, C.R.B., Penix, J., Sierhuis, M., Redmiles, D. Analysis of Work Practices of a Collaborative
Software Development Team, International Symposium on Empirical software Engineering (ISESP 2002,
Nara, Japan), V. 11, October 2002.

Kantor, M., Redmiles, D. CASSIUS: Designing Dynamic Subscription and Awareness Services, Workshop
on Ad hoc Communications and Collaboration in Ubiquitous Computing Environments, ACM Conference

on Computer Supported Cooperative Work (CSCW 2002— New Orleans, LA), November 2002, available

at http://www.cs.uoregon.edu/research/wearables/cscw2002ws/papers/Kantor.pdf.

Silva Filho, R.S., Slabyak, M., Redmiles, D.F. A Web-based Infrastructure for Group Awareness based on
Events, Workshop on Network Services for Groupware, ACM Conference on Computer Supported
Cooperative Work (CSCW 2002—New Orleans, LA), November 2002, available at
http://awareness.ics.uci.edu/~rsilvafi/papers/Workshops/CSCW?2002-workshop.pdf.

de Souza, C.R.B., Redmiles, D.F., Mark, G., Penix, J., Sierhuis, M. Management of Interdependencies in
Collaborative Software Development, ACM-IEEE International Symposium on Empirical Software
Engineering (ISESE 2003), September 2003.

de Souza, C.R.B., Redmiles, D.F., Opportunities for Extending Activity Theory for Studying Collaborative
Software Development, Workshop on Applying Activity Theory to CSCW Research and Practice, in
conjunction with the 8th European Conference of Computer-Supported Cooperative Work (ECSCW
2003—Helsinki, Finland), September 2003, available at http://www.uku.fi/atkk/actad/ecscw2003-
at/desouza+redmiles.pdf.

de Souza, C.R.B., Redmiles, D.F., ‘Breaking the Code’, Private and Public Work in Collaborative Software
Development, Supplement Proceedings of the 8th European Conference of Computer-Supported
Cooperative Work (ECSCW 2003—Helsinki, Finland), September 2003.

de Souza, C.R.B., Redmiles, D., Dourish, P., ‘Breaking the Code’, Private and Public Work in
Collaborative Software Development, International Conference on Supporting Group Work (Group 2003—
Sanibel Island, FL), November 2003.

Analysis of Work Practices of a Collaborative Software Development Team

Cleidson R. B. de Souza'” John Penix®

'Department of Information and
Computer Science
University of California, Irvine
Irvine, CA, USA

Abstract

This paper reports preliminary results of a field study of a
software development team. This team develops a suite of
tools called CTAS, designed to help air traffic controllers
manage complex air traffic flows at large airports. We
observed that CTAS developers employ two main tools for
coordinating their work: a configuration management
system and a bug tracking system. These tools allow them
to coordinate their activities supporting a high level of
parallel development. Communication and cooperation
among developers with different roles is achieved using
product requests. Future results from our study will pro-
vide insights into the complexities of cooperative software
development and help to design tools to support it.

Keywords: Field Study, Empirical Studies, CSCW, Coop-
erative Work, Cooperative Software Development.

1. Introduction

Software development is a typical cooperative activity
where experts from different domains are necessary. In-
deed, developers of large systems spend about 70% of
their time working with others[10]. At NASA, this prob-
lem is much more difficult because of the increasing com-
plexity of the software being developed. In fact, several
efforts to improve the software engineering practices
through the dissemination of best practices and infusion of
new technologies are taking place at NASA. However,
these efforts will only be effective if they address the real
ways that people work together to develop software.

Gerson and Star[1] observe that no matter how formal
and well-defined a process may seem, there is always a set
of informal practices by which individuals and groups
monitor and maintain the process, keep it on track, recog-
nize opportunities for action and the necessity for inter-
vention or deviation. In order to understand these prac-
tices, the first author conducted an eight-week qualitative
study of a software development team using non-

¥ The authors would like to thank the CTAS group for their help during the
fieldwork and the NASA Research Grant NAG2-1555 for the financial
support. The first author would also like to thank CAPES (grant BEX
1312/99-5) for the financial support. He is also a faculty at the Department
of Informatics, Federal University of Para, Belém, Para, Brazil.

’Computacional Sciences
Division
NASA Ames Research Center
Moffett Field, CA, USA

David Redmiles'

I Research Institute for
Advanced Computer Science
NASA Ames Research Center

Moffett Field, CA, USA

Marteen Sierhuis®

participant observation and informal interviews for data
collection. This paper reports our initial findings.

2. The Setting

The group observed develops an application called
CTAS (Center TRACON Automation System). CTAS is a
suite of advisory tools designed to help air traffic control-
lers manage the complex air traffic flow at large airports.
The source code is developed in C and C++ and is about
1,000 K lines long. The development team is divided in
two groups: developers and the verification and validation
(V&V) staff. Developers are responsible for writing new
code, for performing bug fixing and enhancements, and so
on. There are 25 developers, including researchers that
write their own code. The V&V staff is responsible for
testing the software and reporting, keeping a running ver-
sion for demonstration purposes and maintaining user
manuals. This group is composed of six engineers.

3. The Methods

The first author spent eight weeks at the field site. We
adopted non-participant observation[3] and informal in-
terviews[5]. In addition to field notes generated by the
observations and interviews, we collected software devel-
opment tool manuals, ISO 9000 procedures, product re-
quests for software changes (PR’s), and e-mails ex-
changed regarding the data and documents.

Initial data collection was centered on understanding
the daily work of the developers. During this stage, it be-
came clear that the configuration management (CM) and
the bug tracking tools combined with e-mail communica-
tion were central to the coordination of activities. These
results are not surprising based on previous studies by
Grinter[2]. Therefore, later data collection was focused on
understanding exactly how developers use these tools to
perform their work. The interviews focused on observing
and understanding the usage patterns of these tools.

4. Initial Findings

An important aspect in fieldwork is the interplay be-
tween data collection and analysis: data collection is di-
rected by on-going analysis of the data[9]. Our initial re-

sults of this analysis are described in this section. Further
analysis is still necessary to obtain more reliable results.
4.1 Parallel Development

We noted that software developers often engage in par-
allel development. This confirms the results from Perry et
al.[6], but contrasts with the groups studied by Grinter[2],
where developers avoided this situation. Parallel develop-
ment usually happens when more than one developer has
to make changes in the same file. Conflicts might occur
when one of these developers check the file back in the
repository, because the current version of other developer
will be outdated and his modifications might be based on
the code that was modified. To update his version, one
only needs to merge the other changes back in his code.
According to the developers, these conflicts are infrequent
and not likely to occur. We plan to use log of the tool us-
age to test this assumption.

In order to avoid these conflicts, the group adopted the
convention that before checking one file in, a developer
must send an e-mail to their mailing list describing the
files that were changed and the product request associated
with the changes. Developers even go to their co-worker’s
office to talk about the changes that they made or browse
the CM repository in order to understand these changes.

Another strategy used by the developers is the partial
check-in, i.e., to check files in, even when their work is
not completely finished. This strategy is employed by
those who work with files that are constantly changed by
several developers, which makes conflicts more likely.
This helps them to prevent those conflicts and avoid sev-
eral back merges to update their code.

4.2 Conventions

The team studied adopts several conventions in order to
cooperate effectively. Conventions are rules or arrange-
ments established in the group, common and accessible to
its members[4]. Examples of such conventions are the e-
mail that has to be sent before the check-in, or the naming
conventions that must be followed when dealing with the
CM and bug tracking tools. However, these conventions
are not properly supported by their tools which is a source
of complaints by the developers. For example, the creation
of branches in the CM tool must be based on the PR num-
ber recorded in the bug tracking tool. This creation is a
cumbersome process that could be easily automated since
this is a standard procedure.

4.3 Product Requests (PR’s) as Boundary Objects
During the fieldwork, we also identified that PR’s are
used as boundary objects by members of the team with
different roles. Boundary objects are objects both plastic
enough to adapt to local needs and the constraints of the
several parties employing them, yet robust enough to

maintain a common identity across sites[8]. In this group,
PR’s are used by end-users liaisons, developers and testers
serving for different functions. For example, when a bug
is identified, it is associated with a specific PR. Whoever
identified the problem is also responsible for describing
‘how to repeat’ it. The developer assigned to repair the
bug uses this description to identify and fix it. After that,
he must fill a field in the PR that describes how the testing
should be performed to properly validate the fix. This in-
formation is expanded by the test manager to create the
test matrices that are later used by the testers. Another
field conveys what needs to be checked by the manager
when closing the PR. Therefore, it is a reminder of the
aspects that need to be validated.

5. Conclusions and Future Work

Data analysis will be performed using grounded the-
ory[9] and analytical tools like boundary objects and social
networks. We also plan to use the Brahms work practice
modeling and simulation method[7], in order to simulate
the impact of inserting collaborative tools into the devel-
opment activity. We are particularly interested in under-
standing the consequences of the parallel development
identified in this group: reasons why these developers en-
gage in parallel development might be social, organiza-
tional, technological or combinations there of. It is impor-
tant to identify and understand these reasons so that this
practice might be improved, made more effective or safely
adopted by other development groups. Initial results indi-
cate that the branching strategy employed in the CM tool
properly supports such development, but this is still an
open question. We collected log usage data and plan to
apply statistical techniques to validate this hypothesis.

6. References

[1] Gerson, E. M. and Star, S. L. Analyzing Due Process in the Workplace.
ACM Trans. on Office Information Systems, 1986. 4(3): p. 257-270.

[2] Grinter, R., Supporting Articulation Work Using Configuration Man-
agement Systems. Journal of Computer Supported Cooperative Work,
1996. 5(4): p. 447-465.

[3] Jorgensen, D. L., Participant Observation: A Methodology for Human
Studies. 1989, Thousand Oaks: SAGE Publications.

[4] Mark, G., et al. Supporting Groupware Conventions through Contex-
tual Awareness. in (ECSCW '97). 1997, p. 253-268.

[5] McCracken, G., The Long Interview. 1988: SAGE Publications.

[6] Perry, D. E., Siy, H. and Votta, L. G. Parallel Changes in Large Scale
Software Development: An Observational Case Study. in ICSE 1998.
[7] Sierhuis, M., Modeling and Simulating Work Practices. BRAHMS: a
multiagent modeling and simulation language for work system analy-

sis and desing. 2001: Ponsen & Looijen BV.

[8] Star, S. L. and Griesemer, J. R. Institutional Ecology, Translations and
Boundary Objects: Amateurs and Professionals in Berkeley's Museum
of Vertebrate Zoology. Social Studies of Science, 1989. 19.

[9] Strauss, A. and J. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. Second. ed. 1998,
Thousand Oaks: SAGE Publications.

[10] Vessey, 1. and A. P. Sravanapudi, CASE Tools as Collaborative Sup-
port Technologies. CACM, 1995. 38(1): pp. 83-95.

CASSIUS: Designing Dynamic Subscription and
Awareness Services

Michael Kantor
Institute for Software Research
University of California, Irvine

Irvine, CA 92612 USA
mkantor@ics.uci.edu

ABSTRACT

CASSIUS is an awareness server which assists users in
designing subscriptions for maintaining awareness of
events within work, physical and social environments.
This environment is designed to work with a wide range of
awareness tools using desktop computers, mobile devices
and ambient fixtures[4]. This work investigates the
requirements for creating ad-hoc subscriptions — a
subscription that is created either by the user or a software
agent, and which only exists for a brief period of time.
Design guidelines are proposed that help address the
problem inherent in having users invest effort in creating a
subscription which may last for only the few minutes in
which they are in a specific location or context.

Keywords
Awareness tools, Notification servers, agents, CASSIUS,
ad-hoc networks

INTRODUCTION

The "Creating Awareness with Subscription Services"
(CASS) strategy is an approach for creating a ubiquitous
awareness environment [5]. The goal is to enhance people's
ability to coordinate with various actors within work,
physical and social environments by providing a usable and
useful environment for awareness and coordination. The
CASS strategy consists of a set of guidelines for the design
of software based awareness environments.

This paper begins by presenting an overview of these
guidelines and presents our implementation of this
ubiquitous awareness. We then discuss potential
extensions to the guidelines and implementation which
address the issues of designing an awareness environment
that is usable for the ad-hoc creation of subscriptions for
monitoring contextual information.

CASS Guidelines

The CASS strategy consists of a set of guidelines for
creating a usable and useful awareness environment. These
guidelines can be divided into three categories: provide
access to diverse information, remove guesswork from

LEAVE BLANK THE LAST 2.5 ¢cm (1) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

David Redmiles
Institute for Software Research
University of California, Irvine

Irvine, CA 92612 USA
redmiles@jics.uci.edu

specifying the information of interest and support
flexibility in the choice of awareness styles for representing
awareness information.

Provide Access to Diverse Information

Research in awareness technologies has focused upon tools
designed to monitor a single source (or a narrowly defined
set of sources) of awareness information. This has been the
case because the projects were either experimental,
investigating a style of presenting awareness information
with some demonstration source of awareness information
or because they were implemented within a context where
there was only one information source that the designer was
interested in.

In a ubiquitous awareness environment, an awareness tool
has access to diverse sources of awareness information
allowing each user to monitor the kinds of information that
matter to them. This was done by the Elvin Tickertape [3]
which could monitor discussion groups, news, email, and
other notifications sent to the notification server. To
support awareness and coordination in diverse
environments, we can not limit ourselves to monitoring a
single source of information. An awareness tool needs to
be able to obtain information from multiple sources of
awareness information, and integrate them together to give
users a broader understanding of what is happening within
their work, social or physical environments. Nor can we
limit users by telling them that the only information that
they can become aware of is news, photos of offices [1], or
any other single source.

Remove Guesswork from Specifying Information of Interest
Having access to diverse sources of awareness information
would be insufficient if the user does not know what
sources of information are available. To provide a usable
awareness environment, the user needs to be informed
(preferably by the awareness tools rather than by coworkers)
of what sources of awareness information are available,
what each source monitors, and what kinds of changes and
events can be detected. The awareness environment must
provide users with meta information describing the
awareness information accessible to the environment.

For example, if a source of information is a research paper,
the sections and subsections could be monitored for
changes, as could word or page counts. As a second
example, if users monitor for traffic problems, they need to

know what freeways and roads are monitored and what
kinds of traffic events are reported so that they can choose
which ones to monitor.

Without this meta information, any attempt by the user to
describe their interests involves a great deal of guesswork,
leading at best to partial success, and more likely to
frustration. Access to this type of information is a
prerequisite for a usable ubiquitous awareness environment.

Support Choice of Awareness Styles

A common problem with awareness technologies is that
they tend to provide a fixed awareness style with very little
room for selection of alternatives. In this work, the term
awareness style refers to the manner in which information
is presented to users and varies along a variety of
dimensions including:

1. Intrusive vs. peripheral dimension: how
intrusive/disruptive is the presentation of new
awareness information? If the goal is to be
immediately notified of information as it occurs, an
intrusive style is needed. If the goal is to maintain
general awareness of ones environment, utilization of
peripheral senses may be more appropriate.

2. Mobility dimension: Can the awareness tool be used
as a person's work moves through different physical
and social contexts? Can it use mobile devices, or
does it require greater display, networking or
computational resources? Does its presentation style
require the kind of user attention only available
within an office or control room?

3. Information Representation dimension: What kinds
of information does the representation of the
information focus upon?

4. Cognitive Effort dimension: How much effort is
needed to interpret the representation?

To provide an awareness environment that is useful, people
need to not only be able to choose what information to
monitor, they need to be able to choose how to be made
aware of the information. Ideally, they would have
hundreds of different awareness tools to choose from, and
could choose the one which best fits their work
environment, work practices and their needs with respect to
some subset of the information they intend to monitor.

Further, the user should not be limited to one awareness
tool at a time, nor one awareness tool for any source of
awareness information. As a user leaves an office setting
for a meeting, lunch or other situations, the style of
awareness that suits this new environment may change and
the user needs to have the option of changing awareness
tools to match the new environment. When the user is in
the office, there may be many sources of information, one
subset of which is monitored with an intrusive tool, and a
second subset of which is monitored with a peripheral
awareness tool.

CASSIUS

Our implementation of the CASS strategy is called
CASSIUS (CASS Information Update Server). It is a
notification server [7] which has been optimized for
usability as an awareness server. Figure 1 shows a service-
based architecture that CASSIUS implements, and Figure 2
shows an awareness source browser and subscription editor
provided with our CASSandra toolkit.

As shown in the top two services of Figure 1, sources of
awareness information must register with the server, listing
the objects that they monitor and describing the types of
events that can affect those objects. The awareness tool can
then support users browsing through lists of sources of
awareness information (shown in the top left column of
Figure 2). For each information source, the user can browse
through hierarchies of objects and properties monitored by
that information source (top center column of Figure 2).
When the user selects an object to monitor, lists of events
that can affect the object are listed, allowing the user to
optionally refine their subscription to just those types of
events (top right column of Figure 2). A single awareness
tool can monitor as many subscriptions and information
sources as suits the user’s needs and the tool’s awareness
style.

Representation of Arbitrary Information

A key issue in our design involves the representation of
awareness information from any information source. If the
designer of the awareness tool does not know in advance
what the source of awareness information is, how can the
tool represent that information? The answer is that all
notifications, regardless of what software sent them, must
be formatted using data fields that have a fixed
interpretation shared by all CASSIUS awareness tools and
information sources. The awareness tool need not
understand the meaning of the data sent in a notification,
but does need to understand its nature, that one field
contains verbal/textual descriptions of the event, another
field quantifies the extent of change, etc... Our design
attempts to account for the information needs of a broad
range of awareness styles by using the notification fields of
Table 1.

Sample Applications
We currently have a WebDAYV server (CassDAV), and an
AWACS simulator which send notifications to CASSIUS,

Source List
Register/Unregister

View Source List,

“Object Lists
Describe Objects ™ View Subscribable Objects
Define Types View Object Definition

Subscriptions

List Subscriptions ~ Subseribe,

53 TG T8 TILIO JI]
F[OA] 55 T SN

Notifications
Notify Poll

Figure 1: CASSIUS service architecture

ece

Subscriptien Handler For mkantor Using Text Tool

File Options

Information sources are listed below,organiz Select objects and events to create your subscription.

L g L Demo v i—:;.‘ src: i
L4 | FileMonitor v F_J cassius: @
¥ |7 Simulator L r-:_i“ Handler:

v [':‘., DBERtry:
i SubscriptionModeEntry. javz

. AccountEntry java~.
B EoreuBont ina:

| AWACS Simulator Full: Account for storir
¥ [webDAV
_ CASS WehDAV! A CASS enabled WehDAY

_ Delete:Delete this file

__ Lock:This file has been locked

_ | Move:The location for this file has ¢
__ RenameThe name of this file has ch
| Unlock:This file has been unlocked
__ Update:This file has just been modif |

* Subscribe to Formula

f Y
Clear Formula

{Object = Handler CR Object = SubscriptionNodeEntry.java OR Object = Entryﬂont.jm-

a) AND (Event = Update OR Event = Lock)

e) >

Current subscriptions are listed below, organized by information source

¥ | Demo AWACS Simulator Full
_| Object = MMUL
¥ |7 WebDAV.CASS WehDAY
" |Dbject = src AND GenericEvent = Change)

“Delete Selected Subscriptions k,

" Delete All Subscri Erions

Figure 2: CASSandra information source browser and subscription editor

and we are working on a CVS repository and a Portholes
implementation [1]. In the case of WebDAV and CVS
repositories, the monitored objects are files and folders,
which are described to the server so that the user, using an
interface such as that presented in Figure 2, can browse
through a representation of the file system to find and
select files and folders to monitor. Notifications report on
the nature and extent of the changes or operations
performed upon the files and folders.

In the case of Portholes, which creates awareness by
distributing photos of people at work in their offices, the
monitored objects are groups and individuals, the
notifications indicate the extent of changes between
successive photos, and contain a URL to the photo.

To monitor these and future sources of awareness
information we have a growing body of awareness tools
including simpleScroller (a tickertape such as was
illustrated by Elvin [3]), EventLister (a debugging tool to
help developers see the notifications that their code sends)
and BiffArray (Figure 3). We are also working on an email-
based tool for sending digests of events, and are planning
to adapt our mobile awareness technology -called
MiniPortholes.

BiffArray

BiffArray (Figure 3) is modeled on Xbiff, a common mail
awareness indicator in unix windowing environments. It
provides a row of Biffs, where the graphics within the icon
show the most recent event to come from the objects being
monitored. Rather than a mailbox with flag up or down
graphic (as was done in XBiff), it shows the GenericEvent

field (see Table 1) of the most recent notification to be
received. As there are five values of Generic Event, there are
5 images used to represent the different states. Each biff
in the display can be configured both in what it monitors
and in what sounds it uses to notify the user [2].

Each biff can monitor a different source of information. For
example, if you have six biffs, two could monitor files and
folders that you work with, two could monitor coworkers,
one could monitor activity on a chat group, and the last
could monitor the state of your group's printer.

@ Crante I Modify * NewFile + ChildRemoved

e e e B | Edit Subscription
oolkitjava wingSubs criptionHandler java BiffArray.jal = .o o rication Details

Clear

—_— Delete this Biff } =
_sound RNV

* Danger
Picturesque
Cheerful
BadNews

Awaiting Notification

cassandra

Figure 3: BiffArray: Visual and Audio Icons

Mobile Awareness

MiniPortholes (Figure 4) is a mobile awareness technology
implemented in J2ME. It allows users to subscribe to
maintain awareness of individuals such as coworkers and
family. When this tool uses the CASSIUS server, it
enables users to not only subscribe to monitor other
MiniPortholes users but also monitor all types of
CASSIUS information sources. This means that system
administrators can monitor their servers, salesmen can
monitor their inventory, parents can monitor their children,
and in fact, a parent who is a system administrator and

Summary One line textual summary of the change

An event name chosen from a list of
generic event names. Generic event names
are shared by all information sources and
enable awareness tools to understand the
general nature of the event even if they
can’t interpret the specific nature of the
event represented by the Event field.
Currently supports “Activate”,
“Deactivate”, “Increase”, “Decrease” and
“Change” (the last being a catch-all for
events not fitting other categories).

GenericEvent

An event name specific to the information
source and to a type of object within the
information source. Events reporting on a
section of a document might include “Text
Added”, “Text Removed”, “Subsection
Added”, and “Subsection Removed”.

Event

URL Optional link to more information about a
notification. Leads users to text, images or
information source specific data files.

Person Optional person associated with event.

Place Optional place associated with event.

Object Identifies the object or property that has
changed.

AccountPath Identifies the information source.

NumericalValue | Optional numerical value to quantify the

change.
Table 1: CASSIUS Notifications

salesman can monitor all three simultaneously — hopefully
not while driving.

While currently using a simplified version of CASSIUS,
we hope to integrate MiniPortholes with CASSIUS soon.

AD HOC AWARENESS INFORMATION

The high level goals of this work (the creation of a
ubiquitous awareness environment) are important whether
one is talking about work (awareness and coordination
among coworkers, often distributed both spatially and
organizationally), family (awareness and coordination with
family members scattered around a city) or a physical
environment (awareness of problems such as upcoming
traffic, weather, riots, parades, statistics related to a
sporting event you attend and special deals at your favorite
coffee shop just down the street). Effective support of
these diverse environments requires:

1) Creation of ad-hoc subscriptions, whose life span may
be as little as 10 minutes (and where the time to
specify the subscription must be comparably short).

2) Location based awareness servers that awareness tools
connect to on-the-fly to discover new sources of
awareness information.

The principal of what must be done remains unchanged: 1)
the users must be provided with meta information telling
them what information sources are available and what types
of information can be subscribed to within each
information source, and 2) users choose awareness styles
for each type of information. However, in this new

Emulation Only

Figure 4: MiniPortholes, mobile awareness

environment, extensions are needed in how these services
are provided.

Extension 1: Detecting and Logging Information
Sources

In our current implementation, users can view lists of
information sources on the servers that they have
permission to access. If we introduce location-based
awareness servers (perhaps for sending traffic awareness to
people on freeways) and time-based awareness servers (a
server which only exists for a short peiod of time, such as
for the duration of a county fair, or a festival), the nature of
these lists must change. To effectively provide users with
lists of information sources that they can monitor, mobile
awareness tools need to be able to

1. Detect the presence of awareness servers as they come
into range,

2. Obtain lists of information sources from these servers
that users can browse through,

3. Store the lists of information sources and information
about the awareness servers (such as that it was
running on a traffic monitoring server, or on some
stranger’s PDA),

4. Categorize the stored information according to the
nature of the awareness server (group all traffic
awareness servers together, group all PDAs running
their own servers together), and by the information
source (all information sources that monitor a calendar
get grouped together, regardless of what awareness
server it came from).

Extension 2: Usability in Ad Hoc Subscriptions

A key issue in supporting ad hoc subscriptions is the
efficiency with which the subscription can be created. How
much examination of the display and selection of options
must be done to allow the user to monitor traffic for the
next 15 minutes? To address these problems, additional

guidelines have been created for the design of information
sources and awareness tools.

Support a Spectrum of Complexity

Location and time based awareness servers should provide
simple options for subscribing. While it should be
possible to carefully refine long term subscriptions so that
the awareness tool doesn’t waste time presenting unwanted
information, support is also needed for the fast and less
precise task of creating short-term subscriptions.

For example, a person at a county fair can subscribe to the
fair’s scheduled events and be notified each time a new
event is about to begin. Or the person can be more careful
and look at the objects under “Scheduled Events” in the
object hierarchy and subscribe to only be notified when
musical events are about to start. Both subscriptions are
useful. One requires more time and thought — time which
people spending all day at the fair are more likely to invest
than people attending for only part of the day.

This scaling is supported in CASSIUS in the form of
notifications that can be propagated up the object hierarchy:
a notification of changes to a file in a CassDAV server will
result in notifications being sent to users monitoring the
file (users who have carefully refined their subscription),
and will also propagate the notification up to users
monitoring any of the containing folders.

One new design principal for information sources is
therefore to design the hierarchy of monitored objects to
explicitly support both users who have time to carefully
refine subscriptions by browsing deeply through object
hierarchies, and to have high level, rapidly accessible
objects for use in creating ad hoc subscriptions.

Consistency Across Related Information Sources
Subscriptions need to be generalizable across related
information sources. For example, if a user subscribes to
be notified of traffic problems while on one segment of a
highway, there is a strong likelihood that when moving to
a different segment of the freeway, the user will want to
subscribe to the same or similar categories of information.

Support for this would require consistency across
information sources that monitor the same types of
information. For example, each traffic information source
would have the same high level objects in its hierarchy,
and only when you work your way down to monitoring
certain on/off ramps do the object hierarchies of the
different sources begin to look different.

Implementations of this (under the current CASSIUS
architecture) would leave it to the awareness tool to

1) Note that two information sources are similar,

2) Determine that the user has subscribed to a certain set
of information in the first information source,

3) Either automatically subscribe the user to similar
information in the new information source, recommend
it to the user, or make the information very easy to
find and subscribe to [6].

An alternate approach would utilize the categorization and
logging of awareness servers and information sources

discussed in the prior section. It would allow users to look
at a variety of related information sources and design a
subscription that specifies what to do if information
sources of that type are encountered in the future.

CONCLUSION

We have designed a set of guidelines for -creating
ubiquitous awareness environments, and provided an
implementation of this environment. However, without
strict guidelines in the design of information sources and
awareness tool that work within this environment, the
environment will only be usable for static subscriptions;
subscriptions to information sources that will be a part of
the user’s life for an extended period of time. To make this
environment usable for the creation of ad hoc subscriptions,
information sources need to have both high level objects
for rapid subscription and low level objects for refined
subscription, sources of a common type need to utilize
common object hierarchies, and the awareness tools need
to be able to log, organize and recommend subscriptions
based on information retrieved from the awareness servers
that it encounters.

ACKNOWLEDGMENTS

This effort was sponsored by the National Aeronautics and
Space Administration (NASA) Research Grant NAG2-
1555. The U.S. government is authorized to reproduce and
distribute reprints for governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of NASA.

REFERENCES

1. Dourish, P., Bly, S. (1992) Portholes: Supporting
Awareness in a Distributed Work Group In CHI'92
ACM, pp. 541-547.

2. Gaver, W. W., R. B. Smith, and T. O'Shea (1991)
Effective Sounds in Complex Systems: The ARKola
Simulation In CHI'91, New Orleans.

3. Fitzpatrick, G., Mansfield, T., Arnold, D., Phelps, T.,
Segall B., Kaplan, S. (1999) Instrumenting and
Augmenting the Workaday World with a Generic
Notification Service called Elvin In ECSCW'99
Copenhagen.

4. TIshii, H., Wisneski, C., Brave, S., Dahley, A., Gorbet,
M., Ullmer, B., Yarin, P. (1998) ambientROOM:
integrating ambient media with architectural space In
CHI’98 ACM, Los Angeles, pp. 173 - 174.

5. Kantor, M., Redmiles, D. Creating an Infrastructure for
Ubiquitous Awareness, Eight IFIP TC 13 Conference
on Human-Computer Interaction (INTERACT
2001Tokyo, Japan), July 2001, pp. 431-438.

6. Maes, P. (1994) Agents that Reduce Work and
Information Overload in CACM, 37, 31-41.
7. Ramduny, D., Dix, A. and Rodden, T. (1998)

Exploring the design space for notification servers In
CSCW'98 ACM, Seattle, pp. 227-235.

A Web-based Infrastructure for Awareness based on
Events

Roberto S. Silva Filho, Max Slabyak, David F. Redmiles
Information and Computer Science, University of California, Irvine
Irvine, CA 92697-3430 USA
+1 949 824 4121
{rsilvafi, mslabyak, redmiles} @ics.uci.edu

ABSTRACT

The ability to be aware of other peopl€ swork in a collabo-
rative environment is essential to improving the coordina-
tion of the members of a group. In this context, events
originating from many sources have to be filtered and
combined in order to provide the right information to the
right person at the right time. Asthe Web becomes a popu-
lar and ubiquitous way to integrate different information
sources, an infrastructure that allows the filtering, combi-
nation, abstraction and routing of awareness information is
required. In this paper, we describe DEAL (Distributed
Event Awareness Language), an event-based infrastructure
and language that supports the development of awareness
applications in the context of distributed collaborative en-
vironments. The requirements of the infrastructure are
discussed as well as the language syntax. Our motivation
was to design a language and a set of usable and useful
strategies and web services that provide usable and useful
awareness capabilities for the development of awareness
applications.

Keywords
Event Natification, Distributed Awareness, Event Process-
ing Languages, CSCW, Web Services.

INTRODUCTION

In a broader sense, awareness refers to people’ s ability to
sense relevant changes in their environment. In the spe-
cific context of CSCW, awareness is usually related to the
perception of the direct or indirect changes in the compu-
tational and social environments originated by other peo-
ple in the group. These changes are usually communicated
through different computational resources, devices and
applications. Awareness is an essential element in distrib-
uted collaborative environments. Individuals and groups of
people need to be aware of what other members of the
group are doing, in special, the activities of these other

LEAVE BLANK THE LAST 2.5cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE COPY-
RIGHT NOTICE.

members that directly or indirectly affect each individual’s
work. For example, a manager needs to be aware of the
progress of the tasks assigned to her subordinates, the
presence of other members of the group in the workplace
in order to see a demo, the arrival of a co-worker in are-
mote site, in order to start a chat session and so on. These
activities can be modeled as events, atomic asynchronous
messages that represent changes in the computational and
social contexts.

The CSCW literature describes many ways to provide
awareness in a collaborative and potentially distributed
work environment [15]. Some examples include periodic
pictures of a co-worker’s office as provided by NYNEX
Portholes [16], notifications about changes in shared arti-
facts, provided by the BSCW system [17], application
monitoring gauges as described in [5] and so on. In order
to integrate and combine the information coming from
those different sources, allowing the processing, routing
and filtering of such information, an event processing in-
frastructure is usually adopted [3].

Today's Web Services infrastructure focuses on providing
a common set of protocols for the development of web ap-
plications, defining a web-based middieware for the devel -
opment and integration of distributed web services[19]. In
this infrastructure, the SOAP protocol is used as a remote
procedure call mechanism for services communication; the
UDDI implements a service location mechanism and the
WSDL alows the description of the interfaces of the web
services. This infrastructure alone, however, does not pro-
vide al the functionality necessary for the implementation
of more sophisticated web applications [11]. In this con-
text, event-processing services supplement this basic infra-
structure providing the ahility to integrate, process, select
and route events originated from different nodes in the
Web. In an event notification service, producers and con-
sumers of information are separated by an event middle-
ware that integrates these two parties, allowing different
consumers to subscribe to information coming from many
event producers. This event routing layer decouples event
producers from their consumers, allowing the dynamic
addition and removal of these components in the system.

Specifically, previous work analyzes the use of event noti-
fication serversin CSCW applications [4].

In this paper, we present DEAL (the Distributed Event
Awareness Language), an event-notification infrastructure
and language to support the development of distributed
awareness applications for the Web. The DEAL environ-
ment extends the basic functionality provided by event
notification servers such as Khronika [9], CASSIUS [8],
CORBA Natification Service [12], ELVIN [6] and SIENA
[1] to cope with thericher set of requirements of awareness
applications. Thisis accomplished by the use of a powerful
and usable event language that allows the definition, proc-
essing, combination, filtering and routing of events com-
ing from heterogeneous sources (programs, applications,
components, people, mobile devices and so on). The
DEAL language syntax and resources were inspired in the
features provided by event processing languages such as
GEM [10Q], Yeast [2], EDEM [7] and READY [18]. Us-
ability and simplicity with expressiveness were some of the
principles considered in the design of the language. In
special, the following scenario provides a set of require-
ments and motivations that guided the design of the lan-
guage and infrastructure.

SCENARIO AND MOTIVATION

Consider an IT company with many branches in different
cities over the country or even the world. Many people
cooperate in different projects at the same time, perform-
ing different roles (manager, programmer, tester, designers
and so on). Each project usually is carried on by a dynamic
group of people whose interaction varies according to the
group’s current focus. At the beginning of a project, for
example, designers and project managers are more active,
whereas more towards the end, the activities concerning
programmers, engineers and testers are more prominent.
The work can also be split between different branches of
the company. One branch, for example, deals with the
product support while the other deals with the design and
implementation. People join and leave groups as neces
sary. The group work is usually supported by different
tools, such as configuration management repositories,
word processing, CAD, databases and so on. These tools
are used to produce and manage the evolution of the arti-
facts being developed, as well as their meta-information
(documentation, specifications, metrics and so on). In this
scenario, different people need to be aware of other group
member’ s activities.

An indirect way of being aware of other people or group
activities is to gauge the evolution of the artifacts they pro-
duce or modify. The kind of information one is interested
in depends on her role in the organization. For example,
programmers and engineers may want to be notified when
some modules in a software project repository are ready for
integration or when some change request is issued and
consolidated in a defect report database. Managers, on the

other hand, can gauge the activity in certain project by
visualizing a graph with the number of changesin the pro-
ject repository over the day.

In this dynamic work environment, mobility and heteroge-
neity is another concern. Computers are no longer limited
to users desktops at their workplaces; instead they are
increasingly mobile and ubiquitous. Users can interact
with a collection of computational devices ranging from
non-stop servers, workstations, and motion sensors to
portable devices as laptops, mobile phones and PDAS. In
this mobile environment, awareness applications have to
adjust their intrusiveness and information ddivery policies
to comply with different contexts (time, place, physical,
organizational, administrative roles so on). For example,
managers may want to be constantly informed about the
progress of their projects using their portable computers.
The level of attention required by the user, however, is
dependent on her context. For example, one may want to
be immediately notified about a meeting when sheisin her
office. This same information, however, may not be very
important when sheis at home or on abusiness trip.

Information persistency is ancther important issue. A man-
ager, coming from a business trip, for example, may want
to gauge the progress of a project by analyzing the event
history of the preceding week. This requires having a way
to store events during a certain period of time so they can
be delivered when the user’s computer is on-line again.

Not all events, however, should be stored for further analy-
sis. People usually do not want to be notified about transi-
tory and ordinary events. For example, the arrival of some-
one in her office or the temporary unavailability of a
printer, that ran out of paper. This requires a mechanism
to discard old events and filter irrelevant information.

Finally, meaningful events are usualy a result of or are
expressed as a combination of more ordinary events whose
occurrence usually obeys some predefined patterns. For
example, the turning on of the light of someon€'s office
followed by the typing of some characters in the computer
keyboard may indicate the arrival of this person at her
workplace.

REQUIREMENTS FOR AWARENESS APPLICATIONS
The previous scenario illustrated many features that our
event-notification infrastructure must support such as the
integration of heterogeneous event sources, the need to
compose events, the ability to filter information, events
expiration time and mobile applications support. More-
over, the appropriate delivery of an event depends on the
user context, timing constraints, roles and priorities. The
notion of groupsis also required.

Functional Requirements

To cope with these requirements, the DEAL event lan-
guage and infrastructure was defined to provide the follow-
ing features.

Subscriptions. Logical expressions that provide the ability
to select a subset of events based on their content or type.
They alow the routing of events to the right person at the
right time, with the appropriate priorities based on the user
context, group, role and other properties.

Abstraction: A mechanism that combines different events
into higher-level notifications in order to provide more
meaningful awareness information. Event abstraction can
use the following strategies:

* Pattern matching: The ability to subscribe to event
sequences and patters. It is the basis for abstraction
and reduction. It may detect events in a specific order
or out of order.

* Reduction: Trandates sets of repetitive events, ex-
pressed as a pattern matching expression, into local
state variables or higher-level events. Thisis specially
required in monitoring applications, to prevent event
flooding. A reduction consistsin creating a new event
indicating that an event pattern was detected.

* Adggregation: Is a more elaborated case of reduction
in which the event generated is a composition of some
of the attributes of the events in the detected pattern.
Events are combined in a higher-levd event which
summarizes the content of the events in the pattern
expression.

Event Condition Action (ECA) Rules. Special types of
subscriptions that allow the execution of external applica-
tions or general actions whenever a logical condition is
evaluated to true. For example: an action can add or re-
move subscriptions or even other rules, generate aggre-
gated events, change palicies, and invoke external applica-
tions in response to an event pattern detection. Rules can
be used to evolve the behavior of the application in re-
sponse to changesin the user environment.

Time constraints; Express Delivery intervals, timeto live,
aswell astiming and temporal relations. Some events need
to be detected within certain time interval in order to have
some correlation. Transitory conditions may also be ex-
pressed by events with expiration time.

Subscription Priorities. Subscriptions are dependent on
global, group and local contexts, alowing the adjustment
of the information ddivery according to the needs of the
information consumers (or users).

Groups: Subscriptions and rules can be associated to
groups, which are first class entities in DEAL language.
This alows the broadcast of events, the definition of
shared policies and contexts.

Hierarchical description of event sources. One of the
neglected issues in some event infrastructures is the ability
to answer the question “What can | subscribe to?’ and
“Which events are produced by each source?” The DEAL
infrastructure provides the ability to browse through differ-
ent event sources and to identify their events by keeping
meta-information about which event sources are available
and what events they produce.

Quality of Service Requirements

Apart from the main language features, the DEAL infra-
structure allows the specification of different qualities of
service and policies as follows.

Persistence of events and subscriptions: Events and sub-
scriptions are persistent by default, alowing the support
for mobile applications and pull delivery policy.

Mobility support: Clients are allowed to explicitly indi-
cate their intent to move to a new location, allowing the
infrastructure to perform the necessary migration opera-
tions such as the update event routing tables, the buffering
of events or change the current qualities of service. Thisis
performed by the move-in/move-out commands. Apart
from these explicit commands, the infrastructure deds
gracefully with the sudden disconnection of the event
SOUrces consumers.

Event Delivery Policies: During the specification of sub-
scriptions and filters, one can specify which delivery policy
to adopt, whether pull or push.

Security Palicies. Authentication of groups, consumers
and producers allow the event-processing infrastructure to
prevent unauthenticated clients from receiving unauthor-
ized events.

THE EVENT LANGUAGE
This section describes the DEAL event language. Exam-
ples are presented to illustrate its use and syntax.

Logical Expression Operators. >, <, >=, <=, == as well
asstarts_withandends_with.

. MyType: evl. nane starts_ with “Ro”

Subscriptions. Defined using the subscribe keyword, and
removed by the unsubscribe command. Whenever a sub-
scription is evaluated to true, a notification is produced
having the list of events used in the subscription expres-
sion.

e subscribe nySub SonmeType:evl. nane ==
“M ke” and O her Type: ev2. counter ==

e unsubscribe nmySub

Event Type Definition: Creates an event type, a structure
supporting: boolean, string, long, int, aswell as other Java
basic types
e« type Typel {nane:

i s_present: bool ean}

string, age: int,

On-the-fly event declaration and instantiation:
e Typel:evl = {“john”, 22, true}
ECA Rules: Described by the use of the keyword rule,

which uses the do command to define the action to be exe-
cuted when the rule is matched.

e« rule nyRule evl.nane == “check-in” and
Local .time > 12pm do run nyApplica-
tion. exe

In this example, the run is areserved word that allows the
execution of external applications.

rule otherRule evl.name == “turn-on-light”
and ev2. name = “workstation-activated” do {

type MyAbstrac = {nane: String}

MyAbstrac ev3

ev3. nane = evl.nane + ev2.nane;

notify ev3; }

Rule Activation: Activates and deactivates rules according

to the context using the enable or disable commands.

e rule activateRulel Local.tinme > tonorrow
do enable rulel

e rule deactRules evl.description = “end
of meeting” do disable rulel rule2 rule3

Temporal Expressions. Express time constrains between
events. Time triggers and ranges: at, by, in, within.

e at 10pm - matches after the next occurrence of 10
pm

e by 10pm- matches from now until the next occur-
rence of 10 pm

* in 2 hours and 10 m nutes — matches after 2
hours and 10 minutes from now

e within 3 hours — matches permanently in a pe-
riod between now and 3 hours ahead

Time Period expressions: today, daily, weekly, monthly,

yearly:

e at 10 amdaily

e at nonday weekly

Event Validity Check (timeto “live"): Isa special attrib-
ute, present in all events, which expresses its expiration
date and time. The expiration condition can be evaluated
using the expired keyword:

e expired evl

e ev2.expiration <
ev3. expiration < tonorrow

t oday and

Pattern Matching: Performs the matching of a sequence
of events (repetition, sequence and optional).

» Enforced order: evl then ev2 then ev3

e Optional order: evl and ev2 and ev3

* Matching of repetition of events (O or more and 1 or
more): repeat (evl and ev2) 2 tines

Groups: The keyword group allows the definition of sets
of users, the keywords add and remove perform the addi-
tion and removal of users to a group, whereas the operand
in checks the pertinence of usersin groups.

e« group gl { userl, user2, user3}

e add gl user4 // adds sub4 to group gl

e renove gl user2

e ungroup g3 // renoves the group

e« wuserlingl

Groups can be used as parameters of the notify command
to broadcast events, asin the example

e rule rl evl then ev2 then ev3 do notify
evl to g1

Roles. A roleisagroup of users. Groups are used to repre-
sent roles. This allows users to perform different roles.

Contexts. Contexts are name spaces that define scopes
where some properties, rules and subscriptions are valid.
Local and global variables (or properties) can be stored in
the local, group or global contexts. In addition, the con-
texts provide a set of predefined environment variables
that allow the access to information as local time, host-
name, user name and so on. The contexts are accessed
through the special types L ocal and Glaobal.

e at 12 pmand Local . mycounter == 12

e at 12 pmand d obal . menbers > 5

Local and global rules can be defined. Expressions can use
values of these contexts. A rule is associated to the local
context scope using the local modifier. Global rules can be
defined using the global modifier.

e« Jlocal rule nyRule at 12 pm and nycounter
== 12 do enable rulel

In this example, mycounter is a variable in the Loca
scope. Each group has a special context associated with it.
Group contexts are accessed by the group name, for exam-
ple: gl.size expresses the size of the group.

Group rules can be defined using the group modifier fol-
lowed by the group name, before the rule declaration.

Attributes can be added or removed from a context using
the addcontext and remcontext keywords.

e addcontext Local name:string

Events and Subscription Priorities: Special attributes in
the events, which are used by the system to perform event
routing. They can be used in subscriptions by accessing the
reserved attribute priority.

e rule adjustPriority Local.tine > 6 pmdo

evl.priority = evl.priority -1

DESIGN

The DEAL architecture is described in Figure 1. The sys-
tem is implemented as a wrapper around a natification
server infrastructure such as CASSIUS [8] or Siena [1].

The event-processing kernel implements the DEAL func-
tionality using the resources provided by the event notifica-
tion server. Applications interact with the infrastructure
through a programmatic APl while end-users can use a
command interpreter shell or a more sophisticated GUI.
The interaction with the system can be intermediated by
Web services interfaces such as SOAP or by lower-level
protocols as HTTP/CGI. The architecture of the system can
be distributed, using the resources of federated notification
servers, according to the features provided by these sys-
tems. In special, Siena provides a scalable web-based con-
tent-routing infrastructure.

Distributed Event sources (Instrumented software
components and programs)

Application Other Event
Event Source Source
| UserAPI or shell | | User API or shell |
kvents /vent Producers
Notification
Server (Sienaor
CASSIUS)

Event Processing
Kernel

Event Language
Interpreter and API

Consumer Side

Notifications EDEM agents

Application Application

Consumer applications

Figure 1 Design of the DEAL infrastructure using an
event notification server

IMPLEMENTATION

DEAL is being implemented using the Java (J2SDK1.4)
programming language and the CASSIUS notification
server. CASSIUS was chosen for its ability to manage and
provide access to a hierarchical list of event sources and
their associated events. It also provides a subscription edi-
tor GUI that facilitates the interaction with the end users.
For using the HTTP/CGI protocol, CASSIUS alows
DEAL to be integrated with different event sources dis-
tributed over the Web, providing an event-based infra-
structure for awareness information.

RELATED WORK
In this section, we summarize the main systems that in-
spired the DEAL language.

EDEM

EDEM (Expectation-Driven Event Monitoring) [7] is a
user interface validation and monitoring tool. EDEM uses
agents to monitor GUI event patters according to design
use expectations. The agent description language is very
complete and allows the detection of event patters, the ma-
nipulation of local context (in the monitored site), the
definition of higher-level events (abstraction), the collec-
tion of repetitive events (reduction) and so on.

The EDEM architecture is defined in order to collect us-
ability data. Since agents execute together with the appli-
cation being monitored, the system was not designed to
monitor events coming from multiple distributed applica-
tions.

Yeast

The Yeast (Yet another Event-Action Specification Tool)
[2] is an event-action system used to automate tasks in a
UNIX environment. Yeast alows actions to be performed
when event patterns and environment changes are de-
tected. It allows the association of temporal constraints to
events, borrowing its syntax from the at and cron pro-
grams of UNIX systems. Sequential and out or order event
pattern detection is supported. User-defined actions are
executed whenever an event pattern match occurs. These
actions can originate new events or start different applica-
tions. Yeast alows the definition of rules to be defined,
activated or deactivated at runtime. This flexibility is pro-
vided by a shell script interface that integrates the UNIX
shell commands with yeast pre-defined keywords.

The system is very complete, providing many features that
can be used to support the development of awareness ap-
plications. It, however, was devel oped to operate on UNIX
environments, being limited at monitoring its specific re-
sources and objects such as processes, files and user logs.
Users can define their own events but their types are not
enforced. There is no advertisement of the event types pro-
vided by an event source. Event sources are not primary
entitiesin this model. There is no explicit idea of subscrip-
tion and subscriber. The event language does not allow the
creation and manipulation of local variables, limiting the
support for local and global contexts. User groups are not
supported.

Khronika

The Khronika [9] isa centralized event notification service
created to increase people awareness about their environ-
ment. One of the objectives of the system is to bridge the
gap between computational and real-world events. Each
user of the system can specify sets of pattern-action sub-
scriptions that are used to automatically notify the user
when an event pattern is detected. Khronika also allows
the direct browsing of the events in the repository. Events
have expiration time and remain on the server database as
specified in their validity (days, hours or brief intervals).
The event language allows queries by time interval, event

types and substring matching. Similar to Yeast, there is a
mapping between English expressions as "today”, "tomor-
row", "now", "Thursday afternoon”, and so on, to more
precise time constraints. Access control lists and user
groups are used. These restrictions are made simple for

usability purposes.

Khronika does not provide the ahility of abstracting and
aggregating events. There is no support for different event
sources, including mobile devices as well as the ability to
activate/deactivate subscriptions (or rules) based on envi-
ronment changes. There is no notion of user groups.

Gem

GEM [10] is a generalized event language for real-time
distributed systems monitoring. It allows the event se
guence detection and the specification of rules that can be
activated or deactivated according to other rules. For being
designed for real-time monitoring, rules can include spe-
cial time constraints concerning incoming events delays. It
also allows the use of event order constraints in event ex-
pressions, such as the specific order events should occur
and the acceptable delay between them. Events can be ab-
stracted and generated based on contents of other events.
Thereis support for abstraction.

The GEM language itself was not defined for usability. It
does not provide support for context and groups.

READY and CORBA

READY (Reliable Available Distributed Yeast) [18] is a
general-purpose event natification service based on
YEAST. READY adds to YEAST the ability to handle
compound event matching, quality of service and other
event congtructs, in an implementation that extends the
Standard CORBA notification server [12].

In its porting to CORBA [13], READY lost the simplicity,
elegance and easy-to-use interface of the Yeast moddl. Its
language became more complicated, being based on the
OMG Event Natification Language. It also lost the timing
congtraints neutrality and elegance of Y east.

CONCLUSIONS

DEAL is an event processing language and system de-
signed to provide awareness information in a heterogene-
ous distributed system. The system was designed to cope
with current distributed systems characteristics as mobility,
heterogeneity, timing, as well as CSCW aspects as groups,
context and priorities. In order to do so, it combines char-
acteritics of different event processing, monitoring sys
tems and awareness driven notification servers. It was spe-
cially designed as a distributed awareness service that can
be integrated in many Web applications. This is accom-
plished by the use of the HTTP protocol. The event lan-
guage was designed to be useful and usable, providing a
high-level way to interact with the system. A prototype is
being implemented in Java using CASSIUS as the basic
netification service.

ACKNOWLEDGMENTS

This effort was sponsored by the Defense Advanced Re-
search Projects Agency (DARPA) and Air Force Research
Laboratory, Air Force Materidl Command, USAF, under
agreement number F30602-00-2-0599; by the National
Aeronautics and Space Administration (NASA) under
contract NAG2-1555; by the National Science Foundation
under grants 0083099 and 0205724. The U.S. government
is authorized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright annota-
tion thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA, the Air
Force Laboratory, or the U.S. government.

REFERENCES

1. A. Carzaniga, D. S. Rosenblum, and A. L. Walf. De-
sign and Evaluation of a Wide-Area Event Notification
Service. ACM Transactions on Computer Systems,
19(3):332-383, Aug 2001.

2. B. Krishnamurthy and D. S. Rosenblum. Y east: a gen-
eral purpose event-action system. |EEE Transactions
on Software Engineering, Vol. 21, No. 10. October
1995.

3. D. C. Luckham. The Power of Events: An Introduction
to Complex Event Processing in Distributed Enterprise
System. Pearson Education. ISBN 0-201-72789-7. Bos-
ton MA 2002.

4. D. Ramduny, A. Dix and T. Rodden. Exploring the
design space for notification servers. Proc. of the ACM
CSCW'98. pp. 227-235. Sesttle, 1998

5. De Souza, C.R.B., Basaveswara, S. D., Kantor, M.
Redmiles, D.F. Lessons Learned using Event Notifica-
tion Serversto Support Awareness. Human Computer
Interaction Consortiun’ 02- Winter Workshop, Jan 31 to
Feb 3, Fraser, CO. 2002

6. Fitzpatrick, G., Mansfield, T., et al. Augmenting the
Workaday World with Elvin, Proceedings of 6th Euro-
pean Conference on Computer Supported Cooperative
Work (ECSCW 99), Kluwer, 1999, pp. 431-450.

7. Hilbert, D., Redmiles, D. An Approach to Large-Scale
Collection of Application Usage Data Over the Inter-
net, Proceedings of the Twentieth International Confer-
ence on Software Engineering (ICSE '98, Kyoto, Ja-
pan), |IEEE Computer Society Press, April 19-25, 1998,
pp. 136-145.

8. Kantor, M., Redmiles, D. Creating an Infrastructure for
Ubiquitous Awareness, Eight IFIP TC 13 Conference
on Human-Computer Interaction (INTERACT 2001
Tokyo, Japan), July 2001, pp. 431-438.

9. L. Lovstrand. Being selectively aware with the
Khronika System. Proc of ECSCW'91. 1991.

10.M. Mansouri-Samani and M. Sloman. GEM: A Gener-
alised Event Monitoring Language for Distributed Sys-
tems. In ICODP/ICDP'97. 1997.

11. M. Stal Web services: beyond component-based com-
puting. CACM Special Issue; Developing and integrat-
ing enterprise components and services .Val. 45, Issue
10. pp. 71-76. October 2002

12.Object Management Group. Notification Service Speci-
fication v1.0.1. August - 2002.
http://cgi.omg.org/docs/formal/02-08-04. pdf

13.0MG Common Object Request Broker Architecture —
(CORBA/I10OP) v.3.0. formal/2002-06-33.
http://cgi.omg.org/docs/formal/02-06-33. pdf

14. P. C. Bates. Debugging heterogeneous distributed sys-
tems using event-based models of behavior. ACM
Transactions on Computer Systems. Vol 13. Issue 1.
Feb 1995.

15.P. Dourish and V. Bellotti. Awareness and coordination
in shared workspaces. ACM Proc. of Conference on
CSCW'92. Toronto, Ontario, pp. 107-114. 1992

16.P. Dourish, and S. Bly. Portholes. Supporting aware-
nessin adistributed work group, in Proceedings
CHI'92, Monterey, CA, ACM/SIGCHI, 1992.

17.R. Bentley, W. Appelt, U. Busbach, E. Hinrichs, D.
Kerr, K. Sikkd, J. Trevor and G. Woetzdl. Basic Sup-
port for Cooperative Work on the World Wide Web. In-
ternational Journal of Human Computer Studies 46, pp.
827-846, 1997.

18.R. E. Gruber, B. Krishnamurthy, and E. Panagos.
High-level constructsin the READY event notification
system. In 8th ACM SIGOPS European Workshop on
Support for Composing Distributed Applications, Sin-
tra, Portugal, September 1998.

19.Web Services Activity. 2002
http://www.w3.0rg/2002/ws/

Management of Interdependenciesin Collabor ative Softwar e Development

Cleidson R. B. de Souza™® David Redmiles! GloriaMark® John Penix®> Maarten Sierhuis’

School of Information 2Departmento de *Computacional *Research Institute for
and Computer Science, Informatica, Sciences Division, Advanced Computer Science,
University of California, Universidade NASA/Ames Research NASA/ Ames Research
[rvine Federal do Para Center Center
Irving, CA, USA Belém, PA, Brasil Moffett Field, CA, USA Moffett Field, CA, USA
Abstract Software engineering has already identified the need to

In this paper we report results of an informal field study
of a software development team conducted during an
eight week internship at the NASA/Ames Research Center.
The team develops a suite of tools called MVP, and is
composed of 31 co-located software engineers, who de-
sign, test, document, and maintain the different MVP
tools. We describe the formal and informal approaches
used by this group to manage the interdependencies that
occur during the software development process. Formal
approaches are legitimated by the organization, whereas
informal approaches emerge due to the needs of the de-
velopers. We also describe how the software devel opment
tools used by this team support these approaches and
explore where explicit support is needed. Finally, based
on our findings, we discuss implications for software en-
gineering research.

1. Introduction

Software development is typically a collaborative ac-
tivity in which experts from different domains work to-
gether to produce a software artifact. Indeed, formal and
informal communication account for more than half of
developers' time [21], and cooperative activities account
for about 70% of thistime [30]. Therefore, breakdownsin
communication and coordination efforts constitute one
major problem in software development [3].

One of the reasons that cooperative software develop-
ment is difficult is the large number of interdependencies
that occur. These include interdependencies among activi-
ties in the software development process, among different
software artifacts, and finally, in different parts of the
same artifact. One example involves the design document
and the requirements specification—if the specification
changes, the design normally needs to be changed as well.
Another example involves dependencies among parts of
the same artifact, such as program dependencies—
syntactic relationships between the statements of a pro-
gram that represent aspects of the program’s control flow
and data flow [22].

manage these interdependencies and has been developing
formal approaches to deal with them. For example, soft-
ware development processes describe, among other
things, when each artifact should be created during the
software development effort. Such processes would pre-
scribe that the requirements specification to be created
before the design document to minimize problems due to
the dependency between these documents. Design tech-
niques have also been developed. Examples of such tech-
niques include information hiding [19], which tries to
minimize dependencies in the implementation by using
the concept of coupling, and design patterns [7], which
give dynamic (runtime) program dependencies explicit
representation as static program structures, making them
easier to manage. In addition to formal approaches, soft-
ware engineering tools have been built to support the
management of interdependencies. An example is con-
figuration management systems that deal with dependen-
ciesin the source code.

Informal approaches are also used to manage the in-
terdependencies. These practices exist because no matter
how formal and well-defined a process may seem, it will
aways be incomplete, and also because formal ap-
proaches have practical limitations [8]. Informal ap-
proaches are as important as formal approaches and need
to be understood if one wants to provide support for soft-
ware development. Informal approaches solve problems
not addressed by formal approaches, so forma and in-
formal approaches complement each other. An example
of an informal approach is the use of formal communica-
tion channels in software development organizations to
deal with dependencies among components of the same
subsystem when the developers are co-located [9].

In this paper, we describe an informal field study that
analyzes both formal and informal approaches used by a
software development team to manage the interdependen-
cies that occur during software development. We classify
this work as an informal study since it consists primarily
of observations made by the first author during an eight-
week internship during the Summer of 2002. The formal

approaches identified here are those legitimately adopted
by the organization, such as the software development
process, the software development tools used, namely the
configuration management (CM) and bug-tracking toals;
and other approaches, such as the division of labor, for-
mal meetings, and so on. The informal approaches are the
emerging practices adopted by the team to deal with these
interdependencies, such as the adoption of conventions,
partial check-ins; problem reports (PRs) that cross work
boundaries, and the role of e-mail as a coordination
mechanism. Our observations build on Grinter's work
[9]; we identify severa other informal approaches and
analyzed the role of forma approaches in the manage-
ment of interdependencies. The identification, analysis,
and support for forma and informal approaches are es-
sential in improving software development efforts. Inter-
dependencies affect the coordination success because
they decrease the certainty of a project [13].

2. The MV P Softwar e Development Team

The field study was conducted in cooperation with a
team that develops a software application, which for the
purposes of this paper we call MVP (All names were
changed to preserve anonymity). MVP is a suite of 10
different tools developed at NASA/Ames Research Cen-
ter. The MVP source code is approximately one million
lines of C and C++.

2.1. Team Organization

The MVP team is divided in two groups. developers
and V&V staff. Developers are responsible for writing
new code, fixing bugs, adding new features, and so on.
This group comprises 25 members, 3 of whom are also
researchers who write their own code to explore new
ideas. The overal experience of these developers ranges
from 3 months to more than 25 years. Experience in the
MVP group ranges from 2.5 months to 9 years. This
group is spread along severa offices across two floors in
the same building.

V&V members are responsible for testing and report-
ing identified bugs, keeping a running version of the soft-
ware for demonstration purposes, and maintaining the
documentation (mainly user manuals) of the software.
This group comprises 6 members, half located in the
V&V Laboratory, and the rest in severa offices on the
same floor as the laboratory. The V&V Lab and the de-
velopers' offices are located in the same building.

2.2. The MVP Software

Each of the MVP's 10 tools uses a specific set of
“processes.” A process, for the MVP team, is a program
that runs with the appropriate run-time options. It is not

formally related to the concept of processes in operating
systems and/or distributed systems. MVP's processes
typically run on distributed Sun workstations and com-
municate using a TCP/IP socket protocol. Running a
MVP tool means running the processes required by this
tool with their appropriate run-time options. Processes are
used to divide the work among the developers (see sec-
tion 4.3).

3. Methods

As an intern with the MV P team, the first author was
able to make observations and collect information about
several aspects of the team. Additional material was col-
lected by reading manuals for the MV P tools, manuals for
the software development tools used, formal documents
(such as the description of the software development
process and the 1SO 9001 procedures), training documen-
tation for new developers, problem reports, and so on, as
well as talking to colleagues. Some of the team mem-
bers—the documentation expert, V&V members, testers,
process leaders, and process devel opers—agreed to let the
intern shadow them for a few days to better learn about
their functions and responsibilities. A representative sub-
set of the MV P group was interviewed. Interviews lasted
between 45 to 120 minutes. A total of seven interviews
[15] were used to find out about the usage patterns of
various tools. The data has been analyzed by using
grounded theory [28].

4. Formal Approaches

Formal approaches are those legitimately adopted by
the team to support the management of interdependencies.
They facilitate the software development effort by im-
proving the coordination of activities. These approaches
have long been studied in the software engineering and
organizational research literature (e.g., [6, 26]), so we will
mention only aspects of these approaches in the context
of the MV P team.

4.1. The Softwar e Development Process

The MVP team uses a formal software development
process that prescribes the steps needed to be performed
by the developers. For example, the following steps must
be performed by al developers after finishing the imple-
mentation of a change. Initially, they should integrate
their code with the main baseline. After that, must test
their changes to check if their integrations have inserted
bugs in the code. Finally, after checking-in files into the
repository, developers must send e-mails to the software
development mailing list describing the problem report
(PR) associated with the changes, the files that were

changed, and the branch where the check-in will be per-
formed, among other pieces of information.

The MVP software process also prescribes the usage
of code reviews before the integration of any change and
design reviews for major changes in the software. Code
reviews are performed by the manager of each process.
Therefore, if a change involves two processes, a devel-
oper’s code will be reviewed twice: once by each man-
ager. Design reviews are recommended for changes that
involve major reorganizations of the source code; their
use is decided by the software manager.

4.2. The CM and Bug Tracking Tools

We observed that MV P developers employ mainly two
software development tools for coordinating their work: a
configuration management (CM) system and a bug-
tracking system [2, 9, 11]. These tools are integrated so
that there is a link between the PRs (in the bug-tracking
system) and the respective changes in the source code (in
the CM tool). Both tools are provided by one of the leader
vendors in the market. Other tools, such as CASE toals,
compilers, linkers, debuggers, and source-code editors,
are also used.

A CM tool supports the management of source-code
dependencies through its embedded building mechanisms,
which indicate what parts of the code need to be recom-
piled when one file is modified. In this case, we use
Grinter’'s classification of dependencies: “Compile-time
dependencies occur when a sub-system is being com-
piled. Build-time dependencies occur when several sub-
systems or the entire system is being linked. Run-time
dependencies occur when the executable is running [9].”
According to this classification, CM tools support com-
pile and build-time dependencies. Similarly, a bug-
tracking tool, when associated with the CM tool, supports
the tracking of changes performed in the source code dur-
ing the development effort.

Two members of the MVP team play important roles
in the usage of these tools: the configuration and release
manager and the bug-tracking manager. Both help in the
administration of the tools and try to relieve the develop-
ers of some of most common tasks (e.g., the CM manager
created a command interface on top of the CM tool to
make it easier for MV P developers to use). The CM man-
ager provides full-time support for the CM tool, and the
bug-tracking manager is aso an MVP software devel-
oper. Both managers have been receiving training in those
tools, and other developers are trained before starting
work in the group. Their training includes the software
development tools and the MVP software development
process.

The MVP team employs several advanced features of
the CM tool, such as triggers, “winking in” techniques to
reduce compilation time, labeling, and branching strate-

gies. Indeed, the branching strategy employed is one of
the most important aspects of a CM tool because it prin-
cipally affects the work of MV P developers. It isaway of
deciding when and why to branch. This strategy affects
the task of coordinating parallel changes. According to
the nomenclature proposed by Walrad and Strom [31], the
following branching strategies are used by the MVP
team: (1) branch-by-purpose, in which all bug fixes, en-
hancements, and other changes in the code are imple-
mented on separated branches; (2) branch-by-project, in
which branches are created for some of the development
projects; and (3) branch-by-release, in which the code
branches upon a decision to release a new version of the
product. The branch-by-purpose strategy is employed by
MVP developers in their daily work, whereas the other
strategies are used only by the CM manager. In other
words, the devel opers themselves create new branches for
each new bug fix or enhancement, but branches for pro-
jects and releases are created only by the manager.

The branch-by-purpose strategy supports a high-level
of paralel development by allowing developers to work
on different branches at the same time, thus avoiding
problems that exist in other strategies [31]. According to
this strategy, each developer is responsible for integrating
his or her changes into the main code, which is often
called “push integration” [1]. The changes are then avail-
able to all other developers. Therefore, if one bug is in-
troduced, other developers will notice it because their
work will be disrupted. Indeed, we observed and
collected reports of different instances of this situation. A
developer who suspects there is a problem introduced by
recent changes will contact the author of the changes to
check the change, or to provide more information about
it.

4.3. Other Approaches; Meetingsand
Division of Labor

MVP developers employ other formal approaches to
manage the interdependencies in the software. For exam-
ple, the V&V group holds weekly meetings to discuss
problems, deadlines, etc. These meetings are also used for
official announcements, such as trips, dates of new re-
leases, demonstrations, audits, and so on. Likewise, the
entire MVP team (developers and V&V staff) holds bi-
weekly “software pre-design meetings.” In these meet-
ings, formal announcements are also made, but the most
important part of the meeting involves the discussion of
new PRs. In this case, the developers each announce their
new PRs, describing them through their number and
headline. In general, the headline provides enough infor-
mation about the nature of the PR, but other developers
might ask for more details. Thisis an opportunity for de-
velopers to discuss their work, obtain help, and be aware
of what is happening in the team. For example, it is not

uncommon after a developer reports a PR that another
developer mentions that the problem has already been
fixed. PRs that are almost finished might also be an-
nounced to warn others about possible “weird” behavior
in the tools. Finally, during these meetings the software
manager will decide if design reviews are necessary.

The MVP software development team also adopts a
clear division of labor based on the processes that com-
pose each MV P tool. Each developer is assighed to one or
more processes and tends to specialize in it. There are
process leaders and process developers, who mostly work
only on a particular process. This is important because it
allows the developers to understand the behavior of the
process more deeply and become familiar with its struc-
ture, therefore helping them to deal with the complexity
of the code. Indeed, during the software development
activity, managers tend to assign work according to these
processes. However, it is not unusua to find developers
working in different processes under various circum-
stances (e.g., before launching a new release, a developer
might be assigned to fix bugs in other processes). Devel-
opers also work in different processes due to the continu-
ity of the work. Sometimes bugs that seem to be located
in a process and therefore are allocated to the developer
who works with this process are later discovered to be
located in another process. In this case, it is better to let
the developers finish the work because so much time was
invested in it. Thus, this allows devel opers to gain a com-
prehensive view of the whole MV P software.

5. Informal Approaches

Informal approaches are the practices adopted by the
MVP team to deal with the interdependencies that occur
during the software development process. We call them
informal because they emerged naturaly in response to
the needs of the team and are not taught to new members.
The approaches that we identified are discussed below.

5.1. Problem Reports Are Boundary Objects

In our analysis we identified that PRs are used to fa-
cilitate the management of interdependencies of develop-
ers from different groups and with different roles. In other
words, PRs are “boundary objects’ in the sense of Star
and Griesemer [27]: objects whose common identity is
robust enough to support coordination, but whose internal
structure, meaning, and consequences emerge from local
negotiations between groups. Indeed, PRs are used by
end-user liaisons, developers, and testers for different
purposes.

Consider the following. When a bug is identified, it is
associated with a specific PR. Whoever identified the
problem is also responsible for including information
about ‘how to repesat it’ in the PR. This description is

used by the developer assigned to fix the bug to specify
the circumstances (adaptation data, tools, and their pa-
rameters) under which the bug appears. After fixing the
bug, this developer must fill a field in the PR that de-
scribes how the testing should be performed to properly
validate the fix. This field is caled ‘how to test.” This
information is then used by the test manager, who creates
test matrices that will be used later by the testers during
regression testing. The developer who fixes the bug also
indicates in another field of the PR whether the documen-
tation of the tool needs to be updated. Then, the docu-
mentation expert uses this information to determine
whether the manuals need to be updated based on the
changes the PR introduced. Finaly, another field in the
PR conveys what needs to be checked by the manager
when closing it. Therefore, the PR reminds the software
manager of the aspects that need to be validated.

In short, the information provided by the PR is used by
the devel opers to manage the several interdependenciesin
the software being developed. For example, since the user
manual of an MVP tool depends on part of that tool's
source code, so changes in this source code need to be
reflected in the manual. The information about such
changes is provided to the documentation expert through
one of thefieldsin the PR.

5.2. Naming Conventions

Developers share repositories containing the source
code (the CM tool) and information about changes in this
code (the bug-tracking tool). As a result, the team estab-
lishes naming conventions that must be followed when
dealing with these tools. Conventions are common and
accessible rules or arrangements established in the group
that act as a means to merge the different perspectives and
work styles involved in handling shared objects [14].

An example of a convention is the naming convention
used in the creation of branchesin the CM tool: it must be
based on the PR number recorded in the bug-tracking tool
as well as on the developer’s name. This alows the rela
tionship that exists between a change and its correspond-
ing PR to be clearly represented, therefore facilitating
identification by MVP developers. However, these con-
ventions are not properly supported by these tools, which
isa source of complaints by the developers. Indeed, creat-
ing and naming branches is a cumbersome task with four
or five different tedious steps that could be automated
because they follow a naming convention.

5.3. E-mail Conventions

As mentioned before, the MV P software devel opment
process prescribes that after checking-in code into the
repository, a developer needs to send an e-mail to the
software developers mailing list. However, we found out

that MV P developers perform these activities in the re-
verse order—they will send e-mail before, not after, the
check-in. By doing so, MV P developers alow their col-
leagues to prepare for the changes. Indeed, developers
might even send e-mail to the author of the change asking
for a delay of its check-in. We also found out that in this
same e-mail developers describe the impact that their
changes will have on others work. A developer who
reads these e-mails might walk to the co-worker’s office
to ask about the changes or, if the change has already
been committed, browse the CM and bug-tracking sys-
tems to understand them. The following list presents
some usua comments sent by MV P devel opers:

“No one should notice.”

“(...) only EDP userswill notice any change.”

“Will be removing the following [x] file. No effect on re-
compiling.”

“Also, if you recompile your views today you will need to
start your own [z] daemon to run with live data.”

“The changes only affect [y]-mode so you shouldn't notice
anything.”

“If you are planning on recompiling your view this evening
([current date]) and running an MVP tool with live [z] data,
you will need to run your own [z] daemon.”

Sending e-mail before the check-ins with the descrip-
tion of the impact of the changes is an important conven-
tion because it allows other developers to prepare and
reflect about the effect of their colleagues changes in
their current work. Because they are aware of some of the
interdependencies in the source-code, they might conse-
quently adjust to these changes.

In addition to the flexibility that allows the description
of the impact of the changes, e-mail provides asynchro-
nous communication, which requires storage of the mes-
sages until their delivery to the recipient. Thisis used by
MV P developers to learn about what changed in the code
in a certain timeframe. For example, these e-mails were
used by a developer to catch up with the changes that
occurred while out of the office. They contained informa-
tion that allowed the developer to identify changes that
did not affect current work, but might affect future work.
The following comment from another MVP developer
supports this:

“(...) all of the sudden you were working and everything
was going great and an e-mail comes through, you look at
it, it does not mean a lot, you blow it (...) you keep working
and one hour later things were broken. Why is that not
working? Oh, that last check-in! You go back to that e-mail:
who did this? And maybe you can go talk to that person:
‘you broke something’ (...)"

The information in the e-mail is aso important be-
cause it informs (or reminds) developers that they have
been engaged in parallel development. Often, developers

are unaware of parallel activity because they do not check
the version tree that displays information about other de-
velopers working on the same file. The information in the
e-mail is usualy enough to tell the developer whether
these changes should be incorporated right away or
whether they can wait until just before check-in. In either
case, the latest changes must be “merged back” into the
developer’s version of the file. In generd, if one file has
been checked-in severa times and a developer has the
same file checked-out, he or she “merges back” the
changes indicated in the e-mail to avoid working with an
outdated file.

The asynchronous nature of e-mail could be problem-
atic because developers might miss important notifica-
tions about changes. However, during the field work, we
did not notice any such problems. Furthermore, sending
e-mail before a check-in is also used by other developers
to support expertise identification and as a learning
mechanism. Developers associate the author of the
change with the “process’ where the changes are being
performed. In other words, MV P developers assume that
if one developer constantly and repeatedly performs
check-in in a specific process, it is very likely that the
developer is an expert on that process. Therefore, another
developer needing help with that process will look to that
developer for help:

“ [talking about a bug in a process that he is not expert] (...)
| don't understand why this behaves the way it does. But,
most of these PR’'s seem to have John’s name on it. So you
go around to see John. So by just by reading the [PR] head-
line of who does what, you kind of get the feeling of who's
working on what (...).So they [e-mails] tend to be helpful in
that aspect as well. If you' ve been around for ten years, you
don’t care, you already know that [who works with what],
but if you've been here for two years that stuff can really
make difference (...)"

In addition, the simple fact that developers read the e-
mails sent by other developers to check for the impact of
others' changes facilitates learning about the MVP soft-
ware. Interestingly, the two developers who reported
these aspects of e-mail were relative novices at MVP,
with 2 years and 2.5 months experience there.

5.4. Holding onto Check-ins

As mentioned, MV P developers add to the e-mail the
description of the impact of their changes in other devel-
opers code. The two most common types of impact
statements are changes in run-time parameters of a proc-
ess and the need to recompile parts or the whole source

codel. The former case is very important because other
developers might be running the process that will be
changed. The latter case is described because when afile
is modified, it, as well as the other files that depend on it,
will be recompiled, and this recompilation process is
time-consuming—up to 45 minutes. Developers are
aware of the delay they might cause to others; therefore,
they hold check-ins until the evening. According to one
of the developers:

“(...) and the other thing that you find is that when people
also know that if they are going to check-in a file they will
do in the later afternoon ... you're gonna do a check-in and
this is gonna cause anybody who recompiles that day have
to watch their computer for 45 minutes (...) and most of the
time, you're gonna see this coming at 2 or 3 in the after-
noon, you don't see folks (....) you don't see people doing
[file 1] or [file 2] checking-in at 8 in the morning, because
everybody all day is gonna sit and recompile.”

Holding onto check-ins is an informal approach
adopted by the MV P software development team to mini-
mize the problems caused by the interdependencies that
exist on the source code. However, this is possible only
because MV P developers are aware of the existing inter-
dependencies.

5.5. Engagement in Parallel Development: Partial
Check-insand “ Speeding Up” the Process

We also noted that MV P devel opers engage very often
in parallel development. This happens when more than
one developer has the same file checked-out. Conflicts
might occur when one of these developers checks-in this
file back into the repository because the other developer’s
version will then be outdated, and any changes that de-
veloper makes will potentially be inappropriate. To up-
date the version, the developer needs to merge the other’s
changes back in his or her code. This operation is called
by the developers “back merging,” and in CM terminol-
ogy is named “synchronization of workspaces.” Due to
the need to perform these back merges, a new depend-
ency between artifacts is created during parallel develop-
ment. This dependency occurs between any version of a
file that has not yet been checked-in and the new version
of this same file created after the check-in (i.e., the cur-
rent version of a file checked-out by a developer is now
dependent on the new version checked-in into the reposi-
tory because the former needs to incorporate the changes
of the latter before being checked-in). This is another
example of dependency in software development.

1 The CM tool used by the MVP team allows developers to choose if
they want to incorporate others' changes, meaning that they are able to
decideif they want to recompile the code or not.

Conflicting changes are more likely to occur in files
that are accessed by several developers at the same time.
For example, in MVP software, some files are used to
define programming language structures that are used all
over the code. Different developers often change these
files, which means that they have a high degree of parallel
development. These files are especially important because
there is a significant correlation between them and the
number of defects reported [20]. MVP developers re-
ported that they do not avoid parallel development in
these files because conflicts are infrequent and not likely
to occur. But, without access to the CM tooal, it was not
possible to statistically test this claim. MVP developers
accepted paralel development because it was necessary
to achieve high productivity. However, we identified that
they adopted a strategy to deal with files with a high de-
gree of parallel development. To minimize the possibility
of conflicts, developers would perform “partial check-
ins,” which consists of checking-in some of the files back
into the repository, even when the developers have not
yet finished al their changes. This strategy decreases the
number of dependencies that occur, and consequently
reduces the number of necessary back merges. Note that
partial check-ins are variations of the formal software
development process, which establishes that check-ins
will be performed only when the changes in al files are
finished.

Finally, according to Grinter [9], software developers
might rush to finish their work when they engage in par-
alel development because they want to avoid merging.
We identified that developers will rush only when they
are testing their changes right before check-in. As one
developer plainly pointed out: “Thisisarace!” According
to the software devel opment process, this testing is neces-
sary to guarantee that the changes will not introduce bugs
into the system. We observed that this testing is very in-
formal. For example, developers will sit in the V&V
Laboratory and compare the current version of the MVP
with the one with changes. In short, MV P developers do
not use regression testing at this moment. That will be
used by the V&V staff before creating a new release of
the software. This means that techniques that minimize
the number of test cases necessary to validate the changes
in the software (e.g., [23]) cannot be used by MV P devel-
opers to determine whether the tests they need to run can
be impacted by changes that another developer makes.
These techniques can be used only by the V&V staff.

Although we observed that some check-ins introduced
errors, we do not have evidence that these errors were
introduced due to this “racing.” Similar to partial check-
ins, “speeding up” the process is employed by the MVP
developers to avoid the additional work necessary to deal
with the extra-dependencies that occur during parallel
development.

6. Computational Support for Informal
Approaches

Figure 1 summarizes the formal and informal ap-
proaches used by the MVP team to manage the interde-
pendencies that occur during their software development
activities. As mentioned before, formal and informal ap-
proaches complement each other, so problems not solved
by the formal approaches might be solved by the informal
ones. For example, none of the formal approaches used
by the MV P team addresses the issue of how to manage
the crossing-boundaries dependencies that occur when a
change is committed into the repository. This problem is
solved by the MVP team by adopting a particular PR
structure that provides information for developers with
different roles (see section 5.1).

M anagement of

Interdependencies

Formal C— Informal
Approaches Approaches
- Software devel opment process - PRs as boundary objects
- Software development tools - Conventions
- Pre-design and V&V meetings - Holding onto check-ins
- Division of labor, etc. - Partial check-ins

Figure 1: Formal and Informal Approaches Adopted by
the MV P Software Devel opment Team

The tools used by the MV P team assist some of thein-
formal approaches. For example, the CM tool allows
software developers to perform partial check-ins. In con-
trast, due to the lack of tool support, developers need to
rush to finish their work when they are testing their
changes. In this section, we discuss the existence (or lack)
of support for informal approaches in more detail. In ad-
dition, we discuss implications for software engineering
research when there is alack of support.

6.1. Problem Reports as Boundary Objects

Bug-tracking tools are flexible enough to allow their
managers to define the fields that will compose a PR. In
addition, these tools allow a manager to specify a simple
workflow describing when each one of these fields needs
to be filled in [12]. By doing that, they allow the creation
of PRs with fields that contain information that is useful

to developers who are members of different groups. In the
MVP team, the information in these fields describes how
each developer’s work is going to be affected by the PR.
This means that these tools alow PRs to be defined and
used as coordination mechanisms to manage interdepend-
encies during software development.

6.2. Support for Naming Conventions

Following conventions for dealing with shared objects
(or repositories) implies additional effort; hence, technical
support often is needed [14]. As mentioned before, MV P
developers follow a naming convention in which the
name of the branches in the CM tool should be based on
the PR number recorded in the bug-tracking tool. MVP
developers have complained that the task of creating
branches is very cumbersome, with four or five different
tedious steps to be performed. Because this task is based
on a convention, it could be automated. Unfortunately,
the current integration between the CM and the bug-
tracking tool does not support that. That is a major source
of complaints repeatedly reported by the MV P software
developers during the interviews.

6.3. Support for E-mail Conventions

NASA requires SO 9001 certification for all software
development efforts, which means that all changes in the
software must be documented, reviewed, and formally
authorized before the changes are integrated in the code.
In other words, developers need to be accountable for
their work. The MV P team chose to use e-mail as a for-
mal communication channel in the organization, as
clearly mentioned in the software development process.
Indeed, some of the tasks (such as requesting and answer-
ing code reviews) were performed by using e-mail. These
tasks require the use of software development tools such
as source-code editors, CM tools, and so on. Unfortu-
nately, e-mail is not integrated with these tools, which
means that developers need to move back and forth be-
tween e-mail and the other tools in order to get their work
done. Integration of e-mail with software development
technology seems easy to implement; it is also very prom-
ising because more and more software development or-
ganizations are seeking certifications such as 1SO 9001
and CMM (Capability Maturity Model). This aspect was
identified during the field work and later corroborated by
MV P software developers during the interviews. In addi-
tion, email messages exchanged among developers are
also used to identify expertise in parts of the source code,
as well as a history mechanism to identify changes that
happened in the past. Again, this information could and
should be properly organized and indexed in order to fa
cilitate these activities.

6.4. Holding onto Check-ins

The informal approach of holding onto check-ins is
used to avoid disrupting others' work. The support for
this task provided by CM tools is appropriate because
these tools allow a developer to check filesin or out and
merge different versions of them at any time. However,
this approach is useful only if the developer who is going
to check-in some code is aware that his or her work will
cause the recompilation of other files. This suggests that
software visualization tools (e.g., [4]) that use existing
information from the CM tool could be used to support
the identification of these files by novice devel opers who
are not aware of the interdependencies in the source code.

6.5. Partial Check-ins

A check-in is called “partial” by the MVP developers
when it is performed without a code review to avoid sev-
eral “back merges’ due to the file being changed by sev-
eral other developers at the same time. CM tools support
partial check-ins because they usually do not impose con-
straints about when check-ins might be performed, allow-
ing one to check-in code into the repository at any time.
However, the current trend of integrating CM tools with
software process technology [5] might disrupt that. We
recognize thisintegration is essential becauseit allows the
efficient automation of repetitive tasks (such as building a
software release) [12]. Nevertheless, the enforcement of
the process that usualy goes along with this integration
must be managed, because it has long been recognized as
problematic [29]. CM tools must be flexible enough to
allow software developers to use workarounds that devi-
ate from the process in order to properly deal with the
problems that they face. One example of such work-
arounds is the partial check-in. Another approach is to
update the software development process to reflect the
need for partial check-ins, and consequently legitimate
them. In this case, similar to holding check-ins, the in-
formation already present in the CM tool could be used
by software visualization tools [4] to allow novice devel-
opers to identify files with a high degree of paralel de-
velopment that need to be partially checked-in.

6.6. Speeding Up the Process

MV P developers rush their activities during the devel-
opment process to minimize the number of dependencies
between their code and recently committed changesin the
repository (section 5.5). Current CM and bug-tracking
tools create the need to speed up because they shield a
developer’'s workspace from other developers work-
spaces to support paralel development. Although it is
desirable to isolate one developer’s work from others, it
does not alow developers to coordinate their check-ins,

and hence avoid the need to re-do their work. To the best
of our knowledge, no existing software engineering tool
solves this problem. However, a promising approach re-
cently emerged with tools that attempt to break the isola
tion of CM workspaces (e.g., [24] and [17]). These tools
achieve that by distributing the CM commands happening
in a developer’s workspace to other selected workspaces.
These tools focus on the actions of the developers (con-
veyed as CM commands) because they want to avoid con-
flicts between the files that two or more developers have
checked-out. In addition, we argue that these tools need
to provide information about the “status’ of other devel-
opers work. By doing that, they allow a developer to
identify who is about to check-in code into the repository
and, therefore, to coordinate their work, so that a devel-
oper does not need to rush. We believe that this can be
achieved by extending these tools to collect information
from sources other than the CM tool, such as email, the
bug-tracking tool, the software process specification, and
so on.

7. Discussion

As mentioned before, aformal process description can
never completely represent al variations that might occur
in a software development effort [8]. Therefore, as the
data have suggested, informal approaches need to be
adopted to complement the formal approaches to properly
support the management of the interdependencies that
occur in the software development process. However, to
properly support cooperative software development, we
need to unveil these informal approaches and provide
computational support for them to minimize errors and
improve their performance. One of the reasons these in-
formal approaches are important is the high level of paral-
lel development that occurs in large-scale collaborative
efforts [20]. Indeed, the engagement in parallel develop-
ment identified in this field study helps to substantiate the
results of Perry et al. [20] that describe high levels of par-
alel development, but contrasts with the groups studied
by Grinter [9, 11], in which developers avoided this situa-
tion. Technical improvements in merging techniques from
1995 to 2002 [2] might be the cause of divergence from
Grinter’s earlier observations. Grinter, however, does not
clearly describe the branching strategy used by the team
studied, whereas the MV P team adopted the “branch-by-
purpose” strategy. According to Walrad and Strom [31]
this “strategy supports a high level of parallel develop-
ment by alowing developers to work on different
branches at the same time. Therefore, this might be an-
other explanation for the difference between the two
groups. Finally, an organization's structural properties
(eg., reward systems, policies, norms, and so on) are
other factors that influence the adoption and use of col-

laborative tools [18]. The two organizations studied are
different, hence they are very likely to have different
structural properties, which might explain the different
levels of engagement in parallel development.

Meanwhile, thisfield study supports Grinter’s [9] find-
ing that during parallel development developers will rush
to finish their changes. However, while the developers
studied by Grinter will speed up because they want to
avoid the complexity of merging, MVP developers rush
because they do not know when another devel oper might
check-in some code that will lead them to another set of
tests. In both studies, developers describe their dilemma:
they want to produce high-quality code, but they also
want to finish their changes fast.

The MVP team needs to perform extra work to suc-
cessfully manage the interdependencies in the software.
This extra work is a form of articulation work necessary
to coordinate, negotiate, mesh, and schedule their activi-
ties [25]. It is different from recomposition work [10],
which is the coordination required to assemble software
development artifacts from their parts, because recompo-
sition work focuses on choosing the right components to
create a software artifact due to source-code dependen-
cies, whereas this extra work focuses on the management
of all dependencies that exist in a software development
effort.

Finally, in this informal field study we identified an-
other approach used by software developers to identify
experts. Whereas McDonald and Ackerman [16] describe
the usage of change history data (equivaent to PRs in the
MV P team), novice developers in the MV P team use the
broadcasted e-mail messages prescribed by the software
development process. The importance of finding experts
for problem-solving in any organization and the complex-
ity of the MV P code suggest that the operation of sending
e-mail before acheck-inis essential.

8. Conclusion and Final Remarks

This paper reports the findings of an informa field
study conducted at the NASA/Ames Research Center
during the course of an eight-week internship with a
software development. The results of this field study de-
scribe the formal and informal practices adopted by team
members to manage the interdependencies that occur dur-
ing software development. Formal approaches are those
legitimated by the organization; the informal ones are
those that emerge naturally due to the needs of the devel-
opers. Examples of formal approaches adopted by the
team are the software development process, some soft-
ware development tools, design mestings, and a clear
division of labor. The informal approaches that we identi-
fied are partial check-ins, problem reports that cross work

boundaries, holding onto check-ins, e-mail and naming
conventions, and the action of speeding up the processes.

In this work, we also indicate current and nonexisting
computational support to the informal approaches. In-
deed, partial check-ins, problem reports that cross work
boundaries, and holding onto check-ins are work prac-
tices currently supported by CM and bug-tracking tools.
E-mail and naming conventions and the action of speed-
ing up the processes are adopted by MV P developers due
to the lack of tool support. We believe that these interest-
ing research areas should be further investigated. Pointing
out these areas is an important contribution of this paper.

Finally, we are planning a future study in a different
organization. We seek to identify similarities and differ-
ences in the formal and informal approaches that we iden-
tified here and to learn how the ones that we identified are
used in adifferent context.

Acknowledgments

The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for financial support. This effort was also spon-
sored by the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory, Air Force Mate-
riel Command, USAF, under agreement number F30602-00-2-
0599. Funding also was provided by the National Science Foun-
dation under grant numbers 0205724 and 0083099. The U.S.
Government is authorized to reproduce and distribute reprints
for governmental purposes notwithstanding any copyright anno-
tation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of DARPA, the Air Force Laboratory, or the
U.S. Government.

9. References

[1] Appleton, B., Berczuk, S, et al., "Streamed Lines: Branch-
ing Patterns for Parallel Software Development,” Proceed-
ings of Pattern Languages of Programs (PLoP98),
Washington University Technical Report #WUCS-98-25,
1998.

[2] Conradi, R., and Westfechtel, B., "Version Models for
Software Configuration Management,” ACM Computing
Surveys, vol. 30, pp. 232-282, 1998.

[3] Curtis, B., Krasner, H., et al., "A Field study of the Soft-
ware Design Process for Large Systems,” Communications
of the ACM, vol. 31, pp. 1268-1287, 1988.

[4] Eick, S. G, Graves, T. L., et d., "Visualizing Software
Changes," Software Engineering, vol. 28, pp. 396-412,
2002.

[5] Estublier, J., "Software Configuration Management: A
Roadmap,” Future of Software Engineering, pp. 279-289,
Limerick, Ireland, 2001.

[6] Finkelstein, A., Kramer, J., et a., Software Process Model-
ing and Technology: Wiley, 1994.

[7] Gamma, E., Helm, R., et al., Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addi-

son-Wesley, 1995.

[8] Gerson, E. M., and Star, S. L., "Analyzing Due Process in
the Workplace," ACM Transactions on Office Information
Systems, vol. 4, pp. 257-270, 1986.

[9] Grinter, R., "Supporting Articulation Work Using Configu-
ration Management Systems,” Computer Supported Coop-
erative Work, vol. 5, pp. 447-465, 1996.

[10] Grinter, R. E., "Recomposition: Putting It All Back To-
gether Again," Conference on Computer Supported Coop-
erative Work (CSCW'98), pp. 393-402, 1998.

[11] Grinter, R. E., "Using a Configuration Management Tool to
Coordinate Software Development,” Conference on Organ-
izational Computing Systems, pp. 168-177, 1995.

[12] Grinter, R. E., "Workflow Systems: Occasions for Success
and Failure," Computer Supported Cooperative Work, vol.
9, pp. 189-214, 2000.

[13] Kraut, R. E., and Streeter, L. A., "Coordination in Software
Development,” Communications of the ACM, vol. 38, pp.
69-81, 1995.

[14] Mark, G., Fuchs, L., et a., "Supporting Groupware Con-
ventions through Contextual Awareness," European Con-
ference on Computer-Supported Cooperative Work
(ECSCW '97), pp. 253-268, Lancaster, England, 1997.

[15] McCracken, G., The Long Interview: Thousand Oaks, CA:
SAGE Publications, 1988.

[16] McDonad, D., and Ackerman, M., "Just Tak to Me: A
Field Study of Expertise Location," Conference on Com-
puter Supported Cooperative Work, pp. 315-324, 1998.

[17] O'Reilly, C., Morrow, P., et a., "Improving Conflict Detec-
tion in Optimistic Concurrency Control Models," 11th In-
ternational Workshop on Software Configuration Manage-
ment (SCM-11), Portland, Oregon, 2003.

[18] Orlikowski, W., "Learning from Notes: Organizational
Issues in Groupware Implementation,” The Information So-
ciety, vol. 9, 1993.

[19] Parnas, D. L., "On the Criteria to Be Used in Decomposing
Systems into Modules," Communications of the ACM, vol.
15, pp. 1053-1058, 1972.

[20] Perry, D. E., and, Siy, H. P, et a., "Parallel Changes in
Large-Scale Software Development: An Observational
Case Study,” ACM Transactions on Software Engineering
and Methodology, vol. 10, pp. 308-337, 2001.

[21] Perry, D. E., Staudenmayer, N. A, et a., "People, Organi-
zations, and Process Improvement,” |IEEE Software, vol.
11, pp. 36-45, 1994.

[22] Podgurski, A., and Clarke, L. A., "The Implications of
Program Dependencies for Software Testing, Debugging,
and Maintenance,” Symposium on Software Testing,
Analysis, and Verification, pp. 168-178, 1989.

[23] Rothermel, G. and Harrold, M. J,, "A Safe, Efficient Re-
gression Testing Selection Technique,” ACM Transactions
on Software Engineering and Methodology, vol. 6, pp. 173-
210, 1997.

[24] Sarma, A., Noroozi, Z., et a., "Paantir: Raising Awareness
among Configuration Management Workspaces," Twenty-
fifth International Conference on Software Engineering,
pp. 444-453, Portland, Oregon, 2003.

[25] Schmidt, K., and Bannon, L., "Taking CSCW Serioudly:
Supporting Articulation Work," Journal of Computer Sup-
ported Cooperative Work, vol. 1, pp. 7-40, 1992.

[26] Shull, F., Carver, J,, et d., "An Empirical Methodology for
Introducing Software Processes," Joint 8th European Soft-
ware Engineering Conference and 9th ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
pp. 288-296, Vienna, Austria, 2001.

[27] Star, S. L., and Griesemer, J. R., "Ingtitutional Ecology,
Trandations and Boundary Objects: Amateurs and Profes-
sionals in Berkeley's Museum of Vertebrate Zoology," So-
cial Sudies of Science, vol. 19, pp. 387-420, 1989.

[28] Strauss, A., and Corbin, J., Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded
Theory, Thousand Oaks, CA: SAGE publications, 1998.

[29] Suchman, L., Plans and Stuated Actions. The Problem of
Human-Machine Communication. Cambridge: Cambridge
University Press, 1987.

[30] Vessey, I., and Sravanapudi, A. P., "CASE Tools as Col-
laborative Support Technologies,” Communications of the
ACM, vol. 38, pp. 83-95, 1995.

[31] Walrad, C., and Strom, D., "The Importance of Branching
Models in SCM," IEEE Computer, vol. 35, pp. 31-38,
2002.

Opportunitiesfor Extending Activity Theory for Studying
Collaborative Softwar e Development

Cleidson R. B. de Souza' and David F. Redmiles
School of Information and Computer Science
University of California, Irvine
{cdesouza, redmiles} @ics.uci.edu

Abstract

Activity theory is an analytical framework that has been
used successfully to understand and explain collective
work. Software development is, of course, one particular
kind of collective work. We used activity theory to analyze
the observations one author made during an internship
with a large-scale software development group. We also
made some observations about how well suited activity
theory was for the analysis. We briefly describe the work
setting and the analysis. Then we describe the experi-
ences we had, which indicate possibilities for further de-
veloping activity theory for studying collaborative work.

1. An Experience with Collabor ative Soft-
war e Development

The first author spent eight weeks during the summer of
2002 interning as a software developer on a large-scale
software development team. As a member of this team, he
was able to make observations and collect information
about a variety of aspects, including the organization of
the team, the formal and informal practices that this team
adopted, and the tools they used. The software develop-
ment team was formed to develop a software application
we cal MVP (not the real name), which comprises 10
different tools that are deployed in different parts of the
United States. The source code is approximately one mil-
lion lines of C and C++.

Each of the several different tools that compose MVP
uses a specific set of “processes.” A process for the MVP
team is a program that runs with the appropriate run-time
options. Processes typically run on distributed Sun work-
stations and communicate by using a TCP/IP socket pro-
tocol. Running a tool means running the processes re-
quired by this tool, with their appropriate run-time op-
tions.

The software development team is divided into two
groups: the developers and the verification and validation
(V&V) staff. The developers are responsible for writing
new code, fixing bugs, and adding new features. This
group comprises 25 members. The V&V staff are respon-
sible for testing and reporting bugs identified in the soft-
ware, keeping a running version of the software for dem-

T Also at the Department of Informatics, Universidade Federal do Parg,
Belém, PA, Brazil.

onstration purposes, and maintaining the documentation
(mainly user manuals) of the software. This group com-
prises six members.

The MVP group adopts a formal software develop-
ment process that prescribes the steps that need to be per-
formed by the MVP developers during the software de-
velopment activities. For example, all developers, after
finishing the implementation of a change, should integrate
their code with the main baseline. In addition, each de-
veloper is responsible for testing the code to verify that
his’her integration did not insert bugs in the code, or
“break the code,” as this is informally characterized by
MVP developers. After using a configuration manage-
ment (CM) tool to check-in files into the repository, a
developer must send an e-mail to the software develop-
ment mailing list describing the problem report (PR) as-
sociated with the changes, the files that were changed,
and the branch where the check-in will be performed,
among other pieces of information.

2. An Activity Theory Analysis

Activity theory allows a variety of ways to analyze phe-
nomena. In this work, Engestrém'’s activity theory model
[4] was used in the analysis of findings. This model is
presented in Figure 1. Activities are associated with ob-
jectives called “outcomes.” People working within a
community share activities. They work to create objects
and rely on tools referred to as artifacts to support their
activity. Rules instantiate division of labor and practices
of the community.

Figure 2 is basicaly an “instantiation” of the frame-
work described in Figure 1 as applied to the MVP soft-
ware development team. The main outcome of the soft-
ware development activity is high-quality MV P software
(i.e., bug-free software that is easy to evolve, delivered on
schedule, and meets the customers specifications). Of
course, this includes executables, source code, bug re-
positories, manuals, specifications, and so on. The object
of this activity is the MV P software while being modified.
This includes, for example, the changes being introduced
in the code, reported bugs not yet solved, and so on. The
mediating artifacts, or tools, are the set of tools used by
the team to manipulate the object so they achieve their
goal or outcome, such as CM and bug tracking tools,
e-mail, and the like. Rules consist of formal practices

Mediating Artefacts

Subject Object — Outcome

Rules Community Division of labour

Figure 1. Elements of the Activity Theory
Framework (see[4]).

Artefacts (CM tools,
bug tracking, e-mail)

Subject Object (MVP software)
(developers) — Outcome (MVP SW
ithout bugs, etc)
Rules Community Divison of Labour
(software process, (MVP team) (S?:f\;t)alopers and V&V

conventions)

Figure 2: The Software Development Activity as Ap-
plied tothe MVP Team

(e.g., software development processes) and informal prac-
tices (conventions, workarounds, and so on) used by the
MVP team. The community is the whole MVP team,
which is organized according to a specific division of la-
bor: There are mainly two groups, namely, developers
and V&V staff. But the members of these groups also
adopt a division of labor. Specifically, there are process
leaders and process developers, the configuration and
release manager, the software manager, and testers.

21. Tensions and Their “Fixes’ in the MVP

Team

Contradictions are important aspects in an activity be-
cause they might be used as sources of development ([6],
pg. 34). In other words, contradictions trigger reflection,
thereby helping in the improvement of the activity. Con-
tradictions reveal themselves as breakdowns, problems,
tensions, or misfits between elements of an activity or
between activities. In our case, we identified severa ten-
sions within the software development activity developed
by the MV P team, but, in addition to that, we also identi-
fied the fixes that the team adopted to solve them. We
identified tensions between different elements, such as
between the object and the community, and between the

rules and the community.

In the first case, the tension between the object and
the community exists due to the effects that the object
(e.g., changes in the MVP software) will have on the
community. For example, if a change (the object) is in-
troduced in the source code, other members of the MVP
team (the community) might need to be informed because
they may need to perform additional tasks (e.g., update
the documentation) due to that change. The tension exists
because developers are not aware of some interdependen-
cies in the software and, therefore, how other members of
the community are affected by their work. Despite that,
the community must support the evolution of the software
and guarantee that the software delivered is not inconsis-
tent with the specifications, manuals and other artifacts.

In the second case, the tension exists basicaly be-
tween rules and the community because one rule suggests
that a developer should perform a specific action, but
he/she does not want to perform that action out of con-
cern for the effects of the action on the rest of the com-
munity. For example, if one developer decides to check-
in his’her code into the repository, the other developers
(part of the community) might need to recompile their
code in order to work with the latest version of the soft-
ware, and this compilation process is time-consuming.

2.2. Tensions between the Object and the Com-
munity

In this case, tensions emerge in the software development
activity due to the concern about how the object will af-
fect the community. For example, when the source code
is modified, often it is aso necessary to modify other
software artifacts, such as manuals, documentation, speci-
fications, and so on, or inconsistencies will arise. Al-
though inconsistencies might have positive effects in
software development, in general they are not desirable
[10]. The MVP software development team already rec-
ognized the need to handle this problem (tension) and
adopted two different and complementary practices to
deal with it: Formal reviews are adopted in the software
development process to handle inconsistencies in the
source code, and problem reports are structured in such a
way that the inconsistencies between source code and
other artifacts are easier to manage. Both practices are
explained in the following sections.

2.3. Tensions between the Rules and the Commu-
nity
These tensions occur because a rule might suggest that a
developer should perform a specific action, but the devel-
oper does not want to perform it due to concern about the
effect of this action on the community. As mentioned
earlier, an example of such tension occurs when one
developer needs to check-in hissher code into the
repository, but the other developers would then need to
recompile their code in order to work with the latest

their code in order to work with the latest version of the
software. Because this compilation process is time-
consuming, the developer needs to decide whether to fol-
low the rule and thus cause the whole community to
recompile, or to not follow the rule, at least for a while,
thereby minimizing the impact of his’/her actions in the
rest of the community. Typical fixes adopted by the MVP
team include changing the order in which some rules are
executed or performing additional actions along with the
rule to minimize the disruption to the community.
Furthermore, tensions between these components also
arise due to the impact on the community in the execution
of the rule. In other words, the developer is concerned
that he/she needs to perform a rule but actions of the
community (such as check-ins or check-outs) will impact
his’her performance of the rule. In this case, those ac-
tions influence how the developer performs the rule.
Note that in this case, the division of labor aso influences
this tension because it prescribes how developers should
be organized in the community, therefore allowing two or
more devel opers to work and check-in in concurrently.

3. Implicationsfor Activity Theory

3.1. Modeling Human Activity

In software development terms, section 2 of this paper
developed a model. The process of developing this model
has more similarities to software modeling than one might
expect. In particular, we began by choosing a modeling
language that seemed appropriate for our application—
the language of activity theory, and in particular
Engestrom’s terminology and diagrammatic notation. We
then built an instance of a model in this language that
served as a first approximation. We then refined it
through several iterations. We reached a point at which
analysis of the model yielded explanations consistent with
the data, as presented above.

Iterative refinement of the model appeared to be an
open-ended process. However, the actual observations
made during the internship acted in a sense like a “test
oracle” Namely, we reached a stopping point when all
observed phenomena were accounted for. Moreover, the
focus of activity theory on identifying tensions and con-
flict were useful for understanding what we observed and
for highlighting areas where software tools and practices
might be improved.

In sum, the attempt to model the human collective ac-
tivity of collaborative software development did not seem
straightforward at first, but required a first approximation
and successive refinement. Although frustrating, the chal-
lenges did not seem greater than other kinds of modeling,
and the results were informative. In the next subsection,
we make some observations on how this process may be
improved and identify research areas for the methodol-

ogy.

3.2. Activity Theory: Where Next?

Activity theory has been applied to the design of software
systems, and research to date has indicated its usefulness
toward collecting requirements for software system de-
sign (e.g., [1] and [8]). However, to the authors' knowl-
edge, this paper represents the first application of activity
theory to studying collaboration among software devel-
opers; previous studies have examined only the collabora-
tion between end users and software devel opers. Thus, we
had to struggle with a finer degree of detail of activity
than previous works with respect to the development of
software.

One challenge that presented itself was the notion that
a single activity might be consistent when observed as a
single instance, but might be a source of tension when
there were multiple instances of that activity. For in-
stance, in the case of a single devel oper, even when work-
ing with end users and other team members, the activity
of checking-in a module revision is consistent within it-
self. However, multiple instances of this check-in activity
create a tension we observed as developers sped up their
work to be the first to check-in. This part of the model
and the more general issue of multiple instances of activ-
ity is one place for further research into the application of
activity theory and a potential contribution to improving
the methodol ogy.

Another area for research in activity theory is akin to
dependency analysis in software testing. Namely, as we
identified different activities that comprised the general
activity of evolving a software system, we began to ob-
serve many interdependencies. For example, rules for
applying a specific software tool led to other activities,
each with their own associated set of rules, subjects, other
tools, and so on. We were intrigued by the notion that a
kind of dependency analysis might be developed to help
an organization more precisely account for the potential
impact of making changes to tools and practices. This
kind of work, however, would be a long-term goal. A
related issue is that of adoption. Understanding the his-
tory of how elements in the activity theory models
evolved (e.g., tools, rules, division of labor, and so on)
can better enable the responsible introduction of new
tools, including involving end users with tool introduc-
tion. The basic premise of introducing changes into peo-
ple’ s work is the ability to develop the fullest understand-
ing possible of that work. Activity theory, even in its pre-
sent state of development, is successful in that regard.

Finally, a new line of research is beginning to present
itself around the concepts of reflection and awareness.
Specifically, various researchers have begun to recognize
the value of simply reflecting back to a group or organi-
zation the actuality of its various objectives and activities.
In a previous study, we used this kind of reflection as a
matter of course in reporting findings, but the process of
performing this “reporting” led to improvement in the

process of software developers collecting requirements
and in the organization’s members better understanding
one another’s roles [2]. Other researchers have observed
similar effects, including those at a small scale. Namely,
some researchers are developing software tools to help
people coordinate their collaborative work by reflecting
the current state of a collaborative activity or the state of
actual collaborators. Some instances are Portholes sys-
tems that reflect the state of collaborators [3] [7],
configuration management tools that reflect who is
working on what modules [9], and tickertape tools that
reflect al activities in a work environment [5]. Thus,
another open area is better understanding and better
reflecting of actual activity (through manual and
automated means) back to participants in that activity,
and understanding ways this has positive effects on the
collective work.

4. Conclusions

Our experiences in performing the analysis presented
briefly in this paper as well as previous experiences of
our own and our colleagues have shown many positives
to activity theory. It is open ended, which, although a
challenge, allows for the introduction of new ideas and
refinements. It is noninvasive, using open-ended inter-
views or even more informal observations of work such
as presented in this paper. It readily yields to iterative
refinement. When more detail is needed in a model, addi-
tional activities may be named and analyzed. Finadly,
there seems to be some overlap in object-oriented analy-
sis. Although the present authors do not wish to overem-
phasize the similarities, the overlap is helpful for people
with object-oriented experience to engage in learning the
methodology. Thus, although there is still a great deal of
craft involved in becoming acquainted with and applying
activity theory, we have experienced many positives in
our analyses in different work settings and anticipate the
methodology becoming more refined and documented.

Acknowledgments

The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for financia support. This effort was also
sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory,
Air Force Materiel Command, USAF, under agreement
number F30602-00-2-0599. Funding also was provided
by the National Science Foundation under grant numbers
CCR-0205724 and 9624846. The U.S. Government is

authorized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright anno-
tation thereon. The views and conclusions contained
herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA), the Air
Force Laboratory, or the U.S. Government.

5. References

[1] Bodker, S., Through the Interface: A Human Activity Ap-
proach to User Interface Design, Hillsdale, NJ: Lawrence
Erlbaum, 1991.

[2] Callins, P., Shukla, S., et al., “Activity Theory and System
Design: A View from the Trenches,” Computer Supported
Cooperative Work—Special Issue on Activity Theory and
the Practice of Design, vol. 11, pp. 55-80, 2002.

[3] Dourish, P., and Bly, S., “Portholes: Supporting Distributed
Awareness in a Collaborative Work Group,” ACM Confer-
ence on Human Factors in Computing Systems (CHI '92),
Monterey, CA, 1992.

[4] Engestrom, Y., “Activity Theory and Individual and Social
Transformation,” pp. 19-38, in Engestrém, Y., Miettinen,
R., and Punamé&ki, R-L., “Perspectives on Activity The-
ory.” Cambridge, UK: Cambridge University Press, 1999.

[5] Fitzpatrick, G., Mansfield, T., et a., “Augmenting the
Workaday World with Elvin,” 6th European Conference on
Computer Supported Cooperative Work, pp. 431-450, Co-
penhagen, Denmark, 1999.

[6] Kuuti, K., “Activity Theory as a Potential Framework for
Human-Computer Interaction Research,” pp. 17-44, in
Nardi, B., “Context and Consciousness. Activity Theory
and Human-Computer Interaction.” Cambridge, MA: The
MIT Press, 1996.

[7] Lee, A., and Girgensohn, A., “NYNEX Portholes: Initial
User Reactions and Redesign Implications,” ACM Confer-
ence on Human Factors in Computing Systems (CHI '97),
pp. 385-394, 1997.

[8] Nardi, B., and Redmiles, D., Eds. Computer Supported Co-
operative Work, The Journal of Collaborative Computing,
Soecial Issue on Activity Theory and the Practice of De-
sign, Vol. 11, No. 1-2, p. 1-11, 2002.

[9] Sarma, A., Noroozi, Z., et a., “Paantir: Raising Awareness
among Configuration Management Workspaces,” Twenty-
fifth International Conference on Software Engineering, pp.
444-453, Portland, Oregon, 2003.

[10] Spanoudakis, G., and Zisman, A., “Inconsistency Manage-
ment in Software Engineering: Survey and Open Research
Issues,” in Handbook of Software Engineering and Knowl-
edge Engineering, vol. 1, S. K. Chang, Ed.: World Science
Publishing Co., 2001, pp. 329-380.

“Breaking the Code’, Private and Public Work In
Collaborative Software Devel opment

Cleidson R. B. de Souza*? and David F. Redmiles?
'Universidade Federal do Para, Brazil and ?University of California, Irvine, USA
cdesouza@ics.uci.edu, redmiles@ics.uci.edu

Abstract. As a cooperative effort, software development is especially difficult because of the many
interdependencies amongst the artifacts created during this activity. In order to minimize problems created by
these interdependencies, some software development tools create a distinction between private and public
aspects of work of the developer. Technical support is provided to these aspects as well as for transitions
between them. However, we present empirical material collected from a software development team that
suggests that the transition from private to public work needs to be more carefully handled. Indeed, our analysis
suggests that different formal and informal work practices are adopted by the developers to allow a delicate
transition, where software developers are not largely affected by the emergent public work.

Private and Public Work in CSCW

Software engineers have sought for quite some time to understand their own work of software
development as an important instance of cooperative work, especially seeking ways to provide better
software tools to support developers (Curtis, Krasner et al. 1988). Indeed, they created different tools,
such as configuration management (CM) and bug tracking systems, to facilitate the coordination of
groups of developers (Grinter 1995). However, software development is especially difficult as a
cooperéative endeavor because of the several interdependencies that arise in any software development
effort. To minimize these problems, CM systems adopt design constructs (like branches and
workspaces used in configuration management systems) to shield each individual from effects of other
developers work. These workspaces enforce a distinction between the private aspects of work
developed by the software engineer and the public aspects that occurs when this developer shares his
work with the other developers. Similar approaches have been taken in other categories of
collaborative applications (e.g., collaborative writing and hypermedia systems), which have adopted
this distinction between private and public work in order to facilitate collaboration. This is usually
done through the provision of separate private and public (or shared) workspaces. Private workspaces
allow users to work in different parts of a document in parallel and contain information that only one
user can see and edit allowing him to create drafts that later will be shared with the other co-workers.
On the other hand, public workspaces allow all usersto share the same information or document.

When support for private and public work is provided, it is also necessary to support transitions
between them. The central issue in systems maintaining separate workspaces is how information or

activity moves between them, and similarly, the central mechanism around which CM systems are
built is the mechanism for moving information between public and private conditions — checking in,
checking out, merging. In cooperative working settings, people selectively choose when and how to
disclosure their private work to others, i.e., they want to be able to control the emergence of public
information (Ackerman 2000). CM tools and collaborative authoring tools provide support for these
transitions. In collaborative writing, for example, one can basically copy the content of a private
workspace and paste into the public workspace. On the other hand, in CM systems, more sophisticated
tools involving merging algorithms and concurrency control policies need to be used because of the
aforementioned interdependencies in the software.

Transitions between private and public work (and vice-versa) are particularly important in
cooperative work and can lead to problematic situations when overlooked. Indeed, Sellen and Harper
(Sellen and Harper 2002) describe some case studies of companies that had problems because they
underestimated the delicacy of this transition. Despite that, insufficient analytical attention has been
given to this transition by the CSCW community. In this paper, we will examine this issue with
empirical material collected from a collaborative software development effort. The team observed used
three software development tools for coordination purposes. However, these tools alone were not
sufficient to effectively support the team; participants needed to adopt a set of formal and informal
work practices to properly support private, public work and transitions between them. The adoption of
these different work practices suggests that the computational support provided by these systems to
support the emergence of private information is still unsatisfactory.

Setting and Methods

The group studied develops an application called MV P (not the real name) and is divided in two teams:
developers and the verification and validation staff (V& V). Developers are responsible for writing new
code, for performing bug fixing, enhancements, and so on. There are 25 developers, including
researchers that write their own code. The V&V team (6 engineers) is responsible for testing the
software, keeping a running version for demonstration and maintaining user manuals.

The first author spent eight weeks during the summer of 2002 as a member of the MVP team.
During that time, he was able to interview developers, make observations and collect information
about several aspects of the team. He also talked with his colleagues to learn more about their work.
Additional material was collected by reading manuals of the MVP tools, manuals of the software
development tools used, formal documents (like the description of the software development process
and the SO 9001 procedures), problem reports (PR’s), and so on.

MV P Practices to Handle Private and Public Work

The main tools used by the MV P team to coordinate their activities are the configuration management
(CM) and the bug tracking tools (Grinter 1995). Branching in CM tools are used to create shields
between developers' workspaces isolating one’swork from others (Conradi and Westfechtel 1998). On
the other hand, merging mechanisms are created to allow one’s work to be combined with other
developers work. In other words, branches support private work, while merging mechanisms support
the transition from private to public work. Finally, building mechanisms in CM tools support the
public work because they allow developers to automatically recompile the code in order to incorporate
changes recently committed in the repository.

In general, we identified that the private and public work are properly supported by the software
development tools and by the software development process adopted by the MV P. However, except for

the merging mechanisms embedded in CM tools, the transitions between private and public are
improved through informal work practices because of the need developers have to manage the
interdependencies. Examples of these practices will be briefly discussed in the following paragraphs.

We called the first practice “holding onto check-in's’. Developers will hold onto check-in’s (and
merges) when they realize that their work (in this case, their changes in the software) will imply in the
recompilation of the whole source code. They avoid that because they know that the recompilation
process is time-consuming usually taking between 30 to 45 minutes. This means that other developers
will waste their time waiting for the recompilation of their local copies.

After making their work public by merging it back into the repository, the software development
process prescribes that MV P developers must send an e-mail to the whole software development group
informing about the new changes in the system. However, these developers will send this e-mail before
committing their changes and will also add a brief description of the impact that these changes will
cause on their colleague’ swork. In this case, because of these e-mail messages, other developers might
reflect about the effect of their colleagues’ changes in their current work and prepare for that. This is
possible because they are aware of some interdependencies in the source-code. The convention (adding
impact statements in the e-mails) is the second practice identified.

A third approach identified was the “partial check-in", which consists of checking-in files back in
the repository, even when the developers have not yet finished their entire work. This is used to deal
with parallel development in files that are changed very often. This practice allows developers to
reduce the work necessary to make their work public, as it minimizes the number of updates that they
need to perform in their files before merging them into the main repository.

Finally, we also identified that problem reports (PR’s) are used by different stakeholders (e.g., end-
users liaisons, developers and testers) to manage the software interdependencies. For example, when a
bug isidentified, it is associated with a specific PR. Whoever identified the problem is also responsible
for filling in the PR with information about ‘how to repeat’ it. This description is used by the developer
assigned to fix the bug to specify the circumstances (adaptation data, tools and their parameters) under
which the bug appears. In short, MVP members use the information from the PR’s in many different
ways, according to the role they are playing.

Conclusions

We briefly described some of the work practices adopted by software developers to properly handle
the transition between their private and their public work. MVP developers employ these practices
because of the interdependencies that exist in the software. As mentioned before, the adoption of these
practices suggests that computational support is necessary in cooperative software development tools
to support the emergence of private information.

References

Ackerman, M. S. (2000). "The Intellectual Challenge of CSCW: The Gap Between Social Requirements and Technical
Feasibility." Human-Computer Interaction 15(2-3): 179-204.

Conradi, R. and Westfechtel, B. (1998). "Version Models for Software Configuration Management.” ACM Computing
Surveys 30(2): 232-282.

Curtis, B., Krasner, H. and Iscoe, N. (1988). "A fidd study of the software design process for large systems."
Communications of the ACM 31(11): 1268-1287.

Grinter, R. E. (1995). Using a Configuration Management Toal to Coordinate Software Development. Conference on
Organizational Computing Systems, Milpitas, CA, 168-177.

Sdlen, A. J. and Harper, R. H. R. (2002). The Myth of the Paperless Office. Cambridge, Massachusetts, The Mit Press.

“Breaking the Code”, Moving between Private and Public
Work in Collaborative Software Development

Cleidson R. B. de Souza?

'School of Information and Computer Science
University of California, Irvine
Irvine, CA, USA — 92667

David Redmiles®

Paul Dourish®

*Departamento de Informatica
Universidade Federal do Para
Belém, PA, Brazil - 66075

{cdesouza,redmiles,jpdl@ics.uci.edu

ABSTRACT

Software development is typically cooperative endeavor where a
group of engineers need to work together to achieve a common,
coordinated result. As a cooperative effort, it is especialy difficult
because of the many interdependencies amongst the artifacts
created during the process. This has lead software engineers to
create tools, such as configuration management tools, that isolate
developers from the effects of each other’s work. In so doing,
these tools create a distinction between private and public aspects
of work of the developer. Technical support is provided to these
aspects as well as for transitions between them. However, we
present empirical material collected from a software devel opment
team that suggests that the transition from private to public work
needs to be more carefully handled. Indeed, the analysis of our
material suggests that different formal and informa work
practices are adopted by the developers to alow a delicate
transition, where software developers are not largely affected by
the emergent public work. Finally, we discuss how groupware
tools might support this transition.

Categories and Subject Descriptors
H.4.1 [Office Automation]: Groupware; H.5.3 [Group and
Organization I nterfaces]: Computer-supported cooperative work;

General Terms
Human Factors

Keywords
Private work, public work, collaborative software development,
qualitative studies.

1. INTRODUCTION

Software engineers have sought for quite some time to understand

their own work of software development as an important instance

of cooperative work, especially seeking ways to provide better
Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

GROUP 03, November 9-12, 2003, Sanibel Idand, Florida, USA.
Copyright 2003 ACM 1-58113-693-5/03/0011...$5.00.

software tools to support developers [6]. Indeed, they created
several different tools, such as configuration management (CM)
and bug tracking systems, to facilitate the coordination of groups
of developers [14]. However, software development is especially
difficult as a cooperative endeavor because of the severa
interdependencies that arise in any software development effort.
To minimize these problems, current CM systems adopt design
constructs (like workspaces and branches used in configuration
management systems) to shield each individual from effects of
other developers work [5]. These workspaces enforce a
distinction between the private aspects of work developed by a
software engineer and the public aspects that occur when this
developer shares his work with other developers. Similar
approaches have been taken in other categories of collaborative
applications (e.g., collaborative writing and hypermedia systems),
which have adopted this distinction between private and public
work in order to facilitate collaboration. In these applications, this
is usualy done through the provision of separate private and
public (or shared) workspaces. Private workspaces allow users to
work in different parts of a document in parallel and contain
information that only one user can see and edit allowing him to
create drafts that later will be shared with the other co-workers
[7]. On the other hand, public workspaces allow all users to share
the same information or document and edit it concurrently.

When support for private and public work is provided, it is also
necessary to support transitions between them. The central issue
in systems maintaining separate workspaces is how information or
activity moves between them, and similarly, the centra
mechanism around which CM systems are built is the mechanism
for moving information between public and private conditions —
checking in, checking out, merging. In cooperative working
settings, people selectively choose when and how to disclosure
their private work to others, i.e., they want to be able to control
the emergence of public information [1, 26]. CM tools and
collaborative authoring tools provide support for these transitions.
In collaborative writing, for example, one can basically copy the
content of a private workspace and paste into the public
workspace. On the other hand, in CM systems, more sophisticated
tools involving merging algorithms and concurrency control
policies need to be used because of the aforementioned
interdependencies in the software.

Transitions between private and public work (and vice-versa) are
particularly important in cooperative work and can lead to
problematic situations when overlooked. Indeed, Sellen and

Harper [28] describe case studies of companies that had problems
because they underestimated the delicacy of this transition.
Despite that, insufficient analytical attention has been given to
this transition by the CSCW community. In this paper, we will
examine this issue with empirica material collected from a
collaborative software development effort. The team observed
uses mostly three tools for coordination purposes: a configuration
management tool, a bug-tracking system, and e-mail. However,
these tools alone were not sufficient to effectively support the
team; participants needed to adopt a set of forma and informal
work practices to properly support private, public work and
transitions between them. The adoption of these different work
practices suggests that the computational support provided by
these systems to support the emergence of private information is
still unsatisfactory. Based on these results, we draw more general
conclusions about the implications for computer-supported
cooperative work.

The rest of the paper is organized as follow. The next section
discusses the idea of private and public work in computer-
supported cooperative work. Then, sections 3 and 4 present the
settings and the methods that we used to study the software
development team. After that, Section 5 describes the set of work
practices adopted by the team to properly deal with private, public
work and transitions between them. Section 6 presents our
discussion about the data that we collected. After that, Section 7
discusses implications of our findings in the design of CSCW
tools. Finaly, conclusions and ideas for future work are
presented.

2. PRIVATE AND PUBLIC WORK

In this paper we examine the distinction between private and
public work in collaborative efforts. The need for this distinction
is widely recognized in CSCW research. According to Ackerman
[1], for example, people “(...) have very nuanced behavior
concerning how and with whom they wish to share information
(...) people are concerned about whether to release this piece of
information to that person at thistime (...)". Another reason that
makes people care about the release of information about them is
that they “(...) are aware that making their work visible may also
open them to criticism or management (...)" (ibid.). Furthermore,
one does not make his entire work visible because he wants to
appear competent in the eyes of colleagues and managers by
making their work more complicated than necessary [26]. Indeed,
people are not interested in all information that is provided to
them. As Schmidt [26] points out:

“(..) in depending on the activities of others, we are ‘not
interested’ in the enormous contingencies and infinitely faceted
practices of colleagues unless they may impact our own work (...)
An actor will thus routindy expect not to be exposed to the
myriad detailed activities by means of which his or her colleagues
deal with the contingencies they are facing in ther effort to
ensure that their individual contributions are seamlessly
articulated with the other contributions.”

To summarize, people have several contextualized and different
strategies to release their private information, and they expect that
others will do the same, not overloading them with public
information that is not ‘relevant’ to their current context or

activity. Note that this private information might be
collaboratively constructed [16]. In this case, the information is
public for those involved in its “construction”, but it is private to
the other members of the cooperative effort.

CSCW researchers have already recognized the need to support
these findings. Indeed, a typical approach to address that is to
provide support for private and public (also caled shared)
windows, or workspaces, to support the collaboration among users
[30]. Private workspaces allow users to work in different parts of
a document in parallel and contain information that only one user
can see and edit, allowing him to create drafts that later will be
shared with the other co-workers [7]. On the other hand, public
workspaces allow all users to share the same information or
document so that, changes in the document are automatically
visible to al users. The usage of these workspaces mimic
conventions carried over non-technological work, where no one
wants to search or look at anyone's private desk or drawer, and
conversely wants no one to search theirs, but accepts that when
they occur in public spaces. Indeed, Mark and colleagues [21]
report how conventions about the use of private and public
workspaces implicitly evolved from conventions formed in face-
to-face non-technological work after the introduction of a
groupware tool.

Often, other mechanisms are present in collaborative systems to
make other actions' visible as well. For example, grey ‘clouds
were proposed in the collaborative editor Grove to indicate where
other co-writers are editing the text [9]. Furthermore, it is aso
well-known that, in some settings, making others’ work public
facilitates the coordination of the activities [16] [17] and enables
learning and greater efficiencies [20]. Examples of tools that
explore such approaches include Portholes [8] and Babble [10].

The underlying distinction between private and public work also
implies that in collaborative efforts transitions between these two
aspects occur. However, while notions of “public’ and “private’
have been incorporated into software system design, insufficient
analytical attention has been give to the transitions. Field studies
such as those of Bowers [4] or Sellen and Harper [28]
demonstrate that overlooking these transitions can be problematic.
In Bower’s study, the disclosure of private data brought about
dilemmas of ownership and responsibility among the employees
of the organization studied. In Sellen and Harper’s study, when
the companies tried to go paperless deploying a new information
system, the employees’ ability to control when to disclosure
information was lost and these employees boycotted the system.
This happened because paper, as a medium on which work was
performed, alowed their owners to avoid sharing information
with their co-workers until they felt that the information was
“ready”.

Note that the setting where the collaborative effort takes place is
important. For example, in a control room, al workers are
collocated, which allows them to use intonations in their voice
and/or body language to make their actions visible to other co-
workers [17]. On the other hand, Whittaker and Schwarz [34]
report an ethnographic study where a large wallboard (containing
the schedule of a software development project) is used by the
team, which is spread along different cubicles and offices. The
public location of this wallboard alowed developers to access

information about who was doing which tasks at which times,
among other things. In other words, in this setting, information
about others' current actions was made public by checking and
updating the schedul e displayed in the wallboard.

In collaborative software engineering, this distinction between
private and private work is not only desirable, but necessary and
often enforced by tools. This occurs because of the severa
interdependencies that arise in any software development effort.
In other words, each part of the software depends, directly or
indirectly, on many other parts. Furthermore, these
interdependencies are not strictly defined in the artifacts
produced, and often are not even known by the developers. To
handle this problem, software engineers created tools, such as
configuration management (CM) and bug tracking systems, to
facilitate the coordination of groups of developers [14]. Current
CM systems adopt design constructs (like workspaces and
branches) to shield the work of individuals from effects of other
developers work [5]. Basicaly, these workspaces “create a
barrier that prevents developers from knowing which other
developers change which other artifacts” [25]. Therefore, CM
workspaces allow software developers to work privately.
Furthermore, CM systems provide mechanisms to support the
transition from private to public work when developers want to
make this transition. To be more specific, when a developer
finishes his work in his private workspace, he can publicize his
work to other software devel opers through check-in’'s, check-out’s
and merging operations. Despite this support, several problems
arise in any software development effort. Indeed, based on
empirical data that we collected, we identified a set of formal and
informal work practices used by a team of software developers to
handle these problems. The setting where the data was collected
and the methods used to anayze this data are described in the
following section.

3. THE SETTING

The team studied is located at the NASA / Ames Research Center
and develops a software application we will call MVP (not the
real name), which is composed of ten different tools in
approximately one million lines of C and C++. Each one of these
tools uses a specific set of “processes.” A process for the MVP
team is a program that runs with the appropriate run-time options
and it is not formally related with the concept of processes in
operating systems and/or distributed systems. Processes typically
run on distributed Sun workstations and communicate using a
TCP/IP socket protocol. Running a tool means running the
processes required by this tool, with their appropriate run-time
options.

Processes are also used to divide the work, i.e., each developer is
assigned to one or more processes and tends to specialize on it.
For example, there are process leaders and process developers,
who, most of the time, work only with this process. This is an
important aspect because it alows these developers to deeply
understand the process behavior and familiarize with its structure,
therefore helping them in dealing with the complexity of the code.
During the development activity, managers tend to assign work
according to these processes to facilitate this learning process.
However, it is not unusual to find devel opers working in different
processes. This might happen due to different circumstances. For

example, before launching a new release al workforce is needed
to fix bugs in the code, therefore, developers might be assigned to
fix these bugs.

3.1 The Software Development Team

The software development team is divided into two groups: the
verification and validation (V&V) staff and the developers. The
developers are responsible for writing new code, for bug fixing,
and adding new features. This group is composed of 25 members,
three of whom are also researchers that write their own code to
explore new ideas. The experience of these developers with
software development range between 3 months to more than 25
years. Experience within the MVP group ranges anywhere
between 2% months to 9 years. This group is spread out into
several offices across two floors in the same building.

V&V members are responsible for testing and reporting bugs
identified in the MVP software, keeping a running version of the
software for demonstration purposes and for maintaining the
documentation (mainly user manuals) of the software. This group
is composed of 6 members. Half of this group is located in the V
& V Laboratory, while the rest is located in several offices |ocated
in the same floor and building as this laboratory. Both, the V&V
Lab and developers’ offices are located in the same building.

3.2 The Software Development Process

The MVP group adopts a formal software development process
that prescribes the steps that need to be performed by the
developers during their activities. For example, al developers,
after finishing the implementation of a change, should integrate
their code with the main baseline. In addition, each developer is
responsible for testing its code to guarantee that when he
integrates his changes, he will not insert bugs in the software, or,
“break the code”, as informally characterized by the MVP
developers. Ancther part of the process prescribes that, after
checking-in files in the repository, a developer must send e-mail
to the software development mailing list describing the problem
report associated with the changes, the files that were changed,
the branch where the check-in will be performed among other
pieces of information.

The MVP software process also prescribes the usage of code
reviews before the integration of any change, and design reviews
for major changes in the software. Code reviews are performed by
the manager of each process. Therefore, if a change involves, e.g.
two processes, a developer’s code will be reviewed twice: one by
each manager of these two processes. On the other hand, design
reviews are recommended for changes that involve major
reorganizations of the source code. Their need is decided by the
software manager usualy during the bi-weekly software
devel opers meeting (called pre-design meetings).

3.3 Software Development Tools: CM and Bug

tracking

MVP developers employ two software development tools for
coordinating their work: a configuration management system and
a bug tracking system. Of course, other tools are used such as
CASE tools, compilers, linkers, debuggers and source-code
editors, but the CM and bug-tracking tools are the primary means

of coordination [5] [12] [14]. These tools are integrated so that
there is a link between the PR’s (in the bug tracking system) and
the respective changes in the source-code (in the CM tool). Both
tools are provided by one of the leader vendors in the market.

A CM tool supports the management of source-code dependencies
through its embedded building mechanisms that indicate which
parts of the code need to be recompiled when one file is modified.
To be more specific, CM tools support both compile-time
dependencies, i.e., dependencies that occur when a sub-system is
being compiled; and build-time dependencies that occur when
several sub-systems or the entire system is being linked [12]. A
bug tracking tool, when associated with the CM tool, supports the
tracking of changes performed in the source code during the
devel opment effort.

It is important to mention that the MVP team employs several
advanced features of the CM tool such as triggers, techniques to
reduce compilation time, labeling and branching strategies.
Indeed, the branching strategy employed is one of the most
important aspects of a CM tool because it affects the work of any
group of software developers. This strategy is a way of deciding
when and why to branch, which makes the task of coordinating
paralel changes easier or more difficult [33]. According to the
nomenclature proposed by Walrad and Strom [33], the following
branching strategies are used by the MVP team: (1) branch-by-
purpose, where all bug fixes, enhancements and other changes in
the code are implemented on separated branches; (2) branch-by-
project, where branches are created for some of the devel opment
projects; and (3) branch-by-release, where the code branches
upon a decision to release a new version of the product. The
branch-by-purpose strategy is employed by MVP developers in
their daily work, while the other strategies are only used by the
CM manager. In other words, developers create new branches for
each new bug fix or enhancement, while branches for projects and
releases are created by the manager only. The branch-by-purpose
strategy supports a high degree of parallel development but at the
cost of more complex and frequent integration work [33].
According to this strategy, each developer is responsible for
integrating his changes into the main code. This approach is often
called “push integration” [2]. After that, the changes are available
to all other developers. Therefore, if one bug is introduced, other
developers will notice this problem because their work will be
disrupted. Indeed, we observed and collected reports of different
instances of this situation. When one devel oper suspects that there
is a problem introduced by recent changes, he will contact the
author of the changes asking him or her to check the change, or
for more information about it.

4. METHODS

The first author spent eight weeks during the summer of 2002 as a
member of the MV P team. As a member of this team, he was able
to make observations and collect information about severa
aspects of the team. He aso talked with his colleagues to learn
more about their work. Additional material was collected by
reading manuals of the MVP tools, manuals of the software
devel opment tools used, formal documents (like the description of
the software development process and the 1SO 9001 procedures),
training documentation for new developers, problem reports
(PR’s), and so on.

All the members of the MVP team agreed with the author’s data
collection. Furthermore, some of the team members agreed to let
the intern shadow them for a few days so that he could learn about
their functions and responsibilities better. These team members
belonged to different groups and played diverse rolesin the MVP
team: the documentation expert, some V&V members, leaders,
and developers. We sampled among MVP “processes’,
developers experience in software development and with MVP
tools (and processes) in order to get a broader overview of the
work being performed at the site. A subset of MVP group was
interviewed according to their availability. We again sampled
them according to the dimensions explained above. Interviews
lasted between 45 and 120 minutes. To summarize, the data
collected consists in a set of notes that resulted from
conversations, documents and observations based on shadowing
developers. These notes have been analyzed using grounded
theory techniques [31].

5. PRIVATE AND PUBLIC WORK IN
SOFTWARE DEVELOPMENT

As mentioned before, software development tools like
configuration management systems support private, public work,
and transitions between them. Despite using a CM system the
MVP team faced several problems when dealing with these
aspects. In this section, we present the forma and informal
approaches adopted by this team in order to properly perform their
work, i.e. develop software. In the sections that follow, we will
explore these situations separately: private work, the transition
from private to public, public work, and the transition from public
to private.

5.1 Private Work

Configuration management tools allow developers to work
privately through the implementation of workspaces and branches
[5]. These workspaces isolate the changes being created by one
developer from other parts of the code. In this case, a developer’s
‘work-in-progress. is not shared with other developers.
Furthermore, these workspaces allow a devel oper to work without
being affected by the changes of other developers. Indeed, when
new changes are committed in the repository by other developers,
the CM toal lets the user decide if he or she wants to grab these
changes. In case one wants to incorporate the changes, he may
recompile the software using the embedded building mechanisms
on these tools. In case a developer does not want to incorporate
the changes, one can continue working and, if necessary,
recompile the software with the appropriate run-time options that
do not grab these new changes. Of course, thisis arisky course of
action because it might lead the developer to work with an
outdated version of the files, which might potentially make his
work |ess ineffective.

Mechanisms embedded in CM tools are able to identify syntactic
conflicts between the developer’'s ‘work-in-progress and the
changes committed into the repository, reporting whether or not
the ‘work-in-progress is affected by these changes. However,
because CM systems rely on syntactic features of the domain such
as files, suffixes and lines of code, they can not identify semantic
conflicts [11]. This means that except for these conflicts, current
configuration management systems provide extensive and

automated support for maintaining the isolation between the work
performed by one person from other’ s work [5].

However, when software developers engage in paralel
development, problems arise in the CM tool. Paralel
development happens when more than one developer needs to
make changes in the same file. This means that the same file is
checked-out by different developers and al of them are making
changes in the different copies of this file in their respective
workspaces. As one might imagine, parallel development might
lead to conflicts. They might occur when one developer checks-in
his changed version of the file back in the repository, because the
versions of the other developers will become outdated. In this
case, the changes of these devel opers might become inappropriate
because they are based on a code that is not the latest. To solve
this problem, a developer needs to update his version of the file
by merging the other developer’s changes into his code. The
developers term this operation “back merging’; in CM
terminology, it is named “synchronization of workspaces’ or
“import of the changes’. Conflicting changes are more likely to
occur in files that are accessed by several developers at the same
time. Indeed, in the MV P software some files are used to describe
programming language structures that are used al over the code.
This means that several different developers often change these
files. In this case, “back merges’ are problematic because CM
tools face difficulties when they need to perform several merges at
the same time. To overcome this problem not avoiding parallel
development, MVP developers adopted a strategy to deal with
these files: they perform “partia check-in’s’, which consist of
checking-in some of the files back in the repository, even when
the developers have not finished all their changes yet. This
strategy reduces the number of “back merges’ needed, therefore
overcoming the limitations of CM tools. In addition, they
minimize the likelihood of conflicting changes.

In addition to “partial check-in's’, MVP developers adopt a
different practice during their private work: they “speed-up” to
finish some of their activities during the development process to
avoid merging. This does not happen all the time though, it occurs
only when MV P devel opers are testing their changes. This activity
is performed right before the check-in operations. As one
developer plainly pointed out: “This is a race!”. According to the
software development process, this testing is necessary to
guarantee that the changes will not introduce bugs into the
system. We observed that, thistesting is very informal: devel opers
will sit on the V&V laboratory and compare the current version of
MVP with the one with changes. MVP developers do not use
more formal techniques, such as regression testing techniques, at
this moment. These will be used by the V&V staff before creating
anew release of the software.

In contrast, the bug tracking tool does not provide support for the
private work of software developers. All the operations made in
the problem reports managed by this tool are publicly accessible
to al other software developers. For example, when a devel oper
is assigned a bug, he needs to fill some information about the bug
indicating how he will proceed to fix that bug. MVP developers
usually write the information to be added to the bug tracking
system outside the tool in a private file only accessible by
themselves. Eventually, this information is added to the bug-
tracking tool by the developer, which will automatically make it

available to al members of the MV P team. Furthermore, the tool
does not avoid that two developers work on the same PR, as
reported by one of the developers. Devel opers themselves have to
deal with this problematic situation. The MVP group tries to
avoid this problem through the software development process,
which prescribes that the software manager is the one responsible
for assigning PR to developers. Any assignment needs the
approval of the manager. Organizational rules however interact
with this process. According to these rules, the software manager
can not assign work to the contractors working for the MVP
group. This assignment has to be done to the manager of the
contracting company, who will be responsible for assigning the
work to the devel opers.

5.2 Moving from Private to Public Work

In this section we discuss the work practices used by the MVP
team to support the transition from private to public work, as well
as how the software development tools used by the MVP team
support this transition. This transition might occur in two
situations: when a developer asks for code reviews, or informal
comments, in his code; or when a developer commits his work
(source-code changes) into the CM repository.

In the first case, MVP developers want to grant others access to
their code, meaning that the work will be visible to them so that
they can comment on it. In this case, MVP developers simply
need to change a setting in their CM workspaces. Although their
work is now public, it is not shared by the other developers,
meaning that it will not impact other devel opers work.

In the second case, after a developer commits his work into the
CM repository, this work is made public and shared meaning that
it is visible and might impact the work of the other developers. In
order to publicize his work, the author of the changes has to
perform, at least, four different operations®:

1. Check-in the files that he wants to publish in his own
branch;

2. Check-out the same set of files from the baseline;

3. Merge his changed files with the checked-out files
available in the baseline; and

4. Check-in the new files generated by the merging
operation into the baseline.

From the technical point of view, these tasks are not difficult
since check-in's, check-out’s and merges are typical operationsin
CM systems and, therefore, supported by nearly every tool in the
market. This means that CM systems provide adequate support
for these operations. However, this support is problematic when a
developer is, or was, engaged in paralel development. As
mentioned in the previous section, MV P devel opers adopt “ partial
check-in's’ to deal only with files with high levels of parallel
development. Other files are not “partially checked-in”. In this
case, if a developer is engaged in parallel development and other
developers had checked-in the same files in the baseline before
him, then he will need to perform “back merges’ before merging

! These operations might be different in other software
development teams since they depend on the branching strategy
adopted by the team.

his code into the baseline. “Back merges’ are supported by the
CM tool through the presentation of version trees of the files
being merged, which alows developers to identify the need for
this task through the observation of the versions on this tree. After
that, the operation is a simple merge. Again, the situation
becomes problematic only if several “back merges’ need to be
performed.

During the transition from private to public, there is nothing that
other developers need, or are able to do to facilitate this process.
The work of performing the transition needs to be done by the
author of the changes that will be publicized. However, because of
the several inter-dependencies that exist among the several parts
of the software (e.g., source-code, manuals, specifications, design
documents, and so on), this does not mean that these developers
will not be affected by the transition. Indeed, in order to minimize
these effects, the developer who is going to perform the transition
follows a set of formal and informal practices to facilitate the
management of the interdependencies. These practices need to be
adopted because the tool support to the devel opers affected by the
private work being publicized is minimal. These formal and
informal practices are described below.

The Software Development Process

As mentioned before, the software development process adopted
by the MVP team prescribes the usage of code and design
reviews. One of the reasons reported by the MVP developers for
using these formal reviews is the possibility of evaluating the
impact that the changes under review will have on the rest of the
code. The most experienced software developer of the team, for
example, reported that design reviews are used to guarantee that
changes in the code do not “break the architecture” of the MVP
software. By breaking the architecture, she means writing code
that violates some of the design decisions embedded in the MVP
software. Code reviews, on the other hand, are responsibility of
process leaders, who can evaluate the impact that the changes will
introduce in their processes before they were committed in the
main repository. This helps each and every process leader to
coordinate the work of other developers working in the same
process.

E-mail Conventions

In addition to formal reviews, the MVP process prescribes that
after checking-in code in the repository, a developer needs to send
an e-mail about the new changes being introduced in the system to
the software developers’ mailing list (see section 3.2). However,
we found out that MVP developers send this email before the
check-in. Moreover, MVP developers add a brief description of
the impact that their work (changes) will have on other’s work in
this email sent to the software developers mailing list. By
adopting these practices, MV P developers alow their colleagues
to prepare for and reflect about the effect of their changes. Thisis
possible because all MVP developers are aware of some of the
interdependencies in the source-code, but not all of them. As an
example of this ‘preparation’, devel opers might send e-mail to the
author of the changes asking him to delay their check-in, walk to
the co-worker’s office to ask about these changes or, if the
changes have aready been committed, browse the CM and bug
tracking systems to understand them. The following list presents
some comments sent by MV P devel opers:

“ No one should notice.”

“ [description of the change]: only EDP userswill notice
any change.”

“Will be removing the following [x] files. No effect on
recompiling.”

“ Also, if you recompile your views today you will need
to start your own [Z] daemon to run with live data.”
“The changes only affect [y] mode so you shouldn't
notice anything.”

“If you are planning on recompiling your view this
evening and running a MVP tool with live [Z] data you
will need to run your own [z] daemon.”

These e-mails are also important because they tell (or remind)
developers that they have been engaged in parallel development.
Often, developers do not know that this is happening®. The
information in the email is usually enough to tell the developer if
he needs to incorporate these changes right away in order to
continue his work, or if he can wait until he is ready for check-in.
In both cases, the developer needs to “merge back” the latest
changes into his version of thefile.

Sending e-mail before a check-in is aso used by other developers
to support expertise identification, and as a learning mechanism.
Developers associate the author of the e-mails describing the
changes with the “process’ where the changes are being
performed. In other words, MVP developers assume that if one
developer constantly and repeatedly performs check-ins in a
specific process, it is very likely that he is an expert on that
process. Therefore, if another developer needs help with that
process he will look for him for help:

“[talking about a bug in a process that he is not expert]
(..) I don't understand why this behaves the way it
does. But, most of these PR’ s seem to have John’s name
on it. So you go around to see John. So, by just by
reading the headline of who does what, you kind of get
the feding of who's working on what (...).So they [e-
mails] tend to be helpful in that aspect aswell. If you've
been around for ten years, you don’t care, you already
know that [who works with what], but if you've been
here for two years that stuff can really make difference

.y

On the other hand, the fact that developers read e-mails sent by
other developers to assess the impact of others' changes in their
code contributes to their learning experience within MVP. Note
that devel opers who reported the aspects described in this section
had little experience working at MVP: the first with 2 years and
the second with 2 %2 months.

Problem Reports

The problem reports (PRs) of the bug-tracking tool are used by
different members of the MV P team who play diverse roles in the
software development process. Basically, when a bug is

2 Differently than the developers reported by Grinter [14], before
checking-out a file, they do not check the version tree that
displays information about other developers working on the
samefile.

identified, it is associated with a specific PR. The tester who
identified the problem is also responsible for filling in the PR the
information about ‘how to repeat’ it. This description isthen used
by the developer assigned to fix the bug to learn and repeat the
circumstances (adaptation data, tools and their parameters) under
which the bug appears. In other words, the information provided
by the tester is then used by the MVP developer to locate, and
eventually fix the bug. After fixing the bug, this developer must
fill a field in the PR that describes how the testing should be
performed to properly validate the fix. Thisfield is called ‘how to
test’. This information is used by the test manager, who creates
test matrices that will be later used by the testers during the
regression testing. The devel oper who fixes the bug al so indicates
in another field of the PR if the documentation of the tool needs to
be updated. Then, the documentation expert uses this information
to find out if the manuals need to be updated based on the
changes the PR introduced. Finaly, another field in the PR
conveys what needs to be checked by the manager when closing it.
Therefore, it is a reminder to the software manager of the aspects
that need to be validated.

In other words, PR's provide information that is useful for
different members of the MVP team according to the roles they
are playing. They facilitate the management of interdependencies
because they provide information to MVP developers that help
them in understanding how their work is going to be impacted by
the changes that are going to be checked-in the repository.

Holding check-in's

As mentioned earlier, MVP developers add a brief description of
the impact of their changes to the e-mail sent to the developers
before checking-in any code. Two types of impact statements are
used more often than others: changes in run-time parameters of a
process, and the need to recompile parts or the whole source code.
The former case is important because other developers might be
running the process that will be changed with the check-in. The
latter case is used because when a file is modified, it will be
recompiled, as well as, the other files that depend on it and this
recompilation process is time-consuming, up to 30 to 45 minutes.
Developers are aware of the delay that they might cause to others.
Therefore, they hold check-in's until the evening to minimize the
disturbance that they will cause. According to one of the
devel opers:

“(...) people also know that if they are going to check-in a
file, they will do in the late afternoon ... You're gonna do a
check-in and this is gonna cause anybody who recompiles that
day have to watch their computer for 45 minutes (...) and
most of the time, you're gonna see this coming at 2 or 3 in the
afternoon, you don’t see folks (....) you don’t see people doing
[file 1] or [file 2] checking-in at 8 in the morning, because
everybody all day is gonna sit and recompile.”
The transition from private work, then, is recognized as a point at
which the work of a single developer can impact the work of
others. Developers' orientation is not simply towards the artifacts
but towards the work of the group. The subtlety with which the
transition is managed reflects this consideration.

5.3 Public Work

The work of one developer becomes public when it is visible to
al other co-workers. This happens in two different circumstances:
when a developer changes the settings of his workspaces to grant
others access to his code and after a developer commits his
changes into the repository of the CM tool. These situations raise
the question of how the MVP developers handle the new public
work (changes)?

In the former case, the work is public but not shared, which
means that it is not going to affect other developers work.
Therefore, MVP developers do not need to take any step in order
to handle the public work, because it will not affect them.
However, in the second case, MVP developers might need to
adapt their work based on these changes. Indeed, MV P devel opers
might need to recompile their changes (work) in case they choose
to incorporate the new public work or they might need to change
the run-time parameters of a process that was atered by the
changes. Based on our data, we found out that the configuration
management tool provides some help to MVP developers handle
this situation. As mentioned before, these tools have building
mechanisms that help MVP developers, upon request, to
incorporate the new changes and identify syntactic conflicts
between the developer’s ‘work-in-progress’ and the new changes.
However, these tools are not able to detect semantic conflicts
since they are purposely created to be independent of
programming languages [11].

The bug tracking tool, on the other hand, provides support for
public work because al the operations performed in the problem
reports are automatically visible to all MVP developers. In
addition, this tool implements some accounting features that
record the history of a PR including all operations performed on
each one of them.

5.4 Moving from Public to Private Work, or

“Breaking the code”

According to Walrad and Strom [33], the branch-by-purpose
strategy adopted by the MVP team (see section 3.3) assures
continual integration of the code, therefore minimizing problems.
However, this strategy needs to be complemented by some form of
notification that informs all developers that a check-in happened
(and therefore that some integration took place). As mentioned
before, this is achieved in the MVP team through the e-mail
notification sent before the check-in's. Therefore, whenever a new
change is introduced in the repository, all developers are notified
about it. This affords an easy detection of problems caused by the
introduced changes. In other words, if a change introduces a bug
in the software, other developers might be able to detect it
because: (i) they are aware that a change was introduced in the
code by another developer; and (i) they usually integrate the new
introduced changes in their own work. If any abnormal behavior is
identified in the software after a check-in, whoever identified that
will contact the author of the check-in to verify if the problem is
happening because of the check-in. If that is the case, the software
is called “broken” and the code that was checked-in must be
removed from the repository, corrected, and checked-in again
later. In other words, the publicly available work needs to be
made private again. The CM tool supports this transition because

it provides rollback facilities that allow one to remove committed
changes from the repaository.

6. DISCUSSION

The notions of private and public work and workspaces are well
known ones in the design of collaborative systems. However, our
empirical observations draw attention to the complex set of
practices that surround the transition between public and private.
Private information has public consequences, and vice versa.

The different formal and informal work practices arise in the
MVP team, especially, because of the interdependencies among
the different artifacts created during the software development
process. Indeed, these interdependencies make the process of
publicizing work so important. A developer can not simply
carelessly publicize his work, because this will cause a large
impact in other developers work: some of them will need to go
through their testing again, others will spend a lot of time
recompiling their changes, others can need to change their own
code in order to adapt the new checked-in code, and so on.

Since the MVP developers are aware of some of these
interdependencies, they explicitly work to minimize problems that
emerge in the relationship between their different working needs.
Artifacts such as problem reports facilitate the management of
interdependencies of developers from the different groups and
with different roles. Problem reports are “boundary objects’ in the
sense of Star and Griesemer [29]; objects whose common identity
is robust enough to support coordination, but whose internal
structure, meaning, and consequences emerge from loca
negotiations between groups. Viewing PR’s as boundary objects
draws attention to their role in managing |oosely-coupled
coordination, and how each developer is able to interpret the
information in the PR’s that is useful to their current work.
Critically, this is achieved without changing the identity of each
PR aong the whole software development process. Indeed, each
PR keeps the same unique identifier.

Interestingly, these forma and informal work practices require
that the author of the changes performs most of the additional
work. However, this author will not get any benefit from that.
Indeed, sending e-mail notifications, holding check-in's, and
filling the appropriate PR’s fields during the implementation are
all operations performed by the author of the changes and none of
them facilitate or improve his work. There is one developer
performing the extra-work who does not gain any benefit of this
extra work, and fifteen other developers who benefit from his
work®. That is exactly one of the situations that lead groupware
applications to fail [15]. In this particular software development
team though, this does not happen. MVP devel opers are aware of
the extra-work that they need to perform, but they are also aware
that this same extra-work is going to be performed by the other
developers when necessary, and this is going to help each and
every one of them in performing their tasks.

On the other hand, MV P devel opers also adopt informal practices
during their private work. The first one, caled “partial check-

% The MVP group is composed of 16 developers. One of them is
performing the check-in; therefore 15 others are being helped by
the extra-work.

in's’, is especially important because it is used to handle files
with a high degree of parallel development and changes in these
files positively correlate with the number of defects [23]. “Partial
check-in's’ are variations of the formal software development
process, which establishes that check-ins only will be performed
when the entire work is done. They are necessary because of the
software development tools adopted are unable to properly handle
merging in these files. This is the same reason, according to
Grinter [14], that led other team of software developers to either
avoid parallel development or rush to finish their work. On the
other hand, MVP developers rush because they do not want to
repeat their testing when another developer checks-in some code
into the repository. In both studies, developers describe their
dilemma: they want to produce high-quality code, but they also
want to finish fast their changes.

Holding onto check-in's is another informal approach adopted by

the MVP developers during their private work. It is adopted
because they are aware of some of the existing interdependencies
in the software and they want to minimize the impact that their
changes will cause on others' work. To be more specific, they
understand that some changes cause a lot of recompilation, which
might lead other developers to spend time “watching” the
recompilation.

All this extra-work performed by the different members of the
MVP team is another form of articulation work [27] that occursin
cooperative software development. It is different from the
recomposition work [13], which is the coordination required to
assemble software development artifacts from their parts.
Recomposition work focuses on choosing the right components to
create a software artifact due to source-code dependencies, while
this extra work that we report focuses on the management of all
interdependencies that exist in a software development effort.

After any code is checked-in into the CM repository, the other
MVP developers are able to detect problems, or, detect if the
MVP software is “broken”. As noted in other settings such as ship
bridges [19] or aircraft cockpits [20], this can be achieved because
work artifacts and activities are visible to all. By creating a public
space, the CM repository supports collective error detection and
correction.

7. IMPLICATIONSFOR TOOLS

Software engineers have been devel oping tools to help co-workers
in analyzing the impact of others' work in their own work. In this
case, the support is provided to the devel opers after the transition
from private to public work has been made. This approach, called
change impact analysis [3], uses several techniques. One example
is dependency graph approaches, which focus on determining the
impact of the changed code (product) in other’s part of the source
code. These approaches are usualy based on program
dependences, which are syntactic relationships between the
statements of a program representing aspects of the program’s
control flow and data flow [24]. In other words, they focus only in
determining the impact of the changes in the product in the rest of
the cooperative effort. Although powerful, these techniques are
also computationally expensive and very time-consuming to be
used by developers in their daily work. Consequently, they do not
completely support the transition from private to public work, and
as we've seen, this is a very subtle step in cooperative software

development. Although these techniques have their limitations,
they are evidence that the dependencies between developers
working activities are a cause for concern and attention. We argue
that other cooperative efforts, especially those with severa
interdependencies, could greatly benefit from such approaches, if
they were arranged to support the emergence of public
information.

Recent approaches in software engineering attempt to provide
useful information to developers so that they can better
coordinate. In other words, these approaches try to increase the
awareness [7] of software engineers about the work of their
colleagues. They differ, however, on the type of information that
is provided. A first approach is based on the idea of facilitating
the dissemination of public information by collocating software
developers in warrooms [32]. In this case, companies expect to
achieve the same advantages that the public availability of others
actions has brought to other settings such as ship bridges [19],
aircraft cockpits [20], transportation control rooms [17] and city
dealing rooms [16]. Indeed, early results of this approach have
been encouraging [32]. However, there are practical limitationsin
the size of the teams that can be collocated, which suggests that
tool support is still necessary. Indeed, new tools like Palantir [25]
and Night Watch [22] adopt a different approach that focuses on
constantly publicizing information(like CM commands) collected
from a CM workspace to other workspaces that are accessing the
same files. In this case, instead of focusing in the transition
between private and public aspects of work, these tools basically
eliminate the private work by making all aspects of the work
publicly available to others. However, as discussed in section 2,
the need for privacy and for controlling the release of private
information is an important aspect in any social setting; which
therefore needs to be addressed in the design of cooperative toadls.

Finally, our data suggests that a software developer might use
different sources of information at different times in order to
assess the current status of the work. As mentioned before, the
MVP team uses information from emal messages, the
configuration management tool and the bug tracking system. By
reading e-mail, MVP developers are aware of future changes in
the CM tool because somebody else is going to check-in
something. By inspecting only the CM tool, a developer can be
aware of partial check-ins in the repository that are not reported
by e-mail. And finally, the bug-tracking tool, through its PR’s,
provides information about how a developer’s work is going to be
impacted by the problem report associated with the check-in.
These are three different tools that a MVP developer has to use.
We believe that a possible improvement is to use event
mechanisms (such as event-notification servers) to integrate these
different sources of information, and then provide a unique
interface and tool to assess the relevant information. Furthermore,
abstraction techniques [18] could be employed to generate high-
level information (e.g., status of the work) from low-level
information like recent check-ins and check-outs, e-mails
exchanged among software developers, information added to the
bug-tracking tool, etc. This is an interesting research area that we
plan to explore.

8. CONCLUSIONSAND FUTURE WORK
This paper examined the transitions between private and public
work based on empirical material collected from a large-scale
software development effort. The team studied, called MVP, uses
mostly three tools to coordinate their work: a configuration
management (CM) tool, a bug-tracking system, and e-mail. These
tools provide support for private and public work, as well as some
technical support that facilitates the transition from the former
aspect to the latter. However, MV P devel opers also adopted a set
of formal and informal work practices to manage this transition.
These transitions are necessary to facilitate the management of the
interdependencies among the different software artifacts. The
following practices were identified and described in the paper:
partial check-in’s, holding onto check-in's, problems reports
crossing team boundaries, code and design reviews, “speeding-
up” the process, and finally, the convention of adding the
description of the impact of the changes in the e-mail sent to the
group. These practices suggest that analytical attention needs to
be given to these transitions in order to enhance our
understanding of cooperative work. Furthermore, computational
support also needs to be provided so that this task can occur
properly.

We plan to study other software development teams in order to
understand how they deal with the aforementioned transition and
their work practices to perform that. By doing that, we expect to
learn important characteristics that can help us in understand
other cooperative efforts.

9. ACKNOWLEDGMENTS

The authors thank CAPES (grant BEX 1312/99-5) and
NASA/Ames for the financial support. Effort sponsored by the
Defense Advanced Research Projects Agency (DARPA) and Air
Force Research Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-00-2-0599. Funding also
provided by the National Science Foundation under grant numbers
CCR-0205724, 9624846, 11S-0133749 and 11S-0205724. The U.S.
Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), the Air Force Laboratory, or the U.S.
Government.

10. REFERENCES

[1] Ackerman, M. S., "The Intellectual Challenge of CSCW:
The Gap Between Social Requirements and Technical
Feasibility,” Human-Computer Interaction, vol. 15, pp.
179-204, 2000.

[2] Appleton, B., Berczuk, S,, et al., "Streamed Lines:
Branching Patterns for Parallel Software Development,”
vol. 2002, 1998.

[3] Arnold, R. S. and Bohner, S. A., "Impact Analysis -
Towards a Framework for Comparison,” International
Conference on Software Maintenance, pp. 292-301,
Montréal, Quebec, CA, 1993.

[4]

(8]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

Bowers, J., "The Work to Make the Network Work:
Studying CSCW in Action," Conference on Computer-
Supported Cooperative Work, pp. 287-298, Chapel Hill,
NC, USA, 199%4.

Conradi, R. and Westfechtel, B., "Version Models for
Software Configuration Management,” ACM Computing
Surveys, vol. 30, pp. 232-282, 1998.

Curtis, B., Krasner, H., et a., "A field study of the
software design process for large systems,”
Communications of the ACM, vol. 31, pp. 1268-1287,
1988.

Dourish, P. and Bdllotti, V., "Awareness and Coordination
in Shared Workspaces," Conference on Computer-
Supported Cooperative Work (CSCW '92), pp. 107-14,
Toronto, Ontario, Canada, 1992.

Dourish, P. and Bly, S., "Portholes. Supporting Distributed
Awareness in a Collaborative Work Group,” ACM
Conference on Human Factors in Computing Systems (CHI
'92), Monterey, CA, 1992.

Ellis, C. A., Gibbs, S. J, et al., "Groupware: Some issues
and experiences,” Communications of the ACM, val. 34,
pp. 38-58, 1991.

Erickson, T. and Kellogg, W. A., "Socia Translucence: An
Approach to Designing Systems that Support Social
Processes," Transactions on HCI, val. 7, pp. 59-83, 2000.
Estublier, J., "Software Configuration Management: A
Roadmap," Future of Software Engineering, pp. 279-289,
Limerick, Ireland, 2001.

Grinter, R., "Supporting Articulation Work Using
Configuration Management Systems,” Computer Supported
Cooperative Work, val. 5, pp. 447-465, 1996.

Grinter, R. E., "Recomposition: Putting It All Back
Together Again," Conference on Computer Supported
Cooperative Work (CSCW'98), pp. 393-402, Seattle, WA,
USA, 1998.

Grinter, R. E., "Using a Configuration Management Tool to
Coordinate Software Development,” Conference on
Organizational Computing Systems, pp. 168-177, Milpitas,
CA, 1995.

Grudin, J., "Why CSCW applications fail: Problemsin the
design and evaluation of organizational interfaces,” ACM
Conference on Computer-Supported Cooperative Work, pp.
85-93, Portland, Oregon, United States, 1988.

Heath, C., Jirotka, M., et ., "Unpacking Collaboration:
the Interactional Organisation of Trading in a City Dealing
Room," Third European Conference on Computer-
Supported Cooperative Work, pp. 155-170, Milan, Italy,
1993.

Heath, C. and Luff, P., "Collaboration and Control: Crisis
Management and Multimedia Technology in London
Underground Control Rooms," Computer Supported
Cooperative Work, val. 1, pp. 69-94, 1992.

Hilbert, D. and Redmiles, D., "An Approach to Large-scale
Collection of Application Usage Data over the Internet,"
20th International Conference on Software Engineering
(ICSE '98), pp. 136-45, Kyoto, Japan, 1998.

Hutchins, E., Cognition in the Wild. Cambridge, MA: The
MIT Press, 1995.

[20]

[21]

[22]

[23]

[24]

[29]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

Hutchins, E., "How a Cockpit Remembers its Speeds,”
Cognitive Science, vol. 19, pp. 265-288, 1995.

Mark, G., Fuchs, L., et a., "Supporting Groupware
Conventions through Contextual Awareness," European
Conference on Computer-Supported Cooperative Work
(ECSCW '97), pp. 253-268, Lancaster, England, 1997.
OReilly, C., Morrow, P., et a., "Improving Conflict
Detection in Optimistic Concurrency Control Models,"
11th International Workshop on Software Configuration
Management (SCM-11), Portland, Oregon, 2003 (to
appear).

Perry, D. E., and, H. P. S,, et d., "Parallel Changesin
Large-Scale Software Development: An Observational
Case Study,” ACM Transactions on Software Engineering
and Methodology, val. 10, pp. 308-337, 2001.

Podgurski, A. and Clarke, L. A., "The Implications of
Program Dependencies for Software Testing, Debugging,
and Maintenance," Symposium on Software Testing,
Analysis, and Verification, pp. 168-178, 1989.

Sarma, A., Noroozi, Z., et al., "Palantir: Raising Awareness
among Configuration Management Workspaces," Twenty-
fifth International Conference on Software Engineering, pp.
444-453, Portland, Oregon, 2003.

Schmidt, K., "The critical role of workplace studiesin
CSCW," in Workplace Studies : Recovering Work Practice
and Informing System Design, P. Luff, J. Hindmarsh, and
C. Heath, Eds.: Cambridge University Press, 2000, pp.
141-149.

Schmidt, K. and Bannon, L., "Taking CSCW Seriously:
Supporting Articulation Work," Journal of Computer
Supported Cooperative Work, vol. 1, pp. 7-40, 1992.
Sellen, A. J. and Harper, R. H. R., The Myth of the
Paperless Office. Cambridge, Massachusetts: The Mit
Press, 2002.

Star, S. L. and Griesemer, J. R., "Institutional Ecology,
Tranglations and Boundary Objects: Amateurs and
Professional s in Berkeley's Museum of Vertebrate
Zoology.," Social Studies of Science, vol. 19, pp. 387-420,
1989.

Stefik, M., Foster, G., et a., "Beyond the Chalkboard:
Computer Support for Collaboration and Problem Solving
in Meetings," Communications of the ACM, vol. 30, pp.
32-47, 1987.

Strauss, A. and Corbin, J., Basics of Qualitative Research:
Techniques and Procedures for Devel oping Grounded
Theory, Second. ed. Thousand Oaks: SAGE publications,
1998.

Teasley, S., Covi, L., et a., "How Does Radical
Collocation Help a Team Succeed?," Conference on
Computer Supported Cooperative Work, pp. 339-346,
Philadelphia, PA, USA, 2000.

Walrad, C. and Strom, D., "The Importance of Branching
Modelsin SCM," IEEE Computer, vol. 35, pp. 31-38,
2002.

Whittaker, S. and Schwarz, H., "Meetings of the Board:
The Impact of Scheduling Medium on Long Term Group
Coordination in Software Devel opment,” Computer
Supported Cooperative Work, vol. 8, pp. 175-205, 1999.

