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Computing (so far)
• Big Iron (‘40s/’50s)
• Mainframe (’60s/’70s)
• Workstations (’70s/’80s)
• Individual PCs (’80s/’90s)
• Internet (’90s)
• Implicit, ubiquitous, 

everyday computing (21st

century)



Some Features/Challenges
Features
• Scope

• embedded in everyday 
devices

• many processors/person
• Connectivity

• mobile, interconnected
• coupled to data sources 
• implicit interactions

• Computational resources
• powerful
• embedded intelligence  
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Some Features/Challenges
Features
• Scope

• embedded in everyday 
devices

• many processors/person
• Connectivity

• mobile, interconnected
• coupled to data sources 
• implicit interactions

• Computational resources
• powerful
• embedded intelligence  

Challenges

• many environments in 
which to run

• short development and 
evolution cycles

• requirement for high 
quality

• dynamic integration of 
components

• increased complexity of 
components, 
interactions, and 
computational resources



Testing/Analyzing NGS

software

Before deployment
• test-driven development
• modular testing of 

components
• formal methods



The Gamma Project
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Outline

• Gamma project 
• Overview, problems 

[Orso, Liang, Harrold, Lipton; ISSTA 2002]

• Summary of current projects
• Visualization of field data
• Related work
• Summary, Challenges
• Questions



The Gamma Project
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1.  Effectively use field data?

3.  Continuously update 
deployed software?

Efficiently monitor, 
collect field data?

2.  Efficiently monitor, 
collect field data?



Gamma Research

1. Effective use of field data  
• Measurement of  coverage

[Bowring, Orso, Harrold, PASTE 02]
• Impact analysis, regression testing

[Orso, Apiwattanapong, Harrold, FSE 04]

Classify/recognize software behavior 
[Bowring, Rehg, Harrold, TR 03]

Visualization of field data 
[Jones, Harrold, Stasko, ICSE 02]
[Orso, Jones, Harrold, SoftVis 03]

Analysis



2. Efficient monitoring/collecting of 
field data 

• Software tomography
[Bowring, Orso, Harrold, PASTE 02]
[Apiwattanapong, Harrold, PASTE 02]

• Capture/replay of users’ executions
[Orso, Kennedy, in prepration]

3. Continuous update of deployed 
software

• Dynamic update of running software
[Orso, Rao, Harrold, ICSM 02]

Gamma Research

Field-data 

programprogramsoftware



Gamma Research
1. Effective use of field data  

• Measurement of coverage
• Impact analysis, regression testing
→ Classify/recognize software behavior

Visualization of field data 
2. Efficient monitoring/collecting 

of field data 
• Software tomography
• Capture/replay of users’ executions

3. Continuous update of deployed 
software

• Dynamic update of running software

Analysis

Field-data 

programprogramsoftware



Classify/Recognize Behavior
Problem

• Behavior classification, recognition difficult, expensive
• Recognize behavior without input/output needed

For classifying and recognizing behavior
• Behaviors are the results of executing program 

Approach

Train 
Classifier

Prepare 
Training Instances

program

tests 

w/labels

training set =
Branch profiles

w/behavior labels classifier

• Markov models
• active learning



Empirical Studies
• Research questions

1. What is classification rate and classifier precision of trained 
classifier on different-size subsets of test suite?

2. How does active learning improve training?

• Subject program: Space
• 8000 lines of executable code
• Test suite contains 13,500 tests
• 15 versions

• Experimental Setup
1. For each version (repeated 10 times)

• trained classifier on (random) subsets 100-350
• evaluated classifier on rest of test suite

2. Compared batch, active learning



Results
Classification Rate
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Results

Training Set Size
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Outline

• Gamma project
• Overview, problems
• Summary of current projects

• Visualization of field data
• Related work
• Summary, Challenges
• Questions



Visualization of Field Data

Problem
• Huge amount of execution data difficult to 

understand, inspect manually
• Developers need help in finding faults

Visualize field data for fault localization
• Visualization for fault localization

[Jones, Harrold, Stasko; ICSE 02]
• Visualization of field data (Gammatella)

[Orso, Jones, Harrold; SoftVis 03]



Visualization for Fault Localization

Consider two statements

m = x w = y

More suspicious of being faulty

Passed Failed



• Uses
• Pass/fail results of executing test cases (actual or 

inferred)
• Coverage/profiles provided by those test cases 

(statement, branch, def-use pairs, paths, etc.)
• Source code of program

• Computes
• Likelihood that a statement is faulty  
• Summarizes pass/fail status of test cases that 

covered the statements
• Maps to visualization (Tarantula)

• Using two variables

Visualization for Fault Localization



Tarantula Approach

Hue summarizes 
pass/fail results of 
test cases that 
executed s

Brightness presents the 
“confidence” of the hue 
assigned to s

For statement s:



Example
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Test Cases

mid() {
int x,y,z,m;

1:  read(“Enter 3 numbers:”,x,y,z);
2:  m = z;
3:  if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8:  else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

}



Statement-level View
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Test Cases

mid() {
int x,y,z,m;

1: read(“Enter 3 numbers:”,x,y,z);
2: m = z;
3: if (y<z)
4: if (x<y)
5: m = y;
6: else if (x<z)
7: m = y;
8: else
9: if (x>y)
10: m = y;
11: else if (x>z)
12: m = x;
13: print(“Middle number is:”, m);

} Pass Status



SeeSoft view
• each pixel represents a character in the source

mid() {
int x,y,z,m;
read(“Enter 3 numbers:”,x,y,z);
m = z;
if (y<z)

if (x<y)
m = y;

else if (x<z)
m = y;

else
if (x>y)

m = y;
else if (x>z)

m = x;
print(“Middle number is:”, m);
}

File-level View



File-level View
SeeSoft view
• each pixel represents a character in the source  



System-level View
TreeMap view
• each node

• represents a file
• is divided into blocks representing color of 

statements



Tarantula



Tarantula:  Empirical Studies

• Research questions
1. How red are the faulty statements?
2. How red are the non-faulty statements?

• Subject program: Space
• 8000 lines of executable code
• 1000 coverage-based test suites of size 156-4700 

test cases
• 20 faulty versions (10 shown here)

• Experimental Setup
• Computed the color for each statement, each test 

suite, each version
• For each version, computed the color distribution 

of faulty, non-faulty statements  



Results

Faulty Versions
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Gammatella

Software
Developer

Tarantula

InsECT
Instrumenter

Data Collection
Daemon

Database

User 1

User 2

User N

program

instrumented
program

execution
data

visualization/
interaction

queries

data

In the FieldAt Developers’ Site



Gammatella:  Experience

• Subject program:  JABA
• Java Architecture for Bytecode Analysis
• 60,000 LOC, 550 classes, 2,800 Methods

• Data
• field data: > 2000 executions (15 users, 12 

weeks)



Results

• Use of software
• identified unused features of JABA 
• redesigned into a separate plug-in module

• Error
• identified specific combination of platform 

and JDK predictably causes problems



Results
Public display monitors deployed 

software



Outline

• Gamma project
• Overview
• Summary of current projects

• Visualization of field data
• Related work
• Summary, Challenges
• Questions



Related Work
Gamma Project
• Perpetual/Residual testing (Clarke, Osterweil, 

Richardson, Young)
• Expectation-Driven Event Monitoring (EDEM) (Hilbert, 

Redmiles, Taylor)
• Remote Monitoring/Measurement of Deployed Software 

(Notkin, Porter, Schmidt)
• Bug Isolation (Liblit, Aiken, et al.)
Visualization
• Seesoft, SeeSys (Eick, Sumner, Baker)
• Treemap (Schneiderman)
• Bloom, ALMOST, … (Reiss, Renieris)
• Jinsight (DePauw et al.)
Behavior Modeling, Instrumentation, Profiling
• Too numerous to list
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• Summary, Challenges
• Questions



Summary
• Motivated need for new kind of testing for 

next generation software
• Described new kind of testing---Gamma 

testing 
• addresses challenges of testing next generation 

software:  many environments, short development 
cycles, high-quality requirements, dynamic 
integration, and complexity

• a collaborative effort between developer and users
• Presented problems that must be solved
• Described several Gamma projects



(Some) Challenges
• Effective use of field data

• very preliminary results so far
• effective techniques will be mix of 

• in-house analysis (static and dynamic) and 
• analysis of field data (dynamic, aggregate)

• User participation in analysis of field data
• filtering before sending to developer
• initiating new analyses in response to events at 

their sites or due to interactions with other users
• creating their own test suites to be run locally

• Privacy of users
• techniques that protect users data
• user-specific analysis/testing for privacy



Questions
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