
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

David F. Redmiles, Editor
University of California, Irvine
redmiles@ics.uci.edu

Proceedings of the 2002
Workshop on the State of the Art in

Automated Software Engineering

July 2002

ISR Technical Report # UCI-ISR-02-1

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

Proceedings of the 2002
 Workshop on the State of the Art in Automated Software Engineering

David F. Redmiles, Editor
Institute for Software Research
University of California, Irvine

redmiles@ics.uci.edu

ISR Technical Report # UCI-ISR-02-1

July 2002

Abstract:

 The 2002 Workshop on the State of the Art in Automated Software Engineering
brought together leading researchers in the field to present their most recent or best work exempli-
fying automation in software engineering. The workshop focused on identifying emerging trends
and challenges, such as: evolving requirements; software adaptability; validation of requirements
and systems; complexity of software engineering tasks and artifacts; diversity of models and nota-
tions; and the need for efficient tool support and tool infrastructure. Position papers which were
presented at the workshop comprise the Proceedings. A summary of the workshop was included
in the

Proceedings of the17th IEEE International Conference on Automated Software Engineering
(ASE 2002)

 and is available at the workshop web site:

http://www.isr.uci.edu/events/ASE-Workshop-2002/

This Proceedings may also be referenced as Technical Report UCI-ICS-02-17.

Recent Experiences with Code Generation and Task Automation Agents in Software
Tools

John Grundy1,2 and John Hosking2

Department of Electrical and Electronic Engineering1 and Department Computer Science2
University of Auckland, Private Bag 92019, Auckland, New Zealand

{john-g, john}@cs.auckland.ac.nz

1. Introduction

As software grows in complexity, software processes
become more flexible yet complex, and more developers
must co-operate and co-ordinate their work, software tools
providing developers editing, reviewing and management
facilities are not in themselves sufficient to ensure optimal
project productivity. The number of tasks developers must
manually perform with their tools, no matter how effective
and efficient the tools are, continues to increase. Eventually
this either overwhelms developers or leads to them not
performing (often critical) tasks e.g. they avoid or reduce
appropriate project management metrics capture, detailed
design analysis and rigorous software testing.

The solution is provision of various forms of automation
in the software tools developers use - the tools carry out
perhaps a wide range of activities for the developer at
appropriate times and inform the developer of results of
actions in appropriate ways [2, 4, 5]. Many automation
facilities have been used in tools, and in recent years more
and more have tended to be added. Examples of automated
tool support include information analysis (i.e. checking of
software artefacts for consistency); autonomous agents (that
perform tasks for users, including notification, information
update and change propagation, and task co-ordination);
code generation (generating user interface, data
management and/or information process code from
specifications); and

We have focused in recent years on two areas of
automation in software tools: (1) generating code from
high-level software specifications; and (2) utilisation of
high-level software information by agents to support
collaborative work, change management and component
testing. From our experiences developing a number of
software tools using these automation approaches, we have
learned a number of lessons for further research in these
areas. These include:
• the need to support software tool meta-model extension
• the need for on-the-fly enhancement of tool notations,

event processing and code generation facilities

• support for software artefact change propagation and
annotation

• the need to have reflective, high-level information to
running software system components

• the continuing challenges of enhancing COTS tools
with these kinds of automation facilities, including the
need for sharable, extensible software information
models for software tools and open tool infrastructure

In the following two sections we briefly review some of

our recent automated software tools. We give three
examples of tools generating code from high level software
descriptions, including a performance test-bed generator, a
data mapping tool and an adaptive user interface generation
tool. We describe three tools utilising event-driven software
agents, including collaborative work components,
requirements management and component testing tools. We
then review the key lessons we have learned from this work
and summarise future directions for our research on
automated software tools.

2. Code Generation Examples

The three tools described in this section all generate
large amounts of complex code from high-level descriptions
of different aspects of software. Their ability to do so is
dependent on the software information model they generate
code from and the developer’s ability to construct instances
of this model via appropriate user interfaces and design
metaphors.

2.1. SoftArch/MTE

Determining if software architecture designs will meet
required performance benchmarks is very challenging [3,
14]. SoftArch/MTE is a distributed system performance
test-bed generator [6]. It takes high-level descriptions of
software architectures and generates client and server code
that is automatically deployed and run to inform developers
of likely architecture performance. As real code is generated
and is deployed and run on real machines, quite accurate

performance measures can be obtained very quickly by
developers. Figure 1 outlines how Softarch/MTE works. A
tool (SoftArch) is used to model software architectures at a
high level of abstraction. This generates an XML-encoding
of the architecture design including clients, servers, client
requests, server operations, database operations and tables,
and middleware and host characteristics. XSLT
transformation scripts convert the XML into code and
deployment scripts, which are uploaded and run on
distributed client and server machines by deployment
agents. Performance results are sent back to SoftArch/MTE
and visualised with MS Excel™.

1. High-level
architecture designs

<architecture>
 <client>
 <name>Customer</name>
 ….
 </client>
 <server>
 …

2. Generate XML-encoded
architecture design

3. Run XSLT
transformation

scripts

Public class client1 {

 Public void static main() {
 Server.Request1();
….
 }

}

4. Generate code, IDLs,
deployment info, etc

5. Compile & upload to
multiple host machines

6. Run tests &
send results to
SoftArch/MTE
for visualisation

Client1.Request1: 157 22
Client1.Request2: 99 187
…

Figure 1. SoftArch/MTE performance test-bed.

2.2. Form-based Data Mapping Specification

Implementing mappings between complex data

structures is needed for various domains, including
business-to-business e-commerce, but is time-consuming
and hard to maintain with convention languages and tools
[7]. We have developed a form-based data mapping tool
that provides an environment in which non-programmer
end-users (business analysts) specify correspondences
between complex data models [12]. These data models are
rendered as “business forms”, and analysts specify form
element correspondences using a drag-and-drop, form-
copying metaphor. A transformation implementation is then
generated from this high-level correspondence specification
that when run transforms data in the source form format into

target form data. Figure 2 illustrates this form-based
mapping specification approach. Meta-data is imported
from schema files or design tools. Business form
representations are generated, and then analysts specify
correspondences between form elements, effectively
programming-by-demonstration of mappings. XSLT
transformation scripts are generated by the mapping tool
that implement the data transformations specified.

Meta-data e.g.
XML DTDs

1. Analyst imports meta-
data from source and target

enterprise systems

2. Default business
form layouts

generated. Analyst can
rearrange layout to
better-reflect actual

business forms.

3. Analyst specifies 1:1, 1:n, m:1
group and field correspondences
i.e. specifies how to “copy” data

from one form to the other

<xsl…>
 <xsl:apply-templates…>
…
</xsl:…>

4. Data transformation
implementation
generated from
specification

Figure 2. Form-based data mapper.

2.3. Adaptive User Interface Technology

Many systems require thin-client interfaces that will run
on multiple display devices and will suit different kinds of
users and user tasks [13]. For example a customer accessing
an on-line store via a wireless PDA will have quite a
different interface for the same functions as a staff member
accessing the system from a desktop PC web browser.
Building such interfaces with conventional techniques
results in large numbers of very similar server-side web
page implementations. We have developed a GUI design
tool and adaptive interface mark-up generator to make
design and implementation of such adaptive interfaces
easier [8]. Figure 3 illustrates this Adaptive User Interface
Technology (AUIT) system. A designer uses an abstract
representation of an interface to specify generic screen
components, layout and interaction. This tool generates Java
Server Pages with a set of custom tags describing the
adaptable interface. When deployed in a web server and
accessed by a user, the tags generate a user interface tailord
to the accessing user’s display device, user characteristics
and current task.

1. Designer specifies
abstract screen

2. Generate AUIT
JSPs

auit:form>
 <auit:label>Hello</auit:label>
 <auit:paragraph/>
 <auit:label>Name:</auit:label>
 <auit:editfield id=customer
field=name />
 <auit:table>
 ….
</auit:form>

3. Deploy JSPs in web
server

4. Display devices access
and adapted UIs generated

Figure 3. Adaptive User Interface Technology.

3. Task Automation Examples

The following examples are of software tools we have
developed that incorporate software agents to assist
developers by automating various tasks. The agents are
driven by event subscription or user request. The agents
access and manipulate software artefact information for the
user in various ways.

3.1. Collaborative Work Agents

Most software engineering tools require some degree of
collaborative work support, though most hard-code this and
are thus inflexible and require extensive engineering to
build [1, 5]. We have developed a set of plug-in software
agents that interact with tool client and server components
to add collaborative work support to tools [9]. Figure 4
illustrates the basic structure of our approach. Collaboration
agents support collaborative editing, group awareness and
version control. Communication agents support messaging,
annotation and dialogue between developers. Co-ordination
agents provide change notification actioning, locking, to-do
list task scheduling and even workflow co-ordination. The
agents can be plugged into or removed from tools at run-
time. In order to add these agents to tools, they need to
determine various user interface, distribution and
persistency support of the tool components. This is done by
having the tool components publicise “aspects” which
describe this information and can be introspected by our
collaboration agents.

Groupware Clients

UI Components (Buttons, Menus, Windows…)

Collaboration Clients
(Cursors, Editing,
Versioning, …)

Co-ordination
(Locking, to-do

list, …)

Communication
(Chat, Email, text

messages, notes, …)

Groupware Infrastructure (senders/receivers)

Client
Comps

Groupware Servers

Other GW
Clients:

Persistency Components

Groupware Infrastructure (senders/receivers)

Event
Server

Message
Server

History
Server

Figure 4. Collaborative work components.

3.2. Requirements Management Agents

Based on an empirical study of software engineering
practitioners use of abstract information models [17], we
have built a prototype tool for managing relationships
between functional and non-functional requirements, use
case models, and black-box test plans.

Extraction
agents

Part-module-system

Action-processing-
constraint

Data-user

User Data-ConstraintAction

Use case Requirements

Test
specification

Action

User

Data

1

2

3

4

5

6

7

9

8

10

11 12

Summarised & linked
information models

Source documents
(word, powerpoint,

test plans etc)

Change propagation Multi-representational views

Elements
changed

Figure 5. Requirements management.

This environment contains software agents that extract
information about these three different abstract software
representations, summarising the key parts of each
information model. Other agents create implicit links
between elements in different representational models or
allow developers to create explicit links and modify artefact
information. When elements in one representation change,
descriptions of these changes are captured and sent to other
models. Developers can view the impacts of these changes,

trace sources of changes, and view information from
different representations in multi-representational views.
We hope to provide other agents that can update source, 3rd
party software artefact documents in the future. Figure 5
outlines the main facilities of this prototype tool.

3.3. Aspect-oriented Component Validation Agents

Validating that deployed software components meet
their required functional and non-functional constraints is
very difficult [11, 15]. We have developed software agents
that inspect the constraints on deployed software
components and perform validation tests on these
components. The components are designed with the aspect-
oriented component engineering method [10]. Their
implementations have information characterising system
aspects, such as persistency, distribution, security and
transaction processing characteristics, associated with them
as XML documents. Our validation agents inspect these
component aspects and formulate tests to ensure the
component’s aspect-encoded constraints (functional and
non-functional) are met in their current deployment
situation. Some agents deploy 3rd party testing tools, like
SoftArch/MTE, to carry out complex tests and analyse the
results produced.

Web Servers/J2EE Servers
J2EE

Components

Deployment
Tools

Deployment
Descriptors

Deployed
Components

Proxies;
Example
Test Data
suppliers

Validation Agents

Aspect
Information

3rd Party
Testing Tools

Configuration
Scripts etc

EJB Testers JSP Testers

JB Testers

(1)

(2)

(4) (3, 5) (6)

(7)

(8)

(9)

Developer

Figure 6. Agent-based component testing.

4. Key Issues and Future Research

We have identified several key issues when building the
tools described in the previous two sections. These are
summarised below, along with some of the research
directions we are investigating to make the development of
such automated software tools easier and more feasible.

4.1. Software Information Model Extension

Many of our tools require extensible meta-models in
order that their capabilities can be enhanced by developers
as required. For example, we have added new kinds of
architectural characteristic support to SoftArch/MTE as we
have extended the tool to support a wider range of target
test bed generation (e.g. message-based systems and web-
based interfaces). Similarly, the information models the
requirements management agents use needs to be extensible
as different users have different degrees of detail in each
model they are interested in capturing.

Our experience with these tools has indicated that
ideally many automated software tools will have software
information models that can be extended as required.
Versioning these information models and ensuring
compatibility between old and new models often may need
to be supported. We are developing a new software meta-
tool with a fully extensible meta-model.

4.2. Tool Notation and Behavioural Extension

Many of our tools need to allow developers to add
additional notational representations (in order to make use
of meta-model extensions or support new kinds of artefact
views), and similar require behaviour extensions (such as
new code generation extensions or constraints on models
built). Examples include extending the modelling notations
of SoftArch/MTE, AUIT and our requirements modeller,
and adding new target code generation for SoftArch/MTE,
our form-based mapper, AUIT and component validation
agents.

Most of our tools have very limited notational support,
and limited run-time behavioural modification. This results
in frustrating turn-around time when enhancing tools and
requires developers to have in-depth knowledge of tool
internal structures to make any enhancements. Our new
meta-tool architecture supports flexible view notation
definition as well as a wide range of run-time behaviour
enhancement by allowing developers to incorporate new
code into the tools at run-time. This code includes constraint
checking, event/action rules and XSLT transformation
scripts which we have found very useful for implementing
code generation.

4.3. Change Propagation and Artefact Annotation

Many of our tools need to track changes made to
software artefacts. These include our requirements
modeller, collaborative work supporting agents and
component validation agents. SoftArch/MTE and our
requirements modeller require support for specifying links
between model elements and for annotating elements with

additional, semi-structured information such as design
rationale and change explanation.

While many software tools have moved to adopting
publish-subscribe event-based architectures the use of these
architectural facilities is still relatively limited. We have
found using this architecture important in driving many task
automation agents, particularly those supporting
collaborative work. The ability to link, refine and annotate
software artefacts in many of our tools is important and
hence should be supported within a tool infrastructure.

4.4. Reflection Information

Some software tool automation facilities need access to
detailed information about running tool components.
Examples include the plug-in collaborative work agents, the
data mapping tool and the aspect-based component
validation agents. The collaborative work agents need to
adapt tool component interfaces to integrate new facilities
and make use of publicised component event mechanisms.
The data mapper needs to obtain meta-data information
from source and target structures. The validation agents
need to determine what the requirements on deployed
components are in order to perform appropriate tests to
validate these are met.

In our recent work we have developed a mechanism to
annotate software components with information about the
“aspects” of a system they provide or require services [10,
9]. This is used by our collaborative work and validation
agents. Interestingly, tool automation is required in order to
generate this information from annotated component design
models. We are investigating adding these aspects as
annotations to SoftArch/MTE architecture designs to better-
organise the many properties of some of its architecture
abstractions.

4.5. Tool Integration

Software tool integration has been a long-standing
problem for tool developers and those developing
automated support for tools [16, 18]. Some of our tools
utilise 3rd party systems in limited ways e.g. SoftArch/MTE
uses MS Excel™ to visualise performance data and our
requirements modeller extracts summarised data from save
files. Many of the automation support described in our tools
above could however be very useful if integrated into 3rd
party, commercial software development tools. For
example, SoftArch/MTE test beds could be generated from
(greatly) annotated Rational Rose™ deployment diagrams;
mapper transformations from cross-linked MS Access™
screen designs; collaborative work agents potentially added
to a very large range of tools; and inter-representation
requirements change management added to integrate several
different tools.

Three key problems preventing such enhancements of
existing tools we have identified are lack of agreed, high-
level tool information models that can be shared between
tools, lack of adequate tool event and operation APIs, and
sufficiently open technologies implementing these APIs and
run-time inspection facilities allowing other tools to
discover them. We are investigating “componentising”
some of the tool automation facilities outlined in the
previous section in order to add them to COTS software
tools and to allow easier use of these tools by our own.

5. Summary

We have been developed a range of software tools with
automation features, in particular ones that generate code
from various high-level software information models and
ones that leverage “agents” to perform various task
automation facilities for developers. Some of the key issues
in building such tools we have encountered include the need
to support extensible information models, notations and
event handling behaviour, change propagation and
information element annotation capabilities, detailed
reflective information encoded with software components,
and tool integration. We are developing a meta-tool with
these capabilities to enable us to better support the
construction of various automated software tools, and
developing various integration components to support the
integration of our new tools and enhancement of existing
COTS software tools with automation.

References

1. Bandinelli, S., DiNitto, E., and Fuggetta, A. Supporting
cooperation in the SPADE-1 environment. IEEE Transactions
on Software Engineering, vol. 22, no. 3, December 1996,
841-865

2. Fischer, G, Domain-oriented design environments, In
Proceedings of the Seventh Knowledge-Based Software
Engineering Conference, McLean, Virginia, 1992, pp. 204-
213.

3. Gorton, I. And Liu, A. Evaluating Enterprise Java Bean
Technology, In Proceedings of Software - Methods and
Tools, Wollongong, Australia, Nov 6-9 2000, IEEE CS Press.

4. Green, C., Luckham, D., Balzer, R., Cheatham, T., Rich, C.
Report on a Knowledge-Based Software Assistant, Technical
Report RADC-TR-83-195, Rome Air Development Center,
August 1983, Reprinted in: C.H. Rich, R. Waters (eds.):
Readings in Artificial Intelligence and Software Engineering,
Morgan Kaufmann Publishers, Los Altos, CA, 1986, pp. 377-
428,.

5. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and Apperley,
M.D. An architecture for decentralised process modelling and
enactment, IEEE Internet Computing, vol. 2, no. 5,
September/October 1998, IEEE CS Press.

6. Grundy, J.C., Cai, Y. and Liu, A. Generation of Distributed
System Test-beds from High-level Software Architecture
Descriptions, In Proceedings of the 2001 IEEE Automated

Software Engineering Conference, San Diego, 26-29 Nov
2001, IEEE CS Press, pp. 193-2000.

7. Grundy, J.C., Mugridge, W.B., Hosking, J.G. and Kendall, P.
Generating EDI Message Translations from Visual
Specifications, In Proceedings of the 2001 IEEE Automated
Software Engineering Conference, San Diego, CA, 26-28
Nov 2001, IEEE CS Press.

8. Grundy, J.C. and Zou, W. An architecture for building multi-
device thin-client web user interfaces, In Proceedings of the
14th Conference on Advanced Information Systems
Engineering, Toronto, Canada, May 29-31 2002, Lecture
Notes in Computer Science.

9. Grundy, J.C. and Hosking, J.G. Engineering plug-in software
components to support collaborative work, to appear in
Software – Practice and Experience.

10. Grundy, J.C. Multi-perspective specification, design and
implementation of software components using aspects,
International Journal of Software Engineering and
Knowledge Engineering, Vol. 10, No. 6, December 2000, pp.
713-734.

11. Haddox, J.M., Kapfhammer, G.M. An approach for
understanding and testing third party software components, In
Proceedings of 2002 Annual Reliability and Maintainability
Symposium, Seattle, WA, 28-31 Jan. 2002, IEEE CS Press.

12. Li, Y., Grundy, J.C., Amor, R. and Hosking, J.G. A data

mapping specification environment using a concrete business
form-based metaphor, In Proceedings of the 2002
International Conference on Human-Centric Computing,
IEEE CS Press.

13. Marsic, I. Adaptive Collaboration for Wired and Wireless
Platforms, IEEE Internet Computing (July/August 2001), 26-
35

14. McCann, J.A., Manning, K.J. Tool to evaluate performance in
distributed heterogeneous processing. In Proceedings of the
Sixth Euromicro Workshop on Parallel and Distributed
Processing, IEEE, 1998, pp.180-185.

15. McGregor, J.D. Parallel Architecture for Component Testing.
Journal of Object-Oriented Programming, vol. 10, no. 2 (May
1997), SIGS Publications, pp.10-14..

16. Meyers, S. Difficulties in Integrating Multiview Editing
Environments, IEEE Software, 8 (1), 1991, pp. 49-57.

17. Olsson, T., Runeson, P., Software document use: A
qualitative survey, Technical report, Dept. of Communication
systems, Lund University.

18. Reiss SP. The Desert environment. ACM Transactions on
Software Engineering & Methodology, 8 (4), Oct. 1999,
pp.297-342.

OpenModeling in Multi-stak eholderDistrib uted Systems:
Model-basedRequirementsEngineering for the 21stCentury

��� �

RobertJ.Hall
AT&T LabsResearch

180ParkAve,Bldg 103
FlorhamPark,NJ07932

bob-3OpenModel-@channels.research.att.com

Abstract

Multi-stakeholderdistributedsystems(MSDSs),wherein
the constituentnodesare designedor operatedby distinct
stakeholders having limited knowledge and possiblycon-
flicting goals, challenge our traditional conceptionof re-
quirementsengineering. MSDSs,such astheInternetemail
system,networksof web services,and the Internet as a
whole, haveglobally inconsistenthigh-level requirements
and, therefore, havebehaviorwhich is impossibleto vali-
dateaccording to the usualmeaningof the term. We can
sidestepthis issueby changingtheproblemfrom”does the
systemdo the right thing” to ”will the systemdo the right
thing for me(now)?” But to solvethat simplerproblem,we
needa wayto predictbehaviorof thesystemoninputsof in-
terestto us. OPENMODEL proposesto solvethis by estab-
lishingopenstandardsfor behavioral modeling:each node
will providevia http(or througha central registry)a behav-
ioral modelexpressedin termsof shared domain-specific
function/objecttheories. A tool will supportvalidation by
assemblingthesemodelsandsimulating, animating, or for-
mally analyzingthe assembledmodel,helping the user to
detectunfavorablebehaviors or feature interactionsin ad-
vance. ThispaperpresentstheOPENMODEL proposaland
discussesits potentialadvantages,challenges,and limita-
tions.

1. Multi-stak eholderDistrib uted Systems

Definitions and Examples. Requirementsengineering
has traditionally assumedthat the systemto be designed
is underthe control of a single stakeholderwho (at least
in principle) determinesa consistentset of requirements.

1A preliminaryversionof the ideasin this paperwerediscussedin a
talk givenat theFebruary2002meetingof IFIP WorkingGroup2.9.

2 c
�

Copyright 2002,AT&T Corp.

Moderndistributedsystems,however, do not fit this mold,
sorequirementsengineeringmustadaptto handlethem.

A multi-stakeholderdistributedsystem(MSDS)is a dis-
tributedsystemin which subsetsof thenodesaredesigned,
owned,or operatedby distinct stakeholders.Thenodesof
thesystemmay, therefore,bedesignedor operated

� in ignoranceof oneanother, or

� with different,possiblyconflictinggoals.

The Internetelectronicmail (email) systemis an MSDS.
Differententities(companies,universities,internetservice
providers (ISPs), and individuals) operateservers of the
email system. Individual users(private and commercial)
actasclients,sendingmessagesandreceiving themvia the
servers. Eachof theseentitiesoperatesits node(s)accord-
ing to its own goalsandpriorities,usingsoftwarepackages
designedat diversetimesby differentgroupsof developers
eachhaving moreor lesslimited knowledgeof eachother
andof thegoverningstandardsdocuments(InternetRFCs).

The emerging field of Web Servicesprovidesmoreex-
amplesof MSDSs.A WebServiceis simply a serviceon a
network whichperformssomefunctionthroughapublished
remoteprocedurecall interface,usingtheworld-wideweb’s
HTTP protocol as its “transport layer”, typically using a
distributedobjectprotocol, suchasSOAP, on top of that.
Theintendedbenefitsof thisarchitectureincludetheability
to dynamicallyandeasilycomposetheseservicesinto use-
ful businessfunctionalities,for example,sendingordersand
paymentsdown throughsuppliertreesandinvoicesandser-
vicesbackup. Eachwebserviceis built, owned,andoper-
atedby a distinctentity having its own capabilities,knowl-
edge,goals,andpriorities.

Other examples of MSDS include the Internet as a
whole,wherehostsdesignedandgovernedby literally mil-
lions of differentstakeholdersinteroperateat theextremely
low level of the InternetProtocol, and today’s telephone
network, wheremany companiesof widely varyingservice

scopeandgeographicalextentmustinteroperatetheirnodes
at thesignalingandvoice transportlevel, yet aregoverned
by their own businessandnationalpriorities. Clearly, in a
highly interconnectedworld, MSDSswill beubiquitous.

MSDS: No Such Thing as Requirements? From a
requirementsperspective, the interestingthing about an
MSDSis thatit typicallyhasinconsistenthighlevelrequire-
ments.Differentstakeholdershaveconflictinggoalswhich,
in turn,placeinconsistentrequirementsonsystembehavior.
Of course,to operateatall theremustbesomelevel of con-
sistency sothatthenodescancommunicateinformation.

For example,the Internetemail system’s consistentre-
quirementsincludetheSMTP, POP3,andIMAP mail proto-
cols,aswell asmessageformatdefinitions(suchasdefined
by RFC 822). However, it hasmany examplesof incon-
sistency as well. Spammers(sendersof unwantedemail)
want their messagesto get to asmany peopleaspossible,
yet innocentuserswant to avoid receiving spammessages.
Userswant the contentand (often) recipient identitiesof
their messagesto remainprivate,yet variousjurisdictions
(suchastheU.S.government)feel it is their right to snoop
ISP traffic to watch for criminal activities or intent. And
userswho sendWord (or otherexecutablefiles) asattach-
mentsenjoy the convenience,yet userswhosefiles areex-
posedor destroyed or whoseserviceis deniedby email
viruseswould like to prohibit suchattachments.In each
of thesethreeexamples,onesetof stakeholderswantsaca-
pability while anotherwantsto deny it.

In the Web Servicesdomain, consistentrequirements
include the HTTP, SOAP[7], UDDI[8], WSDL[10], and
WSCL[9] protocols. At a higher level, however, different
stakeholdersplaceconflicting requirements.For example,
anenduserof a webservicemaybe forcedto supplyper-
sonalinformation. This endusertypically intendsthat this
be usedonly asminimally necessaryfor orderfulfillment,
billing, andcustomersupport.Somewebserviceproviders,
however, maystorethis informationin databasesandreuse
it in waysthatwould not beagreedto by theenduser. An-
otherareaof inconsistency lies in the termsusedto define
thespecificationof theservice(oftenexpressedin WSDL,
but possibly just in natural languageon the openingweb
pageof theservice).Unspecifiedmeasurementunits,oram-
biguousevaluative termslike “reliable”, “accurate”,“best
in class”,etc,canbeusedinconsistentlybetweenclientand
serviceprovider. Suchterminologicalinconsistencieswill
inevitably ariseuntil standardontologiesaredevelopedand
required.

Validation Without Requirements? If an MSDS has
inconsistentrequirements,how could we possiblyhopeto
validateits designor operation?More precisely, no system
satisfiesan inconsistentrequirement.Leaving asidethe in-
consistency problemfor themoment,however, nosinglein-

UpToTheMinute

News Co.

Acme Web Speedup

Services

User

Corporate IT
Web Proxy

Figure 1. A problematic web service configu-
ration.

dividualevenknowstherequirementsof all thestakeholders
of a typical MSDS.In fact, for the largescaleMSDSsdis-
cussedabove, no oneevenknows how all thenodes(com-
ponents,features)behave in detail. And all thesefactors
changerapidlyanduncontrollablyin anMSDS.

Considerthe simple web servicesscenariodepictedin
Figure 1. Here we assumethat all of the enduser’s web
accessesaresentby the corporateIT departmentthrough
the Acme Web SpeedupService, a caching proxy ser-
vice. Thereare four stakeholdershere,one for eachbox
in the diagram. The userwishestimely accessto the Up-
ToTheMinuteNewswebservicefor thevery latestnewsup-
dates.CorporateIT, on theotherhand,wishesto speedup
“the averageweb access”for all users. UpToTheMinute-
News provides (and charges money for) the latest news
updates.Acme Web Speedupknows it is appropriatefor
speedingupaccessto relatively staticpages.Theendresult
is that the userfails to get up to the minutenews updates,
even thoughhe haspaid for them. The reasonis that no
individual in the systemknows the behaviors andrequire-
mentsof all thenodesandsothereis nooneto diagnosethe
problem:a cachedpageis not timely.

Rather than tackle what appearsto be an intractable
problem, I proposewe changethe problemto match the
way in which MSDSsaredesignedandusedtoday.

Key Idea: Changethe validationproblemfrom
“doesthesystemdotheright thing?” to “doesthe
systemdo theright thing for me(now)?”

By doingthis,we getrid of theinconsistencies,because
there is now only one stakeholderwho mattersand that
stakeholdercan(in principle) definea consistentsetof re-
quirements.We arestill left with significantdifficulties,of
course.First, the(now single)stakeholdermusthaveaway
to find out what thevariouspartsof thesystemdo in order
to validatethat the systemwill behave desirably. Existing

descriptionsof nodefunctionalitiesareoftenambiguous,in-
formal, incomplete,lackingin detail,or evenpurposelyin-
correct(dueto hiddenagendas).For example,webservices
areoftendescribedin waysincludingnaturallanguagepas-
sages,which aresubjectto thewell known ambiguitiesand
informalitiesof NL. Often,all thatis known abouta remote
email serviceis that it is availableon TCP port 25. While
thatusuallyimpliesit will acceptemailmessagesusingthe
SMTPprotocol,it is nohelpin discerningwhatwill happen
to a messageonceit is acceptedby it.

Thenext sectionproposesanapproachto solvingthis ig-
noranceproblem. Using it, we caneffectively reducethe
MSDS validation problem to more familiar model-based
validationproblems,which canbeattackedby known tech-
niques.We arestill, of course,subjectto the “usual” soft-
ware engineeringvalidation problemsof stateand theory
explosion,andfeature/componentinteraction;however, we
havelargebodiesof researchandadevelopingbaseof tools
to attackthesemoretraditionalproblems.

2. OPENMODEL : Going Beyond Modularity

The traditionalway in which componentspublishtheir
capabilities so that others (developers, users) can find
out their behavior hasbeenthroughinterfacedescriptions
in languagessuch as CORBA’s IDL or WSDL[10] and
WSCL[9] for web services. However, interfaces,or even
allowed interactionsequencesasdefinablewithin WSCL,
do not provide enoughinformation to validatethe behav-
ior of a complex nodewithin an MSDS. For example,al-
mostall email serverssatisfy the well known SMTP pro-
tocol server behavior asdefinedin RFC 821,andyet con-
siderthewiderangeof behaviorspossibleonceamessageis
accepted:relaying,spamfiltering, forwarding,decryption,
andeven anonymousremailing. Clearly, we mustgo well
beyondsimplecomponentinterfacedescriptionsin orderto
supportvalidationof requirementswithin MSDSs.

OPENMODEL solvesthe ignoranceproblemof MSDSs
throughopenmodeling. Thekey ideasof OPENMODEL are

� Each MSDS node has an executable specification
model;

� Eachnodeservesthis online in a standardizedXML-
basedformat, eitherdirectly via HTTP, or througha
centralregistry;

� A tool canretrievemodelsof therelevantnodesof the
MSDS andassistthe userin validatingsinglebehav-
iorsor classesof behaviorsof thecomposedsystem.

A nodeis depictedschematicallyin Figure2. Theactual
nodecomponentis abstractedby theexecutablespecmodel
through the abstractionfunction A. Every concreteinput

State Model
Abstract

Abstract
Behavior
Model

AA

Actual
Component

State DB

A
A

Figure 2. An OPENMODEL MSDS node .

sequencecan be abstractedand simulatedby the model,
andoutputs(andstateread/updateactions)canalsobeab-
stractedandcomparedwith simulationoutputs.

Potential Benefits. Thereareseveral potentialbenefits
of OPENMODEL. First, oncethe modelsareretrievedand
a compositemodel assembled,the usercan validate that
thesystembehavesdesirably. Most basically, the usercan
create,simulate,andanimateconcretebehavior scenarios.
Scenariocoveragemeasurementtoolsandother(heuristic)
testingmethodscanhelptheusergainconfidencein setsof
behaviors. But more systematicapproaches,suchas the-
orem proving and model checkingcan also be appliedto
the precise,executablemodels,finding bugsor increasing
confidencein infinite setsof behaviors. Note that this can
bedoneduringdesignof a node(possiblybeforeits imple-
mentationevenexists)or duringuseby endusers.

Another benefitof OPENMODEL is “contract enforce-
ment”. If a nodeclaimsto obey its model,anobservercan
sometimesactuallyverify thattheopenmodelcorrectlyab-
stractsthe actualinput/outputsequences.Therearemany
waysin which this maybepossible,for examplewhenone
upgradesa componentto a new version(or oneby a differ-
entvendor).Onecanruntheold componentin parallelwith
thenew andcomparetheabstractoutputs(usingtheabstrac-
tion functionA to mapactualinputsandoutputs)with each
otherto seeif thenew onematchestheold one.

Anotherbenefitof OPENMODEL is its supportfor reuse.
A componentmodelprovidescheckableformal documen-
tationof behavior. It alsoallowscheckingproposedusesof
thecomponentfor featureinteractions.

Finally, we shouldnote that the model publishedby a
componentcanbethesameas(or formally relatedto, such
as by abstraction)a formal model usedfor validating the
node’sbehavior in isolation.Thatis, wegetakind of “2 for
the priceof 1 deal” by reusingthevalidationmodelasthe
openmodelfor sharing.

OPENMODEL in the Email Domain. My previouswork
on feature interactiondiscovery in the Email domain[4]
gives a flavor of how OPENMODEL could be used. In
thatwork, I analyzedtencommonemailfeatures,discover-
ing 26 unfavorablefeatureinteractions.Theapproachwas
baseduponmodelingeachfeatureasa componentof a dis-
tributedsystem,assemblingfeatureinstancemodelsinto a
“typical” configuration,andthensimulatingscenariosdis-
coveredusingasystematicheuristicscenarioselectionstrat-
egy. I createdthemodelsby abstractingthebehavior of well
known real email features,suchas addressbooks,filters,
forwarders,andvacationprograms. I createdandassem-
bledthemby hand,but this is wheretheOPENMODEL ap-
proachwouldexploit sharedmodelsandtool support.Once
the modelsare gatheredand composed,validation (using
theISAT tool set)canproceedasusual.

For illustration,supposeanemailuserwishesto config-
ureandstartusingnew, feature-richemail client software.
An OPENMODEL scenariowould proceedasfollows.

� Theuserinstallsandconfiguresthesoftware.

� TheOPENMODEL tool queriesit for its sharedmodel.

� The OPENMODEL tool retrievesmodelsof the user’s
ISP’s mail servers,aswell asthoseof a representative
setof theuser’scorrespondents.

� TheOPENMODEL tool (possiblyusingISAT tool suite
capabilitieslike simulationandtheoremproving) sup-
portstheuserin checkingwhetherunfavorablebehav-
iors arepossiblein theway hehasconfiguredthenew
software. If any arefound,theusercanthenreconfig-
urethesoftwareor contactits vendor.

� TheOPENMODEL tool remainsavailableasneededas
a questionansweringtool for whentheuserhasques-
tionsabouthis emailsystem.

Note that the email casestudy cited assumedstatic
modelcompositions.However, in general,executinga sce-
nario in a composedmodelwill result in the discovery of
missingmodels(because,e.g.,a messageis sentto a node
whosemodel hasyet to be retrieved). An OPENMODEL

toolwill likelysupportdynamicmodelretrievalandintegra-
tion into thecurrentsimulationorvalidation.In thewebser-
vicesscenarioof Figure1, theuser’sOPENMODEL tool first
retrievesa modelof the browser, which leadsto retrieving
thatof thecorporateIT webproxy. Initial validationreveals
that requestsareforwardedto Acme, so Acme’s model is
retrieved. This then leadsto retrieving UpToTheMinute-
News’smodel.At thatpoint, theOPENMODEL tool hasthe
informationnecessaryto anticipate(or diagnose)theprob-
lem.

3. Requirementsfor a Modeling Language

This sectiondiscussessomeof thecritical requirements
astandardizedOPENMODEL languageshouldobey.

Tool support. It must supportexecution(simulation)
of both singlenodesandhierarchicalnetworked composi-
tionsof nodes.This will enableuservalidationof behavior
aswell asanimation. Beyond this, it shouldsupportsys-
tematicvalidationmethods,suchasspeccoveragemeasure-
mentandpropertyverificationthroughtheoremproving or
modelchecking.

Support for Shared Ontologies. Usersand develop-
erswant/needto think in termsof domain-meaningfulob-
jectsandoperations.We muststandardizetheterminology
usedto describetheobjectsthatpassbetweennodesof the
MSDS so that modelsfrom different stakeholderscan be
sharedandinteroperatein the OPENMODEL tool. For ex-
ample,email modelsmustagreeon what an “email mes-
sage”is andhow to representandaccessitsfields.Thereis a
largebodyof researchinto ontologies[5], but OPENMODEL

ontologieswill needto containautomatedreasoningsup-
port (axioms,rules)in additionto entity-relationshipinfor-
mation. Thesesharedontologiesguide the model devel-
operin picking anappropriate“level of abstraction”for the
model,by definingtherepresentationandgranularityof the
inputandoutputobjects.

Some Other Requirements. The models (and lan-
guage)shouldsupportsingle-nodevalidation as well, so
that we cangain the 2 for 1 advantagementionedearlier.
Theabstractstatemodelandaccessesto it mustbefirst class
elementsin orderto enablebehavior sampling(e.g.for con-
tract enforcement).And finally, a computableabstraction
mapA mustbearequiredelementaswell, againto support
comparingobservedbehaviors to modelpredictions.

Evaluation of a few candidates.Therearemany plausi-
blecandidatesfor theOPENMODEL language;I will briefly
review a selectionof themhere.

Executables(.exe,a.out) cansupportsimulation,but
they cannotsupportvalidation techniquessuch as cover-
agemeasurementor propertyverification tools. We can’t
evenguaranteethey won’t crashthesystem,which is aseri-
ousconcernwhenwe will beretrieving modelsfrom other
stakeholdershaving different(andunknown) goals.

Java Language Source Code is safe and can support
simulation,composition,andevencoveragemeasurement.
However, thestate-modelseparationis not adequateandit
is still too hardto verify propertiesof Java code.

Z is very expressive andsafe,but not executable.Auto-
matedreasoningin it is problematicaswell.

Low-levelmodelcheckinglanguages(e.g.Promela)sup-
port executionand model checking,but not arbitrary do-
mainspecifictheories/ontologies.And modelcheckers’dif-
ficultieswith thestateexplosionproblemarewell known.

UnifiedModelingLanguage(UML) hasanotoriouslyill-
definedsemantics,but a disciplinedsubsetmightbeuseful.

Infinite state executablespecificationlanguages (e.g.
ISAT’s P-EBF, SALSA[1], Action Language[2]) are the
best candidatesand seemto satisfy most of the require-
ments.They canbeusedfor modelingsinglenodesof the
MSDS.They canbecombinedwith a moduleinterconnect
language,suchasEFCs[4]orWSFL[11], to supportcompo-
sition. They havealreadybeenshown to safelysupportsim-
ulation, inclusion of domain-specificontologies/theories,
andinfinite statepropertyverification.

4. Limitations

OPENMODEL is not,of course,a panaceaandhasmany
limitations. It is inevitablethatsomenodeswill fail to pro-
vide modelsat all, andsomewill have inaccuratemodels.
However, as long as we are not expectingOPENMODEL

to provide guarantees(it is moreappropriatefor heuristic
bug pre-detection),this shouldnot deterus. Further, even
if all modelsarepresentandaccurate,all known validation
toolsaresubjectto theusualcomplexities of thevalidation
problem:stateexplosion,theoryexplosion,andfeaturein-
teraction. Therefore,modelsmustbe abstractin order for
validationto betractable,somodelingmayomit behavioral
detailsimportantto thedetectionof undesirablebehaviors.
A balancemustbereachedsothatausefulclassof problems
canbediscoveredevenafterabstraction.

Configurations. A lessobviouslimitation liesin thedif-
ferencebetweena modelandits configuration.For exam-
ple, it may be well known that a given MSDS noderuns
a particularoff-the-shelfcomponent,suchassendmail.
And sendmail’s model shouldbe commonknowledge.
However, the real issuefor validation is how that node’s
sendmail instanceis configured. Stakeholderswill be
muchlesswilling toexposeconfigurationinformationto the
public. However, someconfigurationinformation is more
sensitive thanothers,andit maynot all benecessaryin or-
der to answerquestionsof interestto anotherstakeholder.
For example, the actualencryptionkeys usedin encrypt-
ing emailbetweenusersareprobablynotneeded,but infor-
mationaboutpeerrelationships(whichhostsarerelaysand
whichimplementwhichfeatures)presumablyis. Moreover,
it maybethatnodeownerscanbemotivatedto revealsome
of this information;e.g.,“convincemeyouhaveconfigured
sendmail securelyandthenI will useyourservice”.

Hidden Agendas. Anothercritical limitation is the re-
alizationthatsomenodesmaypurposelyhideor obfuscate
certainof their activities or attributesthat areunfavorable
to otherstakeholders.For example,they may collect per-
sonal information for one purposeand secretlyuseit for
other, lessdesirable,purposes.Or, they may advertisea
high level of service,but providea lower level of serviceto

save money (e.g.,claiminga fully recoverablebackupsys-
tembut not really backingup theuser’s informationatall).

To deal with this problem, the validator must remain
aware of theunderlyinggametheory(costsandpayoffs)of
theMSDS. OPENMODEL is simplynot reliablein scenarios
whereotherstakeholdersaremotivatedto cheat.However,
I believe therearemany domainsin which the gamethe-
ory is favorableto OPENMODEL. For example,in the In-
ternetemailsystemof clientsandservers,server providers
tend to be motivatedby the bestinterestsof similar large
groupsof endusers,and“goodemailservice”is bestserved
by cooperationamongservers. It is the individual users
(clients)who have othermotives,suchasspamming. An
OPENMODEL userwill only retrieve modelsfrom server
componentsor from clients run by peoplewith whom the
userhasa cooperative relationship.Messagesfrom adver-
sariesmustbetreatedaspartof theenvironment,sincetheir
modelswould not betrustworthyevenif they existed.

OPENMODEL shouldalsobe usefulandreliablein en-
terpriseapplicationintegration(EAI) scenarios,wherethe
applicationsto beintegratedarecontrolledby asingle(log-
ical) stakeholder. A goodexampleof thelattercaseis when
a company acquiresassetsin a merger andmust integrate
theminto its own assetbase. All modelsshouldbe accu-
rate,becausethey werebuilt for internaluse(systemevolu-
tion andmaintenance)within therespectivecompanies.

OPENMODEL is alsousefulin situationswherebehavior
sampling(for contractenforcement,seeSection2) is possi-
ble,andwherelegislationcanenforcemodelfidelity.

Even in the faceof theselimitations, the email feature
interactioncasestudy[4] givesushopethatthereis still sig-
nificantheuristicvaluein openmodeling.

5. RelatedWork

Fickaset al[3] describea system,Emu, for monitoring
theexecutionof a systemasit carriesout aplanfor achiev-
ing whatthey term“ephemeral”requirements:thosehighly
dependentoncontext andnot likely to persistfor longperi-
odsof time. Thesimilarity with this work is that they, too,
havemadetheconceptualleapfrom globalsystemrequire-
mentsto single-stakeholderrequirementsthat may not be
trueforever. OPENMODEL couldcomplementtheir system
nicely by allowing themto discover behaviors of relevant
interactingnodesof the MSDS asneededduring monitor-
ing of particularrequirements.

Modularity and “black box reuse” are not enough.
Distributed object systems (CORBA/IDL, J2EE/EJB,
.NET/DCOM)andblackboxreusetechnologiesdonotpro-
vide enoughinformationfor a userto discover whetheran
MSDS will operatedesirably. Moreover, thereis empiri-
cal evidencethat modularcompositionof componentsin
an MSDS is unlikely to “just work”: I found that roughly

17% of 156 scenariosexaminedin the email domainre-
sultedin undesirablebehavior. OPENMODEL complements
thesetechnologiesby supplyingmissinginformation.

UDDI is starting in the right dir ection. The Univer-
salDescriptionDiscoveryandIntegration(UDDI) protocol
suite is essentiallya “yellow pagesfor the web”. That is,
it is intendedto provide a way to discover andlearnabout
web services. UDDI definestModels, which are various
typesof declarationsof behavioral propertiesof web ser-
vices. Web ServicesDescriptionLanguage(WSDL)[10]
allows declarationof interfacesignatureinformation,simi-
lar to CORBA’s IDL. WebServicesConversationLanguage
(WSCL)[9] goesbeyond interfaces,definingallowed con-
versations, which aresequencesof queriesandresponses.
WebServicesFlow Language(WSFL)[11] providesa way
to declarestaticcompositionsof web servicecomponents,
essentiallya module interconnectlanguagefor web ser-
vices. WSDL andWSFL addressaspectsof the ignorance
problemthatOPENMODEL is intendedto solve,but do not
go far enough.WSCL,while usefulin its own right, seems
to overlapwith the informationprovided by a full behav-
ioral model.OPENMODEL modelsshouldfit into theUDDI
framework asaparticularlyrich form of tModel.

A lessonfr om P3P. The Platform for Privacy Prefer-
ences(P3P)[6] is aworld widewebconsortiuminitiativein-
tendedto helpusersprotecttheir privacy while webbrows-
ing. The ideaof it is thateachwebsitedeclaresa P3Pde-
scriptionof how it handlessensitive information. Theuser
declarespreferencesabouthow he wantshis information
handled,andtheP3Penabledbrowserdecidesat eachweb
sitewhetherthesiteconformsto theuser’s wishes.This is
analogousto theOPENMODEL approach,in thateachnode
declaresa modelof its privacy behavior. Thus,P3Pserves
asasimpleexampleof OPENMODEL in thenarrow domain
of privacy behavior. However, it suffers from unfavorable
gametheory(mentionedabove). It only works if the web
site operatorsare nice guys who don’t gamethe system.
P3Phasno way to enforcedeclaredpolicies,nor even to
detectwhena site’sbehavior is inconsistentwith its policy.

6. Summary and Future Work

Multi-stakeholderdistributedsystemspresentmajornew
challengesto requirementsengineering:globally inconsis-
tent requirementsplacedby stakeholderswith conflicting
goals,and the ignoranceprobleminducedby the limited
andunreliablecommunicationsamongdesignersandoper-
atorsof the nodes.We canavoid the global inconsistency
problemby focusingon the questionof whethera system
meetsthe needsof a singlestakeholder. Oncethat shift is
made,the OPENMODEL proposaladdressesthe ignorance
problem. OPENMODEL-basedtools will first gatherthe

open,sharedmodelsdeclaredby MSDS nodesrelevant to
theuser. It will thenapplya rangeof validationtoolsto see
whetherthesystemwill meettheuser’s needs.Theassem-
bled systemmodel can then be incrementallymaintained
overtimesoit is availableto theuserto answerfutureques-
tions,or to supporttheuserin designinga new nodecapa-
bility. A pilot studyin theemaildomainprovidesevidence
thatOPENMODEL canbeusefulin validatingMSDSs.

Of course,thereis a greatdealof futurework. First, we
mustsettleonamodelinglanguageanddefinetheappropri-
ateXML DTDs for representingmodels. Next, in a given
domain, we must establishappropriateshared(de facto
standard)ontologiesto guide stakeholdersin the model
building efforts. Email andweb servicesare two promis-
ing domainsto pursue.Also, we needto engineera setof
highly usableOPENMODEL tools,basedon existing mod-
eling, simulation,andvalidationtools. Theremay alsobe
somewhatlessambitiouscoursesthatcouldbefollowedas
well. For example,if we relaxourconcernover formal ver-
ification, we could just useJava asmodelinglanguageand
supportsimulationandcoveragemeasurementof models.
Techniquesfor retrieving andloadingclassesinto running
JVMsarewell known from appletdesign.

References

[1] R. Bharadwaj andS. Sims. SALSA: combiningconstraint
solverswith bddsfor automaticinvariantchecking.In Proc.
Tools and Algorithmsfor the Constructionand Analysisof
Systems(TACAS2000), 2000.

[2] T. Bultan,R.Gerber, andC.League.Verifying systemswith
integerconstraintsandbooleanpredicates:a compositeap-
proach.In Proc.1998Intl. Symp.SoftwareTestingandAnal-
ysis,SEN23(2), pages113– 123.ACM SIGSOFT, 1998.

[3] S. Fickas, T. Beauchamp,and N. Mamy. Monitoring
ephemeralrequirements. Technicalreport, University of
OregonComputerScienceDept.,May 2002.

[4] R. J. Hall. Featureinteractionsin electronicmail. In Proc.
SixthIntl. Workshopon Feature Interactionsin Telecommu-
nicationsandSoftware Systems. IOSPress,2000.

[5] Ontology.org: enabling virtual business (web site).
http://www.ontology.org/.

[6] Platform for privacy preferences project (web site).
http://www.w3.org/P3P/.

[7] Simple object access protocol (soap) 1.1 (web site).
http://www.w3.org/TR/SOAP/.

[8] Universaldescription,discovery andintegrationof business
for theweb(website).http://www.uddi.org.

[9] Web servicesconversationlanguage(wscl) 1.0 (web site).
http://www.w3.org/TR/wscl10.

[10] Web servicesdescriptionlanguage(wsdl) 1.1 (web site).
http://www.w3.org/TR/wsdl.

[11] Web services flow language (wsfl) 1.0. www-
4.ibm.com/software/solutions/ webser-
vices/pdf/WSFL.pdf.

Using the Semantic Web to Construct an Ontology-Based
Repository for Software Patterns

Scott Henninger
Department of Computer Science & Engineering

University of Nebraska-Lincoln
scotth@cse.unl.edu

Abstract
Patterns, particularly design and usability patterns, have become a popular way to disseminate
the current state of knowledge in certain software development issues. Many books have been
written and people are using the pattern approach to encode knowledge ranging from
management practices to risk assessment patterns.

The continued explosion of patterns collections have caused a couple of clear problems. The fir
is the issue of quality and how one knows whether a pattern provides sound advice. The second
is finding the right pattern for a particular problem. In this abstract, I propose the semantic web
as a medium to start representing the relationships between patterns and track which are used
most often or rated highly by peers. This approach not only supports the process of finding
patterns, but also allows for the construction of agents that let developers know when a given
pattern is applicable.

1. Design and Usability Patterns
Beginning with the seminal Gang-of Four design pattern book [Gamma et al. 1995], the software
development community has embraced the pattern concept first sued by Alexander on
architecture [Alexander 1979]. The general idea is to describe a commonly occurring problem,
one or more solutions that have been shown to be effective, along with other contextual
information such as why the problem occurs (forces) and the context in which the solution is
effective. Perhaps the largest pattern communities in the software development area are the
design and usability patterns communities [Borchers 2000], but other types of patterns, such
process and management patterns have recently emerged, underscoring the effectiveness of the
pattern format to describe problem-solution pairs.

While many researchers have focused on creating and validating patterns, few are thinking about
how the patterns should be delivered to or otherwise made usable for software developers. A
specific problem is that while Alexander made strong statements about the relationships between
patterns to create a “language” capable of creating the whole solutions, at best the relationships
between patterns in a collection are weak, and relationships between patterns in different
collections is nonexistent. There is also no formal mechanism to assess and refine usability
patterns on the community level.

2. Formalizing a Community of Practice for Patterns
A major focus of both the BORE (Building an Organizational Repository of Experiences)
[Henninger 1997] and GUIDE (Guidelines for Usability through Interface Development
Experiences) [Henninger et al. 1997] efforts is to improve the process through the experiences

gained in software development efforts, hence the terms “Experience” in both of the system’s
acronyms. Perhaps more important is the focus on using the feedback to refine both the patterns
and the context in which the patterns are most applicable. Both models have a meta-process in
which development teams review the adequacy of the information supplied by the rule-based
system and submit deviation requests when the recommendations are inappropriate or
inadequate. These are forwarded to process and/or usability specialists in charge of the
repository. Changes based on these deviation requests can then be made, facilitating a
continuous learning process involving both creating new patterns and refining contextual
information about the patterns [Henninger 2001]. The end result is the continuous creation of
new and refined patterns that fit the needs of a given development organization, or the patterns
community as a whole. Thus, we are aiming to create a community of practice [Brown, Duguid
1991] in which people exchange “stories” or patterns about what has worked in the past and
when it may be applicable.

Figure 1: The left window of this figure shows a pattern rendered through an RDF representation using an XSL file
to render the image. The middle window shows a sample pattern, showing the GOF and usability patterns in
particular. Note that the names to the right in italics are instances of the patterns. The Right-hand window shows an
example of RDF code. Note that it is compatible with XML.

 2

3. Using the Semantic Web to Deliver Software Development
Knowledge

The Semantic Web [Berners-Lee 1998] is a Web-based technology that extends XML by
providing the means to define ontologies, the definition of objects and relationships between
them. This allows machines to make intelligent inferences about objects across the Web. This
can allow intelligent agents [Hendler 2001] embodying knowledge about certain aspects of
software development (much of it may be organization-specific) to make intelligent inferences
that can be used as the basis for improved decision-making on software development processes,
usability issues, etc.

Currently, the technology is in flux, but we have been experimenting with the Resource
Description Framework (RDF) [Klein 2001] and the newer and less stable Defense Agency
Markup Language (DAML) [Burke 2002], which also includes an Ontology Inference Layer
(OIL). Both are knowledge representation languages with roots in semantic networks, but built
to work on the Web. Our plan is to begin collecting patterns and relationships that are
represented in RDF and/or DAML files. Figure 1 shows a sample pattern, an ontology focusing
on usability patterns, and part of the RDF representation for the usability pattern domain.

3.1 Using the Semantic Web as a Communication Medium for Communities of Practice
Our overall goal is to set up a repository where pattern designers can post their proposed patterns
and have them evaluated by peers and experts. Not only would this help consolidate some of the
knowledge in the area, it will provide the means to collect the patterns in a common area (a
virtual common area, as RDF/DAML files can be stored on servers worldwide) so people can
argue and come to a consensus on both the validity of patterns and where the patterns belong. A
key to the success of such a program is agreement on structure, only part of which can be
alleviated by the object-oriented and flexible structured that can be created by these knowledge
representation languages. We are experimenting with just this part of the problem by looking
specifically at usability patterns.

Here are the following steps we are following to turn isolated collections of patterns into a
world-wide repository structure designed for computation and r intelligent agents:
1) Choose a Web-Based Knowledge Representation Language. This choice has been made

easier by Protégé [Noy et al. 2001] and other ontology tools that will translate an ontology
into a number of knowledge representation languages. Our initial steps have concentrated on
the more stable RDF, but we will soon migrate to the more powerful DAML.

2) Create an Initial Domain-Specific Ontology. An initial ontology is being constructed that
describes the domain of usability patterns, as shown in Figure 1. An ontology is a formal,
explicit specification of a shared conceptualization, meaning that defined terms and
relationships between them are specified in machine-readable manner, and generally agreed
upon by humans.

3) Create a site for Collecting Patterns. As shown in Figure 2, we are constructing a Web site
that allows people to add both instances of pattern classes to the repository, including
relationships between patterns. New patterns instances and classes will go through and
evaluation process and posted in the RDF/DAML file(s) for use by other organizations.

 3

Figure 2: The left-hand window shows the current class structure of the Usability Pattern ontology. The right-top
window shows a partially filed in window to add a new instance to the E-Commerce class.

4) Other Organizations Place Instances on the Web. Provided that people agree on the overall
ontology, RDF/DAML files containing instances can be placed anywhere on the Web. For
example, someone creating a collection on e-Commerce usability patterns can place their
instances in an RDF/DAML file for others to use. If, however, this person or group wanted
to create, for example a subclass of e-Commerce, such as “Web Storefront”, then they would
need to get agreement amongst the patterns community to change the schema (class
structure), otherwise, other agents would not be able to utilize their class structures.

5) Instances are Collected for Processing. The instances are collected in a database or some
representational medium. This can be accomplished by either Web crawlers or brokerage
services. The advantage of the first is that organizations can work independently, and the
advantage of the second is enhanced trust – the broker can be used to verify the source, keep
statistics on customer satisfaction, etc. We are using he second strategy.

6) Agents are Created to Make Intelligent Decisions. Given the ontological structures, agents
can be created that make inferences about the information supplied. For example, an e-
Commerce pattern for “Server-Side Information Collection” cold have a relationship with a
“Database Server” class stating that one of the instance of the Database Server patterns
(which could include e-Commerce solutions using Oracle, Sybase, etc.) must also be chosen.
Other constraints could also be imposed by the agent that makes an automatic selection of the
database given the project attributes, possibly all represented in patterns. Other kinds of
inferences are also possible [Fensel et al. 2001].

 4

The end result should be the creation of agents that can reason about usability pattern and deliver
them to software developers to improve the quality of user interfaces. In our case, the agent is
BORE (which has been combined with GUIDE) [Henninger 2001], but others may create their
own agents with different assumptions and computational inferences.

4. Current Status and Future Work
The current Web site shown in Figure 2 is being developed and should be ready for deployment
at the end of the summer. We will draw on the emerging Usability Patterns community
[Borchers 2000] to place their existing patterns in the repository and create new ones to fill in
details not found in the repository. We will initially seed the repository with some patterns
available on the Web, with author permission, such as van Welie’s Amsterdam Collection [van
Welie 2002]and Tidwell’s Common Ground [Tidwell 1999] collection.

We will initially perform the validation process, but will gradually turn this over to subject area
experts [Ackerman, Malone 1990]. In parallel, we will continue to evolve the BORE system to
utilize these patterns in the software development process.

5. References
[Ackerman, Malone 1990] Ackerman, M.S. and Malone, T.W., Answer Garden: A tool for growing organizational memory.

Proceedings of the Conference on Office Information Systems, (1990), ACM, New York, 31-39.
[Alexander 1979] Alexander, C. The Timeless Way of Building. Oxford Univ. Press, New York, 1979.
[Berners-Lee 1998] Berners-Lee, T. Semantic Web Roadmap, W3C Semantic Web Vision Statement, 1998,

http://www.w3.org/DesignIssues/Semantic.html, Last accessed on 2/20/2002.
[Borchers 2000] Borchers, J. CHI Meets PLoP: An Interaction Patterns Workshop. SIGCHI Bulletin, 32 (1). 9-12.
[Brown, Duguid 1991] Brown, J.S. and Duguid, P. Organizational Learning and Communities-of-Practice: Toward a Unified

View of Working, Learning, and Innovation. Organization Science, 2 (1). 40-57.
[Burke 2002] Burke, M., The DARPA Agent Markup Language Homepage. http://www.daml.org/, 2002.
[Fensel et al. 2001] Fensel, D., van Harmelen, F., Horrocks, I., McGuinness, D. and Patel-Schneider, P. OIL: An Ontology

Infrastructure for the Semantic Web. IEEE Intelligent Systems, 16 (2). 38-45.
[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, Reading, MA, 1995.
[Hendler 2001] Hendler, J. Agents and the Semantic Web. IEEE Intelligent Systems, 16 (2). 30-37.
[Henninger 1997] Henninger, S., Tools Supporting the Creation and Evolution of Software Development Knowledge.

Proceedings of the Automated Software Engineering Conference, (Lake Tahoe, NV, 1997), 46-53.
[Henninger 2001] Henninger, S., An Organizational Learning Method for Applying Usability Guidelines and Patterns. 8th IFIP

Working Conference on Engineering for Human-Computer Interaction (EHCI'01), (Toronto, 2001).
[Henninger et al. 1997] Henninger, S., Lu, C. and Faith, C., Using Organizational Learning Techniques to Develop Context-

Specific Usability Guidelines. Proc. Designing Interactive Systems (DIS ‘97), (Amsterdam, 1997), 129-136.
[Klein 2001] Klein, M. XML, RDF, and Relatives. IEEE Intelligent Systems, 15 (2). 26-28.
[Noy et al. 2001] Noy, N., Sintek, M., Decker, S., Crubezy, M., Fergerson, R. and Musen, M. Creating Semantic Web Contents

with Protege-2000. IEEE Intelligent Systems, 16 (2). 60-71.
[Tidwell 1999] Tidwell, J., COMMON GROUND: A Pattern Language for Human-Computer Interface Design.

http://www.mit.edu/~jtidwell/common_ground.html, 1999.
[van Welie 2002] van Welie, M., Guidance/Feedback Patterns. http://www.welie.com/patterns/index.html, January, 2002.

 5

Managing Software Projects in Spatial Hypertext:

Experiences in Dogfooding

Frank Shipman
Center for the Study of Digital Libraries and Department of Computer Science

Texas A&M University
College Station, TX 77843-3112, USA

shipman@cs.tamu.edu

Abstract

Managing long-term, research-oriented software
projects requires more flexibility and open-endedness than
most production-oriented software processes provide. We
have been exploring the use of spatial hypertext to manage
such projects. Spatial hypertext allows users to place
information objects in visual spaces and use visual cues
and spatial relations to represent inter-object relations.
Over time, users develop a visual language to express
characteristics of their task. The Visual Knowledge Builder
(VKB), our particular spatial hypertext system, uses
heuristics to recognize structure in user-generated layouts
and includes navigable history for returning to earlier
states of the spatial hypertext. This paper reflects on our
experiences in dogfooding – using our own research
prototype – for two projects for more than two and a half
years and what these experiences might mean for using
spatial hypertext in other software development contexts.

Keywords

spatial hypertext, software development

1. Introduction

Software development takes place in a wide variety of
contexts, yielding an equally wide variety of software
engineering processes. Some contexts, such as life-critical
applications, require stability and correctness and are
willing to expend resources (including delaying delivery
time) in order to achieve these goals. Other contexts,
including much software developed for home use, are time-
to-market driven, looking to gain market share with the
potential of providing bug fixes later and enhancements

through a series of versions of the software. Research
software is even more extreme – the software is being
developed to explore what is possible within a design
space. In the research context, reliability need only
support the project’s mode of evaluation, e.g. proof-of-
concept demonstrations, laboratory experiments, and
limited real-task usage being common.

Different project management software is appropriate
within these different contexts. We are exploring the use of
spatial hypertext, with its emphasis on free-form
expression, in the project management of research
software. Spatial hypertext users place information objects
in visual spaces and use visual cues and spatial relations to
represent inter-object relations [4]. For example, they may
categorize objects by creating lists or using color. Over
time, users develop a visual language to express
characteristics of their task. Our system, the Visual
Knowledge Builder (VKB), includes a spatial parser for
recognizing structures in the layout and supporting users in
the manipulation of these structures [7]. Additionally,
VKB records the evolution of the workspace as a navigable
history with multiple access mechanisms.

The next section provides a brief overview of VKB, its
spatial parser, and its history mechanism. Following this is
a description of our use of VKB for managing software-
oriented research projects. The paper concludes with a
discussion of how our experiences might inform the use of
spatial hypertext in other software development contexts
and the development of project management software.

2. The Visual Knowledge Builder (VKB)

The main Visual Knowledge Builder interface, shown
in Figure 1, is a two-dimensional workspace with controls
at the top and message bars below. Users collect and author

information in the form of rectangular objects containing
text, attributes and values, links to files or URLs, and
images. User’s express interpretations, e.g. categorizations
and relations, through the placement of objects and the use
of visual attributes, such as border and background color,
border width, and font type, size, and color. The workspace
also includes “collections”, two-dimensional spaces
embedded in the top-level workspace or another collection.
Users may navigate into a collection to see more of its
contents. Figure 2 shows the results of navigating into the
“To Do List” collection in Figure 1. For more information
on general VKB functionality see [7,8,10].

Figures 1 and 2 show a workspace used for managing a
research project with five or more participants at any one
time. This space has been in use for over two years in
weekly project meetings. Writing tasks are placed in the
“Paper topics -- areas for work” collection and system and
design tasks are found in the “To Do List” collection. Over
the period of use, dozens of tasks have been identified,
given a priority, and placed in the “Done” collection on the
right side of Figure 2.

The second toolbar in Figures 1 and 2 provides access to
the history of the workspace. VKB records all the editing
events and allows users to play this record forwards or
backwards, navigate to specific types of events, or locate
the state of the workspace on a particular date [6]. This
history mechanism is similar to Reeves’ embedded history
[5] and Hayashi’s temporally-threaded workspaces [1].

2.1 Structure Recognition

To aid the manipulation and later formalization of
visually-represented information, VKB attempts to
recognize spatial structures as they are created in the
workspace via a spatial parser. The spatial parser was
developed to recognize structures found to be common in a
variety of virtual and physical layouts [9], such as the lists,
stacks, and composites in figures 1 and 2. Users can access
different scopes of structure through hierarchic-click
selection and the recognized structures are used to generate
suggestions for placement, formal attributes, and relations
of information objects [10].

Figure 1. Project workspace with three collections containing software development
tasks, paper-writing tasks, and brainstorming for a particular software extension.

Figure 3 shows a limitation in the spatial parser. Much
like the space seen in figures 1 and 2, this is a project
workspace used in weekly meetings. Unlike the
arrangement in the prior space, this VKB space uses
horizontal position to indicate a continuum of priority. The
spatial parser recognizes (some) horizontal lists in this
structure but does not include the notion of an ordered list,
much less the use of space to represent continuous values
of an attribute such as priority. Techniques from Hsieh’s
VITE [2,3], which supports continuous and discrete
mappings between structured data and a visual
representation, could aid in this example.

2.2 Navigable History

One feature of VKB that has been particularly useful
within the context of project management is the navigable
history. The initial to-do lists had relatively few tasks but
have grown as dozens of tasks being generated (and fewer
being completed) during each year. During this time, the

Figure 2. Navigating into “To Do List” collection in Figure 1 shows lists indicating the
priority of tasks, border colors indicating person responsible for task, and border
width indication progress on task.

visual representation – the semantics of different colors
and border widths – has evolved to cope with more tasks
and to represent characteristics of tasks considered
important later in the project’s development. As such, the
visual attributes of older tasks (particularly those in the
“Done” or “Completed” collections) cannot be interpreted
based on the current meaning of those attributes. Navigable
history allows returning to earlier states of the workspace
to determine the meaning of the visual representation.
Also, by going back to prior times in the workspace, the
creation and modification of tasks can be viewed. Figure 4
shows the workspace from Figure 3 approximately 1 year
earlier.

3. Experiences from Dogfooding

Dogfooding is the use of one’s own systems for
debugging and iterative design. It is not a substitute for
getting users involved in design and formative or
summative evaluation. We have been using versions of
VKB for note taking, preparing papers and presentations,
project management, and conference organization. VKB

has also been in use by members of the hypertext research
community (outside of Texas A&M) for over two years.

Our experiences using VKB to help manage the
research projects shown in the above figures began in
November, 1999. The VKB spaces are projected and edited
during weekly meetings. Because the project team
members (faculty and students) are in the room during
most editing of the space, the implicit nature of the
representation remains comprehensible. The face-to-face
setting promotes the use of conversation to repair
breakdowns when visual changes are not understood by all
participants.

The visual languages have also become the focus of
humor. For example, border color in Figures 1 and 2
indicates who has primary responsibility for each task.
When new tasks are created there can be a variety of
suggestions as to what color it should be assigned. As
border thickness indicates progress, there is competition
surrounding the changing of task borders and movement of
tasks to “Done”. Finally, for some of the most dreaded
tasks – like writing journal papers – the font gets bigger
each week until some progress is achieved. Clearly, group
personality plays a large role in such activity. While we

Figure 3. System features placed in priority from left to right and classified among
different themes from top to bottom.

have not performed any comparison, it seems less likely
that such good-natured banter and competition would
occur using a traditional project management tool to track
progress. The implicit nature of the visual representation
makes these judgments less threatening.

Besides promoting a common understanding of tasks
and progress, the workspaces act as a community memory
of project activity. When an annual report is due, going
back through the history helps identify activities to report.
Seeing the edits replayed triggers memories of not just
what was recorded but more general meeting discussions
that occurred. Another use of the history has been to
determine when particular ideas or tasks were introduced
into the project. Thus the workspace and its history act as a
record of the intellectual development of the projects.

4. Discussion

To determine how our experiences with the use of
spatial hypertext for project management can inform its
potential for use in other software development contexts,
we must first understand the similarities and differences in
these contexts. Large research software projects are
characterized by their continual exploration of a design

space. This exploration is driven by the interests of the
members of the project, the availability of funding, the
research methods, and the venues for reporting results.

A successful project is one that generates publishable
results, which often includes developing software
prototypes that can be studied in use. A really successful
project uncovers new issues that cause the project to
continue indefinitely.

While this may seem very different from commercial
software development, there are a number of similarities.
The continual integration of design and development can
be found in many iterative development methods. Also,
most software developed that is successful continues to
evolve for years after the initial release. No one believes
the current version of MS Word will be the last. Thus,
potential for indefinite future development is also of value
for commercial software. Many of the differences between
commercial and research software seem to be in the
required level of stability, features, support, and scale.

The primary advantage to using spatial hypertext is its
permissive nature. The visual representation allows
expression of characteristics of the task as desired.
Schemas do not have to be changed when new it is
determined that new attributes of tasks need to be

Figure 4. System features placed in priority from left to right and classified among
different themes from top to bottom.

considered. Also, the informal nature of the representation
removes the need to have separate tools for recording
design discussions and managing the software
development.

The informal nature means that this would not work in
environments where there is the need to automatically
generate reports on the status of projects. Also, while there
can be an indefinite number of objects in a spatial
hypertext, limitations of displays pose practical problems
for working with more than a few hundred tasks in one
space. Thus, spatial hypertext seems well suited to
relatively small software development activities that
require, or would benefit from, flexibility.

Looking to the future, spatial hypertext could better
support our own development in a couple ways. The most
obvious direction is connecting the visual workspace with
structured or semi-structured data used by other tools.
Integrating VITE’s ability for visual changes to objects in
the workspace to be reflected as semantic changes to
objects in an underlying database would allow integration
with other software development and project management
tools.

5. Acknowledgements

This work was supported in part by the National Science
Foundation under Grant Number IIS-9734167.

6. References

[1] Hayashi, K., Nomura, T., Hazama, T., Takeoka, M.,
Hashimoto, S., and Gudmundson, S. Temporally-
threaded Workspace: A Model for Providing Activity-
based Perspectives on Document Spaces, Proceedings
of ACM Hypertext ‘98 Conference, 1998, pp. 87-96.

[2] Hsieh, H. and Shipman, F. VITE: A Visual Interface
Supporting the Direct Manipulation of Structured Data

Using Two-Way Mappings, Proceedings of ACM
Conference on Intelligent User Interfaces 2000, 2000,
pp. 141-148.

[3] Hsieh, H. and Shipman, F. Manipulating Structured
Information in a Visual Workspace, to appear in
Proceedings of ACM Conference on User Interface
Software and Technology 2002, 2002.

[4] Marshall C.C., and Shipman, F.M. 1995. Spatial
Hypertext: Designing for Change. Communications of
the ACM, 38, 8 (August 1995), 88-97.

[5] Reeves, B. 1993. Supporting Collaborative Design by
Embedded Communication and History in Design
Artifacts. Ph.D. Dissertation, Department of Computer
Science, University of Colorado.

[6] Shipman F. and Hsieh, H. “Navigable History: A
Reader’s View of Writer’s Time”, New Review of
Hypermedia and Multimedia, Vol. 6 (2000), pp. 147-
167.

[7] Shipman, F., Hsieh, H., Airhart, R., Maloor, P.,
Moore, J.M., Shah, D. Emergent Structure in Analytic
Workspaces: Design and Use of the Visual Knowledge
Builder. Human-Computer Interaction: INTERACT
2001, 2001, pp. 132-139.

[8] Shipman, F., Hsieh, H., Airhart, R., Maloor, P., and
Moore, J.M. The Visual Knowledge Builder: A
Second Generation Spatial Hypertext, Proceedings of
the ACM Conference on Hypertext, 2001, pp. 113-
122.

[9] Shipman, F.M., Marshall, C.C., and Moran, T.P.
1995. Finding and Using Implicit Structure in Human-
Organized Spatial Layouts of Information. In
Proceeding of the ACM Conference on Human
Factors in Computing Systems (CHI ’95), ACM, New
York, 346-353.

[10] Shipman, F., Moore, J.M., Maloor, P., Hsieh, H., and
Akkapeddi, R. Semantics Happen: Knowledge
Building in Spatial Hypertext, Proceedings of the
ACM Conference on Hypertext, 2002, pp. 25-34.

The TOBIAS test generator and its adaptation to some ASE challenges
Position paper for the ASE Irvine Workshop

Y. Ledru
LaboratoireLogicielsSyst̀emesRéseaux/IMAG

BP 72,F-38402Saint-Martin-d’H̀eresCEDEX,FRANCE
Yves.Ledru@imag.fr

Abstract

In the pastdecade, a scientificcommunityhasemerged
around the notion of “A utomatedSoftware Engineering”.
This communityhas madeseveral advancesin two kinds
of challenges: the complexity of processingsoftware engi-
neeringinformation,andthedifficultyto captureknowledge
aboutsoftware. Thispositionpaperfirst recallsthesechal-
lenges. It thendescribeshow thesechallengesinfluenced
thedesignof theTOBIAStestgeneration tool.

1 Challenges of ASE research

AutomatedSoftwareEngineeringtries to develop soft-
ware tools that help in the software developmentactivi-
ties. Suchtools start from digital information and try to
produceotherdigital informationfor thesoftwareengineer.
Most of thetime, this digital informationis a structuredor
a formal document. Structuredor formal documentsin-
clude: sourcecode, tests,formal specifications,but also
semi-formalspecifications(e.g. UML diagrams)or struc-
tureddocuments(e.g. XML documents).At longerterm,
researchwork on naturallanguagerecognition(both spo-
kenandwritten) mayincreasethespectrumof potentialin-
putdocuments.

formal or
 structured
document

formal or
 structured
document

software
engineering

tool

Figure 1. Structure of an ASE tool

Thefirst challengefacedby ASE tool designersis to de-
signefficient andpowerful tools. This is not a trivial task,
andit is confrontedto fundamentalproblems.
� The complexity of the input documents:real-life ap-

plicationsusuallyinvolve thousandsor millions of ar-
tifacts(lines of code,diagramselements,. . .). This

complexity is inheritedby thetools thatprocessthese
artifacts,andit requiresoptimisationsevenin thecase
of linearalgorithms.

� Many algorithmsin this field have a non-linearcom-
plexity. They mustfacethechallengeof combinatorial
explosion(e.g. in model-checkingtechniques).

� In many other cases,the input documentsuse lan-
guageswhoseexpressivenessmakesprocessingactiv-
ities undecidable(e.g. theoremproving on first order
predicatelogic).

Thesethree fundamentalproblemsare at the heart of
ASE research,and significant advanceshave beenmade
in eachof thesefields. One of the main resultsof the
ASE communitywasthe identificationof domainspecific
knowledgewhich helpsfacethesecomplexity and decid-
ability problems.By accumulatingknowledgeaboutaclass
of problems,it is possibleto designdomainspecifictools,
or tools which usea domainknowledgebase. Suchtools
exploit the domaininformation to narrow their searchfor
solutionsandconvergemorerapidly.

This introducesa secondchallenge:how do you cap-
turedomainknowledgeandotherrelevantinformation.Al-
thoughmucheffort hasbeendonein orderto educatesoft-
ware engineersto the virtues of specificationand docu-
mentation,many softwaredevelopmentactivities still cor-
respondto CMM level 1. Approachesto software engi-
neeringlike ExtremeProgrammingeven try to reducethe
productionof documentsto a minimum,takingfor granted
that softwareengineersonly like to write code! Also the
widespreaduseof computertechnologyhasturnedmillions
of peopleinto amateursoftwareengineers,with poor edu-
cationin softwaredevelopmenttechniques.

Two kindsof answershavebeenproposedto thissecond
challenge.

� Thefirst answeris to provideusefulandefficienttools.
It is importantthat tools bring somebenefitsandare

applicableto real-sizesoftware. Benefitscan be of
two kinds: eitheran improvementin productivity, or
a speed-upof the process,or improvementin quality.
If any of thesefactors(productivity, time, quality) is
a critical factorfor a company, it will motivateefforts
to adoptthenew technology. Thecapabilitiesof soft-
wareengineersto adaptthemselvesandtheir process
to new technologyshouldnotbeunderestimated.Soft-
wareengineersareconfrontedto a constantevolution
of target technologies(programminglanguages,hard-
wareandsoftwareplatforms).They havetheability to
learnnew specificationlanguagesif they perceive the
inducedbenefits.

� Thesecondansweris to designformalismsor toolsthat
areeasyto usefor thesoftwareengineer. Much work
hasbeendonein trying to designgraphicalformalisms,
supportedby GUI tools. This approachwassuccess-
ful in several projects. For example,the AMPHION
project usesa graphicalrelational languageas input
thatwasusedwith successby expertsin astrophysics
to formalizetheir problems.

� Thethird answeris theintegrationof thetool in thede-
velopmentprocess.Many novel approachesarebased
on new activities andnew notations. They requirea
revolution in the way softwareis developed. In most
cases,a company cannotafford sucha revolution be-
causeit not only requiresto educateits engineers,but
alsoto deeplyreorganisethecompany itself or its pro-
cesses(andhenceloosesomematurityduringatransi-
tion period).

Obviously, the cost of integrating new techniqueswill
be comparedto the expectedbenefits.From there,several
approachescan be adoptedby ASE tool designers:some
will try to maximizethebenefitsof their tools,whateverbe
thecost,otherswill developmoremodesttoolswhichbring
lessbenefitsat a lowercost.

Thesechallengesarenotnew andthey havealreadybeen
reportedin various studiesrelatedto ASE, software en-
gineeringor formal methods. The rest of this paperwill
presenttheTOBIAS tool1 , aimedat thegenerationof large
testsuitesandwill discusshow thesechallengesare taken
into accountby thetool.

2 TOBIAS

TOBIAS is a tool for the automaticgenerationof test
casesfrom a giventestpattern.Writing testcasesis a very
tediousandrepetitivetask,especiallywhenweneeda large
setof test cases.This is whereTOBIAS helpsproducea

1TOBIAS hasbeendevelopedwithin the COTE projectof the french
nationalnetwork in softwaretechnology(RNTL).

formal or
 structured
document

formal or
 structured
document

software
engineering

tool

Capture
 information

Challenge1:
process documents

Challenge 2:
produce documents

Figure 2. Challeng es of ASE research

large setof similar testcases.We have experimentedthat
many testcasesfeaturethesamesequenceof operationsbut
with differentparametervalues[1]. Othersequencesmay
alsodiffer by exchanginganoperationwith a similarone.

TOBIAS allows the userto definea setof relevant val-
uesfor eachoperationparameteror to identify setsof sim-
ilar operations(named“groups” in TOBIAS). Theseform
the basis for the definition of test patterns(named“test
schemas”in TOBIAS). A test schemais a boundedregu-
lar expressionover operationsand groups. Test schemas
arethenunfoldedby TOBIAS into a largesetof testcases.

We expectthatTOBIAS will help testengineersgener-
atemoretestscasesandin amoresystematicway for about
thesameeffort than“manually” writtentestcases.Generat-
ing moretestsmayincreasetheconfidencein thetestsuite.
Generatingthesemoresystematicallywill helpcover more
behavioursof thesystem,includingsituationsthatcouldbe
overlooked or forgottenby the test engineer. So we may
reasonablyexpectthatTOBIAS increasesthechanceof de-
tectingerrors.

In arecentexperiment[3], wegeneratedalargetestsuite
(4320testcases)andcomparedit to a manuallyproduced
testsuite(45 testcases).Our experimentshowedthat

� Thetestsuitegeneratedby TOBIAS discoversmoreer-
rors thanthe manualtestsuite.It alsoexercisedsome
known errors in several different ways, making the
testsuitemore robust towardsevolutionsof the spec-
ification.

� Writing TOBIAS testschemasrequiresasimilareffort
thanwriting thesmallmanualtestsuite.

2.1 Principles of TOBIAS

Test schemas

Test Data/
Test cases/

Test purposes

TOBIAS

Capture
 information

Class
 signatures

Figure 3. Basic view of TOBIAS

TOBIAS takestwo inputs(Fig. 3):

� the signaturesof the classesof the applicationunder
test

� a testschema

and producessequencesof methodcalls which can be
usedastestdata,testcases(if anoracleis available)or test
purposessuchastheonesrequiredasinputof theTGV tool
[2].

For example,let usconsidera simpleclass“IntegerSet”
with two methods:“add(v:int)” and“remove(v:int)”. Start-
ing from thissignatureandthefollowing testschema:

add(x)ˆ1..3;remove(y)ˆ0..2
where
x : {0,1,2,3}
y : {0,1,2}

TOBIAS will generateall sequenceswhich featureone
to threecalls to “add” with values0 to 3, followedby zero
to two calls to “remove” with values0 to 2. In total, this

schemagenerates1092 different sequences((4 + 4*4 +
4*4*4) * (1 + 3 + 3*3)). Fig. 4 shows someof the gen-
eratedsequences.

1: add(0)
2: add(1)
3: add(2)
4: add(3)
5: add(0); add(0)
6: add(0); add(1); add(2); add(3)
7: add(3); add(2); add(1); add(0)
8: add(0); remove(0)
9: add(0); remove(0); remove(0)
10: add(1); remove(0)
11: add(0); add(1); add(2); add(3);

remove(0); remove(1); remove(2)

Figure 4. Some test cases generated by TO-
BIAS

They correspondto classicaltestcaseslike addingor re-
moving severalelements,but alsoaddingor removing twice
the sameelement,or trying to remove an absentelement.
Actually, in order to turn the outputof TOBIAS into test
cases,you needanoraclewhich will evaluatetheeffectsof
methodcallsanddelivera verdict.

The testschema(4 lines) specifiesthis large setof test
cases,andTOBIAS helpsthe software testerto construct
this testsuiteat a lower costthanmanualproductionof the
test cases.This simple exampleshows how test schemas
generatetestcasesby iteratingover parametervaluesand
the numberof successive calls to the samemethod. TO-
BIAS also allows to iterateover a set of instancesof the
classor overasetof methods.

TOBIAS is a tool thatamplifiesthework of thetestde-
signer. The tool is basedon a simpleidea: to exploit sim-
ilarities betweentest casesin order to specify theseby a
generative pattern.In thenext sections,we will seehow it
addressesthechallengesof ASE.

3 Tobias and complexity

UnfoldingaTOBIAS testschemais not intrinsicallydif-
ficult, but theoutputis subjectto combinatorialexplosion:
thetool generatesa largenumberof testcases,andit is pre-
ciselythepurposeof thetool. Having alargenumberof sys-
tematicallygeneratedtest caseshelpsfinding more errors
becauseit exercisesthecombinatorialcomplexity of theap-
plication.Still, thetestsuitemaynot bearbitrarily largebe-
causeits executionmay requireuntractableresourcesfor
minor additionalbenefits.Therefore,thechallengeof TO-
BIAS usersis to producean optimalnumberof testcases.

To thisend,it is necessaryto selectasubsetof thegenerated
testsuite.Two kindsof testcasesshouldbeeliminatedfrom
thetestsuite:

� redundanttestcases:

� non-conformtestcases.

For example,in Fig. 4, testcases1,2,3and4 areredun-
dant,becausethey correspondto adda singleelementand
theresultof the testshouldnot be influencedby theactual
valueof theparameter. Similarly, testcases6 and7 arealso
redundant.Testcases9 and10 could correspondto non-
conformtestcasesif the pre-conditionof remove requires
thattheelementthatis removedis anelementof theset.

Test schemas

Test Data/
Test cases/

Test purposes

TOBIAS

Capture
 information

Class
 signatures

Additional
knowledge

(UML diagrams,
pre/post conditions,

...)

Figure 5. Providing more inf ormation to TO-
BIAS

In orderto detectredundancy andnon-conformance,ad-
ditional informationmustbe providedto the tool (Fig. 5).
This informationcantake two forms.

� Severalspecificationdocuments(UML diagrams,state
machines,pre-/post-conditions,.. .) can be exploited
in ordertodetectandeliminatenon-conformtestcases.
This processcan becomedifficult if thesespecifica-
tions are complex or written at a very high level of
abstraction.They may requirethe useof verification
techniqueswith theirusualcost.Still, if thetesterdoes
notneedto detecteverynon-conformtestcase,hemay
usesimpler informationor lessexpensive algorithms
which will detectsomekinds of non-conformances.
For example,TOBIAS will soontake into accountthe
relationsof theUML classdiagramin orderto detect

testcasesthatfeaturenon-conformcommunicationbe-
tweeninstances2. This kind of verification is quite
elementarybut may lead to the eliminationof a sig-
nificant numberof non-conformtest cases. We are
alsoworking on the integrationof TOBIAS with the
CASTINGtool [4] which takesinto accountpre-/post-
conditionsandastatetransitiondiagramto detectnon-
conformanttestcases.Here,the tool involvesa more
complex computation,usingconstraintlogic program-
ming techniques.

� The languagefor expressingtestschemascanbe ex-
tendedto allow the test engineerto provide a finer
descriptionof the testschemaandto expresstesthy-
potheses.For example,in theIntegerSetclass,values
of integersarenotsignificant.Thisequivalencecanbe
providedasa testhypothesisandusedby TOBIAS to
avoid redundanttestcases.Currently, we areexperi-
mentingan extensionof the languagethat allows the
testengineerto specifyconstraintsonthevaluesof the
parametersusedin a testcase.For example,the user
canexpressthatthe ��� parametersarepairwisedistinct,
which wouldeliminatetestcase5.

To summarizethispoint,TOBIAS is exposedto thecom-
binatorialcomplexity of thegeneratedtestsuite.This com-
plexity is intrinsic to the tool becausewe wanteda tool
that would systematicallytestcombinationsof valuesand
methodcalls. Still, it has to be controlled becausetoo
large testsuitesmay requireuntractableresourceswithout
providing additionalbenefits.Thereforeseveral techniques
are usedto generatemore pertinenttest cases,but these
techniquesrequireadditionaldomaininformationaboutthe
testsor abouttheapplication.As for many ASEtools,mas-
tering the complexity requiresadditional domain knowl-
edge. In the next section,we will seehow this knowledge
is capturedin thecontext of TOBIAS.

4 Capturing knowledge for TOBIAS

Fig. 3 shows thatTOBIAS requirestwo kindsof inputs:
atestschemaandsignaturesof theclasses.In many applica-
tions,thesesignaturescanbeextractedeitherfrom thecode
of theapplicationundertest,or from its UML specification.
Thecurrentversionof TOBIAS is basedon theUML class
diagrambecausethetool wasdevelopedin a projectwhere
theavailability of suchdocumentsis takenfor granted.Very
soon,weplanto allow thisextractionfrom Javasourcecode
also(Fig. 6).

If signaturesareextractedfrom existing UML specifica-
tions or from Java sourcecode,TOBIAS can be usedby

2Actually, a testschemaallows to specifynotonly themethodinvoked
but alsothe instancewhich will activatethemethodcall, andthe instance
whichwill processthecall.

Test schemas

Test Data/
Test cases/

Test purposes

TOBIAS

Capture
 information

UML Class
Diagram

or
Java Program

Class
 signatures

extract

Additional
knowledge

(UML diagrams,
pre/post conditions,

...)

Figure 6. TOBIAS with additional kno wledg e

simply providing a testschema.The exampleof Sect. 2.1
shows that testschemasareexpressedin a few lines. The
currentversionof TOBIAS alsoprovidesa graphicaluser
interfaceto help the userdefinea testschema.For exam-
ple,theinterfacepromptstheuserfor valuesof theparame-
ters,or for namesof theinstanceswhich will executethese
methods.It mustbenotedthat the testschemaencourages
the userto provide specificinformationaboutthe applica-
tion undertest. For example,the choiceof valuesfor the
methodparametersforcestheuserto analysewhich values
areof interest;the quality of the informationprovided by
theuserhasa directeffecton thequality of thetestsuite.

TOBIAS hasbeendesignedto allow a new userto start
usingthe tool at low cost. Startingfrom an existing class
diagram,theuseronly hasto provideafirst testschema.He
will immediatelygeta first largesequenceof methodcalls.
We expectthattheuserwill thentry to refinethis sequence
eitherby usingtheextensionsof theschemalanguage(e.g.
constraints),or by providing more informationto the tool
aboutconformanceissues.This conformanceinformation
is actuallya specificationof theapplicationundertest.The
plannedextensionsof the tool will try to exploit existing
UML diagramsof theapplicationundertest(classdiagram,
statetransitiondiagram,OCL pre/post-conditions).If such
specificationsdon’t exist, we hopethat thebenefitsof pro-
ducingmorepertinentandconformanttestsuiteswill en-
couragethesoftwareengineerto specifypartsof theappli-
cation. Again, we plan that the tool will be able to bring
smallbut usefulresultsfrom simpleelementsof thespeci-
fication (e.g. the relationsin the classdiagram),andmore

preciseandcompleteresultsfrom detailedspecifications.
Anotherway to encouragetheuserto providesuchspec-

ificationsis to integrateTOBIAS with othertestgeneration
tools which arebasedon the samekinds of diagrams. In
the COTE project, TOBIAS will be combinedwith UM-
LAUT/TGV andCASTING,whichbothexploit elementsof
UML specifications.Specifications,preferablyexecutable
ones,canalsobeusedasabasisfor thetestoracle,in order
to turn sequencesof methodcallsinto realtestcases.

In summary, our approachis to provide thefirst benefits
at thesinglecostof expressingtestschemas.It exploits the
availability of severaldocuments(sourcecode,UML spec-
ifications), and henceshouldbe easierto integratein the
company process.Then,it encouragestheevolution of the
processesbydeliveringnew benefitsfor additionalelements
of specification.

5 Conclusion

This paperhasshown how the TOBIAS testgenerator
triesto facetwo of themajorchallengesof eachASE tool:
complexity and information acquisition. Our approachis
to startwith simplesolutionsthatfit into standardsoftware
developmentprocesses.Then we intend to gradually in-
corporatemore refinedprocessingbasedon more precise
information.

Acknowledgments

TOBIAS is theresultof joint effortswith LydieduBous-
quet, PierreBontron, Olivier Maury and several students
of UJF. I’d alsolike to thankour colleaguesof the COTE
project,in particularourcolleaguesfrom Gempluswhopro-
videdmotivationfor developingthetool.

References

[1] L. du Bousquet,H. Martin, andJ.-M.J́eźequel.Conformance
testing from UML specifications- experiencereport. In
UML2001Workshopon Practical UML-BasedRigorousDe-
velopmentMethods, Toronto,2001.

[2] T. JéronandP. Morel. TestGenerationDerivedfrom Model-
checking. In ComputerAidedVerification (CAV’99). LNCS
1633,Springer, 1999.

[3] O. Maury, Y. Ledru, P. Bontron, and L. du Bousquet. Us-
ing testhypothesesto build a UML modelof object-oriented
smartcardapplications.In Int. Conf. onSoftwareandSystems
Engineeringandtheir Applications(ICSSEA), Paris,1999.

[4] L. VanAertryck,M. Benveniste,andD. Le Métayer.Casting:
A formally basedsoftwaretestgenerationmethod.In The1st
Int. Conf. onFormalEngineeringMethods,IEEE,ICFEM’97,
Hiroshima,1997.

Sleeping at Night: Perpetual Monitoring of Environmental Assumptions

Stephen Fickas1, Max Skorodinsky1, Martin Feather2

1Computer Science Department, University of Oregon
2Jet Propulsion Lab, Pasadena

1. Introduction

We are interested in failure. In particular, we are interested in failures that are discovered at
analysis time, but are left to simmer. Figure 1 places our work in context.

Property
Analyzer

Model

Violation

Figure 1: Reactions to failure

Given a violation, the traditional approach is to change the model to remove the cause of the
violation (the arrow leading from violation to model). In essence, “design out” the problem
[Garcez et al, 2001]. A less traditional, but still interesting approach is to change the property
(the arrow leading from violation to property) so that the violation is eliminated [van
Lamsweerde&Letier, 2000; Durney, 1993]. We are interested in a third approach that is quite
untraditional in the formal analysis literature but one that seems quite common. The “approach”
is to acknowledge that a violation is possible but is simply not going to be handled by changes to
the model or property. There are various reasons that might be given for taking this approach, but
they all lead to a cost/benefit argument: the cost of trying to design them out or lower our goals
is not worth the benefit of getting rid of them.

This paper takes up one aspect of the do-nothing approach: the assumptions underlying
cost/benefit arguments. In particular, we are interested in arguments based on the likelihood of
the environment acting in certain ways. (The Model of figure 1 is actually a representation of the
artifact under design as well as its environment. In our project, we use closed models that include
both.) Our experience is that domain experts, participating in the analysis process of figure 1,
often make statements about the expected behavior of the deployment environment. While
domain experts are domain experts, it can be difficult to predict either the initial environment
where the artifact will run, or a changing environment looking out over time. We will argue in
the remainder of the paper that we need to carry analysis arguments to runtime, leading to what
we call “runtime requirements engineering”. We will introduce an example and then discuss
future work.

2. Example: The Fault Protection Engine

eness and safety properties for a one
omponent of the operating system for a spacecraft. The component is called the Fault Protection

Eng

ked to use model checking to verify that
the

There are two environ al sensors on the spacecraft

nd the human staff (ground control). Both provide external events to the FPE component itself.
The ge

roved useful in our earlier work in
implem

Our group took on the task of analyzing basic liv

c
ine or FPE for short. The FPE component is interesting in its own right: it attempts to

diagnose and treat runtime faults that occur during the mission. In some ways, it is a runtime
instantiation of figure 1! However, it is not the details of the FPE that we will focus on, but our
attempts to analyze its behavior to discover problems.

Our group was given a state chart representation of the FPE component. This representation
was developed by domain experts at JPL. We were as

FPE component, as represented by the state charts, met simple distributed system properties
such as non-termination, non-starvation, deadlock free, etc. A large part of our effort was getting
to a Promela model (we chose to use Spin as our model checker) that actually gave useful results.
We have documented this effort in a separate paper [Feather et al, 2001]. Where we take up here
is at the final version of our model, one capable of finding violations in reasonable time. To
provide some context, we will use a piece of the original state chart diagram as illustration (see
figure 2).

Physical Sensors (env)

: the basic dete ir cycle

n Response

On

Clea MonitorReset

Fault.Activate

Clear/Fault.Deactivate Dire d

Ground control
(env)

State Change

Off
Notify/

ct Comman

nup/
Ru

Figure 2 ct/repa

mental pieces in the figure, the physic
a

neral operation is for faults to be detected and then queued up for processing. Once a fault
has had a repair routine run, it is cleared. Ground control can ask that a repair routine be run
irrespective of any actual faults detected on the spacecraft.

Our modeling approach is to start with a wildly under constrained environment and
gradually refine it as called for. This same approach p

enting highly non-deterministic specifications [Fickas, 1985; London&Feather 1986].
Using this approach, both physical sensors and ground control were allowed to “run open”: on
every cycle, they had the opportunity to produce an event for the FPE component. Before
describing violations, we need to describe a property we were interested in proving. In English,
we wished to show that for every fault detected, a response was eventually run. We are going to
use a tool that we have found valuable in stating properties such as this, the Timeline editor tool
[Smith et al, 2001]. Figure 3a shows the GUI for the tool with the specification of our property.
Figure 3b shows the Buchi automata that the tool produces. Figure 3c shows the Promela/Spin
never-claim that is actually inserted into our model.

Figure 3a: GUI spec 3b: Buchi automata 3c: never-claim

When we inserted the never-claim into our FPE model with the unconstrained
environ

Figure 4: progression towards buffer overflow

hen we presented this violation to domain experts, they had the following comments:
 flipping

2) l the buffer, there are bigger problems than

3) past missions says that this is not a problem worrying about.
Giv defined

 flood the spacecraft with requests.

How . Flight rules are

ment, we turned up the following violation: the input buffer to the repair component
could be overrun with repair requests. In other words, the environment could flood the FPE with
enough faults so that some were lost because of finite buffer size. Figure 4 is a representation of
the states leading towards a full buffer, and hence failure: once a buffer is full, new messages are
lost.

W
1) There are safeguards built-in to the hardware sensors that prevent them from

back and forth too quickly spurious signals).
If there actually are enough real faults to fil
buffer overflow.
Our experience on

en these comments, we modified the environment model. In essence, we
environmental assumptions that said the environment was not allowed to fill the buffer. With
these assumptions in place, one violation was eliminated. At this point, a new violation arose:
ground control could flood the input buffer with requests. We dutifully presented this new
violation to domain experts. The response was as follows:

1) Ground control staff are well-trained and would not
2) Experience says that ground control rarely are required to send requests.
ever, after further discussion, the possibility of a “flight rule” was put forth

constraints on the actions humans can take when interacting with the spacecraft. In our biased
view, they fall out of composite system design [Fickas&Helm, 1992]. All components in a
composite system must control their behavior to reach a larger goal. Flight rules are a
manifestation of control of the human agents in the system. It is important to note that flight rules
are currently not checked by machine at runtime: ground staff is expected to follow them in the

New messages
lost, hence no

response.
?msg

1 Full 4 3 2 ∅

!msg !msg !msg !msg !msg !msg

?msg ?msg ?msg ?msg

form of an operations manual. A paraphrase of the flight rule proposed was “do not, through
combination of onboard requests and ground control requests, exceed the request-buffer size”.
To summarize this first example, several violations were found of the requirement that all
requests be acted upon. The two we have presented were both explained away, i.e., the do-
nothing approach was chosen. The exception was the possibility of adding a flight rule to the
operations manual of ground control. The question is whether we can sleep at night after we are
finished with the analysis phase. Will our environment assumptions all hold once the spacecraft
is launched and on mission?

3. What makes us sleepless

There are two concerns we have after completing the FP engine case study. First, did we turn
up all the environmental assumptions that are being made? In essence, did we uncover all the
ways the system can fail at the hands of the environment? We are feeling skeptical about this
given the lack of elicitation methodology for building environment models in Spin. As
previously noted, we did follow an informal approach documented in [London&Feather, 1982],
one that starts with a completely unconstrained environment and gradually adds constraints as
needed. However, we used mostly ad hoc methods to decide what to model and what to not
model as we interacted with the domain experts. Second, some of the do-nothing failures that we
did turn up during modeling seemed to warrant some further validation at runtime. A brief scan
of the failure assessment literature shows a non-trivial number of system failures due to
erroneous engineering assumptions about the runtime environment. We do not believe you can
remove the need for assumptions – no engineered artifact would ever get built if it had to handle
all worst case scenarios thrown at it by its environment. However, it seems that once these
assumptions are explicated (by a good elicitation method!), we can do more than do-nothing.

4. Looking to Cryptography for Assumption Elicitation

In our FP engine case study, we used a seat-of-the-pants approach to working with domain
experts. In particular, we wrestled with mundane and uninteresting modeling issues at the same
time we pursued the main goal of accurately representing the composite system. One might
argue that the tool we chose, Spin, was the problem. However, our experience in our year-long
modeling seminar is that all modeling tools have their quirks and none can said to be easy to use
when starting from scratch. The question is do we have to start from scratch? We look with
interest to the more general software engineering area where notions of patterns and frameworks
are proposed as building blocks. We conjecture that the same ideas, if not the same content, can
find a home in formal modeling efforts. In this section, we will provide what we believe are
starting points for modeling frameworks, and in particular, frameworks that focus on the
environment model of a composite system.

We suggest that we can take a general modeling tool, Spin, and develop the engineering
practice around it that will give us what we want. What do we want? We want a method or
framework that focuses on the behavior of the environment in a composite system. For the sake
of discussion, we will use an existing modeling methodology from the cryptographic-protocol
world, strand spaces. We propose strand spaces for at least three reasons: (1) It is environment-
centric. It puts the environmental component of a composite system first and foremost. In fact, its
whole raison d'être is to explore means that the environment, acting badly, can cause a system to

fail. (2) It is tool independent. It really is a methodology or way of thinking about a problem. (3)
There is some evidence that it can be coupled with Spin (discussed in next section). We will next
introduce the strand space concept and discuss its applicability to the larger problem of
environmental monitoring. At the end of the section, we will discuss similar environment-centric
frameworks and how they might fit into a modeler’s toolbox.

Strand Space as a Framework

The strand space is a framework for modeling security protocols [Fabrega et al, 1999].
The strand space modeling technique provides a means for succinctly specifying the actions of
legitimate protocol participants. Additionally, the framework provides an explicit model of a
protocol penetrator that is independent of a specific protocol. In other words, the strand space
captures a means to reason about, as well as model, a malicious entity which exists/acts in the
same system as the legitimate entities. Furthermore, the technique establishes a bound on the
capabilities of the malicious entity, which allow for rigorous proofs of security properties of a
specific protocol based on the bounded capabilities of the penetrator.

Although methods for proofs of protocol properties such as authentication and secrecy
are clearly presented by the framework’s designers, a major limitation of this technique is that
the models as well as the proofs must be produced by hand. There is, however, at least one
documented study that reports success with using the Spin automated model checker to verifying
a security protocol, where the protocol has been represented as a model built with techniques
nearly identical to those of the strand space mode [Maggi&Sisto, 2002]. The following
introduction to the strand space modeling and verification technique will combine an explanation
of concepts central to strand space with a demonstration of how these concepts can be translated
into a model built in Promela. A famous security protocol, the Needham-Schroeder-Lowe
Public-Key Authentication Protocol, will be used to illustrate the main ideas/concepts.

A central concept to the Strand Space model is a strand, which is a set of nodes, where
each node captures an action (specified by a protocol) valid for the entity to which the strand
corresponds. A node is an element of the set N (all nodes in the model), such that every node
n∈N belongs to a unique strand and each node in a strand is indexed. A predecessor relation is
defined on the nodes in the same strand. This is done, by connecting two nodes, one of which
precedes the other, with a special symbol (⇒). If n1, n2 are nodes, n1 ⇒ n2 means n1, n2 occur
on the same strand and index (n1) = index (n2)−1. In addition to the immediate causal
predecessor relation, a causal link relation is defined on nodes occurring in different strands. If
n1, n2 are nodes, n1 → n2 implies that n1 sent a message which was received by n2. Each node
contains a term, which corresponds to a message either being sent or received. A term is said to
originate on a node if that term is preceded by the symbol + (plus) which also corresponds to a
message being sent whereas a term, preceded by the symbol – (minus), corresponds to a message
being received. A term uniquely originates on a node if it originates on a unique node n∈N. In
the domain of cryptographic protocols, a uniquely originating term has the significance of
representing a nonce or a session key.

The designers of strand space focus on two security properties in their work: agreement
and secrecy. In both cases the authors use the concept of a uniquely originating term and causal
relations between nodes to establish proofs of the two properties. For example, the agreement
property is defined in terms of participants committing to a run of a protocol using a data item on
which they agree. This property is verified by checking that a bundle that contains a strand

which receives a data item x has a unique strand which sends x. The Needham-Schroeder-Lowe
protocol in conventional specification illustrates some of the strand space concepts presented
thus far:

1. A → B: {Na A}KB

2. B → A: {Na Nb B}KA

3. A → B: {Nb}KB

The goal of this protocol is that the legitimate participants A and B gain possession of Na and Nb
and associate these values with each other. No other party should have access to these values.
The Needham-Schroeder-Lowe protocol in Strand Space:

 strand s′ strand s″

 a node:
 〈s′, 1〉 〈s″, 1〉
 a sent message: a received message:
 [+{Na A}KB] [−{Na A}KB]

 〈s′, 2〉 〈s″, 2〉
 [−{Na Nb B}KA] [+{Na Nb B}KA]

 〈s′, 3〉 〈s″, 3〉
 [+{Nb}KB] [−{Nb}KB]

Thus far, only legitimate protocol participants have been illustrated. In terms of modeling these
in Promela, the legitimate entities can be expressed as processes and the actions allowed by them
by the protocol as atomic actions. This is described in detail in [Maggi&Sisto, 1999].

Adding the Environment

The most powerful concept developed in strand space is that of the model of a penetrator,
or malicious entity. Using well-accepted notions of a security protocol bad guy, the authors
present a bounded model of a penetrator, which embodies a finite set of capabilities. For
example, the following are a few of the capabilities of the penetrator taken from [Fabrega et al,
1999]:

M[a]: send message a given that a is a term initially known to the penetrator, [+a].
F[a]: receive message a, [-a].
T[a]: tee, [-a, +a, +a].
V[a, b]: concatenation, [-a, -b, +ab].
R[ab]: separation into parts, [-ab, +a, +b].

…

The verification of a property is done with respect to these capabilities and any data of
which the penetrator is in possession. A notion of an infiltrated strand space is defined, which
consists of strands that represent legitimate protocol participants as well as the penetrator strands,
where each strand corresponds to one possible penetrator action. According to the authors of
strand space, the penetrator model can be easily expanded to include other capabilities without
necessitating any other modifications to the framework.

The model of the Needham-Schroeder-Lowe protocol presented in [Maggi&Sisto, 2002]
very closely resembles that of the infiltrated strand space. As mentioned previously, the
legitimate participants of the protocol are able to take atomic actions prescribed to them by the
specification of the protocol. The penetrator is injected into the space by connecting each
legitimate participant to the penetrator with a Promela channel. Thus, the penetrator is the first
recipient of any protocol dictated action. Furthermore, once the penetrator receives a message
destined to a legitimate participant it forwards the message to the intended recipient. Most
importantly, the penetrator is able to commit any of the actions in its set of capabilities at this
point. Thus, the infiltrated space is an extremely compact way to model the influence of
malicious or otherwise interfering entities with the actions of legitimate ones. The following is
an illustration of the infiltrated space in a Spin model.

 Communication
 channels:

Participant A:
a process with a
set of atomic
actions allowed
by the protocol.

Participant B :
a process with a
set of atomic
actions allowed
by the protocol.

Penetrator:
- forwards messages between
 legitimate participants.
- carries out actions from the set
 of malicious capabilities.

Is There a Framework Somewhere Here?

We believe the answer is yes, there is a potential framework for eliciting failures and
environmental assumptions. Our belief rests on (1) the ability to provide different penetrator
actions for different domains, and (2) the ability of the Promela architecture above to contain the
state-space explosion. Neither of these beliefs has been satisfactorily evaluated by us: they

remain conjectures. (We have recently used the Promela architecture above to model another
crypto protocol, but have not attempted to use it on a non-crypto problem.)

In summary, the general research questions around the strand space approach to assumption
elicitation are as follows:

a. Can the method be refocused, or at least focused more broadly, on embedded systems.
Its general model of actors/agents of the artifact/system working under deterministic
rules is a fit with applications like the FP engine. More generally, one does not often
want non-determinism in designed artifacts. The strand space focus is on the
environment: how can the environment, viewed as an agent, screw up the system. Can
this all be translated into a methodology that allows modeler and domain expert to
explore environmental assumptions?

b. Assuming that the strand space method is effective for embedded systems, what tool
support can we give to it? Given that we propose to use Spin as our base modeling tool,
what software engineering tools can we provide for deriving environmental
assumptions and dependability metrics from the strand space model? Do patterns or
frameworks make sense in Spin in the same way they do in more general programming
languages? More directly, can we develop a strand space framework for Spin, i.e., add
a software engineering layer on top of the Spin modeling tool?

Beyond Strand Space: A Framework Toolkit

Looking a bit more closely at the strand space concept, it is based on exchange protocols.
It centers on a non-cooperating environment thrown in with a set of correctly functioning system
components. This covers some of the problems we turned up in our FP engine study. However,
there are clearly other ways that a composite system can be viewed. For instance, the (human)
ground control component is assumed to act correctly. But if this component acts incorrectly it
can have disastrous results. A framework that focuses more closely on this problem is the non-
repudiation protocols that deal with a trusted component acting badly. Pascoe describes the
APPROVE framework for modeling these types of problems [Pascoe, 2001]. Still other problems
crop up when dealing with black-box components not under project control. Recent work on
Interface Modeling [Alfaro&Henzinger, 2001] centers on the types of assumptions one must
make about such components for the system to avoid failure. In our FP engine study, domain
experts had a tendency to treat sensor hardware in this way. Assumptions were made about the
way it would behave as seen through its interface.

It is tempting to propose an effort that unifies all of these different methods into a single
framework. However, we propose to follow a different path: different frameworks for different
pieces of a composite system. In essence, we are bowing to the fact that there is not one
“environment” that needs to be reckoned with, but a set of relationships between system
components and non-system components. It is even greyer than this. For instance, the domain
experts do not view ground control as part of the environment. And in some ways they are right:
there is a degree of control over it. However, its behavior remains only plausible, not guaranteed.
One can view it as the “human user” of the system. Other components of the environment are
engineered but come as black-box entities. Yet other components of the environment reflect the
physical aspects of deep space missions. Instead of lumping these together, we propose to build a
collection of frameworks to match known system-environment relationships. The goal is to

supply a modeler with a framework that teases out the environment model, and in particular, the
environmental assumptions that exist with different environment components, e.g., with humans
in the loop, with black-box components, with white-box trusted components, with the physical
environment. In a larger sense, this can be viewed as falling under the domain-specific rubric:
power by constraint. Build methods and tools that leverage knowledge of constrained aspects of
a system.

5. Sleeping Better: Monitoring Assumptions

We would like to consider a compromise to the do-nothing approach: go ahead and make
assumptions at analysis time, but record them and carry them to runtime for monitoring. To give
a bit more context, we are interested in knowing more than simply fail/no-fail information about
an assumption (e.g., more than what would be given by an assert statement in the deployed
code). In particular, we are interested in observing the states leading up to assumption failure,
and using that information in various ways:

• At the least, we might be given a warning that failure is certain but some time remains to
“man the life boats”. The Mocha group calls these doomed states: the system will fail
under all future events but has not reached the failure state yet [Alur et al, 1998].

• Better, we might be able to provide some control over the environment. For instance,
both our examples had human agents as part of the larger composite system. There is
potential to influence their actions (e.g., actual monitoring of flight rules in the FPE
example).

• Best, we might be able to change the artifact (the components under our control) to head
off failure without relying on help from the environment. In some systems, this means an
artifact moving to a fail-safe mode until a danger has passed (e.g., the FPE example).

We have done some experimentation with assumption monitoring, and that work is described in
detail in [Fickas et al, 2002]. Here we will briefly outline our approach and describe what we see
as future research directions.

Step 1. We capture environmental assumptions in the Timeline editor tool (see figure 3a). The
Timeline editor provides a means of explicitly stating assumptions made about the environment
of a required system property.
Step 2. We take the output of the editor, a Spin never-claim (see figure 3b,c), and use it as the
specification of a runtime monitor.
Step 3. We translate the never-claim to an Emu event tree. Emu is a tool we have developed for
monitoring runtime events (www.emu-project.org). Our translator converts the state-machine
represented by the never-claim into the equivalent Emu monitor represented by an event tree.
Step 4. The Emu monitor waits for a triggering event/action, and then provides intermediate
information about the current state of the tree (state machine).

To date we have been able to build visual monitors of Emu event trees. These have proven useful
to system staff monitoring the accuracy of environmental assumptions. We have yet to connect a
monitor with an adaptation mechanism.

Open Issues of Monitoring

We find that tools like the Timeline editor are sorely needed in the formal methods area.
They provide an abstract view of scenarios that is at just the right level. And furthermore, we use
the tool both for analysis time verification and for the start of the path to runtime monitoring.
The problem is that tools of this ilk, ones designed for model checking, carry model checking
baggage. The output of the Timeline editor is meant to be integrated with a larger Promela
program. And this integration is based on the non-deterministic search space generated by Spin.
Further, the editor’s output (in reality, a Buchi automata) is based on Linear Temporal Logic
(LTL), which is founded on infinite time sequences. Both of these attributes of model checking,
non-determinism and infinite time, are knotty issues when moving to a deployed system. We are
not the first to notice this: other groups have wrestled with the use of finite traces to prove
properties stated in terms of infinite time. However, we are aware of no other work in the area of
assumption monitoring (as opposed to runtime verification) that has satisfactorily dealt with the
twin problems. Have we solved them with our mapping to Emu? No. We have taken a finesse
(actually two). First, we change all infinite behavior in a never-claim to be timed. Technically,
we turn a liveness issue into a safety issue. Second, we use a deterministic monitor. This will fail
to capture alternative paths through the never-claim. While both of these choices, translating to
timed and deterministic monitors, has been sufficient for the simple problems we have studied,
we would be surprised if they were enough for larger, more complex scenarios.

6. Summary

Our goal was to convince the reader that there is a portion of modeling that is under

supported, that of building an environmental model and eliciting environmental assumptions
along the way. There appear to be two hard problems: (1) finding a software engineering method
that helps with elicitation, and (2) once elicited, finding a means of runtime monitoring. We have
discussed two approaches that we believe hold promise.

References

Luca de Alfaro, Thomas A. Henzinger, Interface Theories for Component-based Design,
Proceedings of the First International Workshop on Embedded Software (EMSOFT '01), Lecture
Notes in Computer Science 2211, Springer-Verlag,

Rajeev Alur, Thomas A. Henzinger, F.Y.C. Mang, Shaz Qadeer, Sriram K. Rajamani, and
Serdar Tasiran. Mocha: Modularity in model checking. In Proceedings of the Tenth International
Conference on Computer-aided Verification (CAV 1998), Lecture Notes in Computer Science
1427, Springer-Verlag, 1998, pp. 521-525.

Durney, B., Requirements Transformations, PhD Thesis, Computer Science Department,
University of Oregon, 1993

F. Javier Thayer Fabrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces:
Proving security protocols correct. Journal of Computer Security, 7(2/3):191--230, 1999

M.S. Feather, S. Fickas, A. Razermera Mamy, Model-Checking for Validation of a Fault
Protection System, Proceedings 6th IEEE International Symposium on High Assurance Systems
Engineering, Boca Raton, Florida, October 23-24 2001. IEEE Computer Society

http://www.eecs.berkeley.edu/~tah

Fickas, S., Automating the transformational development of software, In IEEE Transactions
on Software Engineering, Vol. 11, No. 11 Nov. 1985

Fickas, S., Helm, R., Automating the design of composite systems, IEEE Transactions on
Software Engineering, June, 1992

Fickas, S., Beauchamp, T., Razermera Mamy, A., Monitoring Ephemeral Requirements,
Computer Science Tech Report 10-02, University of Oregon, May 2002 (www.emu-project.org)

A. S. d’Avila Garcez, A. Russo, B. Nuseibeh, and J. Kramer, An Analysis-Revision Cycle to
Evolve Requirements Specifications , Proceedings of 16th IEEE International Conference on
Automated Software Engineering (ASE-2001), pp.354-358, 26-29 November 2001, San Diego,
USA.

P.E. London & M.S. Feather, “Implementing specification freedoms”, Readings in Artificial
Intelligence and Software Engineering: 285-305, 1986, Morgan Kaufmann, 1986 [Originally
published in Science of Computer Programming (2): 1-131, 1982]

P. Maggi and R. Sisto, Using SPIN to verify security properties of cryptographic protocols,
Spin Workshop 02, July 2002

J. S. Pascoe, R. J. Loader and V. S. Sunderam, Working Towards The Agreement Problem
Protocol Verification Environment, 2001 Communicating Process Architectures (CPA 2001).

Smith, M., Holzman,G., Etreeami, K., Events and Constraints: A Graphical Editor for
Capturing Logical Requirements of Programs, International Symposium on Requirements
Engineering – RE01, Toronto, August 2001

 van Lamsweerde, A., E. Letier , Handling Obstacles in Goal-Oriented Requirements
Engineering , IEEE Transactions on Software Engineering, Special Issue on Exception
Handling, Vol. 26 No. 10, October 2000, 978-1005.

http://mcs.open.ac.uk/ban25/papers/ase-2001.pdf
http://mcs.open.ac.uk/ban25/papers/ase-2001.pdf

	Henninger.pdf
	Design and Usability Patterns
	Formalizing a Community of Practice for Patterns
	Using the Semantic Web to Deliver Software Development Knowledge
	Using the Semantic Web as a Communication Medium for Communities of Practice

	Current Status and Future Work
	References

	Fickas.pdf
	Strand Space as a Framework
	Adding the Environment
	Beyond Strand Space: A Framework Toolkit

