
Mary Jean Harrold
College of Computing

Georgia Tech

harrold@cc.gatech.edu

Testing and Analysis of Next
Generation Software

Joint work with T. Apiwattanapong, J. Bowring, J. Jones,
D. Liang, R. Lipton, A. Orso, J. Rehg, and J. Stasko

Computing (so far)
• Big Iron (‘40s/’50s)
• Mainframe (’60s/’70s)
• Workstations (’70s/’80s)
• Individual PCs (’80s/’90s)
• Internet (’90s)
• Implicit, ubiquitous,

everyday computing (21st

century)

Some Features/Challenges
Features
• Scope

• embedded in everyday
devices

• many processors/person
• Connectivity

• mobile, interconnected
• coupled to data sources
• implicit interactions

• Computational resources
• powerful
• embedded intelligence

Lucy Dunne
Cornell University

Smart Jacket

Some Features/Challenges
Features
• Scope

• embedded in everyday
devices

• many processors/person
• Connectivity

• mobile, interconnected
• coupled to data sources
• implicit interactions

• Computational resources
• powerful
• embedded intelligence

Challenges

• many environments in
which to run

• short development and
evolution cycles

• requirement for high
quality

• dynamic integration of
components

• increased complexity of
components,
interactions, and
computational resources

Testing/Analyzing NGS

software

Before deployment
• test-driven development
• modular testing of

components
• formal methods

The Gamma Project

software
software

software software
software

software
field datafield data

field data field data
field data field data

Field-data

InternetInternet

Analysis

Outline

• Gamma project
• Overview, problems

[Orso, Liang, Harrold, Lipton; ISSTA 2002]

• Summary of current projects
• Visualization of field data
• Related work
• Summary, Challenges
• Questions

The Gamma Project

software
software

software software
software

software
field datafield data

field data field data
field data field data

Field-data

InternetInternet

Analysis

1. Effectively use field data?

3. Continuously update
deployed software?

Efficiently monitor,
collect field data?

2. Efficiently monitor,
collect field data?

Gamma Research

1. Effective use of field data
• Measurement of coverage

[Bowring, Orso, Harrold, PASTE 02]
• Impact analysis, regression testing

[Orso, Apiwattanapong, Harrold, FSE 04]

Classify/recognize software behavior
[Bowring, Rehg, Harrold, TR 03]

Visualization of field data
[Jones, Harrold, Stasko, ICSE 02]
[Orso, Jones, Harrold, SoftVis 03]

Analysis

2. Efficient monitoring/collecting of
field data

• Software tomography
[Bowring, Orso, Harrold, PASTE 02]
[Apiwattanapong, Harrold, PASTE 02]

• Capture/replay of users’ executions
[Orso, Kennedy, in prepration]

3. Continuous update of deployed
software

• Dynamic update of running software
[Orso, Rao, Harrold, ICSM 02]

Gamma Research

Field-data

programprogramsoftware

Gamma Research
1. Effective use of field data

• Measurement of coverage
• Impact analysis, regression testing
→ Classify/recognize software behavior

Visualization of field data
2. Efficient monitoring/collecting

of field data
• Software tomography
• Capture/replay of users’ executions

3. Continuous update of deployed
software

• Dynamic update of running software

Analysis

Field-data

programprogramsoftware

Classify/Recognize Behavior
Problem

• Behavior classification, recognition difficult, expensive
• Recognize behavior without input/output needed

For classifying and recognizing behavior
• Behaviors are the results of executing program

Approach

Train
Classifier

Prepare
Training Instances

program

tests

w/labels

training set =
Branch profiles

w/behavior labels classifier

• Markov models
• active learning

Empirical Studies
• Research questions

1. What is classification rate and classifier precision of trained
classifier on different-size subsets of test suite?

2. How does active learning improve training?

• Subject program: Space
• 8000 lines of executable code
• Test suite contains 13,500 tests
• 15 versions

• Experimental Setup
1. For each version (repeated 10 times)

• trained classifier on (random) subsets 100-350
• evaluated classifier on rest of test suite

2. Compared batch, active learning

Results
Classification Rate

0.976150350
.

0.976150100

Mean# of classifiersTraining set size

Training Set Size

C
la

ss
ifi

er
 P

re
ci

si
on

100 150 200 250 300 350

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Classifier Precision (batch)

Results

Training Set Size

Batch learning

C
la

ss
ifi

er
 P

re
ci

si
on

Active learning

Outline

• Gamma project
• Overview, problems
• Summary of current projects

• Visualization of field data
• Related work
• Summary, Challenges
• Questions

Visualization of Field Data

Problem
• Huge amount of execution data difficult to

understand, inspect manually
• Developers need help in finding faults

Visualize field data for fault localization
• Visualization for fault localization

[Jones, Harrold, Stasko; ICSE 02]
• Visualization of field data (Gammatella)

[Orso, Jones, Harrold; SoftVis 03]

Visualization for Fault Localization

Consider two statements

m = x w = y

More suspicious of being faulty

Passed Failed

• Uses
• Pass/fail results of executing test cases (actual or

inferred)
• Coverage/profiles provided by those test cases

(statement, branch, def-use pairs, paths, etc.)
• Source code of program

• Computes
• Likelihood that a statement is faulty
• Summarizes pass/fail status of test cases that

covered the statements
• Maps to visualization (Tarantula)

• Using two variables

Visualization for Fault Localization

Tarantula Approach

Hue summarizes
pass/fail results of
test cases that
executed s

Brightness presents the
“confidence” of the hue
assigned to s

For statement s:

Example

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

Pass Status P P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h

h

h
h
h
h

h
h

h

Test Cases

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}

Statement-level View

3,
3,

5

1,
2,

3

3,
2,

1

5,
5,

5

5,
3,

4

2,
1,

3

P P P P P F

h
h
h
h

h
h

h

h
h
h
h
h

h

h
h
h

h
h
h

h

h
h
h

h
h

h

h

h
h
h
h

h

h

h
h
h
h

h
h

h

Test Cases

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

} Pass Status

SeeSoft view
• each pixel represents a character in the source

mid() {
int x,y,z,m;
read(“Enter 3 numbers:”,x,y,z);
m = z;
if (y<z)

if (x<y)
m = y;

else if (x<z)
m = y;

else
if (x>y)

m = y;
else if (x>z)

m = x;
print(“Middle number is:”, m);
}

File-level View

File-level View
SeeSoft view
• each pixel represents a character in the source

System-level View
TreeMap view
• each node

• represents a file
• is divided into blocks representing color of

statements

Tarantula

Tarantula: Empirical Studies

• Research questions
1. How red are the faulty statements?
2. How red are the non-faulty statements?

• Subject program: Space
• 8000 lines of executable code
• 1000 coverage-based test suites of size 156-4700

test cases
• 20 faulty versions (10 shown here)

• Experimental Setup
• Computed the color for each statement, each test

suite, each version
• For each version, computed the color distribution

of faulty, non-faulty statements

Results

Faulty Versions

1 2 3 4 5 6 7 8 9 10

Redness of
Non-faulty Statement

100%

80%

60%

40%

20%

0%

C
ol

or
 d

is
tri

bu
tio

n
of

 n
on

-fa
ul

ty
 s

ta
te

m
en

ts

Redness of
Faulty Statement

Faulty Versions

1 2 3 4 5 6 7 8 9 10C
ol

or
 d

is
tri

bu
tio

n
of

 fa
ul

ty
 s

ta
te

m
en

ts

100%

80%

60%

40%

20%

0%

Gammatella

Software
Developer

Tarantula

InsECT
Instrumenter

Data Collection
Daemon

Database

User 1

User 2

User N

program

instrumented
program

execution
data

visualization/
interaction

queries

data

In the FieldAt Developers’ Site

Gammatella: Experience

• Subject program: JABA
• Java Architecture for Bytecode Analysis
• 60,000 LOC, 550 classes, 2,800 Methods

• Data
• field data: > 2000 executions (15 users, 12

weeks)

Results

• Use of software
• identified unused features of JABA
• redesigned into a separate plug-in module

• Error
• identified specific combination of platform

and JDK predictably causes problems

Results
Public display monitors deployed

software

Outline

• Gamma project
• Overview
• Summary of current projects

• Visualization of field data
• Related work
• Summary, Challenges
• Questions

Related Work
Gamma Project
• Perpetual/Residual testing (Clarke, Osterweil,

Richardson, Young)
• Expectation-Driven Event Monitoring (EDEM) (Hilbert,

Redmiles, Taylor)
• Remote Monitoring/Measurement of Deployed Software

(Notkin, Porter, Schmidt)
• Bug Isolation (Liblit, Aiken, et al.)
Visualization
• Seesoft, SeeSys (Eick, Sumner, Baker)
• Treemap (Schneiderman)
• Bloom, ALMOST, … (Reiss, Renieris)
• Jinsight (DePauw et al.)
Behavior Modeling, Instrumentation, Profiling
• Too numerous to list

Outline

• Gamma project
• Overview
• Summary of current projects

• Visualization of field data
• Related work
• Summary, Challenges
• Questions

Summary
• Motivated need for new kind of testing for

next generation software
• Described new kind of testing---Gamma

testing
• addresses challenges of testing next generation

software: many environments, short development
cycles, high-quality requirements, dynamic
integration, and complexity

• a collaborative effort between developer and users
• Presented problems that must be solved
• Described several Gamma projects

(Some) Challenges
• Effective use of field data

• very preliminary results so far
• effective techniques will be mix of

• in-house analysis (static and dynamic) and
• analysis of field data (dynamic, aggregate)

• User participation in analysis of field data
• filtering before sending to developer
• initiating new analyses in response to events at

their sites or due to interactions with other users
• creating their own test suites to be run locally

• Privacy of users
• techniques that protect users data
• user-specific analysis/testing for privacy

Questions

software
software

software software
software

software
field datafield data

field data field data
field data field data

Field-data

InternetInternet

Analysis

