Software, Logic, and Automata:
Automating Dependability of Software

Tevfik Bultan
Verification Lab (VLab),
Computer Science Department
University of California, Santa Barbara
bultan@cs.ucsb.edu
http://www.cs.ucsb.edu/~vlab

University of California at Santa Barbara

. . RUAda
5 |

Verification Lab (VLab) members

Alumni Current Members

Lucas Bang, Ph.D. 2018 Nicolas Rosner, Postdoc
Abdulbaki Aydin, Ph.D. 2017 Tegan Brennan, Ph.D. candidate
lvan Bocic, Ph.D. 2016 Burak Kadron, Ph.D. student
Muath Alkhalaf, Ph.D. 2014 Seemanta Saha, Ph.D. student
Jaideep Nijjar, Ph.D. 2014 William Eiers, Ph.D. student

Fang Yu, Ph.D. 2010

Graham Hughes, Ph.D. 2009

Aysu Betin Can, Ph.D. 2005
Constantinos Bartzis, Ph.D. 2004

Xiang Fu, Ph.D., 2004

Tuba Yavuz-Kahveci, Ph.D., 2004

Zhe Dang, Ph.D., 2000

Sylvain Halle, Postdoc, 2008-2010
Nestan Tsiskaridze, Postdoc, 2016-2018

SOftware |S eatlng the WOrld' Marc Andreessen

Commerce, entertainment, social interaction

citibank CN\]

We will rely on software more in the future

Q) G()@gle O amazon alexa

HealthVault

Microsoft

Self-Driving Car Project

Winning formula: apps + cloud

amazon Eg £Y Google Cloud

webservices™ Windows Azure

Software is eating the world!

* S0, software engineering,

a systematic, disciplined, quantifiable approach to the
production and maintenance of software,

is very important!

Software engineering is 50 years old!

 In 1968 a seminal NATO Purpose: to look for a solution
Conference was held in to software crisis
Germany

— 50 top computer scientists,
programmers and industry
leaders got together to look
for a solution to the
difficulties in building large
software systems

) _ Considered to be the birth of
“software engineering’ as
a research area

Software’s chronic crisis

* A quarter century later (1994) an article in Scientific
American:

Software's Chronic Crisis

TRENDS IN COMPUTING by W. Wayt Gibbs, staff writer.
Copyright Scientific American; September 1994; Page 86
Despite 50 years of progress, the software industry remains
years-perhaps decades-short of the mature engineering
discipline needed to meet the demands of an information-age
society

Software’s chronic crisis

* Another quarter century later:

* This is a photo of the navigation system of my car

— It crashed and rebooted three times last night while
I was driving to here from Santa Barbara!

Software’s chronic crisis

Large software systems often:

* Do not provide the desired functionality

« Take too long to build

« Cost too much to build

* Require too much resources (time, space) to run
« Cannot evolve to meet changing needs

Software engineering research:

Are we going in circles?

Software dependability problem

« Software dependability, meaning
— Safety
— Security
— Reliability
— Availability
— Maintainability

of software, is the key problem in software engineering
research!

* My research interests:
— Can we automate it?

— Can we automate it using logic solvers?

Software—Logic connection

Robert W. Floyd

Proceedings of Symposium on Applied Mathematics, Vol. 19, 1967, pp. 19-32

ASSIGNING MEANINGS TO PROGRAMS:

i—1
——————— nEJTNi=1
h' I
S—0
l ———————— nedJtAi=1AS=0
— i-1

________ ncJtAIi€EJTAisn+1INS = -}:naj
}-

@ i=1 n
———n€J Ai=n+1AS= Y aj; ie,S= X g
j=1 j=1
i-1

________ neJtAI€EJTAisnAS= Y g
v =1

i
________ nEJTANIEJTANisnAS=Lg;
Jj=1

l—i+41 i-1

________ nEJtAIEITA2sisn+1IAS=2q;

j=1

FiGURE 1. Flowchart of program to compute S = 2 =1 @; (n 2 0)

Computation

Logic

Software—Logic connection

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

Computation
By A. M. TurinG.

[Received 28 May, 1936.—Read 12 November, 1936.]

Logic

« Turing machine model, the most widely used theoretical
model for computation, was motivated by a logic problem:

— Is there an algorithm that takes as input a statement of a
first-order logic and determines if it is provable using
axioms and rules of inference?

Use logic to reason about programs

Hoare Logic Weakest Preconditions
An Axiomatic Basis for 1(&uafided C(_)mmandé,
C ter P - ondeterminacy an
S e Formal Derivation
C. A. R. Hoare of Programs

] Iy * .
The Queen’s Unaversity of Belfast,* Northern Ireland Edsger W. Dijkstra

Burroughs Corporation
Communications of the ACM 3

Communications August 1975
T of Volume 18
Volume 12 / Number 10 / October, 1969 the ACM Number 8

TEXTS AND MONOGRAPHS IN COMPUTER SCIENCE

THE SCIENCE
OF PROGRAMMING

David Gries

© 1981 by Springer-Verlag New York Inc.

Manual program reasoning with logic

« Writing manual proofs for proving correctness of programs
IS not easier than writing correct programs

 Manual reasoning about programs using logic
— does not scale/work

* Automate logic reasoning

Automating software-logic connection

Symbolic execution

Symbolic Execution
and Program Testing

James C. King
IBM Thomas J. Watson Research Center

Communications July 1976
of Volume 19
the ACM Number 7

Model checking

Automatic Verification Of Finite State Concurrent Systems Using
Temporal Logic Specifications: A Practical Approach*

EM. Clarke
Carnegie-Mcllon University
E.A. Emerson

University of Texas, Austin

A.P. Sistla
Harvard University
POPL '83 Proceedings of the 10th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages
Pages 117-126

How to automate logic reasoning?

* |tis difficult!

.
The Complexity of Theorem-Proving Procedures SEEEERRIEED SRy SR SRt
Stephen A. Cook

University of Toronto
Richard M. Karp

. . Uni ity of California at Berkel
STOC '71 Proceedings of the third annual ACM EEESEGNT 0f SRETERN EE NEESELRY

symposium on Theory of computing Complexity of Computer Computations,1972

* and, for some cases impossible!

On formally undecidable propositions of Principia
Mathematica and related systems I

Kurt Godel
1931

What to do?

Give up efficiency for all inputs, use heuristics

A Machine Program for
Theorem-Proving

Martin Davis, George Logemann, and
Donald Loveland

Institute of Mathematical Sciences, New York University

Communications of the ACM, July 1962

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz Conor F. Madigan Ying Zhao, Lintao Zhang, Sharad Malik
Department of EECS Department of EECS Department of Electrical Engineering

UC Berkeley MIT Princeton University
moskewcz@alumni.princeton.edu cmadigan@mit.edu {yingzhao, lintaoz, sharad}@ee.princeton.edu

Proceedings of the 38th Design Automation Conference, DAC 2001, Las Vegas, NV, USA, June 18-22, 2001
This expanded version appeared in Comm. of the ACM, August 1992

The Omega Test: a fast and practical integer

programming algorithm for dependence analysis

William Pugh

Combine existing logic solvers

« Satisfiability-Modula-Theories (SMT) solvers

Simplification by Cooperating Decision
Procedures

GREG NELSON and DEREK C. OPPEN
Stanford University

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979, Pages 245-257.

Z3: An Efficient SMT Solver

Leonardo de Moura and Nikolaj Bjgrner

TACAS 2008, LNCS 4963, pp. 337-340, 2008.

So, now, we have a hammer!

N\

Automated Logic Solvers

Unfortunately, life is complicated!

\
N J
——
:‘ \
Software Automated logic
dependability solver

problem

Actually we have many problems

Just the ones | have worked on in my research career:
* requirement specifications

e concurrency, synchronization

« dynamic data structures

« workflows

« web services

* service choreography and orchestration
* web applications

* message-based communication

« software models

« access control

« string manipulation

» security vulnerabilities

« input validation and sanitization

« data models

* side-channels

And, we have many hammers

S\

SAT solvers: Satisfability for SMT solvers: Satisfiability for
Boolean logic formulas combination of theories: linear

arithmetic, arrays, strings, etc.

N\

A\

A\

Automata-based constraint Model counting constraint
solvers: All solutions for solvers: Counting solutions for
Boolean, numeric, string Boolean, numeric, string
constraints constraints

Automated Logic Solvers

V0Lab research agenda

Z-RO

Software Transform Logic Automated

dependability problem logic solver
problem

Three applications of this approach

String +
7 .
Input 4 e numeric
validation - @ constraint
. solver
Z SAT or
Data * {
model - @ SMT
. solvers
Z SAT or
Access 4 {
control - @ SMT
. solvers

Why do we care about input validation?

40%

35% I]

30% + M

25% +

o

a0 T o File Inclusion

15% t B SQL Injection
T m XSS

10% +

5% 1

0% — — B & & b i kBl bk K
> O P HP P A PO O N DD K

« SQL Injection, XSS, File Inclusion as percentage of all computer
security vulnerabilities (extracted from the CVE repository)

Why do we care about input validation”?

OWASP Top Ten 2007
1.Injection Flaws

2.XSS

3.Malicious File Execution

OWASP Top Ten 2010

1.Injection Flaws

2.XSS

3.Broken Auth. Session Management

OWASP Top Ten 2013
1.Injection Flaws
2.Broken Auth. Session Management

3.XSS

A simple example

« Another PHP Example:

1:<?php <script ...

2: $www = $ GET["www'];

3: $1 otherinfo = "URL”;

4: echo "<td>" . $1 otherinfo . 7: 7 . $www . "</td>";
5:7>

« The echo statement in line 4 is a sensitive function
« It contains a Cross Site Scripting (XSS) vulnerability

27

Is it vulnerable?

« A simple taint analysis can report this segment vulnerable
using taint propagation

1:<?php tainted

2: $www = $ GET["www”];

3: $1 otherinfo = "URL”;

4: echo "<td>" . $I otherinfo . "z 7 _$www. "</td>";

5:7?7>

« echo is tainted — script is vulnerable

28

How to fix it?

« To fix the vulnerability we added a sanitization routine at
line s. Taint analysis will assume that Swww is untainted

and report that the segment is NOT vulnerable

1:<?php tainted

2: $www = $ GET["www'];

311§%h%£gerinfo = "URL";

s: $www = ereg_replace(C[MA-Za-z0-9 .-@:/7]77,77 ,3www) ;
4: echo "<td>" . $1 otherinfo . "z 7 _$www. "</td>";
5:7?7>

29

ar~r N WNPRF

Is it really sanitized?

-<?php <script ...>

> $www = $ GET["www’] ;

- $1 _otherinfo = "URL";
:<§Wwwt:“5reg_replace(”[AA—Za—zO—9

—@:/717,77 ,$www) ;

- echo "<td>" . $I otherinfo . ": 7 .$www. "</td>";

- 7>

30

Sanitization routines can be erroneous

o [he sanitization statement is not correct!

ereg_replace("[MA-Za-z0-9 .-@://1",7",$www);
- Removes all characters that are not in { A-Za-z0-9 .-@:/

)

- .—-@ denotes all characters between “.” and “@”

(11 ” (11 ”

(including "<” and ">")
- “.-@" should be “_.\-@"

« This example is from a buggy sanitization routine used in
MyEasyMarket-4.1 (line 218 in file trans.php)

31

Vulnerabilities can be tricky

* |nput <Isc+rip!t ...> does not match the attack pattern
— but it can cause an attack

1:<?php <Isc+riplt ...>

2: $www = $ GET["www”];

3: $1 otherinfo = "URL";

S: éwwwpg“é?eg_replace("[AA—Za—zO—9 -@:/7717,77 , $www) ;
4: echo "<td>" . $1 otherinfo . 7: 7 .$www. "</td>";
5:7?7>

32

String analysis

o If string analysis determines that the intersection of the
attack pattern and possible inputs of the sensitive function

IS empty
. then we can conclude that the program is secure

. If the intersection is not empty, then we can again use
string analysis to generate a vulnerability signature

« characterizes all malicious inputs

o Given i<scriptz* as an attack pattern:
« The vulnerability signature for $ GET[www"] is
Dx<o*xSoxCox ok ok pox o+
where a¢ { A-Za-z0-9 .-@:/ }

33

Input validation and sanitization
vulnerability detection & repair

GOAL: To automatically detect and repair vulnerabilities that are caused
by input validation and sanitization errors (such as XSS and SQL Injection)

) Static and dynamic program
ib oi-lallir4=1¢ analysis to extract input

= .4ig=1eiile)g validation and sanitization
operations

Automata based string

2) String constraint solving

B Analysis
o -

‘ Differential or policy
: OL-""B directed (using attack

Sanitizer functions :
~ AU otterns) bug detection

Vulnerability and Repair
signatures

and repair

—

Bug reports (attack strings) and code patches

Automata-based String Analysis

 Finite State Automata can be used to characterize sets of
string values

« Automata based string analysis

— Associate each string expression in the program with an
automaton

— The automaton accepts an over approximation of all
possible values that the string expression can take
during program execution

« Using this automata representation we symbolically
execute the program, only paying attention to string
manipulation operations

35

Automaton generated during analysis

ooo0o000O01

X000001X
X01111XX

XXX01XXX

X, XX, 0,%,X,X,X

LR
OIO‘AIXXVAI
O MO MO~ X x|
cHo Moo~
ormorMooo X
Dlooxxxm
© © % % %% % x|

I

coooo0001
coo00O001X
011111XX
X01111XX
XX0111XX
XXX001XX
XXX01XXX

ooo0co00O0OD01
0111111X
X000001X
X00001XX
X0111XXX
XX011XXX
XXX01XXX
XX X, 1, X, X, X, X

OHMOOMMOO

OO MO O MO

G-

XX X X1, X, XX

[A-Za-20-9 -@/} s s s 0000000

0000000000000 0ppDO00OO0DO011111X

CEREE BB B 5
LR
OO o
OOIDIXXVM
00O o~ XN
00000 M
coMOOOO M
oo MM MMM
®
_
I
_|
P
o
N
N
<
<
=]
n n

CoMAAO G

gocoo0OC0ODOCOOCCOO0O0O0O0QO000

0001111111111 1p31111100111X%
1110000111111 1xp0p000011011X%
0010111000011 1xp001111011X%

1000000112111111111
0
1

01XX0110001011xp0101010001X

0010111X0110001011,

coo

0o000O0O0O0DO0O0CQO0O01

01111100111X
X0000011011X

X01XX01X01XX

KoLl X %, %, X, 1,%,0,1,%,X%

@/T*<[A-Za-z0-9 -@/*

36

[A-Za-20-9 .

URL

Symbolic Automata Representation

MONA DFA Package for automata manipulation
— [Klarlund and Mgller, 2001]

Compact Representation:

— Canonical form and

— Shared BDD nodes

Efficient MBDD Manipulations:

— Union, Intersection, and Emptiness Checking
— Projection and Minimization

Cannot Handle Nondeterminism:

— Use dummy bits to encode nondeterminism

37

Symbolic automata representation

Explicit DFA Symbolic DFA
representation representation

(0110000,
0110001,

(0110000,
0110001, 62 {

1111010

1111010 — .
{7 bit 2

(0000000, Litg
\ 56 /0000001,
. > bit 4
(0000000, Yiz:) 11111111 .
, I
56 0000001, —
5 0000000, i
S 10g 40000001, e
. bit 7
(1111111

Vulnerability signature automaton

P

Xxxxxxxxa

L I I B B I B o B

A A A A A O X

N H O XX

Non-ASCII

oA O XX X
— O X XXX
— = O X X X XX
— O X X X X X X
O M X M X M X X

L B B B O IR O I

V

[7<]

O O O X X X X X

39

[/\<]*<2*

Vulnerability Signatures

* The vulnerability signature is the result of the input node,
which includes all possible malicious inputs

* An input that does not match this signature cannot exploit
the vulnerabillity

« After generating the vulnerability signature

— Can we generate a patch based on the vulnerability
signature?

Example vulnerability signature automaton:

=0y

[7<]

40

Patches from Vulnerability Signatures

 Main idea:

— Given a vulnerability signature automaton, find a cut
that separates initial and accepting states

— Remove the characters in the cut from the user input to
sanitize

</
()QD
' Y

["<] '
min-cut is {<}
« This means, that if we just delete “<” from the user input,

then the vulnerability can be removed .

Generated Patch

- <?php
if(preg matchC /[<I*<.*/’,$ _GET[”www’]))
$ GET[”www”] = preg replace(C<’,””,$ GET[”www”’]);
Swww = $ GET["www’] ;
$1_otherinfo = "URL”;

$www = preg_replace("[MA-Za-z0-9 .-0@://]7,77,%www) ;
echo "<td>" . $1 otherinfo . 7: 7 _$www. "</td>";
D ?>

Input Original New Output [NUL-:], [=-253], [NUL=253]
Output / (3
I
Foobar URL: Foobar URL: Foobar 0 — @
Foo<bar URL: Foo<bar URL: Foobar i

a<b<c<d URL: a<b<c<d URL: abcd min-cut is {<}

Min—Max input validation policies

Ungd OVEN
Coensitiralined

Differential analysis: no specification

attachEmailFieldFixer: function () {

var fn_get_email = function (x) {
return (x.tagName.toUpperCase() == "INPUI" && x.type =
"email™) ;

G

var fn_fix email = function () {

G

var e = this;
if (e && e.value.length > 0) {
e.value = e.value.replace(/\3s/qg,

ll);

var i, len, forms = document.forms;

for (i =0, len =

forms.length; i < len; i += 1) {
var j,
j_len,
elements = forms[i].elements,
nodes = PUNBB.common.arrayOfMatched(fn_get_email,
elements) ;

for (j = 0, j_len = nodes.length; jJ < j_len; j += 1) {
nodes[j].onblur = fn_fix email;

Client-side

|<2php
//
// Validate an e-mail address
/f
function is_valid_email ($email)
1{
$return = ($hook = get_hook(
'em fn is valid email start')) 2 eval($hook) : null;
if ($return '= null)
return $return;
if (strlen($email) > £0)
return false;
return preg_match(
A0 ININN -, 2 ASE@N T T H (N[> () NI\ ., 22 \S@™N
IH)*) (" [~"\"1+"))@ ((\[\d{1,3} d{l,3}\.\d{1,3}\.\
{1,3I\1) I (([a-zA-Z\d\-]+\.)+[a-ZzA-Z]{2,}))&/",

Semail) ;

}

— LAY

Server-side

Some experiments

We applied our analysis to three open source PHP applications
*\WWebches 0.9.0 (a server for playing chess over the internet)
*EVE 1.0 (a tracker for player activity for an online game)
*Faqforge 1.3.2 (a document management tool)

Application # XSS | #SAQLl
Sinks Sinks

Webchess 3375
0.9.0
2 EVE1.0 8 906 114 17
3 Fagforge 10 534 375 133
1.3.2
*Attack patterns:

— X*<scriptz- (for XSS)
— 2* or 1=1 Z* (for SQLI)

Analysis eesults

= We use (single, 2, 3, 4) indicates the number of detected
vulnerabilities that have single input, two inputs, three
inputs and four inputs

Type # Vulnerabilities Time (s) Memory (KB)
(single, 2, 3, 4) total average

1. XSS (24, 3, 0, 0) 46.08 16850
sQL (43,3, 1, 2) 110.7 136790
2. XSS (0, 0, 8, 0) 288.50 125382
sQL (8, 3,0, 0) 23.9 17280
3. XSS (20, 0, 0, 0) 7.87 9948

SQL (0,0,0,0) 6.7 <1

A case study

« Schoolmate 1.5.4
« Number of PHP files: 63
o Lines of code: 8181

« Analysis results:

« After manual inspection we found the following:

105 48

Case study: False positives

. Why false positives?
- Path insensitivity: 39
- Path to vulnerable program point is not feasible
- Un-modeled built in PHP functions : 6
- Unfound user written functions: 3

- PHP programs have more than one execution entry
point

- We can remove all these false positives by extending our
analysis to a path sensitive analysis and modeling more
PHP functions

Case study: Sanitization synthesis

« We patched all actual vulnerabilities by adding sanitization
routines

« We ran our analysis second time

- and proved that our patches are correct with respect to
the attack pattern we are using

String analysis @ UCSB VLab

*Symbolic String Verification: An Automata-based Approach [Yu et al., SPIN’08]

*Symbolic String Verification: Combining String Analysis and Size Analysis [Yu et al.,
TACAS’09]

*Generating Vulnerability Signatures for String Manipulating Programs Using Automata-
based Forward and Backward Symbolic Analyses [Yu et al., ASE'09]

«Stranger: An Automata-based String Analysis Tool for PHP [Yu et al., TACAS’10]
*Relational String Verification Using Multi-Track Automata [Yu et al., CIAA’10, IJFCS’11]
«String Abstractions for String Verification [Yu et al., SPIN" 11]

*Patching Vulnerabilities with Sanitization Synthesis [Yu et al., ICSE’11]

Verifying Client-Side Input Validation Functions Using String Analysis [Alkhalaf et al.,
ICSE’12]

*ViewPoints: Differential String Analysis for Discovering Client and Server-Side Input
Validation Inconsistencies [Alkhalaf et al., ISSTA'12]

«Automata-Based Symbolic String Analysis for Vulnerability Detection [Yu et al., FMSD’14]
«Semantic Differential Repair for Input Validation and Sanitization [Alkhalaf et al. ISSTA14]
«Automated Test Generation from Vulnerability Signatures [Aydin et al., ICST 14]
*Automata-based model counting for string constraints [Aydin et al., CAV'15]

«Automatic Verification of String Manipulating Programs. Fang Yu, Ph.D. Dissertation, 2010.
UCSB Computer Science Outstanding Dissertation Award.

*Automatic Detection and Repair of Input Validation and Sanitization Bugs. Muath Alkhalaf,
Ph.D. Dissertation, 2014. ACM SIGSOFT Outstanding Dissertation Award.

String analysis book

© 2017

String Analysis for Software
LI Verification and Security

for Software

\S/eriﬁgtation and Authors: Bultan, T., Yu, F, Alkhalaf, M., Aydin, A.
ecurity

This is the first existing book focusing on string analysis

Three applications

String +
7 .
Input 4 e numeric
validation - o Colnstralnt
\ solver
Z SAT or
Data * {
model - @ SMT
. solvers
Z SAT or
Access 4 {
control - \ o ?cl)\l/l\;rers

Why do we care about data models?

 The data in the back-end database is the most important
resource for most applications

 Integrity and consistency of this data is crucial for
dependability of the application

Model-View-Controller (MVC) architecture

 MVC consists of three modules
— Model represents the data
— View is its presentation to the user

— Controller defines the way the application reacts to
user input

a=50%
b=30%

= \

model

views

Web application architecture

N __.-' N
D

Data
Model

Rel

Desktop Client
' ' RESTTul
ntroller
/<7 / v
& View
\

Mobile Client

— Model View Controller (MVC) pattern:
Ruby on Rails, Zend for PHP, CakePHP, Struts for Java,

Django for Python, ...
— Object Relational Mapping (ORM)

ActiveRecord, Hibernate, ...

Exploiting MVC for verification

Modularity provided by MVC can be exploited in verification

For checking access control properties
— Focus on controllers

For checking input validation
— Focus on controllers

For checking data model properties
— Focus on the model

Bug finding in data models

We worked on checking data model properties in Ruby-on-
Rails applications

Rails uses active records for object-relational mapping

There are many options in active records declarations that
can be used to specify constraints about the data model

Our goal:

— Automatically analyze the active records files in Rails
applications to check if the data model satisfies some
properties that we expect it to satisfy

Approach:

— Bounded (SAT based) or unbounded (SMT-based) bug
detection

— We automatically search for data model errors within a
given scope for bounded case

An example Rails data model

Static Data Model

class User < ActiveRecord: :Base

has _many :todos
has_many :projects

end

class Project < ActiveRecord: :Base

belongs to :user
has _many :todos
has_many :notes

end

class Todo < ActiveRecord:

belongs to :user
belongs to :project

end

class Note < ActiveRecord:

belongs to :project

end

:Base

:Base

Data Model Updates: Actions

class ProjectsController < ApplicationController
def destroy
@project = Project.find(params[:project _id])
@project.notes.each do |note]|
note.delete
end
@project.delete
respond_to(...)
end

end

More realistic data model

Asset

Lead

Comment ‘

.

S~

Subject

Address Perrmission

Address_0

Addressable

ContactOpportunity

< | Campaign

Activity ActivityObserver Setting
h

S —— one to many
——@ onetozero-one
<4—— many to many

AccountContact AccountOpportunity == === fransitive
—= conditions .-
- ' conditional

o Account)

K>—> polymorphic
- ’, /
z, s 7
\ /‘, /// ,
Contact ,,,’
/
! /
LYK
Opportunity
b
Preference

Properties to check

Example properties for an online book store

* Relationship cardinality
— Is it possible to have two accounts for one user?
* Transitive relations

— A book’s author should be the same as the book’s
edition’s author

« Deletion properties
— Deleting a user should not create orphan orders

Data model bug finding & repair

GOAL: To automatically detect and repair data model errors in web apps
written using MVC based frameworks (such as Ruby on Rails)

Rails User specified Bug reports
code invariants (property violating Code
instances) patches
Formal data
@ Formal data model + @ FOL or Boolean
* model properties ¢ formulas
1) Model 3) Logic 4) Bug
Extraction Translation Detection
Static Search for Encoding in Bug detection Automated
analysis property First Order via repair based
+ patterns Logic SMT on property
instrumented in (unbounded) or patters
execution data model or SAT solvers

Boolean logic
(bounded)

Model extraction

Extraction is hard for actions
* Dynamic type system

* Metaprogramming

« Eval

* Ghost Methods

Observations
e The schema is static
 Action declarations are static

 ORM classes and methods do not change their semantic
during execution

— even if the implementation code is generated
dynamically

Translation of statements to FOL

An action is a sequential composition of statements

Statements

— A state is represented with a predicate denoting all entities
that exist in a state

— A statement is a migration between states

Loops
— Use quantification to represent loop semantics

Inductive verification

Inv(s) is a formula denoting that all invariants hold in state s

Action(s, s’) is a formula denoting that the action may
transition from state s to state s’

Check if: Vs, s’: Inv(s) A Action(s, s’) — Inv(s’)

Experiments

FatFreeCRM | Tracks | Kandan
Lines of Code 30358 18023 2173
ADS Nodes 85447 37755 907
Nodes after optimization 1611 1483 280
Classes 30 10 5
Actions 167 70 35
Invariants 8 10 5)
Empty actions 107 52 31
Avg. # of predicates 286 205 69
Theorem prover peak memory 243Mb | 203Mb 126Mb
Avg. time per action/invariant 3.1 sec | 40.5 sec | 10.5 sec
Action/invariant pairs 480 180 20
Verified 468 133 17
Falsified 2 2 0
Inconclusive 8 34 1
False positives 2 2 1
Detected Exceptions 0 9 1

Data model analysis @ UCSB VLab

eJaideep Nijjar and Tevfik Bultan. Bounded Verification of Ruby on Rails Data Models. In
Proc. International Symposium on Software Testing and Analysis (ISSTA), pages 67-77,
2011.

eJaideep Nijjar and Tevfik Bultan. Unbounded Data Model Verification Using SMT
Solvers. In Proc. 27th IEEE/ACM Int. Conf. Automated Software Engineering (ASE), pages
210-219, 2012.

eJaideep Nijjar, Ivan Bocic and Tevfik Bultan. An Integrated Data Model Verifier with
Property Templates. In Proc. 1st FME Workshop on Formal Methods in Software
Engineering (FormaliSE 2013).

e Jaideep Nijjar and Tevfik Bultan. Data Model Property Inference and Repair. In Proc.
International Symposium on Software Testing and Analysis (ISSTA), pages 202—212,
2013.

e/van Bocic, and Tevfik Bultan. Inductive Verification of Data Model Invariants for Web
Applications. In Proc. International Conference on Software Engineering (ICSE), 2014

e/van Bocic, Tevfik Bultan:Data Model Bugs. NFM 2015: 393-399

e/van Bocic, Tevfik Bultan:Efficient Data Model Verification with Many-Sorted Logic. ASE
2015: 42-52

e/van Bocic, Tevfik Bultan:Coexecutability for Efficient Verification of Data Model
Updates. ICSE 2015: 744-754

e Jaideep Nijjar, Ivan Bocic, Tevfik Bultan:Data Model Property Inference, Verification,
and Repair for Web Applications. ACM Trans. Softw. Eng. Methodol. 24(4): 25:1-25:27
(2015)

e/van Bocic, Tevfik Bultan:Symbolic model extraction for web application verification.
ICSE 2017: 724-734

Three applications

String +
7 .
Input 4 e numeric
validation - o Colnstralnt
\ solver
Z SAT or
Data * {
model - @ SMT
. solvers
Z SAT or
Access 4 {
control - \ o ?cl)\l/l\;rers

Why care about access control?

14 million Verizon subscribers' details
leak from crappily configured AWS S3

data store
US telco giant insists only infosec bods saw the info
By lain Thomson in San Francisco 12 Jul 2017 at 19:34 12 V:l SHARE ¥

Updated Another day, another leaky Amazon S3 bucket. This time, one
that exposed account records for roughly 14 million Verizon customers to
anyone online curious enough to find it.

Access control

* About 10 years ago we developed a technique for checking
access control policies

e Basic idea:
— To check a complicated access control policy, compare
it to a simple policy
— For example you may want to check that the complex
policy is at least as restrictive as some default simple

policy

Access control checking for XACML

Given two XACML policies P1 and P2:
— Check is P1 is at least as strong as P2

We showed that this type of differential policy check can be
converted checking satisfiability of a Boolean logic formula

We implemented a XACML policy checker using a SAT
solver

Access control checking for Rails

Rails developers use libraries such as CanCan,
CanCanCan or Pundit for access control

We develop a techniqgue where we automatically extract
the access control policy from the Rails code

Then we check if the access control policy is correctly
enforced in actions

We showed that this type of check can be converted
checking satisfiability of an SMT formula

We implemented a Rails access control policy checker
using an SMT solver

Access control analysis @ UCSB VLab

 Graham Hughes and TeVvfik Bultan. “Automated Verification of XxACML
Policies Using a SAT Solver.” (WQVV 2007), pp. 378-392, Como,
Italy, July 2007.

« Graham Hughes, TeVvfik Bultan:Automated verification of access
control policies using a SAT solver. STTT 10(6): 503-520 (2008)

» |van Bocic, Tevfik Bultan:Finding access control bugs in web
applications with CanCheck. ASE 2016: 155-166

Zelkova: Access control at Amazon

« Zelkova uses automated reasoning to analyze policies and
the future consequences of policies.

— This includes AWS Identity and Access Management
(IAM) policies, Amazon Simple Storage Service (S3)
policies, and other resource policies.

« Zelkova translates policies into precise mathematical
language and then uses automated reasoning tools to
check properties of the policies.

— These tools include automated reasoners called
Satisfiability Modulo Theories (SMT) solvers, which use
a mix of numbers, strings, reqular expressions, dates,
and IP addresses to prove and disprove logical
formulas.

Zelkova: Access control at Amazon

AWS Security Blog

How AWS uses automated reasoning to help you
achieve security at scale

by Andrew Gacek | on 20 JUN 2018 | in Security, Identity, & Compliance | Permalink | #® Comments | # Share

NEWS ANALYSIS

What are Amazon Zelkova and Tiros? AWS
looks to reduce S3 configuration errors

Amazon’s latest tools help identify where data might be left exposed in your AWS S3 cloud
environments.

Three applications of this approach

What is the
secret sauce? String +
7
Input 4 numeric
validation - o Colnstralnt
\ solver
Data 0 SAT or
) \ SMT
mode \ solvers
Z SAT or
Access 4
control - \ o ?(I)\I/I\;rers

What is the secret sauce?

Automated bug finding is hard

 Itis hard because software systems are too complex

* |In order to make automated bug finding feasible
— we need to focus our attention

What is the secret sauce?

« We focus our attention by
— Abstraction

» Hide details that do not involve the things we are
checking

— Modularity

* We focus on one part of the system at a time
— Separation of concerns

* We focus on one property at a time

|t turns out these are also the main principles of software
design

— We exploit the design structure in automated
verification!

Separation of concerns

* First, we need to identify our concerns

— What should we be concerned with if we want to
eliminate the bugs in web applications

 We discussed three separate concerns:
— Input validation

 Errors in input validation are a major cause of
security vulnerabilities

— Access control

« Many applications unintentionally disclose users’
data

— Data model

* Integrity of the data model is essential for
correctness of all applications

What is the secret sauce?

Three step process

1.Using modularity, separation of concerns and abstraction
principles, generate a model of the code for analysis

— For example: Extract the input validation code from
the application

2.Translate analysis questions about the extracted model to
logic queries
— For example: Convert questions about input validation
vulnerabilities to questions about string constraints

3.Use a logic solver to answer the query

— For example: Use a string constraint solver to find
bugs in the input validation code

Three Applications

Input
validation

Data
model

Access
control

Separation of concerns
+ modularity
+ abstraction

&

S

S

String +
numeric
constraint
solver

SAT or
SMT
solvers

SAT or
SMT
solvers

Coda: Elephant in the Room

N e —

| ——

Type of Human Intelligence

According to Nobel laureate Daniel Kahneman human
intelligence has two separate components:

— System 1: fast, instinctive and emotional
You use System 1
when you are driving on an empty road
when you answer the question 2+2=7

— System 2: slower, more deliberative and more logical
You use System 2
when you compare two laptops based on their
price/quality ratio
when you answer the question 17*24="

Types of Artificial Intelligence

« Artificial intelligence has also two types
— Type 1: Techniques based on machine learning

— Type 2: Techniques that are based on automated logic
reasoning

| believe that the future of computing will heavily depend on
both types of artificial intelligence

* Type 2 techniques are especially necessary for providing
guarantees

Conclusions

Software dependability is a crucial problem for future of
human civilization!

We will need both Type 1 Artificial Intelligence (Machine
Learning) and Type 2 Artificial Intelligence (Automated
Logic Reasoning) for achieving software dependability

Using automated techniques that rely on automated logic
solvers we can find and remove errors applications before
they are deployed

In order to develop feasible and scalable techniques we
need to exploit the architecture of the software and the
principles of modularity, abstraction and separation of
concerns

THE END

