INSTITUTE for SOFTWARE RESEARCH

UNIVERSITY of CALIFORNIA + IRVINE

THE POTENTIAL FOR
PERSONALIZATION IN
WEB SEARCH

Sept 30, 2016 I Susan Dumais, Microsoft Research



Overview

e
1 Context in search

0 “Potential for personalization” framework
0 Examples

0 Personal navigation
o Client-side personalization
O Short- and long-term models

1 Personal crowds

0 Challenges and new directions
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20 Years Ago ... In Web Search

0 NCSA Mosaic graphical browser 3 years old, and
web search engines 2 years old
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20 Years Ago ... In Web Search

0 NCSA Mosaic graphical browser 3 years old, and
web search engines 2 years old

0 Online presence ~1996
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20 Years Ago ... In Web Search

0 NCSA Mosaic graphical browser 3 years old, and
web search engines 2 years old
0 Online presence ~1996

0 Size of the web
O # web sites: 2.7k

0 Size of Lycos search engine

0 # web pages in index: 54k
0 Behavioral logs
O # queries/day: 1.5k

O Most search and logging client-side . Top 5% Sites .
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Today ... Search is Everywhere

e
0 A billion web sites

0 Trillions of pages indexed by search engines

0 Billions of web searches and clicks per day

0 Search is a core fabric of everyday life
o Diversity of tasks and searchers

O Pervasive (web, desktop, enterprise, apps, etc.)

0 Understanding and supporting searchers
more important now than ever before
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Search in Context
_—
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Context Improves Query Understanding

EE =
0 Queries are difficult to interpret in isolation

I:”i!;. sigir ml

0 Easier if we can model: who is asking, what they have

done in the past, where they are, when it is, etc.

Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher)
VSs. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Recons’rruc’rion)
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Context Improves Query Understanding
B

0 Queries are difficult to interpret in isolation

I:||i|;' sigir EI

0 Easier if we can model: who is asking, what they have done

in the past, where they are, when it is, etc.

Searcher: (SIGIR | Susan Dumais ... an information retrieval researcher)

VSs. (SIGIR | Stuart Bowen Jr. ... the Special Inspector General for Iraq Reconsfruc’rion)
Previous actions: (SIGIR | information retrieval)

vs. (SIGIR | U.S. coalitional provisional authority)

Location: (SIGIR | at SIGIR conference) vs. (SIGIR | in Washington DC)
Time: (SIGIR | Jan. submission) vs. (SIGIR | Aug. conference)

0 Using a single ranking for everyone, in every context, at

every point in time, limits how well a search engine can do
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Teevan et al., SIGIR 2008, ToCHI 2010

Potential For Personalization
N

0 A single ranking for everyone limits search quality

0 Quantify the variation in relevance for the same
query across different individuals

Potential for Personalization
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Teevan et al., SIGIR 2008, ToCHI 2010

Potential For Personalization
N

0 A single ranking for everyone limits search quality

0 Quantify the variation in relevance for the same
query across different individuals

0 Different ways to measure individual relevance

O Explicit judgments from different people for the same query

O Implicit judgments (search result clicks entropy, content analysis)
0 Personalization can lead to large improvements

O Study with explicit judgments

0 46% improvements for core ranking

0 70% improvements with personalization
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Potential For Personalization
N

0 Not all queries have high potential for personalization

o E.g., facebook vs. sigir

o E.g., * maps 1

==hing maps

—=google maps

=
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e
o
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00 Learn when to personalize
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Potential for Personalization
—

0 Query: UCI

0 What is the “potential for personalization”?

. UNION
CYCLISTE
% INTERNATIONALE

U c I University of
California, Irvine

0 How can you tell different intents apart?
0 Contextual metadata
m E.g., Location, Time, Device, etc.

O Past behavior
m Current session actions, Longer-term actions and preferences
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User Models

S,
0 Constructing user models

O Sources of evidence
m Content: Queries, content of web pages, desktop index, etc.
m Behavior: Visited web pages, explicit feedback, implicit feedback

m Context: Location, time (of day/week/year), device, etc.
O Time frames: Short-term, long-term

0 Who: Individual, group
0 Using user models

0 Where resides: Client, server
O How used: Ranking, query suggestions, presentation, etc.

0 When used: Always, sometimes, context learned
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User Models

S,
0 Constructing user models

0 Sources of evidence

m Content: Queries, content of web pages, desktop index, etc.

m Behavior: Visited web pages, explicit feedback, implicit feedback

m Context: Location, time (of day/week/year), device, etc.

0 Time frames: Short-term, long-term PNav
0 Who: Individual, group
. PSearch
0 Using user models
0 Where resides: Client, server Short/Long

O How used: Ranking, query support, presentation, etc.

0 When used: Always, sometimes, context learned
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Teevan et al., SIGIR 2007, WSDM 2011

Example 1: Personal Navigation
N

0 Re-finding is common in Web search
o 33% of queries are repeat queries
0 39% of clicks are repeat clicks

0 Many of these are navigational queries
o E.g., facebook -> www.facebook.com

o Consistent intent across individuals
O ldentified via low click entropy, anchor text

0 “Personal navigational” queries

o Different intents across individuals ... but
consistently the same intent for an individual
® SIGIR (for Dumais) -> www.sigir.org/sigir2016

m SIGIR (for Bowen Jr.) -> www.sigir.mil
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http://www.facebook.com/
http://www.sigir.org/sigir2016
http://www.sigir.mil/

Personal Navigation Details

N
0 Large-scale log analysis (offline)

o ldentifying personal navigation queries
m Use consistency of clicks within an individual

m Specifically, the last two times a person issued the query,
did they have a unique click on same result?

o0 Coverage and prediction
® Many such queries: ~12% of queries
® Prediction accuracy high: ~95% accuracy
m High coverage, low risk personalization

0 A/B in situ evaluation (online)
o Confirmed benefits
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Teevan et al., SIGIR 2005, ToCHI 2010

Example 2: PSearch

S =
0 Rich client-side model of a user’s interests
O Model: Content from desktop search index & Interaction history
Rich and constantly evolving user model
O Client-side re-ranking of web search results using model

O Good privacy (only the query is sent to server)
m But, limited portability, and use of community

& Y

ucli

ser profile:
* Content

* Interaction history /

®

rﬂ
(=
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PSearch Details

S =
0 Personalized ranking model
0 Score: Global web score + personal score

O Personal score: Content match + interaction history features

0 Evaluation

o Offline evaluation, using explicit judgments

0 Online (in situ) A/B evaluation, using PSearch pro'ro'rype

® Internal deployment, 225+ people several months

m 28% higher clicks, for personalized results

. . .
74% higher, when personal evidence is strong T P
Web results 4.3% 36.1%
® Learned model for when to personalize - o

6-10 b.2% B.6%

11-50 6.0% 17.2%
b51-100 b.6% b.b%

UCI - Sept 30, 2016 100+ 5% 103%
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Bennett et al., SIGIR 2012

Example 3: Short + Long

N 1 —
0 Long-term preferences and interests
0 Behavior: Specific queries/URLs
o Content: Language models, topic models, etc.
0 Short-term context
0 60% of search session have multiple queries
0 Actions within current session (Q, click, topic)

m (Q=sigir | information retrieval vs. iraq reconstruction)
B (Q=uci | judy olson vs. road cycling vs. storage containers)

m (Q=ego | id vs. eldorado gold corporation vs. dangerously in love)

0 Personalized ranking model combines both
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Short + Long Details

0 User model (temporal extent)

O Session, Historical, Combinations

O Temporal weighting

Aggregate

— Present

Past —

Time

0 Large-scale log analysis

0 Which sources are important?
0 Session (short-term): +25%
o Historic (long-term): +45%
o Combinations: +65-75%
0 What happens within a session?
o 1% query, can only use historical

o By 3 query, short-term features
more important than long-term

UCI - Sept 30, 2016

MAP gain

0.9
0.8
07
0.6
0.5
04
03
0.2
0.1

jll

Session Historic  Aggregate

Union

Query Position in Session

|

m Session
m Historic
m Aggregate

Union




Organisciak et al., HCOMP 2015, 1JCAI 2015

Example 4: A Crowd of Your Own
N

0 Personalized judgments from crowd workers

O Taste “grokking™

m Ask crowd workers to understand (“grok”) your interests

o Taste “matching”

® Find workers who are similar to you (like collaborative filtering)

0 Useful for: personal collections, dynamic collections,
or collections with many unique items

0 Studied several subjective tasks
O ltem recommendation (purchasing, food)

O Text summarization, Handwriting
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A Crowd of Your Own

0 “Personalized” judgments from crowd workers

Requester

Workers -
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A Crowd of Your Own Details

0 Grokking ==
i -
O Requires fewer workers ﬂ‘ﬁfk
r’am\
1 Fun for workers

O Hard to capture complex

preferences shakers
0 Matching ot -
O Requires many workers (Boston)
to find a good match
Food | 58
O Easy for workers (Seattle) -

o Data reusable

0 Crowdsourcing promising in domains where lack of
prior data limits established personalization methods
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Challenges in Personalization

S
0 User-centered
O Privacy
O Serendipity and novelty

O Transparency and control

0 Systems-centered

1 Evaluation

B Measurement, experimentation

O System optimization

m Storage, run-time, caching, etc.
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Privacy
—

0 Profile and content need to be in the same place

0 Local profile (e.g., PSearch)

O Private, only query sent to server

o Device specific, inefficient, no community learning

0 Cloud profile (e.g., Web search)

O Need transparency and control over what’s stored

0 Other approaches

o Public or semi-public profiles (e.g., tweets, Facebook status)
o Light weight profiles (e.g., queries in a session)

O Matching to a group vs. an individual
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André et al., CHI 2009, C&C 2009

Serendipity and Novelty e

]
0 Does personalization mean the end of
serendipity?
O ... Actually, it can improve it!

0 Experiment on Relevance vs. Interestingness

1 Personalization finds more relevant results

O Personalization also finds more interesting results

® Even when interesting results were not relevant

0 Need to be ready for serendipity
O ... Like the Princes of Serendip
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Kohavi, et al. 2009; Dumais et al. 2014

Evaluation

A E
0 External judges, e.g., assessors

O Lack diversity of intents and realistic context

O Crowdsourcing can help some

0 Actual searchers are the “judges”
o Offline

m Labels from explicit judgments or implicit behavior (log analysis)

m Allows safe exploration of many different alternatives

0 Online (A/B experiments)
m Explicit judgments: Nice, but annoying and may change behavior

® Implicit judgments: Scalable and natural, but can be very noisy

0 Linking implicit actions and explicit judgments
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- Search and Context

0 Queries difficult to interpret in isolation
O Augmenting query with context helps

0 Potential for improving search via personalization is large

0 Examples =
0 PNav, PSearch, Short/Long, Crowd T

0 Challenges
O Privacy, transparency, serendipity
O Evaluation, system optimization

’8

0 Personalization/contextualization prevalent today, and
increasingly so in mobile and proactive scenarios
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Thanks!

I e
1 Questions?

0 More info:
http: / /research.microsoft.com /~sdumais

1 Collaborators:

O Eric Horvitz, Jaime Teevan, Paul Bennett, Ryen White, Kevyn
Collins-Thompson, Peter Bailey, Eugene Agichtein, Sarah
Tyler, Alex Kotov, Paul André, Carsten Eickhoff
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