
Software Engineering Center

Software Engineering Center

Programs, Test Data, and Oracles:

Revisiting the Foundations

of Software Testing

Mats P. E. Heimdahl
University of Minnesota Software Engineering Center

Department of Computer Science and Engineering

University of Minnesota

4-192 EE/CS; 200 Union Street SE

Minneapolis, MN 55455

UCI, ISR'15 1 4/3/15

Software Engineering Center

Software Development

4/3/15 UCI, ISR'15 2

Talented Developers?

Specification Program

Implements

Software Engineering Center

The Big Question

Talented Developers?

Specification Program

Implements

Does the program accurately represent the specification?

4/3/15 UCI, ISR'15 3

Software Engineering Center

Testing Process

4/3/15 UCI, ISR'15 4

Test Inputs

Talented Developers?

Specification

Program

Implements
Executed Over

Oracle Evaluates Correctness
Path through

program

Correct/incorrect

Software Engineering Center

Testing Process

4/3/15 UCI, ISR'15 5

Test Inputs

Talented Developers?

Specification

Program

Implements
Executed Over

Oracle Evaluates Correctness
Path through

program

Correct/incorrect

Software Engineering Center

UCI, ISR'15

Domains of Concern

4/3/15 6

Software Engineering Center

Testing Artifacts – In Practice

Most research
focuses on

Specification

Program

Oracle Test Inputs

Is generated from

Is generated from

4/3/15 UCI, ISR'15 7

Software Engineering Center

Fault Finding; MC/DC

• Program structure matters

4/3/15 UCI, ISR'15 8

Software Engineering Center

Fault Finding; Branch Coverage

0

10

20

30

40

50

60

70

80

90

100

DWM_1 DWM_2 Latctl_Batch Vertmax_Batch

Output Only

Maximum

4/3/15 UCI, ISR'15 9

Software Engineering Center

Testing Artifacts - Relationships

4/3/15 UCI, ISR'15 10

Specification

Program

Oracle Test Inputs

Specification

Oracle Test Inputs

Structure directs test inputsProgram bounds observability

Specification directs
oracle construction

Program implements
specification

Design program
for testing

Given test inputs, construct oracle

Given oracle construct test inputs

Specification directs
test input

Design program
for testing

Software Engineering Center

Testing Artifacts – Broaden View

4/3/15 UCI, ISR'15 11

Most research
focuses on

Specification

Program

Oracle Test Inputs

Is generated from

Is generated from

Specification

Program

Oracle Test Inputs

Specification

Program

Oracle Test Inputs

Software Engineering Center

Importance of Understanding

Relationship Between Artifacts

4/3/15 UCI, ISR'15 12

Unexplored testing artifacts
represent potential for

improving testing
effectiveness

Uncontrolled factors represent a
threat to validity of empirical studies

Poorly understood factors may result

in misapplication of methods

Software Engineering Center

Acknowledgements

• I have not done this alone

– Matt Staats, Google, Zurich

– Mike Whalen, U of Minnesota

– Ajitha Rajan, Edinburgh

– Gregory Gay, U of South Carolina

– Rockwell Collins Inc.

• Steve Miller, Darren Cofer

4/3/15 UCI, ISR'15 13

Funded by CNS-0931931

and CNS-1035715

Software Engineering Center

Two Approaches

4/3/15 UCI, ISR'15 14

Theory of
Testing

Empirical
Studies

Adopted from Matt Staats

Software Engineering Center

Software Engineering Center

Two Approaches

Theory of Testing

4/3/15 UCI, ISR'15 15

Software Engineering Center

Theory of Testing - History

4/3/15 UCI, ISR'15 16

Goodenough /
Gerhart

Ideal Test Coverage Criterion:
Finds All Faults

Software Engineering Center

Theory of Testing - History

4/3/15 UCI, ISR'15 17

Goodenough /
Gerhart

Hamlet
Budd/

Angluin

Ideal Test Coverage Criterion:
Finds All Faults

Gourlay

Weyuker /
Ostrand

Software Engineering Center

Theory of Testing - History

4/3/15 UCI, ISR'15 18

Power
(A ≥ B)

Goodenough /
Gerhart

Hamlet
Budd/

Angluin

Ideal Test Coverage Criterion:
Finds All Faults

Gourlay

Test Coverage
Criteria

Weyuker /
Ostrand

Software Engineering Center

Theory of Testing - History

4/3/15 UCI, ISR'15 19

Power
(A ≥ B)

Goodenough /
Gerhart

Hamlet
Budd/

Angluin

Ideal Test Coverage Criterion:
Finds All Faults

Gourlay

Test Coverage
Criteria

Weyuker /
Hamlet / Weiss

Theoretical Comparison of
Test Coverage Criteria

Probabilistically
better

Weyuker /
Ostrand

Software Engineering Center

Theory of Testing - History

4/3/15 UCI, ISR'15 20

Power
(A ≥ B)

Goodenough /
Gerhart

Hamlet
Budd/

Angluin

Ideal Test Coverage Criterion:
Finds All Faults

Gourlay

Test Coverage
Criteria

Weyuker /
Hamlet / Weiss

Theoretical Comparison of
Test Coverage Criteria

Probabilistically
better

Weyuker /
Ostrand

Author
Suggests

Idea

Author
Refutes

Idea

Software Engineering Center

Gourlay’s Framework

4/3/15 UCI, ISR'15 21

A Mathematical Framework for the

Investigation of Testing

John Gourlay

IEEE Transactions on Software Engineering, 1983

Software Engineering Center

Gourlay’s Framework

• S is a set of specifications

• P is a set of programs

• T is a set of tests

• 𝑐𝑜𝑟𝑟: 𝑃 × 𝑆

• 𝑜𝑘: 𝑇 × 𝑃 × 𝑆 (test oracle)

• 𝑐𝑜𝑟𝑟 𝑝, 𝑠 → 𝑜𝑘(𝑡, 𝑝, 𝑠)

P

S

Tok

corr: P × S

4/3/15 UCI, ISR'15 22

Software Engineering Center

Gourlay’s Framework - Problems

• S is a set of specifications

• P is a set of programs

• T is a set of tests

• 𝑐𝑜𝑟𝑟: 𝑃 × 𝑆

• 𝑜𝑘: 𝑇 × 𝑃 × 𝑆

• 𝑐𝑜𝑟𝑟 𝑝, 𝑠 → 𝑜𝑘(𝑡, 𝑝, 𝑠)

P

S

Tok

corr: P × S

ok: T × P × S

Problem: no partial correctness

4/3/15 UCI, ISR'15 23

Software Engineering Center

Gourlay’s Framework - Problems

• S is a set of specifications

• P is a set of programs

• T is a set of tests

• 𝑐𝑜𝑟𝑟: 𝑃 × 𝑆

• 𝑜𝑘: 𝑇 × 𝑃 × 𝑆

• 𝑐𝑜𝑟𝑟 𝑝, 𝑠 → 𝑜𝑘(𝑡, 𝑝, 𝑠)

Problem: ok is fixed, cannot vary test oracle

P

S

Tok

corr: P × S

ok: T × P × S

4/3/15 UCI, ISR'15 24

Software Engineering Center

Gourlay’s Framework - Extension

• S is a set of specifications

• P is a set of programs

• T is a set of tests

• O is a set of test oracles

• 𝑐𝑜𝑟𝑟: 𝑃 × 𝑆

• 𝑐𝑜𝑟𝑟𝑡: 𝑇 × 𝑃 × 𝑆

• ∀𝑡 ∈ 𝑇, 𝑐𝑜𝑟𝑟𝑡 𝑡, 𝑝, 𝑠 →
 𝑐𝑜𝑟𝑟(𝑝, 𝑠)

Solution #1: add

predicate 𝑐𝑜𝑟𝑟𝑡

P

S

T

corr: P × S

corr_t: T × P × S

O

Solution #2: replace ok

with set of predicates O,

∀𝑜 ∈ 𝑂, 𝑜: 𝑇 × 𝑃

4/3/15 UCI, ISR'15 25

Matt Staats, Michael W. Whalen, and Mats P.E. Heimdahl. Programs,

Tests, and Oracles: The Foundations of Testing Revisited. 33rd ACM/IEEE

International Conference on Software Engineering. Honolulu, Hawaii,

May, 2011. Paper awarded the ACM Distinguished Paper Award.

Software Engineering Center

Application of Extension

Formalize concepts related to

test oracles

• Oracle relationship to correctness

– Complete: 𝑐𝑜𝑟𝑟𝑡 𝑡, 𝑝, 𝑠 → 𝑜(𝑡, 𝑝)

– Sound: 𝑜 𝑡, 𝑝 → 𝑐𝑜𝑟𝑟𝑡 𝑡, 𝑝, 𝑠

– Precise: 𝑜 𝑡, 𝑝 ↔ 𝑐𝑜𝑟𝑟𝑡 𝑡, 𝑝, 𝑠

• Adequacy of testing process

– Oracle adequacy criterion: 𝑂𝐶 : 𝑃 × 𝑆 × 𝑂

– Complete adequacy criterion: T𝑂𝐶 : 𝑃 × 𝑆 × 2𝑇 × 𝑂

• Formal oracle comparisons

– Power comparison

– Probabilistic comparison

• Some previous work is most likely not valid in the

face of varying oracles (and program structures)

4/3/15 UCI, ISR'15 26

Software Engineering Center

Software Engineering Center

Two Approaches

Empirical Studies

4/3/15 UCI, ISR'15 27

Software Engineering Center

Test Metrics

• Idea: Measure how well
tests cover the structure of
code as an approximation
of “goodness” of testing
– Examples:

• Statement coverage

• Decision coverage

• Modified Condition/
Decision Coverage
(MC/DC)

– Used as adequacy criteria
for critical avionics
software

• Are these good metrics?

• Effective at finding faults;
– Better than random testing

for suites of the same size

– Better than other metrics

– It explicitly accounts for
oracle

• Robust to simple changes
in program structure

• Reasonable in terms of
the number of required
tests and coverage
analysis

4/3/15 UCI, ISR'15 28

Software Engineering Center

There Are Weaknesses

• Program structure matters

4/3/15 UCI, ISR'15 29

Software Engineering Center

Modified Condition/Decision

Coverage (MC/DC)

To satisfy MC/DC:

• Every basic condition in a decision in the model should

take on all possible outcomes at least once, and

• Each basic condition should be shown to independently

affect the decision’s outcome

30 UCI, ISR'15 4/3/15

(a && b) || c

T F

F

a = T

b = F

c = T

T

T

Software Engineering Center

Modified Condition/Decision

Coverage (MC/DC)

To satisfy MC/DC:

• Every basic condition in a decision in the model should

take on all possible outcomes at least once, and

• Each basic condition should be shown to independently

affect the decision’s outcome

31 UCI, ISR'15 4/3/15

(a && b) || c

F F

F

a = F

b = F

c = T

T

T

Software Engineering Center

Modified Condition/Decision

Coverage (MC/DC)

To satisfy MC/DC:

• Every basic condition in a decision in the model should

take on all possible outcomes at least once, and

• Each basic condition should be shown to independently

affect the decision’s outcome

32 UCI, ISR'15 4/3/15

(a && b) || c

T T

T

a = T

b = T

c = T

T

T

Software Engineering Center

Modified Condition/Decision

Coverage (MC/DC)

To satisfy MC/DC:

• Every basic condition in a decision in the model should

take on all possible outcomes at least once, and

• Each basic condition should be shown to independently

affect the decision’s outcome

33 UCI, ISR'15 4/3/15

(a && b) || c

F T

F

a = F

b = T

c = T

T

T

Software Engineering Center

Modified Condition/Decision

Coverage (MC/DC)

To satisfy MC/DC:

• Every basic condition in a decision in the model should

take on all possible outcomes at least once, and

• Each basic condition should be shown to independently

affect the decision’s outcome

34 UCI, ISR'15 4/3/15

(a && b) || c

T T

T

a = T

b = T

c = F

F

T

Software Engineering Center

Modified Condition/Decision

Coverage (MC/DC)

To satisfy MC/DC:

• Every basic condition in a decision in the model should

take on all possible outcomes at least once, and

• Each basic condition should be shown to independently

affect the decision’s outcome

35 UCI, ISR'15 4/3/15

(a && b) || c

F T

F

a = F

b = T

c = F

F

F

Software Engineering Center

Masking and Measurement of MC/DC

4/3/15 UCI, ISR'15 36

Tests in green satisfy MC/DC

for version 1 but not 2

In1 In2 In3 In1
or in2

(in1 or in2)
and in3

F F F F F

F F T F F

F T F T F

F T T T T

T F F T F

T F T T T

T T F T F

T T T T T

Version 1:

Non-Inlined Implementation

 expr1 = in1 or in2;

 out1 = expr1 and in3;

Version 2:

 Inlined Implementation

 out1 = (in1 or in2) and in3;

Software Engineering Center

Masking and Measurement of MC/DC

4/3/15 UCI, ISR'15 37

Tests in green satisfy MC/DC

for version 1 but not 2

In1 In2 In3 In1 &
in2

(in1 & in2)
and in3

F F F F F

F F T F F

F T F F F

F T T T T

T F F F F

T F T T T

T T F T F

T T T T T

Version 1:

Non-Inlined Implementation

 expr1 = in1 and in2;

 out1 = expr1 and in3;

Version 2:

 Inlined Implementation

 out1 = (in1 or in2) and in3;

Tests still pass if we replace ‘or’

with ‘and’

Software Engineering Center

MC/DC Effectiveness

38

DWM_1

Vertmax_Batch

DWM_2

4/3/15 UCI, ISR'15

Code structure has

large effect!

Choice of oracle

has large effect!

Software Engineering Center

Another Way to Look at MC/DC

• Masking MC/DC can be expressed:

• Describes whether a condition is observable in a

decision (i.e., not masked)

• Problem: we can rewrite programs to make

decisions large or small (and MC/DC easy or

hard to satisfy!)

Where means, For program P, the computed value for

the nth instance of expression e is replaced by value v

39 4/3/15 UCI, ISR'15

Software Engineering Center

Observable MC/DC

• Explicitly account for oracle

• Strength should be unaffected by simple

program transformations (e.g., inlining)

40

Idea: lift observability from

decisions to programs

4/3/15 UCI, ISR'15

Michael W. Whalen, Gregory Gay, Dongjiang You, and Mats P.E.

Heimdahl. Observable Modified Condition/Decision Coverage.

Proceedings of the 35th ACM/IEEE International Conference on

Software Engineering (ICSE'13). San Francisco, USA, May 2013.

Software Engineering Center

Tagged Semantics

• Semantic definition is unwieldy for measurement

and test generation

– Requires separate program variant for every condition

– Run variant in parallel with original program

• Approximate by tagging semantics

– Assign each condition a tag

– Track these tags through program execution (both the

condition’s tag and value)

– If a tag reaches the output, the obligation is satisfied

4/3/15 UCI, ISR'15 41

Software Engineering Center

An Example Program (in Simulink)

42

Does the value of input2 affect the output?

F

T

0

F

T
F

F

4/3/15 UCI, ISR'15

No

Software Engineering Center

Evaluation using Tags

43

Does the value of input2 affect the output?

(F, {in1})

(T, {in2})

(0, {in3})

(F, {in4})

(T, {in2, in3, var1})
(F, {in4})

(F, {in4})

4/3/15 UCI, ISR'15

No

Software Engineering Center

Evaluation using Tags

44

Does the TRUE value of input2 affect the output?

(F, {in1})

(T, {in2})

(0, {in3})

(T, {in4})

(T, {in2, in3, var1}) (T, {var1, in2,

 in3, in4})

(T, {in4})

Yes. If input4 is true, then var1 is not masked out by the

AND gate, so input2 propagates.

We can define the tagging semantics by instrumenting the

original program; we then use this instrumented program for

both test measurement and test generation.

4/3/15 UCI, ISR'15

Software Engineering Center

Experiments and Evaluation

• For each of 4 industrial avionics systems and 1 toy system:

• Create inlined and non-inlined implementations

• Test suite generation
– Counterexample-based approach guarantees maximum possible

coverage (using Kind)

– 10 test suites each for OMC/DC and MC/DC

• Mutant generation
– 250 mutants for each case example

– Removed functionally equivalent mutants
• Finite systems, decidable and fast

• Output-only and maximum oracles
– Output-only oracle compares values only for output variables

– Maximum oracle compares values for all internal variables and outputs

4/3/15 UCI, ISR'15 45

Software Engineering Center
46

DWM1
4/3/15 UCI, ISR'15

Software Engineering Center Vertmax

DWM2 Latctl

Microwave
47 4/3/15 UCI, ISR'15

Software Engineering Center

Achievable Obligations

Structure OMC/DC MC/DC

DWM1
Non-Inlined 99.9% 100%

Inlined 68.7% 98.1%

DWM2
Non-Inlined 89.8% 95.3%

Inlined 57.5% 64.8%

Latctl
Non-Inlined 93.4% 100%

Inlined 92.7% 99.6%

Vertmax
Non-Inlined 98.2% 100%

Inlined 96.4% 99.1%

Microwave
Non-Inlined 68.9% 98.9%

Inlined 72.2% 94.2%

48 4/3/15 UCI, ISR'15

Software Engineering Center

Oracle Matters

0

10

20

30

40

50

60

70

80

90

100

DWM_1 DWM_2 Latctl_Batch Vertmax_Batch

Output Only

Maximum

4/3/15 UCI, ISR'15 49

Software Engineering Center

More Oracle Variables is Better

4/3/15 UCI, ISR'15 50

Software Engineering Center

Some Variables Are Better

4/3/15 UCI, ISR'15 51

Software Engineering Center

Oracle Selection Process

4/3/15 UCI, ISR'15 52

Matt Staats, Gregory Gay, and Mats P.E. Heimdahl. Automated Oracle Creation

Support, or: How I Learned to Stop Worrying About Fault Propagation and Love

Mutation Testing. Proceedings of the 34th ACM/IEEE International Conference on

Software Engineering (ICSE'12). Zurich, Switzerland, May 2012.

Software Engineering Center

Results - Effectiveness

4/3/15 UCI, ISR'15 53

Common Pattern for Structure-based, Random Tests:

Software Engineering Center

Summary and Future Work

• Testing effectiveness is
influenced by many factors
– Interrelationship between

Program, Specification, Test Set,
and Oracle

• Potential benefits in examining
other artifacts in software
testing
– Can we discover “good”

combinations?

• Potential dangers in adopting
too narrow a view of a software
testing

• Much more work to be done!

• Observable MC/DC
– Robust to program structure

– Better fault finding than
MC/DC

– Explicitly accounts for oracle

• Oracle discovery
– Find the best variables to

monitor

• Future work
– Discover “complete” coverage

criteria
• Match program, specification,

tests, and oracle in “good” ways

– Larger studies with C and Java
code

– Dismiss uncoverable code

4/3/15 UCI, ISR'15 54

Software Engineering Center

Questions

UCI, ISR'15 4/3/15 55

