Interactive and Automated Debugging for
Big Data Analytics

Professor Miryung Kim
University of California, Los Angeles

Software Engineering and Analysis Lab at UCLA

" Compare [NDW_WINOZ 11506 - OLD_WINIZ13515) & -

W Snatare Compars W Jows stricture Compane

. NN WRLITONT v

1A Ukar salacts 3 subvegion of 3 A% patch using Fclipes compare view F 94 ADAB
W O WO X
a4 VE_ME
\

T T oL D Template View (06 Re) 1T - a

SN 2 A vde-by-side view of AST edis and context

—_-_

1] hnulw!moﬂm
V0 difts in the found I2Caton 4i 4 act ant tempaate =

Y Oty MY fewplate

+ Matademy et 22 (3 Locations of sy changes gthe &
YONTIRCT O TG

Matching Lacations

[ECIEAE 500 1/ Wi 120" OCiprne, v,/ whget IWIcget s seve Ty exsedtver]

AR
Dunge Asomater 4 Locations of change asomalies SERCLYOID
X [chpue ST/ wanl 2 jong ecipne) 1/ widgets Wiiget s v JRegtonUotvent | S
X [SarT w13 oyl v kgt [t s s [P I eriewsotvess] 3 Yyloimm w Seceskem:
'

Interactive Code Review

et A0, oy i e jesd i Tah UHS v
public Dbject asdignl Dbject val, boslean dtricthava)
Ehremd UEL1EvalError

T [T

M _4. 0.1+ g o Mgt s st R Tah UHS e
public Dbject adsige] Object wal, Boolesn strictlewa
thross BiilEwvallrror

threm nem Interpreterirror] wkooss Tha 1;

ditionals that check the **

Gject Fialial = val instanceof Prisitive 7 | PP 2080 object are JF “Field = “sfield. ““""‘?0 [l
{Primitivedwal). getWaluel) & wal; by 1 ¥ " varkose = “evoriose: =

g =i 1L ¥ T nomapoce = '.mnspa:; ¥
| e | aw #:ﬂ ir

Hetse i —— L

T - p— R — PR A Y- =0

Baplare condaansd with polymarphive Baplace condimionsl sith poiymarphism
Baplsot cordinional with polymarphism Tiorg Rt 5p. Jdi bE R LS RS s Lgall, org R A0 i Ba bl LT}
Bermove pararmstter

Extrisct Rieranthy Seiebid_condiionaltyze = = NELD" RryDijectheidval=wabnitast ealPrimithee AL

Bymows paramaner ey
Bmows paramaner Esbfiong_mithaciong T, bp. Jecht byl LR apgall’, 38 g nlr, org. it . jedi
Mepisve cnd At with pofyraphise AN

Mermove pararrier .

A ovE P ITSET :

Bmows paramaner

Bermowe pararrater adided_mathod{ong Gt 5p. jecis bun LISince ciaa s igndl, srigall’, ong gL 5P

AMD
lrmilar_ Boson iLis oL b LHEn S R a0, g g RIS RS .

Bermove assigrment Bo pararmten

Baplsos cordional with polymarphism

Bymows paramaner

— T e |
H [ra air snwas b Lisearegrs |

Program Comprehension

Refactoring details are lnked

to code elements

Logic query is filled
and expanded

» geckint[] range=nul;
[T = -
b deckint[] range={int[lJthistrailingComments.getinode);

Refactoring and Transformation

g Testing-Debugging View IZ = B8
Tarantula SBI Jaccard Ochiai
AffectedTestMame ~ || Type Element SuspVal =
org.apache.xml.security.test.c14n, in’|pleC| CM org.apache.xml.se.. 0517543
org.apache.xml.security.test.cldn.imple CM org.apachexmlse.. 0.517543|%
org.apache.xml.security.test.cldn.imple CM org.apache.xml.se.. 0211469
org.apache.xml.security.test.interop.IAI AM org.apachexmlse.. 0.204152
org.apache.xml.security p
org.apache.xml.security Test Debugging View ;
org.apachexml.securi
. . . = . - =2
« [| | | E—— L2
"L Atomic-Change View 2 =8
~

Search UnApply Apply

m

Atomic Change View

Debugging

Data Science elevating Software Engineering

Software Refactoring
Refactoring Field Study

Quantifying Refactoring Cost and Benefits
Impact on Regression Testing

Role of API Refactoring

API Evolution
Role of API Refactoring &

API Stability

Code Redundancy

Clone genealogy

Copy and paste practices

Long lived clones

Software forking and code porting

Software Patches
Supplementary patches
Omission errors

Data Science elevating Software Engineering

Code Redundancy

Clone genealogy

Copy and paste practices

Long lived clones

Software forking and code porting

Software Refactoring
Refactoring Field Study

Quantifying Refactoring Cost and Benefits
Impact on Regression Testing

Role of API Refactoring

API Evolution
Role of API Refactoring ®
API Stability

Software Patches

Supplementary patches
Omission errors

Logical Program Differencing
LSdiff
Vdiff for VHDL

Refactoring Reconstruction
RefFinder

Automated and API Usage Adaptation

Interactive LibSyncs
Software Dev Tool API Matching

Interactive Code Review
Critics

Transplantation and Test Reuse
Grafter

Clone Removal Refactoring
RASE

Data Science elevating Software Engineering

Code Redundancy

Clone genealogy

Copy and paste practices

Long lived clones

Software forking and code porting

Software Refactoring
Refactoring Field Study

Quantifying Refactoring Cost and Benefits
Impact on Regression Testing

Role of API Refactoring

Software Patches
Supplementary patches

API Evolution
Role of API Refactoring &

API Stability Omission errors
Logical Program Differencing
LSdiff
Vdiff for VHDL
Program
Transformation from Refactoring Reconstruction
Examples RefFinder
fX‘;iEt Automated and APl Usage Adaptation
Cookbook Interactive ;imnce
Software Dev Tool API Matching
Bug Finding Interactive Code Review

Refactoring Bugs Critics
Cloning Inconsistencies
Fault Tracer
Modularity Violations

Prioritizing Tests for Refactoring

Transplantation and Test Reuse
Grafter

Clone Removal Refactoring
RASE

Current Research Focus:
Software Engineering elevating Data Science

Data Scientists in Software Teams SE Tools for Big Data Analytics
* Background * Interactive Debugger
* Work Activities * Data Provenance
e Challenges * Automated Debugging

* Best Practices
* Quality Assurance

Data Big Data
Scientists Debugging

The Emerging Roles of Data Scientists on
Software Teams

We are at a tipping point where there are large scale
telemetry, machine, process and quality data.

Data scientists are emerging roles in SW teams due to an
increasing demand for experimenting with real users and
reporting results with statistical rigor.

We have conducted the first in-depth interview study
and the largest scale survey of professional data
scientists to characterize working styles.

Insight Provider Specialists Platform Builder Polymath Team Leader

Data Big Data
Scientists Debugging

Methodology for Studying “Data Scientists”

In-Depth Interviews [ICSE 2016] Survey [TSE 2018]

16 data scientists 793 responses

* 5women and 11 men from eight different
Microsoft organizations ® full-time data scientists
* employees with interest in data science
Snowball sampling

. o Questions about
e data-driven engineering meet-ups and

technical community meetings _
 demographics

* word of mouth e skills
* self-perception
Coding with Atlas.TI « working styles

* time spent
Clustering of participants challenges and best practices

Data Big Data
Scientists Debugging

Background of Data Scientists

Most CS, many interdisciplinary backgrounds Physics
Bio
. . - Finance Informatics
Many have higher education degrees Aot Business
Survey: 41% have master’s degrees, and 22% have PhDs Feonomics
Statistics
1 Cog Sci
Strong Passion for data Computer
”I"'ve always been a data kind of guy. | love playing with data. I’'m very Science
focused on how you can organize and make sense of data and being y N
able to find patterns. | love patterns.” ML

Machine learning hackers. Need to know stats

“My people have to know statistics. They need to be able to answer sample
size questions, design experiment questions, know standard deviations, p-
value, confidence intervals, etc.”

Data Big Data
Scientists Debugging

Background of Data Scientists

PhD training contributes to working Physics
Bio

Styl e Applied Fin:.:mce Informatics

Math . Business
“It has never been, in my four years, that somebody came and Economics
said, “Can you answer this question?” | mostly sit around .

hinking, “H | be helpful?” Probably that part of your Statistics

thinking, “How can | be helpful?” Pro y P y Cog Sci
PhD is you are figuring out what is the most important Computer
questions.” [P13] Science
“I have a PhD in experimental physics, so pretty much, | am y6a N
used to designing experiments.” [P6] ML

“Doing data science is kind of like doing research. It looks like
a good problem and looks like a good idea. You think you may
have an approach, but then maybe you end up with a dead
end.” [P5]

Time Spent on Activities

Hours spent on certain activities (self reported, survey, N=532)

Query existingdata | F | [-—--- {000 00 00 ©
Build platforms to gatherdata -{ | |-—---- {oo oo 00 o o 0
Preparedata | FH | --------- { o
Analyzedata -| F| | [----- {1 o o o o
Experiment — ----Jo 0o 0 00 © o
Validate insight o [| [-—---- { o o o
Disseminate insight | F | [-—--- {0 o0 ©
Engage with others —{ ---=-{ o000 o o o
Operationalize insight — :I--IOOOOO o o
Act on insight F---4o © o o
Other work related to DS :---IOGtD o ©o oo o 0O
Other work not relatedtoDS H4 | | (----—---------- Jooo 0 00 mo o o o

0
10
20
30
40 —
50 —

Data Big Data
Scientists Debugging

Time Spent on Activities

Cluster analysis on relative time spent (k-means)

(m\l;"f.ia?] ?_j—‘*(_’_\
£ @ l:;-a
f‘f.ia-‘] EEE
N oo based on
&% relative time spent
532 data scientists in activities

at Microsoft

Big Data
Debugging

9 Distinct Categories of Data Scientists
based on Work Activities

Entire population | 12.0% | 7.2% | 11.7% 125% 4.8% 69% 85% | 92% 24% 55% | 4.1% 151%
532people | 47h | 29h | 48h | 52h 21h | 30h 35h | 38 11h 21h 1Sh 6.7h

Cluster 1 | 3049% | 8.5% | 11.5% | 15.1% | 9.1%

Polymath -
156 people | 44h 36h S51h 67h 4.0h

77% | 74% | 79% 32% | 52% @ 4.0% 10.1%
36h | 35n | 36h 15h 23h | 20nh 4.5h

Data Eorister? | 68% | 21% | 67% | 7.7% | 24% | 7.0% | 120% 230% 37% | 9.5% |134% 57%
71people | 220 | 10h | 25h | 29n | 12n | 26h | 45h | 86h | 13n | 33n | 6Oh 26h

Data prer3 124.5% | 4.9% |19.6% | 10.0% | 3.0% | 9.0% | 11.6% | 88% | 15% | 39% 15% 1.8%
122 people | 940 | 1h | 78 | 40n | 13n | 4h | 45h | 35n | 070 13n O7h 08

89% | 76% | 7.5% 21% 33% | 25% 1.9%

Data Shaper-| Z B
33 people | 250 | 07h 2en | 3gh | 33h | 320 10h 14n | 11h Osh
1 | ! | T
i g’r:‘::efef:_ 9.9% 09% 58% 46% 66% | 52% | 58% 18% 42% 28% 32%
Y2l 37h | 03n | 24n 22h | 27h | 22h | 24n | OSh 18h 13h 13h

24 people

43% 38% 27% 44% | 41% | 21% 30% 14% 6.9%
1% 11h | 12h | 20h | 19h 0Sh 11h 06h @ 3.1h

Cluster 6
Platform Builder- 1:':‘%
27 people C

Cluster 7
Moonlighter 50%- ;"::

63 people |
Moo g::ftfor"?- 29% | 14% | 1.9% 16% 04% 15% | 1.7% 23% 06% 21% | 29%
'q 2 1.2h 0.6h 0.5h 0.7h 0.2h 0.7h 0.8h 1.0h 0.3h 1.0h 1.3h

55% | 28% 42% | 7.8% | 59% | 18% 57% 25%
24h 12h 20h | 33h | 24h | 08h @ 23h 1.1h

32 people
F oﬁ"l’:;?"g_ 0.9% 21% 18% 09% 57% | 18.5% | 10.1% 3.0%
4 peog,e 0.th | 10h | 02h 0.th = 15h | 48h | 18h 1.1h
S P P P g B o A B
v ‘ Ca 6'5‘ b’b\ &0 : “’\Q "Q @0 : ‘}Q ‘;}Q © ©
N < &° *"’6) > \0\0 ¥ & AN & &
Data Scientists in Software Teams: dg}” & & & ¢ & & POARC AN Y
. @ o g
State of the Art and Challenges, Kim et al. & @“& & @o& Qe}'& ’ S &
. . . A~)
IEEE Transactions on Software Engineering b& e S ‘\gd‘
N N

Category: Data Shaper

-I—I—I—I—I—I—H—I—I—I—I—I—H—I—I—IIIIIIIIIIIIIIIIIIIIIIIIIII-

Data Shaper :

Entire population | 120% | 7.2% | 11.7% | 125% 4.8% 69% | 85% | 92% 24% 55% 4.1% | 15.1%
532people | 47h | 29h | 48h | 52h 21h 30h 35h 38 11h 21h 19h 67h
Palvmat- | 104% 6| 91% | 77% | 74% | 7.9% 32% 52% 40% 101%
156 people | 440 40h | 36h | 35h @ 36h 15h 23h | 20h @ 45h
Data Foauster2 | 68% | 21% | 6.7% | 7.7% | 24% | 7.0% |120% 37% | 9.5% 57%
71people | 22h | 10n | 25h | 29n | 12n | 26n | 45 13h | 33h 2.6h
Datagr';;t::ear- 2 88% | 15% | 39% | 15% 1.8%
122 people 35h 07h 13h 07h 08h
-I EEEEEEN
u Dag‘g:?;:,_ 75% | 21% | 33% 25% 19%
| |
= 33 people : 32h 10h 14h 11h 08h
EUEEEEEEE _ EEESEEEEEEEEEEEER
Deata Ananor-B 46% | 66% | 52% | 58% 1.8% 4.2% 28% 3.2%
24 people | 3Th 22h 27h | 22h | 24h 0Sh 16h 13h 13h
Platior ke © 2R 38% | 27% | 44% | 41% 21% 30% 14% 6.9%
27 people | 44n 11h | 12h | 20h 19h 09~ 11h 06h 31h
s nhgﬁt‘:f‘;;;_ 7.3% 50% | 50% 55% 28% 42% | 7.8% 59% 18% 57% 25%
83 people | 34N | 220 | 24h | 24n | 12h | 20h | 33h | 24h O8h 23h | 1.4n
A n“gﬁt':f“e&z 29% 14% 19% | 1.6% 04% 15% | 1.7% | 23% | 06% 21% | 2.9%
Y2 people | 12h | 06h | OSh | O7n 02h | O7h | 08h | 10h 031 10h 13h
Acteouster® | oom | 21% | 10% 09% | 57% |185% 101% 3.0%
4 people ‘ 0.th ~ 1.0h 0.2h 0.th = 1.5h |<‘£ﬂh':‘ 18h 1.1h
> 2 £ 2 & & & 6 & & & O
T S g & P FE T EE S
& @ A 0 A A = S
E A N O T A A
& § @ ¥ I ¥ & & & & &
& 0 G S &Q & S R
oS & & & o
3 < of & &
® o
oF & &
& o

*PhD Degree: 54% vs. 21%

Big Data
Debugging

MMaster’s Degree: 88% vs. 61%

MAlgorithms: 71% vs. 46%

MMachine Learning: 92% vs. 49%

M Optimization: 42% vs. 19%

PMPMATLAB: 30% vs. 5%
1M Python: 48% vs. 22%
PMTLC: 35% vs. 11%

Big Data
Debugging

Category: Platform Builder

Entire population | 120% | 7.2% | 11.7% 125% 4.8% 6.9% | 85% | 9.2% | 24% | 55% 4.1% 151%
532people | 47h @ 29h | 45h | 52h 21h 30h | 35h 381 11h 21h 18h | 67h

Cluster 1 | 10,49 6| 91% | 7.7% | 7.4% | 79% | 32% 52% 40% 10.1%

150 paooie 8% 40h | 36nh 35h | 36h 15h 230 20n 45
Cluster 2 Pt
Data ESr2 | 68% | 21% | 67% | 77% | 24% | 7.0% [120% 37% | 95% s7%

71people | 22h | 10h | 25h | 29h | 12h | 26h 4.5h 13h | 33h

Cluster 3
Data Preparer-
122 people

3.0% 90% | 11.6% 88% 15% 39% 15% 1.8%
13h 41h | 45h | 35h O07n 13h O07h 08h

Cluster 4
Data Shaper-
33 people

6.0% 89% | 76% | 75% 21% 33% | 25% 1.9%
26h 38h 33h 32h 10h 14h 11h 0%h

gy aroddind 46% 66% | 52% | 58% 18% 42% | 28% 32%

piolbmnd 22h | 27h | 22h | 24n 0Sh 16h 13n 13n
-Illllfaogl IIIIIIIIIIIIIIIIIIIIIIIII-
u Cluster 6 12_5* 6.9% ° u
= Patom Buicer- ECH .m Platform Builder -
...-.c-‘.t.; EEEEEEEEEEEEEEEEEEEEEEmnnd

usier’ | 7.3% | 50% | 50% | 55% 28% | 42% | 7.8%
Moo eonie. | 340 | 220 | 2 | 24n | 120 | 200 | 33h
Cluster8 | 5900 | 14% | 1.9% | 1.6% | 04% 15% | 1.7% : X .
oo ale | 120 | 06h | O3h | 07h 02h O7n | 08h | 10n | O3n 1 1 Back End Programming: 70% vs. 36%
fr———- t TN = H =] 0 o
S8 oon | 21w | 1on e _ 1 Big and Distributed Data: 81% vs. 50%
4 people | ™" | i jooh 0.th | 15h | 48h &
- : . . \ . , H . (V) o
S8 $ & b@é\\ e & § 1 Front End Programming: 63% vs. 31%
LA A S & & & 1sQL: 89% vs. 68%
0 Q 3 & &
o“'& o & & £ ® MNC/C++/C#: 70% vs. 45%
ol
)

Data Big Data
Scientists Debugging

Challenges that Data Scientists Face

Poor data quality

“Poor data quality. This combines with the expectation that as an analyst,
this is your job to fix (or even your fault if it exists), not that you are the main
consumer of this poor quality data.” [P754]

Batch jobs

“Because of the huge data size, batch processing jobs like Hadoop make
iterative work expensive and quick visualization of large data painful.”[P651]

Data Big Data
Scientists Debugging

Challenges in Ensuring “Correctness”

Validation is a major challenge.
“Honestly, we don’t have a good method for this.” [P457]

“Just because the math is right, doesn’t mean that the answer is right.”
[P307]

“When it comes to data, trust nothing.” [P59]

Explainability is important. Participants warned about overreliance on
aggregate metrics— “to gain insights, you must go one level deeper.”

“Interpreting [data] without knowing why it looks like it does will most likely
lead you into a wrong direction.” [P577]

Big Data Debugging in the Dark

W § . m W

Develop locally Hope it works Run in cloud Bug!
\ q ‘H‘ 9 /
|
Guesswork
Google <Y %
Map Reduce SpofK \- UIVE

18

Software Engineering for Data Science

Data Scientists in Software Teams SE Tools for Big Data Analytics
* Background * Interactive Debugger
* Work Activities * Data Provenance
* Challenges * Automated Debugging

Best Practices
Quality Assurance

Data
Scientists

BigDebug: Debugging Primitives for
Interactive Big Data Processing in Spark

Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep Tetali,
Tyson Condie, Todd Millstein, Miryung Kim
[ICSE 2016, FSE Tool Demo 2016, SIGMOD Tool Demo 2017]

UCLA

Running a Map Reduce Job on Cluster

Map Reduce
— (-
— o
A user submits a job
L - -

A job is distributed to
workers in cluster

\

= /

F

Each worker performs pipelined transformations on a
partition with millions of records

Motivating Scenario: Election Record Analysis

VoterID Candidate State Time
* Alice writes a Spark program 9213 Sanders TX 1440023087

that runs correctly on local
machine (100MB data) but
crashes on cluster (1TB)

val log = "s3n://poll._log"
val text file = spark.textFile(log)
val count = text file
.Filter(line => line.split()[3]-tolnt
> 1440012701)
-map(line = > (line_.split(Q[1] , 1))

* Alice cannot see the crash- _reduceByKey(_ +).collect()

NOoO Ok~ WDN -~

inducing intermediate result.

 Alice cannot identify which input Task 31 failed 3 times: aborting

from 1TB causing crash job R
ERROR Executor: Exception in

task 31 in stage O (TID 31)

 When crash occurs, all
intermediate results are thrown j ava. | ang. Nurmber For nat Excepti on

away.

Why Traditional Debug Primitives Do Not Work
for Apache Spark?

Enabling interactive debugging requires us to re-think the features
of traditional debugger such as GDB

* Pausing the entire computation on the cloud could reduce
throughput

* Itis clearly infeasible for a user to inspect billion of records
through a regular watchpoint

* Even launching remote JVM debuggers to individual worker
nodes cannot scale for big data computing

1. Simulated Breakpoint

Breakpoint

Stored data
records

Simulated breakpoint replays computation from the latest

materialization point where data is stored in memory

1. Simulated Breakpoint — Realtime Code Fix

Breakpoint

Allow a user to fix code after the breakpoint

2. On-Demand Guarded Watchpoint

ReduceByKey

Watchpoint captures individual data records matching a user-

provided guard

3. Crash Culprit Remediation

rimap [viap B reoucenncey [oo

Task 31 failed 3 tines; aborting job
ERROR Executor: Exception in task 31
In stage 0 (TID 31)

j ava. | ang. Nunber For nat Excepti on

A user can either correct the crashed record, skip the crash culprit,

or supply a code fix to repair the crash culprit.

4. Backward and Forward Tracing

rimap [viap B reoucenncey [oo

—————

A user can also issue tracing queries on intermediate records at

realtime

Demo: BigDebug Interactive Debugger

[FSE 2016 Demo, SIGMOD 2017 Demo]

AliceStudentAnalysis.scala

Breakpoint Controls

(o L a0 |

Current Breakpoint location is after the simultedBreakpoint at

AliceStudentAnalysis scala:24
Stage D Stage 1
. groupByiey
g

object AlicoStudentAnalysis {

val COLLEGEYEAR = Limt(“Sophomore” , “"Preshman® , "Junier®, “SBenlor')
def main|args: Array[String])t Unic = {

f/set up spark configquration
val sparkConf = now SparkConf()
val bdeonf = new BlgDebugConfiguration
bdoonf . aetFilaPath(" fhose/all fwork/temp/git/dabligdebug/apark-1inmge/exs
ffeet up spark context
val ctx = now SparkContext|sparkCont)
ctx.sotBighebugConfiguration (bdoconf})
{/epark program starts hare
val records = ctx.textFile("/home/ali/Desktop/myfile.txt™, 1).
simultedBreakpoint (a=> |COLLEGEYEAR.containa(a.aplie(™ ")(2)))
val grade age pair = records.map(line => {

wal list = line.aplit{® ")

(list(2), limt(3).tolnt)
b &)
val average age by grade = grade age pair.groupByEey

-map{pair => {

wal itr = pair._2.tolterator

war moving_average = 0

var num =]

while (itr.hasNext) {

moving average = moving average + ftr.next()
num = nam + 1

i

{pair._l. moving_average/num)
&)
val out = average_age by grade.collect()
out.foreach(println)

Q1 : How does BigDebug scale to massive data?

BigDebug Scale Up

10000

7

/\/—/\’_’—//

(s)

Time
=
o
o

0.5 0.9 4 8 30 70 200 1000
Dataset Size (GB)

—BigDebug —Spark

BigDebug retains scale up property of Spark. This property is

critical for Big Data processing frameworks

Q2 : What is the performance overhead of
debugging primitives?

Program Dataset Max Max w/o Watchpoint Crash Tracing
size (GB) Latency Culprit
Alert
WordCount 0.5-1000 |2.5X 1.34X 1.09X 1.18X 1.22X
Grep 20 -90 1.76X | 1.07X 1.05X 1.04X 1.05X
PigMix-L1 1-200 1.38X | 1.29X 1.03X 1.19X 1.24X

Max : All the features of BigDebug are enabled

BigDebug poses at most 2.5X overhead with the maximum

Instrumentation setting.

Data
Scientists

Titian: Data Provenance Support in Spark

Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar,
Seunghyun Yoo, Miryung Kim, Todd Millstein, Tyson Condie
[VLDB 2016]

UCLA

Data Provenance — Example in SQL

Sensors
Tuple-ID Sendor-ID
e
T1

11AM 1 34

SELECT time, AVG(temp) — Tl 2 -

FROM sensors T3 11AM 3 35
GROUP BY time :> T4 1PM 1 3

ID

ID-1 11AM 34.6 .
Outlier

D2 IPM 586 (e
D3 M S0

Step 1: Instrumented Workflow in Spark

Input ID Output ID
Input [Output | ——
ID [») < ~.{idi1, id 3} 400

offsetl idl Combiner {id2} 4
offset2 id2 LineageRDD LineageRDD
offset3 id3

id1
[p1, p2] 400

[p1] 4 LineaoeRDD id2

Stage

LineageRDD

Step 2: Example Backward Tracing

Hadoop Combiner

offsetl idl {id1, id 3} 400
offset2 id2 {id2} 4
offset3 1d3

rput > Joupn>
1 400 \
P Reducer Stage
Hadoop Combiner / --
[p1] 4 4 id2
'

offsetl id1 {id1,

Input ID Output ID 'l
pl 400

Reducer.Output ID Stage.Input ID

Step 2: Example Backward Tracing

Hadoop Combiner

offsetl idl {id1, id 3}

offset2 id2 {id2} 4

offset3 id3
Reducer.Output ID

Combiner.Output ID
P

Hadoop Combiner

offsetl idl

Reducer.Output ID

Step 2: Example Backward Tracing

e ——

offset2 1d2 {id2} 4

Hadoop.Output ID NCombiner.lnput ID

=
Hadoop.Output ID MComblner Input ID

Data
Scientists

Automated Debugging in Data Intensive
Scalable Computing

Muhammad Ali Gulzar, Matteo Interlandi, Xueyuan Han, Mingda Li
Tyson Condie, Miryung Kim
[SOCC 2017]

UCLA

Motivating Example

 Alice writes a Spark program that identifies, for each state in the
US, the delta between the minimum and the maximum
snowfall reading for each day of any year and for any particular
year.

* Aninput data record that measures 1 foot of snowfall on January
1st of Year 1992, in the 99504 zip code (Anchorage, AK) area,
appears as

99504, 01/01/1992, 1ft

Problem Definition

* Using a test function, a user can specify incorrect results

\ 4

TextFile FlatMap

GroupByKey Map Output

J :

A 01/01, 3048\> AK,01/01 , [304.8, 21336, 245, 85} BK,01/01) 212510
99504, 01/01/1992, 1ft —— AK, 1992 , 304.8 AK,03/01,[30.5, 145] ——» AK,03/01, 114.5

99504, 03/01/1992, 0.1ft ———>AK, 03/01 30.5 l,h AK,1992 ,[304.8 , 30.5] — > AK,1992 , 274.3

ggggj gygiﬁggg 70in \‘\ AK, 1992 , 30.5 l P AK 1993 | [21336, 145, 85] —’_
’ . AK,1994 , 0
99504, 01/01/1994 def test (Ij<ei/.Str‘1ng delta: Float) : Boolean CA.02/01. 0
99504, 01/01/1993 elta CA,1991 , O
90031, 02/01/1991

AK, 01/01, 245
AK, 1994 , 245

Given a test function, the goal is to identify a minimum subset of

the input that is able to reproduce the same test failure.

Existing Approach 1: Data Provenance for Spark

A 4

TextFile FlatMap GroupByKey Map Output

J /

99504, 01/01/1992, 1ft ‘/AK, 1992 , 304.8 AK,03/01 , [30.5, 145] AK, 03/01, 114.5

99504, 03/01/1992, 0.1ft AK, 03/01, 30.5 AK,1992 ,[304.8 , 30.5] AK, 1992 , 274.3

T AK, 1992 , 305 AK,1993 ,[21336, 145, 85] AK , 1993 , 21251

99504, 03/01/1993, 145mm AK, 01/01, 21336 AK, 1994 |, [245] AK, 1994 , 0
AK, 1993 , 21336 CA,02/01 , [0] CA,02/01, 0
AK, 03/01, 145 CA,1991 , [0] CA,1991, O

90031, 02/01/1991, Omm AK, 1993 , 145

AK, 1994 , 245

It over-approximates the scope of failure-inducing inputs i.e.

records in the faulty key-group are all marked as faulty

Existing Approach 2: Delta Debugging

* Delta Debugging performs a systematic binary search-like

procedure on the input dataset using a test oracle function

TextFile

[99504,
14 99504,
| 99504,
799504,
99504,
99504,
| 90031,

2—<

01/01/1992,
03/01/1992,
01/01/1993,
03/01/1993,
01/01/1994,
01/01/1993,
02/01/1991,

FlatMap

J

AK,01/01,
AK,1992
AK,03/01,

1ft AK,1992
0.1ft AK,01/01,
70in AK,1993 ,
145mm Ak, 03/01,
245mm AK,1993 |,
85mm Ak ,01/01,
Omm aAk,1994 |

GroupByKey ¢ Map
304.8
304.8
30.5
30.5
;gg: AK,03/01, [30.5, 145]
145 AK,1992 ,[304.8 , 30.5]
145 AK,1993 , [21336, 145, 85]
245 AK,1994 , [245]
245 CA,02/01, [0]

CA,1991 , [0]

Output

AK,01/01, [304.8, 21336, 245, 85] AKRIO/0151212558

AK,03/01 , 1145
AK, 1992 , 274.3
AK,1994 , O
CA,02/01, O
CA,1991 , O

It does not prune input records known to be irrelevant because of

the lack of semantic understanding of data-flow operators

Existing Approach 2: Delta Debugging

* Delta Debugging performs a systematic binary search-like
procedure on the input dataset using a test oracle function

TextFile J FlatMap J GroupByKey ¢ Map Output
AK,01/01, 304.8 S oL 73031
99504, 01/01/1992, 1ft AC 1992 3008 AK,0L/01, [304.:8,21336] BK,01/01, 2
11 99504, 03/01/1992, 0.1ft Ak ,03/01, 305 ~K,03/01, [305] : '
2{ 99504, 01/01/1993, 70in AK,1992 , 305 ~K,1992, [304.8 ,30.5] AK,1392 -, 274.3
' ' ' ’ AK,1993 , [21336] AK,1993 , 0

AK,01/01, 21336
AK,1993 , 21336

Run 2

It does not prune input records known to be irrelevant because of

the lack of semantic understanding of data-flow operators

Existing Approach 2: Delta Debugging

* Delta Debugging performs a systematic binary search-like
procedure on the input dataset using a test oracle function

TextFile J FlatMap J
AK,01/01,
99504, 01/01/1992, 1ft AK,1992
99504, 03/01/1992, 0.1ft AK,03/01,
99504, 01/01/1993, 70in AK,1992

, 30.5

GroupByKey ¢ Map Output
304.8
soag AK,01/01, [304.8] AK,01/01, O
" 305 AK,03/01, [30.5] AK,03/01, O
' AK,1992 , [304.8 ,30.5] AK,1992 , 274.3

Run 3

It does not prune input records known to be irrelevant because of

the lack of semantic understanding of data-flow operators

Existing Approach 2: Delta Debugging

* Delta Debugging performs a systematic binary search-like
procedure on the input dataset using a test oracle function

TextFile J FlatMap J GroupByKey ¢ Map Output
99504, 01/01/1992, 1ft
, 01/01/ ' AK,01/01, 21336 AK,01/01, [21336] AK,01/01, O
99504, 03/01/1992, 0.1ft AK,1993 , 21336 ’ ’ AK, 1993 0
99504, 01/01/1993, 70in ' ' AK,1993 , [21336] ‘ ‘
Run 4

It does not prune input records known to be irrelevant because of

the lack of semantic understanding of data-flow operators

Existing Approach 2: Delta Debugging

* Delta Debugging performs a systematic binary search-like
procedure on the input dataset using a test oracle function

VSl J FlatMap / GroupByKey J Map Output
33283’ Sifgiﬁggﬁ' éﬂift AK,01/01, 3048 AK,01/01, [304.8] AK,01/01, O
, , 0. _ . AK 1992 . 0
99504, 01/01/1993, 70in K,1992, 3048 AK,1992 , [304.8]
Run 5

It does not prune input records known to be irrelevant because of

the lack of semantic understanding of data-flow operators

Existing Approach 2: Delta Debugging

* Delta Debugging performs a systematic binary search-like
procedure on the input dataset using a test oracle function

TextFile J FlatMap J GroupByKey ¢ Map Output
99504, 01/01/1992, 1ft
/01/ AK,03/01, 30.5 AK,03/01, [30.5] AK,03/01, ©
99504, 03/01/1992, 0.1ft AK 1992 308 AK 1992 . ©
99504, 01/01/1993, 70in / , 30 AK,1992 , [30.5] ’ ’
Run 6

It does not prune input records known to be irrelevant because of

the lack of semantic understanding of data-flow operators

Existing Approach 2: Delta Debugging

* Delta Debugging performs a systematic binary search-like
procedure on the input dataset using a test oracle function

TextFile J FlatMap J GroupByKey ¢ Map Output
99504, 01/01/1992, 1ft
, 01/01/ ' AK,01/01, 21336 AK,01/01, [21336] AK,01/01, O
99504, 03/01/1992, 0.1ft AK,1993 , 21336 ’ ’ AK, 1993 0
99504, 01/01/1993, 70in ' ' AK,1993 , [21336] ‘ ‘
Run 7

It does not prune input records known to be irrelevant because of

the lack of semantic understanding of data-flow operators

Existing Approach 2: Delta Debugging

* Delta Debugging performs a systematic binary search-like
procedure on the input dataset using a test oracle function

TextFile J FlatMap J GroupByKey ¢ Map Output
AK,01/01, O
99504, 01/01/1992, 1ft AK,03/01, 30.5 AK,01/01, [21336] /

AK,1992 , 30.5 AK,03/01, [30.5] AK,03/01, O

99504, 03/01/1992, 0.1ft
: AK,01/01, 21336 AK,1992 , [30.5] AK,1992 , O

99504, 01/01/1993, 70in
AK,1993 , 21336 AK,1993 , [21336] AK,1993 , O

Run 8

It does not prune input records known to be irrelevant because of

the lack of semantic understanding of data-flow operators

Existing Approach 2: Delta Debugging

Delta Debugging performs a systematic binary search-like
procedure on the input dataset using a test oracle function

TextFile FlatMap

99504, 01/01/1992, 1ft <001,
AK,1992
99504, 03/01/1992, 0.1ft

99504, 01/01/1993, 70in 4% OO,
AK,1993

GroupByKey

304.8

, 304.8

21336

, 21336

Run 9

Map

AK,01/01, [304.8,21336]

AK,1992 , [304.8]
AK,1993 , [21336]

Output

AK,1992 , O
AK,1993 , O

It does not prune input records known to be irrelevant because of

the lack of semantic understanding of data-flow operators

Automated Debugging in DISC with BigSift

Input: A Spark Program, A Test Function Output: Minimum Fault-Inducing
Input Records

L 4 L

Data Provenance + Delta Debugging

Prioritizing Bitmap based
Backward Test
Traces Memoization

Test Predicate
Pushdown

Optimization 1: Test Predicate Pushdown

* Observation: During backward tracing, data provenance traces
through all the partitions even though only a few partitions are
faulty

If applicable, BigSift pushes down the test function to test the
output of combiners in order to isolate the faulty partitions.

Optimization 2: Prioritizing Backward Traces

* Observation: The same faulty input record may contribute to

multiple output records failing the test.

TextFile J FlatMap

__-AK,01/01,

99504, 01/01/1992, 1ft AK, 1992
99504, 03/01/1992, 0.1ft AK, 03/01
AK, 1992
99504, 03/01/1993, 145mm XAK,m/m,
99504, 01/01/1994, 245mm AK, 1993
AK, 03/01,
90031, 02/01/1991, Omm AK, 1993 ,
AK, 01/01,

AK, 1994 ,

GroupByKey Map

:

/

A 4

Output

304.8 «—;AK,01/01 , [304.8, 21336, 245, 85] «-AK, 01/01, 21251
304.8 AK,03/01 ,[30.5, 145] AK,03/01, 114.5
30.5 AK,1992 ,[304.8 , 30.5] AK,1992 , 274.3
30.5 AK, 1993 ,[21336, 145, 85] <AK, 1993 , 21251
21336 AK, 1994 ,[245] AK,1994 , O
21336 CA,02/01 , [0] CA,02/01, O

145 CA,1991 , (0] CA,1991, O

145

245

245

In case of multiple faulty outputs, BigSift overlaps two backward
traces to minimize the scope of fault-inducing input records

Optimization 3: Bitmap Based Test Memoization

* Observation: Delta debugging may try running a program on the

same subset of input redundantly. 0
0
* BigSift leverages bitmap to 0| — ¢/
compactly encode the offsets of i
original input to refer to an input
subset :
0
1 — X
0
Input Data Bitmap Test Outcome

We use a bitmap based test memoization technique to avoid

redundant testing of the same input dataset.

RQ1: Performance Improvement over Delta
Debugging

Debugging Time (sec)

Running Time (sec)

Subject Program

Subject Program Fault Original Job DD BigSift Improvement

Movie Histogram Code 56.2 232.8 17.3 13.5X
Inverted Index Code 107.7 584.2 13.4 43.6X
Rating Histogram Code 40.3 263.4 16.6 15.9X
Sequence Count Code 356.0 13772.1 208.8 66.0X
Rating Frequency Code 77.5 437.9 14.9 29.5X
College Student Data 53.1 235.3 31.8 7.4X
Weather Analysis Data 238.5 999.1 89.9 11.1X
Transit Analysis Code 45.5 375.8 20.2 18.6X

BigSift provides up to a 66X speed up in isolating the precise fault-

inducing input records, in comparison to the baseline DD

RQ2: Debugging Time vs. Original job time

Subject Program

Subject Program

Fault

Running Time (sec)

Original Job ‘ DD

BigSift

Debugging Time (sec)

Improvement

Movie Histogram Code 232.8

Inverted Index Code 584.2 43.6X
Rating Histogram Code 40.3 263.4 16.6 15.9X
Sequence Count Code 356.0 13772.1 208.8 66.0X
Rating Frequency Code 77.5 437.9 14.9 29.5X
College Student Data 53.1 235.3 31.8 7.4X
Weather Analysis Data 238.5 999.1 89.9 11.1X
Transit Analysis Code 45.5 375.8 20.2 18.6X

On average, BigSift takes 62% less time to debug a single faulty

output than the time taken for a single run on the entire data.

RQ2: Debugging Time

Sequence Count

" 1E+09

'g 100000000

§ 10000000

+~ 1000000

2

2 100000

o0 10000

c

'S 1000

>

§e 100

e

o 10 j

>

3 1

= 0 2000 4000 6000 8000 10000 12000 14000
H* Fault Localization Time (s)

—Delta Debugging —BigSift

—Test Driven Data Provenance —Data Provenance

On average, BigSift takes 62% less time to debug a single faulty

output than the time taken for a single run on the entire data.

RQ3: Fault Localizability over Data Provenance

100000000

“ 15003060
o 6487290
8 10000000 2554788
Q
S 1000000 220304
5 143796
o
£ 100000 23411
oo
= 10000 >800
(@]
9 350
©
2 1000 350
o
= 100
= 15 13
(S
45 10 2 2
- 1 1 1 1 1 1
1 - -
Movie Inverted Rating Sequence Rating College Weather

Historgram Index Histogram Count Frequency Students Analysis

M Data Provenance M Test Driven Data Provenance M BigSift

BigSift leverages DD after DP to continue fault isolation, achieving

several orders of magnitude 103 to 107 better precision

Summary: Debugging Big Data Analytics

Easy to use interactive debugger by re-defining debug
primitives for big data cloud computing

Visibility of data into running workflow by tracking data
provenance

Automated fault localization for big data cloud computing that
provides 103X — 107X more precision than data provenance in
terms of fault localizability and up to 66X speed up in debugging
time over baseline Delta Debugging.

Software Engineering elevating Data Science

Data Scientists in Software Teams Debugging for Big Data Analytics
[ICSE ‘16, TSE ’18] * Interactive Debugger [ICSE '16]

* Background e Data Provenance [VLDB ‘16]

e Work Activities * Automated Debugging [SoCC ‘17]

e Challenges

* Best Practices Data Summary and Explanation

e Quality Assurance * “How we do characterize data by
inferring the underlying type and
format?”

Automated Testing for Big Data
Analytics Optimization for Iterative Development
 “How do we help select (sample) data * "How can we re-compute big data
for local testing?” analytics in case of code changes?”
* “How do we generate test data to [SoCC "16]

achieve high code coverage?”
* Combine symbolic execution and the
semantics of data flow operators

Late Stage Customization of Big Data

System Stack
* “How do we customize Big Data runtime
for the actual use of big data analytics?”

Thanks to my collaborators

UCLA on Big Data Debugging: Muhammad Ali Gulzar, Tyson
Condie, Matteo Interlandi, Mingda Li, Michael Han, Sai Deep
Tetali, Todd Millstein

Microsoft Research on Data Scientist Studies: Tom Zimmermann,
Andrew Begel, and Rob Deline

Big Data needs awesome
tools

Diagnose ' Optimize

-
P o
o [

v Debugging v/ Data cleaning v/ Performance
v Intelligent sampling analytics

and testing v/ Code analytics
v" Root cause analysis

