Software Architecture:
The Dismal Science

Eric M. Dashofy

Principal Director, Development
Enterprise Information Services
The Aerospace Corporation

Software Architecture: The Dismal Science

What is Software Architecture?

e A software system’s architecture is the set of principal
design decisions about a system
Implications:

e Every system has an architecture (but not all architectures
are equally good)

e Some decisions are more important than others

Have broader or deeper effects on the properties of the
resultant system

e Stakeholders decide which decisions are “architectural”
What is “architectural” for one system may not be for another

Software Architecture: The Dismal Science

Why so dismal?

e Good news: we can build more powerful software than ever!
e Bad news:

Trends in software engineering are eroding the abilities/
opportunities to make and enforce principal design decisions
e Many of the principal design decisions about your systems
are being made by not-you
By people who don’t know you. Or like you.
e Abstraction layers are leaking and affecting software design

Abstraction is a key method for architects to maintain
intellectual control

Software Architecture: The Dismal Science

A Rational

Design Process

e Identify key stakeholders

e Agree on most

important functional, non-functional

requirements (-ilities)
e Choose an architectural style (set of high-level design

rules) that will
e Identify a deve
e Select (or deve

nelp you achieve those —ilities
opment and deployment platform

op, or enhance) architectural framework

to bridge gap between style rules and platform
e Iterate through requirements refinement, design

refinement, implementation, testing

Software Architecture: The Dismal Science

Challenging Trends

e Frameworkapalooza

Increasing reliance on frameworks, coarse-grained
software components and services

e Domain-specific megaplatforms
Is this even software engineering?
e Agile methods

Encourage deferring commitment to the ‘last
responsible moment’

e Leaking abstractions
DevOps and Microservices and Accelerators, oh my!

Software Architecture: The Dismal Science

The Actual Design Process

e 10 Identify some stakeholders

e 20 Mock up UI in Balsamiq

e 30 Pick a hot framework that your developers will use
35 So Angular]S

e 40 Pick 2-3 other hot frameworks that do the stuff your primary
framework won't

45 So Bootstrap and maybe jQuery
e 50 Put user stories in JIRA

e 060 Pick about 2 weeks worth of user stories off the front of the
queue

e /0 SPRINT SPRINT SPRINT
e 30 GOTO 60

Software Architecture: The Dismal Science

Frameworkapalooza

METE \RE Q@ spring
N MNE'fIt' gNGULARJS QNG“LARB’W

e 7END
EBootstrap L= FRavework

ons_ [qurBOGEARS R == | .45
\\L/l NelBea“s?echpse xna Yaml- RIIILS

Software Architecture: The Dismal Science

Middleware and Frameworks

e Software between your application and your underlying
programming language/operating system to provide
desirable services that are not provided by your PL/OS

Related: Platform, “Stack”

e Why middleware?

To make common but awkward or inelegant programming tasks
easier

To provide selected desirable services

To (help) enforce architectural rules or constraints that elicit
known benefits

Because some people really want to write one language in a
different language

Software Architecture: The Dismal Science

Relationship between frameworks/
middleware and architecture

e Middleware/frameworks induce an architectural style (Di Nitto and
Rosenblum)

Sometimes intentionally, sometimes accidentally

e Architecture frameworks (mostly from research community) start
from styles and then implement the style decisions

Most frameworks start from services and style decisions are a
side effect

...but these are few and far between

e Point is: your framework designer makes a key set of principal
design decisions for you without your help

Software Architecture: The Dismal Science

Key Issues

e Framework selection occurs very early in development, often before
you have a chance to really understand your system’s functional &
design requirements

Once you choose a framework, changing is prohibitively
expensive

e Extrinsic factors (adoption, sustainability) strongly affect framework
choice

e Framework mismatch with your intended architecture or top-level
quality goals

e Attempt to integrate multiple conflicting frameworks

e Attempt to integrate components and services built for a different
framework (or none at all)

Software Architecture: The Dismal Science

B

So what can you do?

Bad Ideas Kinda Depends Good Ideas
E |
il Build @ mini-
Fight your one NS LS EEEL: framework Choose
Framework EINELEEE your your own your on your Carefull
in Framework Framework Fate y y

frameworks

another

Software Architecture: The Dismal Science

Domain-Specific Megaplatforms

=
@> sharcpoint mm ¢ |LOTUS SENotes

& eclipse servicenow W m

s)lcjbrce ,
sforce.com

® bizag

Model = Build = Run
outsystems’
-

S 14 "AGILEPOINT
endix "IN Appian

o CASPI0:;

Software Architecture: The Dismal Science

Megaplatforms and Software
Architecture

e Software built on megaplatforms

Has the same lifecycle needs as traditional software
(requirements, design, implementation, testing,
maintenance)

Is built around first-class domain objects

e Example, for business apps: forms, tables, reports,
workflows, external data integrations

Is often implemented by configuration and code

Can (sometimes) be done significantly faster than “on
the metal” coding (even with frameworks)

Software Architecture: The Dismal Science

Key Issues

e All the key issues you have with frameworks, but worse
Licensing, lock-in issues more prevalent
e Big steps backward in support for SDLC processes

Configuration management, deployment, testing, integrated
development environments...

Developers in these environments often have no/little SE
background

e Integration with software outside the megaplatform environment
e Cloud vs. on-premises tradeoffs

Security, performance, accessibility of internal network
resources...

Software Architecture: The Dismal Science

So what can you do?

Bad Ideas Kinda Depends Good Ideas
N |
Build Find third-party Choose
. development
Fight your iAghr support add-ons Carefully
Platform own Establish
megaplatform W
Build your coding
conventions

own development
support add-ons

across apps

Adapt good
SDLC practices
to the platform

Software Architecture: The Dismal Science

Agile Methods

.. . Scrum XProgfammlng

KAN BAN

Software Architecture: The Dismal Science

Agile Development and Software
Architecture

e Common threads in agile development
Dynamic backlog of features to implement

e Short development cycles with demonstrable
delivered value/functionality at end of each cycle

Deferred decision making “until last responsible
moment” (point where cost of not making decision
exceeds the cost of making it)

e Local vs. global decision making

e YAGNI principle
e Designs as emergent rather than constructed
Continuous refactoring

Software Architecture: The Dismal Science

Key Issues

e Easy for top-level designs to get lost (or top-level
decisions not made at all)

e Focus on local decision making can lead to architectures
that are agglomerations instead of cohesive wholes

Possible missed opportunities for abstraction if you're
not careful

High-level qualities/-ilities might get lost or difficult to |
imbue into the product

e Skimping on any part of agile tends to make other parts
dangerous

Software Architecture: The Dismal Science

So what can you do?

Bad Ideas Kinda Depends Good Ideas
N 2 |
YAGNI Adapt agile Add up-front Continuous
without processes to design to refactoring to
refactoring incorporate agile processes ~ Maintain conceptual
traditional Integrity
design steps End-to-end
integration

testing

Software Architecture: The Dismal Science

Leaking Abstractions

&> docker W VAGRANT @) kubernetes
572 MESOSPHERE O 0

OPENSHIFT openstack °

Core OS

L PHOTONOS) ROCKEL 15 6 ey e

IIIIIIIIII

en

Project

< NVIDIA. AMDx

Software Architecture: The Dismal Science

Leaking Abstractions

e Physical architecture influence over logical architecture is
Increasing

Virtualization > DevOps - Containers -
Microservices

e DevOps technologies are influencing

Specialized hardware (e.g., GPUs, other accelerators)

require tighter connection between software and
hardware

Software Architecture: The Dismal Science

Key Issues

e Some —ilities can be addressed at new layers

E.g., reliability, performance through high-availability
and load balancing at the container level

e Virtualization or containerization of legacy applications
Implications not always easy to understand

e Usual issues with emerging technology issues
These will likely settle out over time

e Conflict between virtualization and accelerator
technologies

Software Architecture: The Dismal Science

So what can you do?

Bad Ideas Kinda Depends Good Ideas
N 2 i
Ignore Refactor Refactor Get Dev and Ops
trends; Legacy apps legacy apps People Together
hope they to containers or to virtualize
go away microservices Understand
deployment
technology

early

Software Architecture: The Dismal Science

Takeaways

e Architecture remains important, but top-down
architecture may diminish

Architecture “in the large” = “in the small”
Architecture prescriptions - emergent architecture
Maintain architectural quality through

e Conceptual integrity

e Continuous refactoring

e Applying best practices even when the support is
lacking

Software Architecture: The Dismal Science

B

Disclaimers

e The trademarks, service marks and trade names
contained herein are the property of their respective
OWNers.

