
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Rohit Khare
University of California, Irvine
rohit@ics.uci.edu

Decentralized Software Architecture

December 2002

ISR Technical Report # UCI-ISR-02-6

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

Decentralized Software Architecture

Rohit Khare
Institute for Software Research, University of California, Irvine

Irvine, CA 92697-3425
rohit@ics.uci.edu

ISR Technical Report # UCI-ISR-02-6

Abstract: A centralized (or even distributed) system admits only one correct answer to a
question at a time. In contrast, a decentralized one allows several agents to hold different
opinions, all equally valid. While the term ‘decentralization’ is familiar from political and
economic contexts, it has been applied extensively, if indiscriminately, to describe recent
trends in software architecture towards integrating services across organizational
boundaries.
This technical report investigates how ‘decentralization’ can be defined in the context of
software architecture; provide a formal model of two causes of decentralization: latency
and agency; review historical trends forcing decentralization in software; as well as
design, implement, and evaluate a proposed software architectural style called
DECentralized Event Notification Transfer (DECENT).
We believe its principal contributions will include: formally exposing the often-tacit
requirement for simultaneity between components; novel rationales for adopting event-
based communication, standardized application protocols, and stateless messaging;
describing application-layer internetworking of software services across several routers,
(rather than a central bus); a microkernel-like refactoring of traditional messaging
middleware on top of a basic event model; techniques for using consistent hashing to
increase reliability, availability, and scalability of decentralized services; and evaluation
of the effectiveness of DECENT-style architecture for enabling 3rd and 4th-parties to add
properties such as security and interoperability without modifying the original services.

Page 1 of 14

Decentralized Software Architecture

Rohit Khare
Institute for Software Research, University of California, Irvine

Irvine, CA 92697-3425
rohit@ics.uci.edu

ISR Technical Report # UCI-ISR-02-6

Abstract

A centralized (or even distributed) system admits only
one correct answer to a question at a time. In contrast, a
decentralized one allows several agents to hold different
opinions, all equally valid. While the term ‘decentraliza-
tion’ is familiar from political and economic contexts, it
has been applied extensively, if indiscriminately, to de-
scribe recent trends in software architecture towards inte-
grating services across organizational boundaries.

This technical report investigates how ‘decentraliz-
ation’ can be defined in the context of software architec-
ture; provide a formal model of two causes of decentraliza-
tion: latency and agency; review historical trends forcing
decentralization in software; as well as design, implement,
and evaluate a proposed software architectural style called
DECentralized Event Notification Transfer (DECENT).

We believe its principal contributions will include:
formally exposing the often-tacit requirement for simulta-
neity between components; novel rationales for adopting
event-based communication, standardized application pro-
tocols, and stateless messaging; describing application-
layer internetworking of software services across several
routers, (rather than a central bus); a microkernel-like
refactoring of traditional messaging middleware on top of
a basic event model; techniques for using consistent hash-
ing to increase reliability, availability, and scalability of
decentralized services; and evaluation of the effectiveness
of DECENT-style architecture for enabling 3rd and 4th-parties
to add properties such as security and interoperability
without modifying the original services.

1. Introduction

Like any other design discipline, software development
is subject to the vagaries of fashion. In recent years, there
has been a surge in the popularity of the term ‘decentrali-
zation’: we hear of ‘decentralized file-sharing,’ ‘decentral-
ized supercomputers,’ ‘decentralized namespaces,’ and a
slew of similar claims of ‘peer-to-peer,’ ‘Internet-scale,’
and ‘service-oriented’ architectures [MKL+02].

Such interest is perhaps inevitable in the wake of the
unquestionable success of World Wide Web for enabling

‘decentralized hypertext’ [BC92]. This suggests closer
investigation of how the Web’s software architecture, as
described by REpresentational State Transfer (REST)
[Fie00], actually supports or inhibits decentralization of
software applications.

Naturally, we must begin with a clearer understanding
of the term ‘decentralization.’ The following subsections
provide a definition; examples of centralized, distributed,
and decentralized social behavior; manifestations of decen-
tralization in software artifacts; and an outline of the re-
mainder of our topic proposal.

1.1. Defining ‘Decentralization’

Decentralized (adj): withdrawn from a center or
place of concentration; especially having power or
function dispersed from a central to local authori-
ties.

Decentralization (n): the spread of power away
from the center to local branches or governments
� � � � � [W N 0 2]

Perhaps the subtlest aspect of these definitions is
hinted at by the verbs ‘withdrawn’ and ‘spread’: one can
only de centralize what was once centralized. Critically,
this introduces an observer’s stance: deciding whether a
given phenomenon is centralized, distributed, or decentral-
ized is thus a matter of perspective.

Consider an online auction service. To a buyer, it ap-
pears to be a decentralized marketplace, since anyone can
list goods for sale. To a seller, it appears to be a central-
ized auctioneer, since it alone determines the order and
validity of bids. Moreover, to an engineer, it appears to be
a distributed database service, since the data is stored and
processed on many servers working in parallel.

Furthermore, it is important to distinguish between in-
dependent systems and decentralized ones. It is not suffi-
cient to state that a set of restaurants, say, can set their
own prices for a cup of coffee. In a capitalist system, if
they are each owned by separate agents, they have com-
plete freedom to set prices without reference to each other.
There is no centralized price-of-coffee in the first place.

Page 2 of 14

However, if those restaurants are part of a franchised
chain, the power relationship is quite different. There is a
concept of a centralized, franchise-wide price-of-coffee,
even though the final authority to set actual prices has
been “dispersed from a central to local authorities” as local
conditions warrant.

1.2. Decentralization in society

 ‘Decentralization’ was a political and economic con-
cept long before it was ever applied to describe software.
Thus, the essential anthropocentrism of the term’s tradi-
tional definition suggests exploring a social process that
illustrates the phenomenon: markets.

There are many different kinds of markets, but they all
provide a pricing mechanism to achieve equilibrium be-
tween supply and demand. For example, the New York
Stock Exchange (NYSE), National Association of Securi-
ties Dealers Automated Quotation System (NASDAQ),
and the over-the-counter bulletin boards (“Pink Sheets”)
are three different markets for trading shares of stock. Each
employs a different pricing mechanism.

1 .2 .1 . Centralized Markets: NYSE
A completely centralized solution would be for every

trader to gather under a buttonwillow tree at the same time
and tell one person the prices they were willing to trade at,
and then let that person announce a single, equilibrium
price. That tradition continues unbroken to the present
day, at the very same location, in the form of the NYSE
specialist.

Every single order to buy or sell on the NYSE from
around the world eventually filters up to a single human
being. That specialist, in turn, is within earshot and line-
of-sight of a handful of member brokerage firms’ represen-
tatives on the NYSE trading floor. Aided by little more
than 19th-century telephones and tickers, this handful of
people orchestrates the exchange of billions of shares
every day.

NYSE proponents argue that a centralized system is
the most efficient, since every trading order is ‘exposed’ to
the widest range of counterparties. The tradeoff is that
prices change slowly, since the pricing mechanism re-
quires comparatively-slow human judgment.

1 .2 .2 . Distributed Market: NASDAQ
The NYSE only lists a small fraction of publicly

traded companies, however. Far more are listed on the
virtual NASDAQ market, which has no physical trading
floor. Instead, individual traders forward orders to a small
number of ‘market-makers,’ broker-dealer firms that com-
mit to using a shared computer system to track all of their
outstanding orders.

Proponents of the NASDAQ market note that it is
much cheaper to replace the role of a centralized specialist
is replaced by a distributed consensus among several
firms. The resulting efficiency enables far more firms to
be listed. The tradeoff, however, is that determining the
best price requires time for all the other market-makers to
be consulted (currently limited to 30 seconds).

1 .2 .3 . Decentralized Market: Over-the-Counter
In turn, there are even more stocks that are too cheap

and too rarely traded for either of the other two pricing
mechanisms. So-called ‘penny stocks’ do not have a sin-
gle fair value across different brokers. In an over-the-
counter market, each transaction is independent, so the
same trade at the same time can clear at different prices.
Instead, every few days, brokers publish their recent prices
for these stocks, which were mailed out on ‘pink sheets,’
a term still in use today.

If this makes over-the-counter markets seem like a
poor compromise for thinly-traded goods, consider that the
largest marketplace in human history is also decentralized.
Every day, a trillion dollars’ worth of foreign currencies
are exchanged, around the world, around the clock, and
essentially without regulation.

While there are many tradeoffs to such a decentralized
market – the biggest players, known as “money center
banks” can manipulate markets in ways considered illegal
in stock trading – it is nearly completely fault-tolerant,
proving more scalable than centralized markets in theory
and in practice.

1.3. Decentralization in software

The consequences of decentralization for software may
be less familiar than for economics or politics. Beyond the
obvious challenge of modeling and automating decentral-
ized social processes – applications for trading stocks or
currencies, say – there are also subtler signs of decentrali-
zation in the construction of software itself: component
identification, communication protocols, storage formats,
and authorization models, are only a few ways disagree-
ment inhibits software integration between organizations.

Consider something as simple as a timestamp. Hu-
mans have many equivalent ways to format a date string,
but if we expect several software components to interoper-
ate, we need to shift from a model where the very format
of a Date: header is subject to decentralized control of any
counterparty. After all, you can’t prevent someone else’s
application from generating dates marked “2002 A.D.,”
but you ought to expect your software to interoperate with
it. This is the basis of the classic Postel dictum for Inter-
net applications: “Be liberal in what you accept, and con-
servative in what you generate.”

Page 3 of 14

Nor is decentralization merely a design-time constraint;
its impact may only be felt years after a system is de-
ployed. Well into the ‘80s, Internet standards permitted
two-digit dates. That did not prevent organizations from
upgrading to Y2K-compliant implementations, without
impairing interoperability with once-valid services.

From this perspective, the original software as shipped
coped with all the known sorts of date formats, but decen-
tralization ultimately permitted counterparties to invent
new formats. The longer a system is expected to be in
continuous operation, the more careful a software architect
must be to predict and accommodate decentralized control
of even ‘obvious’ agreements.

It could be said that the state of the software industry
today is the realization of a sustained, common vision for
“assembling software out of building blocks.” Ultimately,
though, this paradigm is limited reusing software within
organizational boundaries: today’s multibillion-dollar En-
terprise Application Integration (EAI) market is limited to
assembling ever-larger applications under the control of a
single organization.

Instead, we believe the industry’s common vision is
moving on towards “assembling software out of services.”
Unlike components, which may be designed separately but
are owned and operated by the same organization, services
can be designed, owned, and operated by separate organiz-
ations. Furthermore, rather than identifying concrete “ap-
plications” that can be brought up, shut down, or upgraded
under the control of a single agency, an “application net-
work” is intended to operate continuously and requires
dynamic, multilateral architectural evolution.

If the future of software requires integrating services
running on computers that are very far away and owned by
others, then decentralization – forced by high latency and
diverse agency – will become a dominant concern for
software architecture.

1.4. Summary

Decentralization poses a fundamental challenge to the
design of software: variables could have several simulta-
neously valid values. Either a decentralized variable – say,
the yen-dollar conversion rate – will have to be reduced to
several centralized or distributed equivalents – the yen-
dollar conversion rate according to Bank A, Bank B, and
so on – or we must envision a new style of software ar-
chitecture that explicitly acknowledges that a single re-
source can have multiple valid values.

This approach is seemingly at odds with our most fun-
damental abstractions of computing devices. Even a Tur-
ing machine assumes a tape is either marked or unmarked,
and that it can’t magically change between steps. For-
mally, we introduce a definition of simultaneous agree-
ment, a test of whether two observers can compute using

the same values at the same time. Since agreement is im-
possible on asynchronous networks, and still takes at least
the maximum possible delay on any actual network, we
argue that decentralization is inevitable once simultaneous
agreement becomes infeasible.

There are two basic reasons simultaneous agreement
will become less and less feasible in years to come: in-
formation will need to be updated faster than it can be
transmitted (latency) and information received from other
components can only be trusted conditionally (agency).
This is already true of the Web today, even though the
risks seem negligible. Nonetheless, nothing ensures that
the page being displayed to a user bears any resemblance
to the state of the origin resource ‘right now.’ Web serv-
ices technologies that suggest computing further results
based on out-of-date or untrusted information will only
exacerbate these problems.

Ultimately, this will lead to the development of new
architectural styles for decentralized systems. We believe
that our definition of decentralization is a novel rationale
for the adoption of event-based communication; the cur-
rent client/server orthodoxy will not function under high
latency and diverse agency.

Given that our first step is representing decentralized
concepts as a series of events, our proposal for DECENT
draws upon REST in order to model events as resources;
and event notifications as representations. We also expand
the role of proxies in REST to model decentralization
across agency boundaries using “virtual domains.”

We will also implement infrastructure to support
DECENT applications, implemented in DECENT style.
There are a number of engineering contributions in our
application-layer internetworking approach to designing an
event router. By reference to the end-to-end principles that
worked so well at the network layer for TCP/IP, we ex-
pect to contribute a new end-to-end decomposition of tradi-
tional Message-Oriented Middleware (MOM) functionality
on top of best-effort event notification.

1 .4 .1 . Organization of this proposal
We begin with formal definitions. By introducing the

concept of simultaneous agreement in §2, we proceed to
define the terms ‘centralized,’ ‘distributed,’ and ‘decentral-
ized’ as simultaneous agreement over name-value pairs.

Defining decentralization as the elimination of simul-
taneous agreement requirements suggests investigating the
limits to simultaneity and agreement, respectively. There-
fore, §3 explores latency, which is ultimately a physical
limit that forbids absolute simultaneity. Similarly, §4
explores agency, which is the principle that independence
implies the right to disagree, which forbids absolute
agreement.

Page 4 of 14

The balance of the paper then focuses on how the field
of software architecture will be affected by decentraliza-
tion. §5 considers the historical trends increasing latency
and agency, how related research fields have coped, and
current avenues (and dead ends) for software architecture.

§6 outlines our response to the challenge of decentrali-
zation. §6.1 lays out our argument for new architectural
styles expressly designed for decentralized systems, and
§6.2 continues with our proposal for a novel kind of event
router for assembling decentralized systems.

2. Simultaneous agreement

The term “simultaneous agreement” originated in con-
tract law, specifically for defining financial instruments.
An ordinary cash transaction is a simple example of si-
multaneous agreement upon a trading price, Ptrade. This
represents a (literally) atomic transaction that exchanges
money for goods at the same instant (or at least, within
the ~100msec threshold of human perception).

In a software architecture using separate components to
represent buyer and seller, it is necessary to reify the
shared variable as a constraint upon purely local Pbuyer and
Pseller variables. Namely, if Pbuyer equals Pseller at some
time, then both must also be equal Ptrade at that time.

The next subsection considers the conditions for feasi-
bility of simultaneous agreement, and if so, how long it
takes to achieve. Subsequent subsections consider in turn
how Ptrade is controlled. First, Ptrade could be centralized
under the exclusive control of either the buyer or the
seller. Second, Ptrade could be distributed under the shared
control of both parties. Third, we could design the system
to work without a single, global, simultaneously agreed
Ptrade at all, which constitutes decentralization.

2.1. Consensus

Lynch, in [Lyn96], claimed “The impossibility of con-
sensus is considered to be one of the most fundamental
results of the theory of distributed computing.” [FLP85]
proved that on a completely asynchronous network (one
with maximum message latency d=∞), if even one process
can fail, then it is impossible for the remaining processes
to come to agreement. [Lyn96] also includes a proof that
even with a partially synchronous network with only a
finite d and message loss or reordering, consensus requires
at least d. In general, tolerating f processes failing requires
at least (f+1)·d.

Technically, these results are for the consensus prob-
lem, which requires each process be initialized with a deci-
sion value, and the termination condition is that all proc-
esses decide the same value iff the inputs were unanimous.
The agreement problem is an equivalent statement where
only one process, the leader, proposes a decision value and

all processes exit with the same decision. Mutual exclu-
sion and leader election have also been shown to be
equivalent to consensus [Lyn96].

It thus follows that if consensus takes at least d to es-
tablish, simultaneous agreement requires holding the
leader’s value constant for longer than d. Similarly, toler-
ating f process stopping failures requires holding values
constant for longer than (f+1)·d. Consequently, it is also
impossible to guarantee simultaneous agreement with a
leader changing more than 1/d times per second (or
1/(f+1)·d).

To define this condition more precisely, we postulate
the existence of a global clock in order to qualify the value
of a variable as a time-variate function. It is only possible
to synchronize clocks in an inertial frame of reference, so
to be sure, the following argument is limited to comput-
ers that are at rest with respect to each other. We thus
define simultaneous agreement as interval of time satisfy-
ing the following conjunction:

 ∃ tj , ti , t0 : (tj ≥ ti) ^ (t0 + d ≥ ti) :
∧ ∀ v : tj ≥ v ≥ ti: Pleader(v) = Pfollower(v)
∧ ∀ u : tj ≥ u ≥ t0 : Pleader(u) = Pleader(t0)
The condition is met in the shaded area of Figure 1,

where two world-lines are drawn vertically for the state of
the leader and follower processes and the horizontal separa-
tion reflects the time it takes a signal to traverse the dis-
tance between them. The message takes at most d to
travel, and simultaneous agreement only holds for the
span of time after the message arrives until Pleader changes
from 5 to 3. However, if the variable changes after a

message: '3'

followerleader

message: '5'

Simultaneous Agreement

pleader = 5

pleader = 3

pfollower = ?

pfollower = 5

pfollower = ?

d

pleader = 7
message: '7'

pleader = 3

Figure 1. Simultaneous agreement
only holds in the shaded region.

t0

ti

tj

Page 5 of 14

shorter interval than d, as from 3 to 7, it is impossible for
the message to arrive “in time” and hence simultaneous
agreement is also impossible.

2 .1 .1 . Leases vs. locks
Note that our definition requires Pleader to be constant

while agreement is established. At the bottom of the dia-
gram, even though the leader switches back from 7 to 3
before the message “3” arrives at the follower, that is mere
coincidence, not simultaneous agreement. Either a fol-
lower must contact the leader and request a lock to hold
the value constant while it works, or the leader must indi-
cate the period of time it commits to holding a value con-
stant, which is called a lease.

A leased value is represented by a (value, duration)
pair. In conjunction with a global clock, it is thus possi-
ble for the recipient to determine whether the lease is still
valid. In Figure 1, the follower can correctly unset the
value of Pfollower at the first instant the leader is able to
change (from 5 to 3) if we extended the contents of the
message to specify a lease.

2 .1 .2 . Single-assignment variables
Of course, an architect could avoid disagreement en-

tirely by restating the problem. One example is the tech-
nique of single-assignment variables: rather than replacing
the value of Pleader several times, a series of distinct vari-
ables could be set just once: First-Pleader, Second-Pleader,
and so on [Tho94]. On the other hand, this style would
also rule out a simple user interface displaying “the price
is currently P,” which is but one example of why software
architects rarely choose unfamiliar styles that explicitly
model delay and disagreement over shared information.

2 .1 .3 . Agreement over functions
The object of agreement can also be a function, rather

than a value. The equivalence seems obvious on a von
Neumann architecture computer, where programs are also
stored as data, but it requires refining our model of simul-
taneous agreement slightly.

Specifically, we choose to model named values as a
time-varying lookup function. Naming is essential for
exchanging information by reference rather than by value.

The semantic of replacing values with references re-
quires a belief that every observer uses the same lookup
function. Dereferencing pointers in a common address
space is a trivial example of semantic agreement. At the
opposite end of the spectrum, determining that a Web
page is a valid representation of a resource identifier can be
a matter of human judgment.

Agreement over some variable named X between a
leader and a follower separated by latency d is defined as:

∀ t : t ≥ 0: Lookupfollower(X, t + d)
 = (Lookupleader(X, t) ∨ ∅)

This definition permits the follower to fail (yield ∅),
such as when the network connection to a remote leader is
interrupted. The additional constraint for simultaneity
would be similar to §2.1 above.

2.2. Centralization

Centra l i zed (adj): drawn toward a center or
brought under the control of a central authority
[WN02]

Applied within the context of software architecture,
centralization can be described as the practice of assigning
exclusive control to modify information or invoke compu-
tation.

Two examples of centralized software architecture are
the use of a shared database in the client/server style, or
the use of a single keyboard input in an event-driven user
interface style. Many other components will rely on refer-
ences to the resulting database record or typed characters,
respectively. Nevertheless, those components are the only
ones that can modify or generate such information.

A variable X is considered centralized if and only if X
is modifiable at only one location, and all other references
to X require simultaneous agreement.

By location, we mean something more specific than
the street address of a computer. Ultimately, information
is represented by arbiters: devices than can make an exclu-
sive choice between representations of information, such
as a hole on a punched-card, a magnetic particle on disk,
or a flip-flop circuit on a chip (see also §3.1).

If we permit information in a follower arbiter to be
used in a computation without establishing simultaneous
agreement with the leader arbiter, we contradict the defini-
tion of centralization by permitting the same computation
at the same time, depending on the same centralized in-
formation, to yield different results at different locations.

As we discussed in §2.1, simultaneous agreement
comes at a cost. Processor and network latency strictly
limit update frequency, which can cause serious problems
if a software architect intends that a centralized variable
represent some phenomenon in the “real world” that oc-
curs more rapidly.

This is an elementary result of queuing theory, but
bears restating: if the request rate exceeds the service rate,
total service time increases linearly. Thus, given that d is
the maximum latency from the leader to any follower:

No centralized software architecture can correctly re-
act to events occurring more frequently than 1/d
times per second.

Note that this limit is entirely independent of comput-
ing speed or bandwidth; §5 explores its implications.

Page 6 of 14

2.3. Distribution

Distributed (adj): spread out […] or divided up
[WN02]

Sharing control between several agencies requires the
concept of a variable that can be modified at several loca-
tions, not just one. Therefore, the single leader/multiple
follower model of centralization does not apply directly.
There are two models for distributing control: either lead-
ership itself can pass from one location to another, or the
distributed information is actually derived from an ensem-
ble of centralized variables using a decision function.

Since the former model only has one leader at a time,
it ought to be considered ersatz distribution. It is neverthe-
less popular, in the guise of two-phase commit protocols
for ‘distributed’ databases or as resource management for
‘distributed’ operating systems. Control passes from one
location to another in a round-robin or first-come-first-
served manner.

We believe the latter model, using shared decision
functions, is a more appropriate choice for modeling how
power is distributed in society, or in software. Each indi-
vidual agent only controls a private preference, but the
distributed consensus value is established by a shared deci-
sion function, such as the mean, mode, maximum, or
minimum. From this viewpoint, Petersen’s algorithm for
distributed mutual exclusion [Sne93] is only a more com-
plex decision function.

A variable Y is considered distributed if all references
to it are the result of applying a decision function df() over
a set of simultaneously-agreed centralized variables X1,X 2,
…

It follows that since the function df()is identical
throughout, and its inputs are local variables that are each
in simultaneous agreement with remote leaders, then all
the local results of df() are also in simultaneous agreement
with the variable Y.

The minimum time it takes to calculate Y is the
maximum latency between any two locations in the sys-
tem. Since simultaneous agreement with a centralized
variable requires the maximum delay from the center to
any other point, it follows that simultaneous agreement
on an ensemble of centralized variables requires at least the
maximum delay of each member.

However, actually achieving the lower-bound time of
(f+1)·d is more difficult than the centralized case, since it
requires strict clock synchronization and phase alignment
on every update. Only if every centralized variable changes
at the same instant, and for the same lease duration, can
we guarantee that all agents have received all updates after
only d seconds have elapsed.

The upper bound is the more relevant, and involved,
calculation. Without loss of generality, we choose to ig-
nore fault-tolerance (the factor of f). Next, we choose to

model the modification of a centralized variable as an
event with a lease. Assigning a new value to variable v at
time t implies that the value cannot be modified during
the interval [t, t+Lmin), where L is the lifetime of the
lease. Since it takes d to propagate information, it follows
that simultaneous agreement is definitely feasible during
the interval [t+d, t+Lmin). That interval is obviously non-
empty, since §2.2 above concluded that Lmin > d.

Simultaneous agreement over the distributed variable Y
is only possible during the intersection of all the intervals
where simultaneous agreement also holds for each central-
ized variable X1, X 2, … Without loss of generality, we
choose to sort assignment-event times t1, t2, … in ascend-
ing order. The intersection of several intervals of the form
[t+d , ti+Lmin) from 1 to N is the interval [maxi-
mum(minima), minimum(maxima)). Thus, simultaneous
agreement over Y holds during:

[tN+d, t1+Lmin)
For this range to be nonempty,

Lmin > (tN-t1)+d
Since the times are a sorted sequence, the value of (tN-

t1) can be reduced to the sum of the differences between
each successive time:

(t2-t1) + (t3-t2) + …
This is at most (N-1)·max(tk+1-tk). The crux of our cal-

culation is that it is not possible for successive times to
be more than d apart. Informally, we would already be in
simultaneous agreement with a variable that didn’t change
for at least d; we should have included the prior modifica-
tion of that variable in our sort order.

Formally, if tk+1-tk ≥ d , then the prior modification
time of variable Xk+1, called tk+1’, is at least tk+1-Lmin and at
most tk+1-Lmax. This implies simultaneous agreement must
be possible during the interval [tk+d,tk+1), contradicting the
sort order by including tk+1’ instead.

Therefore, we conclude that a variable under the dis-
tributed control of N agents takes at most N·d to modify.

No N-way distributed software architecture can cor-
rectly react to events occurring more frequently than
1/N·d times per second.

Note that this limit is also entirely independent of
computing speed or bandwidth; §5 explores its implica-
tions.

2.4. Decentralization

As discussed in §1.1, decentralization is fundamentally
different from either centralization or distribution because
it permits multiple simultaneously valid outcomes for the
same decision. This assumes that the same name has the
same semantics to each observer.

A variable Z is considered decentralized across several
agencies A1, A 2, … if the values (estimates) of local vari-
ables A1’s-Z, A2’s-Z, … are all simultaneously valid val-

Page 7 of 14

ues of Z, even in the absence of simultaneous agreement
between agencies.

Returning briefly to a pricing example, the decentral-
ized variable named “yen-dollar conversion rate” is actually
represented by several estimates – given the vagaries of
network latency – of other bank’s best rates. Determining
the subset of banks that different traders trust to represent
the “yen-dollar conversion rate” is similarly subject to the
vagaries of agency conflicts.

Later in this paper, we will present syntax for model-
ing such conflicts more carefully in the manner of Web
resource identifiers (scheme://agency/name) that will reflect
the connection between generic, decentralizable concepts
and specific, centralized concepts we use in actual comput-
ing devices.

Rather than accept the performance limits of simulta-
neous agreement, we believe decentralized styles of soft-
ware architecture will rely on estimates of remote informa-
tion, which will not necessarily be simultaneous (due to
latency, §3), nor necessarily agree with local beliefs (due
to agency, §4).

The Web’s REST architectural style is the inadvertent
apotheosis of hybrid decentralization. In a typical three-tier
database/application-server/browser architecture, the first
two elements are either centralized or distributed within a
server cluster, ensuring that at the moment it is generated,
at least, a representation is in simultaneous agreement
with the abstract resource.

Once that representation leaves the data center, though,
agreement is no longer assured – even HTTP 1.1's expiry
times are merely advisory. The airline seats your browser
blithely displays as available could well have been sold
already by the time the page finishes downloading. Only
by acquiring an exclusive write lock can the client ensure
distributed control (e.g. using WebDAV). §6.1 discusses
this and other architectural features we expect to be devel-
oped in support of decentralization.

3. Latency

Feynman once observed that “When I talk about every-
thing in the world that is happening ‘now,’ that does not
mean anything... We cannot agree on what ‘now’ means
at a distance.” [Fey65]

He was referring to a revolution in physics nearly a
century old. Einstein contradicted Newtonian physics by
positing that uniform motion in a straight line is relative
– that no experiment can reveal which of two observers is
moving and which is at rest. The most famous conse-
quence of this principle is that nothing can travel faster
than c, the speed of light in a vacuum.

Money can buy exponentially increasing computing,
communications, and storage capacity, but latency is for-
ever. It is important to understand the sources of latency

because it constrains the physically realizable configura-
tions of shared state in a software architecture, or con-
versely, for estimating the behavior of an application on a
given set of machines. The following subsections explain
why latency is an absolute limit, how to visualize la-
tency’s effect on simultaneous agreement, and how to
cope with the uncertainty caused by latency.

3.1. Physical limits

Interestingly, physical information is apparently,
like energy, a localized phenomenon. That is, it has
a definite location in space, associated with the lo-
cation of the subsystem whose state is in question.
Even information about a distant object can be seen
as just information in the state of a local object
(e.g. a memory cell) whose state happens to have
become correlated with the state of the distant ob-
ject through a chain of interactions. Information
can be viewed as always flowing locally through
space, even in quantum systems [Fra02]

Frank’s discussion of the ultimate physical limits to
computation, storage, and communication is the key to
understanding why latency is an absolute constraint for
software architects: abstract information can only be stored
by actual arbiters (§2.2). It therefore takes time and energy
to transmit information across a channel, if one even ex-
ists.

3 .1 .1 . Propagation
As a consequence of relativity, it is not possible for an

arbiter, and hence information, to travel faster than c.
Popular reports of research in quantum computing using
entangled particles for “quantum teleportation” and “quan-
tum cryptography” may initially seem eerily “telepathic”
(as even Einstein described the instantaneous effects of
entanglement), but actual transmission of information
requires a corresponding classical message to be sent –
below c – in order to recover the state [BBC+93].

Practical communications channels actually only
achieve small fractions of c: photons travel at 67% c over
fiber; electrons travel at 10% c over copper; and atoms
travel at 0.0001% c over Federal Express. Furthermore,
error-correction, compression, and other channel coding
techniques also add overhead and jitter to propagation de-
lays.

3 .1 .2 . Bandwidth
In an argument due to [Fra02], information transmis-

sion across space can be viewed equivalent to information
storage across time, and subject to the same minimum-
energy requirements. Since information flux, often termed
‘bandwidth,’ is also an energy flux, the maximum capac-
ity of channel must be finite. If the desired signal rate is

Page 8 of 14

greater than capacity, however, delay increases linearly
until buffer space is exhausted and data must be dropped.
Furthermore, in store-and-forward networks, on-disk or on-
DRAM buffers may be quite large and high bandwidth,
but still high-latency, thus adding transit time to and from
the buffer to the total propagation delay.

3 .1 .3 . Disconnection
Store-and-forward networks are also robust in the face

of limited network partitions. If a line-of-sight is occulted,
as for interplanetary networks, or for nomadic cellular
users entering a tunnel, the network layer often buffers
further to mask the disconnection. System crashes are
another source of transient partitions. We choose to model
the finite buffer capacity and timeouts for supporting tran-

sient disconnection as an additional component of a chan-
nel’s maximum latency.

3.2. The ‘now horizon’

It is possible to map out the components of a software
architecture according to the latency of the underlying
hardware in order to draw visual conclusions about the
feasibility of simultaneous agreement. The key step is
transforming ordinary space, where a disk might sit a few
inches from a processor, into a gauge of time, where the
disk may be tens of milliseconds away, yet another proc-
essor in a city hundreds of miles away could still be closer
in time.

Using a logarithmic scale, latency visualization is
appropriate for modeling everything from components
separated by day-long email delays to components running
on the same processor separated by microsecond OS
thread-switching delays. Interprocess communication
(IPC) is merely another kind of delay, indistinguishable
from a few extra kilometers of wiring.

Map in hand, note that a circle around an arbiter whose
radius is the minimum lease time of the variable traces
out a boundary between components that can achieve si-
multaneous agreement and those that cannot. We term this
the ‘now horizon,’ since it is possible to speak with cer-
tainty of the arbiter’s value “right now” within it – and
impossible beyond it.

This technique is useful for analyzing various hardware
configurations, deciding to centralize or distribute control
of information, or conversely, determining the maximum
update frequency of centralized or distributed variables.

The limitation is that all component latencies have to
be measured with respect to a single, central arbiter. It is
not generally possible to embed a weighted network graph
into two- or three-dimensional space so that all pairwise
distances are consistent, even when calculating distance
using a different norm (e.g. Manhattan ‘city block’ dis-
tance rather than Euclidean geometry). For example, the
entire network in Figure 2 is centered around an arbiter on
CPU#3 in Los Angeles, so the 530 msec distance to the
tape drive T is correct (30msec to CPU#2 + 500msec to
T), as is the 25msec distance to disk D2 (15msec to
CPU#4 + 10msec to D2). The “distance” between D2 and
T, however, is too short (505 rather than 525).

Nonetheless, this chart is useful enough to tell that a
1Hz variable in LA can still be correctly backed up to
stable storage in New York, but a 100Hz variable can’t
even be used outside of LA.

It is also possible to confirm whether a given compo-
nent can rely on simultaneous agreement with several
variables. If it is within the intersection of multiple now-
horizons, it can still establish pairwise SA; two variables
can only be jointly consistent only if the minimum lease

CPU #1

CPU #2

CPU #3 CPU #4

CPU #5

Net

D1

T

D2

Chicago New York

Los Angeles

CPU #2

CPU #3

CPU #4

CPU #5Net
D1

TD2

CPU #1

1 s

0 ns
1 ns
1 µs
1 ms
10 ms
0.1 s

0 ms 15 ms 30 ms

CPU #1

CPU #3

CPU #4
D1

T

D2

LA CHI NY

Lo
g(
Ac

ce
ss
 L
at
en
cy
)

Network Latency / Distance
from CPU#3 in Los Angeles

Figure 2. Logical, physical, and
latency maps of a computer network

CPU #5
CPU #2

Page 9 of 14

time of the variable is long enough to completely enclose
both arbiters.

3.3. Uncertainty due to latency

Rather than the uncertainty of latency from §3.1, con-
sider the uncertainty due to latency. Beyond the now-
horizon of an arbiter, its current state can only be esti-
mated. The evolution of a variable over time may range
from completely random (tossing a coin) to highly pre-
dictable (tracking an airliner). [Tou92] discusses these
issues in detail, measuring the tendency of estimates to
weaken as time passes as ‘entropic stability.’ Dead reckon-
ing is an example of a technique that exploits it, since the
last known position, heading, and time of an airliner could
be combined with constraints on its velocity and maneu-
verability to estimate the region of space it could currently
be within.

In general, though, an architect cannot expect predict-
able estimators based on past information for abstract
symbolic variables such as ‘part number’ or ‘sales tax
rate.’

4. Agency

While latency is a physical limit, the concept of an
agency is socially constructed. It denotes the set of com-
ponents operating on behalf of a common (human) author-
ity, with the power to establish agreement within the set
and disagreement outside it. The anthropocentrism of the
concept may seem irrelevant to the concerns of software
architecture, but the missing link is the tacit assumption
that every computing device is owned by a person or or-
ganization, and is expected to operate on behalf of that
agency.

Our department recently installed a virus scanner on
our mail server that promptly deleted several drafts of this
paper. A message’s infected-p flag is set solely by the
scanner, which is configured solely by the support staff,
and no feature of the centralized scanner software is pre-
pared to brook dissent from its judgment (furthermore, the
attachments are deleted forthwith, in accordance with a
separate privacy policy that forbids storing mail!) In lieu
of a decentralized virus scanner that lets each agency –
sender, receiver, administrator – determine infected-p lo-
cally and react independently, we defeated the software
entirely by controlling a variable that was under our con-
trol: the attachment filename, the truth of which the scan-
ner entrusts the sender’s agency as blithely as it arrogated
exclusive control of infected-p.

Coordinating multiple agencies is arguably closer to
the political economic definition of the term ‘decentraliza-
tion’ than the effects of high latency alone. The following
subsections explore the basis of agency limits, a rule to

enumerate the extent of an agency, and ways to cope with
the uncertainty caused by inter-agency conflicts.

4.1. Philosophical limits

Philosophically, an agency is a set of trust relation-
ships between components, legitimized by indirect delega-
tion from human agents’ authority. An agency maybe
entrusted to authorize a given username/password combin-
ation to invoke services, or inherit its owner’s processor
priority level, for example.

A message attributed to another computer is merely a
string of bytes, but a message attributed to another agency
is an assertion to be judged, a statement of opinion. The
boundary between agencies is that another agency’s asser-
tions must not be accepted automatically as a local belief.
While protocols exist to enable agreements between agen-
cies, it must be voluntary if the independence of decentral-
ized agencies is to mean anything.

As an illustration, agencies maintain their own ontol-
ogy. The ASCII character set is a simple system of mean-
ing that was endorsed by a series of more and more
broadly-based standards organizations, reflecting the
authority of a single company (IBM) at first, to the point
that today many computing devices cannot be configured
to use any other symbols for input/output. And yet, two
instances of identical software components written by the
same vendor, but running on both an American and a
Japanese company’s equipment may have to renegotiate
even this basic level of meaning to before establishing
agreement over higher-level concepts like ‘Customer
Name.’

4.2. Agency boundaries

Determining agency membership of a component is
merely the inverse of the independence principle above:
any component that unconditionally agrees with all the
assertions of an agency is part of it.

An atomic transaction is an excellent example. A cus-
tomer depositing money in a bank account may have her
own opinion of the current account balance, but to com-
mit a transaction, she must agree with the bank’s estimate
or there is no deal (in software; real-world legal remedies
may be in order quite apart from the software architecture’s
affordances). Insofar as that transaction was concerned, she
was within the Bank’s agency boundary, unconditionally
accepting the Bank’s control of her id, password, balance,
and transaction state.

On the other hand, defining whether an email contains
a virus or constitutes spam is in the eye of the beholder.
No amount of unsolicited email from us ought to con-
vince your email system to unconditionally accept our
assertion that our message is virus-free. You might in-

Page 10 of 14

spect it yourself, or you might trust us for other reasons,
but the fact that our infected-p flag is stored, believed, and
acted upon by every computer we own is no reason to
assign our flag value to your agency’s own infected-p
state.

Assignment requires agreement, and components
within an agency boundary agree with each other by de-
fault just as those components must be able to disagree
with other agencies’ components by default.

4.3. Uncertainty due to agency

As with latency in §3.3, there may uncertainty of a
component’s agency obligations with respect to a given
piece of information (deception), but there is uncertainty
of a different order arising due to crossing an agency
boundary (confusion). A bid message from “Bob” without
knowing the agency making that assertion leaves us un-
certain of which agency’s “Bob” this is. If we compare
two bids for a “2-day” car rental without the agency re-
sponsible for uttering “day”, we cannot compare the pre-
cise timespan (24 hours from now? Now until noon to-
morrow?). The most direct example of this kind of uncer-
tainty is public key management itself: establishing an
agreement that a key corresponds to an identity depends
crucially on each agency legitimizing each assertion in the
chain.

5. Coping with latency & agency limits

The challenge of integrating software packaged as
components has been thoroughly explored over the last
two decades. [Ore98] surveyed the challenges of integrat-
ing software developed by several different organizations, a
process termed “Decentralized Software Evolution.” It
could be said the next challenge will be integrating soft-
ware delivered as a service over the network instead.

Relying on network services across latency and agency
boundaries requires designing solutions that minimize the
need for simultaneous agreement. This section applies our
definitions to examine the historical trends that are in-
creasing latency and agency; discuss how other computing
disciplines are coping with decentralization; and evaluate
early responses from software architecture research.

5.1. Trends increasing latency & agency

Moore’s Law is no match for Einstein’s. In coming
decades, microprocessors are generally expected to con-
tinue exponential decreases in feature size (Moore’s Law);
exponential decreases in cycle time; and exponential in-
creases in total price/performance (Joy’s Law). Peak
bandwidth across all media – copper, fiber, and wireless –
is expected to grow at an even faster rate.

We also expect new kinds of networks to emerge, such
as wireless, ad hoc personal-, neighborhood-, and inter-
planetary-scale connectivity. Perversely, these innovations
portend higher latency, lower bandwidth and more tran-
sient connectivity in exchange for more ubiquitous reach.

Taken together, while latency can be expected to im-
prove, approaching its fundamental limits as technologies
for all-optical networking become available, the relative
opportunity cost of a millisecond’s latency measured in
terms of foregone computing power and bandwidth•delay
product will be increasing substantially.

We also expect the current trend for increasing interor-
ganizational integration to continue apace. Known vari-
ously as “eBusiness” or “real-time enterprise” initiatives,
as more of the economy’s business processes come on-
line, we can expect the velocity of information throughout
the supply chain to increase. Software architects will be
expected to model higher-frequency variables as markets of
all kinds accelerate and perhaps even increase in volatility.

5.2. Related approaches to decentralization

Combined, these trends promise to shrink the now ho-
rizon and increase the diversity of agencies simultane-
ously. Coping with these shifts will require designing for
decentralization, which suggests reviewing similar re-
search on other aspects of computing: microprocessors,
internetworking, and collaboration software.

5 .2 .1 . ‘Clockless’ chips
Conventional microprocessors require simultaneous

agreement throughout the chip on each instruction cycle.
The clock signal required to synchronize today’s dissipates
nearly a third of the total power budget [Sut02]. Consider-
ing that a 1GHz processor has a switching time of 1 nsec,
and electrons travel at just 10% c, the now horizon of the
entire chip is only an inch! Eventually, we will have reg-
isters capable of switching faster than a signal can reach
the rest of the chip. One conservative response is called
heterogeneous clocking, which divides the chip into sev-
eral high-frequency subcircuits connected by a miniature
LAN.

A more creative response has been eliminating the re-
quirement for chip-wide simultaneous agreement using
delay-insensitive circuits. So-called asynchronous micro-
processors have already realized significant decreases in
power consumption and increases in overall performance.

5 .2 .2 . Best-effort packet switching
Back when ARPAnet was still a risky experiment,

conventional circuit- switched networks took advantage of
explicit signaling, allowing both ends of a connection to
agree on the capacity and availability of a link separately

Page 11 of 14

from the data flow. The boldest claim of packet-switching
was that congestion and link failure did not need to be
explicitly signaled. By decentralizing control of a link, an
end-to-end overlay protocol, TCP, could still estimate the
link capacity using a sliding-window protocol rather than
requiring simultaneous agreement on buffer states.

The essential premise of internetworking is to network
networks owned by separate agencies, making it a great
success for decentralized architecture. And yet, even
TCP/IP requires too much agreement for very high band-
width·delay links, so [Tou92] introduced a branching-
window protocol that uses “extra” bandwidth to reduce
effective latency by sending speculative information based
on estimates of likely future states at the receiver.

5 .2 .3 . Real-time collaborative authoring
High latency between multiple participants made si-

multaneous agreement over a shared document too slug-
gish for real-time collaborative work. In order to decentral-
ize the “distributed” document beyond the now horizon,
[EG89] introduced the technique of distributed operational
transforms (dOPT). Roughly speaking, local document
transformation events are broadcast along with a priority,
which then is used to reconstruct ordered subsets to “re-
play” at the other locations.

5.3. Identifying decentralized software

Decentralization is an active research topic in software
today. The term has been used, overbroadly, to describe a
wide range of “P2P” systems.

“Peer-to-peer” has become a popular phrase in the wake
of several successful, innovative applications that share in
common little more than not being standard client/server
architectures [MKL+02]. Under the P2P banner, we find
Napster, which queried a centralized song database;
Freenet, which is more nearly decentralized, but at the
expense of searchability; instant messaging products that
enable user-to-user communication, but only through
completely centralized servers; and a host of distributed
computing projects that leverage decentralization only
insofar as separate agencies own contributed computing
resources (the actual applications run on a grid, say, are
still client/server).

We believe purely decentralized software development
is rare today, outside of medical, military, and financial
applications. Within computer science proper, operating
system design – specifically, interprocess isolation – is a
miniature recapitulation of the challenge of decentraliza-
tion. Programs are owned and operated on behalf of dis-
tinct users, and user-mode programs must be able to func-
tion even with very high latency between processor time
slices.

6. Decentralizing Software Architecture

The common denominator of the approaches for coping
with decentralization in §5.2 is that they model interaction
as events. Rather than relying on a clock for moving data
across a chip in lockstep, asynchronous circuits pass con-
trol to the next state by handshaking signals, which are
analyzed as event traces. Rather than depend on explicit
signaling, TCP re-estimates the window size in the event
an IP packet is dropped. Rather than slow down the pace
of collaboration to the slowest participant’s, operational
transforms permit real-time editing as fast as latency per-
mits by reasoning about consistent, partial event se-
quences.

Without simultaneous agreement – whether caused by
short leases, long latency, or agency conflicts – it is im-
possible to speak of the “here and now,” only to recon-
struct the past from events generated “there and then.”
This section introduces our proposals for decentralizing
software architecture: a novel event-based architectural
style, and a novel event router design.

6.1. The DECENT architectural style

“The components of a loosely coupled systems are
designed to generate and respond to asynchronous
events” [CRW01]

Eliminating requirements for simultaneous agreement
between components is a fundamental motivation for
event-based architectural styles. As noted above, many
responses to decentralization begin by modeling interac-
tions with remote states as events. Event-based interaction
also more directly models the underlying physical reality:
communications are one-way, delayed, and unreliable.

Event-based architectural styles continue to function
beyond the now horizon, where synchronized styles such
as client/server with locked resources are forced to insert
wait states to accommodate high-latency clients. This is a
novel case for event-based integration; under circumstances
where simultaneous agreement is feasible, it has remained
a matter of convenience between push- vs. pull- transmis-
sion or topics vs. queue naming whether to recommend a
message-based or event-based architectural style. But once
shared state becomes infeasible, event models have the
advantage of continuing to function correctly as delay in-
creases.

The second force motivating decentralization is agency
conflict, for which we introduce the concept of resource
and representation from the Web’s REpresentational State
Transfer (REST) style [Fie00]. URLs combine a host
portion, for tracking the long-lived identity of an agency,
typically a DNS name, with a pathname portion for indi-
cating which resource at an agency is to be represented.

Page 12 of 14

By modeling event sources as resources, we inherit ab-
stractions for sharing identifiers used for subscriptions or
filters. By modeling event notifications as time-variate
representations of a resource, we inherit naming, access
control, cache validity, and a marshalling format for repre-
senting arbitrary media types. But most importantly, it
allows us to reason about a sequence of event representa-
tions in ways that isolated messages do not permit. A
newer representation for the same resource is considered a
replacement, allowing a connector to automatically discard
representations arriving more rapidly than can be delivered.
A representation can also expire, wherever it has reached
in the network. A representation has a unique entity tag
permitting routing loops to be detected and prevented,
which is essential in a decentralized event notification
service without a simultaneously-agreed routing table
(subscriber list).

The other precedent DECENT builds upon is the C2
style, which characterizes components solely in terms of
their notification (input) and request (output) events. Cur-
rent developments in Web services technology fit this
model directly. We intend to extend the C2 definition of
component to capture agency aspects, and to extend the
C2 definition of connectors to capture latency expecta-
tions, for analysis and tuning in the future.

The major departure we envision, though, is generaliz-
ing C2’s layered lattice of components assembled by an
architect at design- or run-time, to an arbitrary network of
services that can be extended by any authorized user at any
time. The subscription list is the routing table, which is
also the architectural configuration of how components are
connected.

In a network model, it becomes natural to reason about
components, partitions, and routes; if a part of the archi-
tecture requires encryption and authentication for access, it
suffices to isolate that component and force all traffic to
flow across a single route, and thus through the security
filters (‘firewall’).

6.2. A DECENT event router

All this leads to a complementary investigation: how
to implement a DECENT-style application. Clearly, this
calls for an event notification service, which is typically
abstracted as a bus that can select a subset of matching
messages from a set and deliver them, ideally asynchro-
nously to reduce notification latency [RW97]. Rather than
approximating the ideal of a single event notification serv-
ice connecting all components of an architecture, we plan
on implementing a decentralized event router, without
assuming shared information about topics, subscribers, or
events. Our model is an HTTP server, which is designed
to support a decentralized web of content by serving up a
portion of the global URL namespace without any a priori

coordination with any other Web servers, clients, or prox-
ies. We have prior commercial experience designing event
routers for KnowNow, Inc. that proved significantly easier
to install, administer, and develop with than competitive
systems by virtue of deferring to Web practices whenever
possible. The following subsections highlight three as-
pects of our design that appeal to precedents set by the
Internet.

6 .2 .1 . ALIN
Just as IP routers enabled interconnection of multiple

network-layer protocols, we believe an application-layer
router can enable interconnection of services currently
limited to access by email (SMTP), file transfer (FTP),
the Web (HTTP), as well as proprietary interconnects such
as AOL Instant Messenger [Day00] and emerging conven-
tions such as peered WebDAV repositories.

The SOAP and SOAP-Routing specifications [Gud02]
reflect similar thinking insofar as SOAP 1.2 is actually
independent of any particular application-layer transfer
protocol. There are bindings to HTTP and SMTP, but
conceivably any one-way, 8-bit clean, ordered channel
could be used. In a sense, SOAP is a toolkit for generat-
ing new application-layer protocols, increasing the need
for a router.

6 .2 .2 . MCP/EP
Just as TCP provided reliable, ordered messaging on

top of IP’s unreliable, unordered primitives as an end-to-
end service – a TCP stack running on smart hosts, leaving
the internals dumb (and fast) – we believe traditional Mes-
sage-Oriented Middleware (MOM) communication patterns
are worth supporting, but not at the expense of complicat-
ing the core. Specifically, transactional messaging, queu-
ing, presence, and load balancing can all be implemented
as event-notification patterns without router support.

6 .2 .3 . Striping
Just as RAID provided reliable, available, and scalable

file service layered atop arrays of unreliable, inexpensive,
isolated disks, we plan to provide reliable, available, and
scalable event routing capacity out of unreliable, inexpen-
sive, and isolated servers. But while the key to RAID was
striping across a fixed set of disks, the key to maintaining
a very large, dynamic, interorganizational cluster of
routers is a more clever striping function known as a con-
sistent hash [KL+97]. By posting events to multiple
routers, and subscribing to multiple routers, we plan to
provide end-to-end, user-defined levels of reliability and
availability using a K-of-N failure model.

Page 13 of 14

7. Conclusion

Decentralization is a familiar phenomenon in human
affairs, and will soon affect the architecture of software
systems that cross organizational boundaries as well.
When it is not accounted for, phenomena such as spam
result: the validity of a message is in the eye of the be-
holder, yet our distributed email software cannot distin-
guish separate agencies.

Latency and agency are two forces driving the decen-
tralization of software architecture. By defining centraliza-
tion as equivalent to simultaneous agreement, we argued
that absolute limits to both simultaneity – latency – and
to agreement – agency – are likely to motivate the devel-
opment of decentralized software architectures.

Our own proposal for an architectural style supporting
decentralization begins by explicitly modeling latency and
agency as aspects of event-based communications. Spe-
cifically, we claim that DECentralized Event Notification
Transfer (DECENT) is an extension of concepts from the
C2 and REpresentational State Transfer (REST) styles that
enables 3rd- and even 4th-party extensibility of deployed
services. The key technical insight justifying this claim is
that software packaged as network services, unlike prior
generations of component packaging technology, reflects
the same connectivity challenges at the application layer
as IP internetworking did at the network layer decades ear-
lier.

Our resulting proposal for an event router for Applica-
tion-Layer InterNetworking (ALIN) is an innovative infra-
structure for event-based communication that divides the
traditional function of several MOM facilities into a basic
Event Protocol layer and an end-to-end Message Control
Protocol layer above it.

Since latency and agency are absolute limits, independ-
ent of improvements in computing or communications
capacity, we expect these two concerns will dominate the
organization of future planetary-scale software integration.
As architects tend towards modeling higher-frequency phe-
nomena resulting from interorganizational integration and
automation, we believe decentralized software architectures
will prove more effective than today’s popular centralized
styles such as client/server.

8. Acknowledgements

The author gratefully acknowledges the assistance of
Dr. Richard N. Taylor, Dr. Joseph Touch, Dr. E. James
Whitehead, Dr. Roy Fielding, Eric M. Dashofy and Adam
F. Rifkin.

Effort partially sponsored by the Defense Advanced Re-
search Projects Agency (DARPA) and Air Force Research
Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-00-2-0599. The U.S. Govern-

ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained
herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA), the Air
Force Laboratory, or the U.S. Government.

9. References

[ACM98] Association for Computing Machinery, “ACM
Computing Classification System (1998)”, New York, NY.
http://www.acm.org/class/1998/ccs98.html

[BBC+93] Bennett, C. H., Brassard, G., Crepeau, C.,
Jozsa, R., Peres, A., and Wootters, W., “Teleporting an Un-
known Quantum State via Dual Classical and Einstein-
Podolsky-Rosen Channels,” Phys. Rev. Lett. 70, 1895
(1993).

[BC92] @@Berners-Lee, T. , Caillau, R., et al. CACM pa-
per. Alt: Caillau+Gilles, how the web was born

[CRW01] Carzaniga, A., Rosenblum, D. S., Wolf, A. L.,
“Design and Evaluation of a Wide-Area Event Notification
Service, ACM Transactions on Computer Systems, Vol. 19,
No. 3, August 2001, pp332–383.

[Day00] Day, M., Aggarwal,S., Mohr, G., et al. RFC
2779: Instant Messaging / Presence Protocol Requirements.
IETF, February 2000.

[EG89] Ellis, C. and Gibbs, S., “Concurrency Control in
Groupware Systems,” in ACM SIGMOD '89, pp. 399-407.

[Fey65] Feynman, R., The Character of Physical Law
(1964 Messenger Lectures at Cornell), MIT Press, Cambridge,
MA, 1965, p93.

[Fie00] Fielding, R. T. Architectural Styles and the Design
of Network-based Software Architectures, Ph.D. Dissertation,
University of California at Irvine, 2000.

[FLP85] Fisher, M. J., Lynch, N. A., Paterson, M. S.,
“Impossibility of distributed consensus with one faulty proc-
ess,” Journal of the ACM, 32(2):374-382, April 1985.

[Fra02] Frank, Michael P. “Physical Limits of Comput-
ing,” IEEE Computing in Science & Engineering, May/June
2002.

[Gud02] Gudgin, M., Hadley, M., Mendelsohn, N., et al.
SOAP Version 1.2 Part 1: Messaging Framework, World Wide
Web Consortium, December 2002

[KL+97] Karger, D. R., Lehman, E., Leighton, F. T.,
Panigrahy, R., Levine, M. S., Lewin, D., “Consistent Hash-
ing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web, ” STOC 1997,
pp654-663

[Lyn96] Lynch, N. A. Distributed Algorithms, Morgan
Kaufmann, San Francisco, 1996. p. 371, pp. 798-810.

[MKL+02] Milojicic, D. S., Kalogeraki, V., Lukose, R.,
Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., and Xu, Z.
Peer-to-Peer Computing, HPL-2002-57, HP Labs, Palo Alto,
2002

Page 14 of 14

[Ore98] Oreizy, P. “Decentralized Software Evolution,” in
Proceedings of the International Conference on the Principles
of Software Evolution. Kyoto, Japan. April 20-21, 1998.

[RW97] Rosenblum, D. S. and Wolf, A.L., “A Design
Framework for Internet-Scale Event Observation and Notifica-
tion,” in ESEC / SIGSOFT FSE 1997, pp. 344-360

[Sne93] Van De Snepscheut, J. L. A. What Computing Is
All About, Springer Verlag, 1993

 [Sut02] Sutherland, I. E. and Ebergen, J., “Computers
Without Clocks,” Scientific American, Aug. 2002.

[Tho94] Thornley, J. A Parallel Programming Model with
Sequential Semantics, Ph.D. Dissertation, Calif. Inst. of
Technology, May 1994

[Tou92] Touch, J. D. Mirage: A Model for Latency in
Communication , Ph.D. Dissertation, Univ. of Penn, Jan.
1992.

 [WN02] Miller, G. A., et al., WordNet version 1.7.

