
Software Architecture:
The Dismal Science

Eric M. Dashofy
Principal Director, Development
Enterprise Information Services

The Aerospace Corporation

Software Architecture: The Dismal Science

What is Software Architecture?

l  A software system’s architecture is the set of principal
design decisions about a system
◆  Implications:

l  Every system has an architecture (but not all architectures
are equally good)

l  Some decisions are more important than others
u  Have broader or deeper effects on the properties of the

resultant system

l  Stakeholders decide which decisions are “architectural”
u  What is “architectural” for one system may not be for another

Software Architecture: The Dismal Science

Why so dismal?

l  Good news: we can build more powerful software than ever!
l  Bad news:

◆  Trends in software engineering are eroding the abilities/
opportunities to make and enforce principal design decisions
l  Many of the principal design decisions about your systems

are being made by not-you
u  By people who don’t know you. Or like you.

l  Abstraction layers are leaking and affecting software design
u  Abstraction is a key method for architects to maintain

intellectual control

Software Architecture: The Dismal Science

A Rational Design Process

l  Identify key stakeholders
l  Agree on most important functional, non-functional

requirements (-ilities)
l  Choose an architectural style (set of high-level design

rules) that will help you achieve those –ilities
l  Identify a development and deployment platform
l  Select (or develop, or enhance) architectural framework

to bridge gap between style rules and platform
l  Iterate through requirements refinement, design

refinement, implementation, testing

Software Architecture: The Dismal Science

Challenging Trends

l  Frameworkapalooza
◆  Increasing reliance on frameworks, coarse-grained

software components and services
l  Domain-specific megaplatforms

◆  Is this even software engineering?
l  Agile methods

◆  Encourage deferring commitment to the ‘last
responsible moment’

l  Leaking abstractions
◆  DevOps and Microservices and Accelerators, oh my!

Software Architecture: The Dismal Science

The Actual Design Process

l  10 Identify some stakeholders
l  20 Mock up UI in Balsamiq
l  30 Pick a hot framework that your developers will use

◆  35 So AngularJS
l  40 Pick 2-3 other hot frameworks that do the stuff your primary

framework won’t
◆  45 So Bootstrap and maybe jQuery

l  50 Put user stories in JIRA
l  60 Pick about 2 weeks worth of user stories off the front of the

queue
l  70 SPRINT SPRINT SPRINT
l  80 GOTO 60

Software Architecture: The Dismal Science

Frameworkapalooza

Software Architecture: The Dismal Science

Middleware and Frameworks

l  Software between your application and your underlying
programming language/operating system to provide
desirable services that are not provided by your PL/OS
◆  Related: Platform, “Stack”

l  Why middleware?
◆  To make common but awkward or inelegant programming tasks

easier
◆  To provide selected desirable services
◆  To (help) enforce architectural rules or constraints that elicit

known benefits
◆  Because some people really want to write one language in a

different language

Software Architecture: The Dismal Science

Relationship between frameworks/
middleware and architecture

l  Middleware/frameworks induce an architectural style (Di Nitto and
Rosenblum)
◆  Sometimes intentionally, sometimes accidentally

l  Architecture frameworks (mostly from research community) start
from styles and then implement the style decisions
◆  Most frameworks start from services and style decisions are a

side effect
◆  …but these are few and far between

l  Point is: your framework designer makes a key set of principal
design decisions for you without your help

Software Architecture: The Dismal Science

Key issues

l  Framework selection occurs very early in development, often before
you have a chance to really understand your system’s functional &
design requirements
◆  Once you choose a framework, changing is prohibitively

expensive
l  Extrinsic factors (adoption, sustainability) strongly affect framework

choice
l  Framework mismatch with your intended architecture or top-level

quality goals
l  Attempt to integrate multiple conflicting frameworks
l  Attempt to integrate components and services built for a different

framework (or none at all)

Software Architecture: The Dismal Science

So what can you do?

Bad Ideas Good Ideas

Fight your
Framework

Choose
Carefully

Build a mini-
framework

on your
frameworks

Accept
your
Fate

Rewrite
your

Framework

Write
your own

Framework

Write
one

language
in

another

Kinda Depends

Software Architecture: The Dismal Science

Domain-Specific Megaplatforms

Software Architecture: The Dismal Science

Megaplatforms and Software
Architecture
l  Software built on megaplatforms

◆  Has the same lifecycle needs as traditional software
(requirements, design, implementation, testing,
maintenance)

◆  Is built around first-class domain objects
l Example, for business apps: forms, tables, reports,

workflows, external data integrations
◆  Is often implemented by configuration and code
◆  Can (sometimes) be done significantly faster than “on

the metal” coding (even with frameworks)

Software Architecture: The Dismal Science

Key issues

l  All the key issues you have with frameworks, but worse
◆  Licensing, lock-in issues more prevalent

l  Big steps backward in support for SDLC processes
◆  Configuration management, deployment, testing, integrated

development environments…
◆  Developers in these environments often have no/little SE

background
l  Integration with software outside the megaplatform environment
l  Cloud vs. on-premises tradeoffs

◆  Security, performance, accessibility of internal network
resources…

Software Architecture: The Dismal Science

So what can you do?

Bad Ideas Good Ideas

Fight your
Platform

Choose
Carefully

Establish
“coding”

conventions
across apps

Build your
own development
support add-ons

Find third-party
development

support add-ons

Build
your
own

megaplatform

Kinda Depends

Adapt good
SDLC practices
to the platform

Software Architecture: The Dismal Science

Agile Methods

Software Architecture: The Dismal Science

Agile Development and Software
Architecture
l  Common threads in agile development

◆  Dynamic backlog of features to implement
l Short development cycles with demonstrable

delivered value/functionality at end of each cycle
◆  Deferred decision making “until last responsible

moment” (point where cost of not making decision
exceeds the cost of making it)
l Local vs. global decision making
l YAGNI principle
l Designs as emergent rather than constructed

◆  Continuous refactoring

Software Architecture: The Dismal Science

Key Issues

l  Easy for top-level designs to get lost (or top-level
decisions not made at all)

l  Focus on local decision making can lead to architectures
that are agglomerations instead of cohesive wholes
◆  Possible missed opportunities for abstraction if you’re

not careful
◆  High-level qualities/-ilities might get lost or difficult to

imbue into the product
l  Skimping on any part of agile tends to make other parts

dangerous

Software Architecture: The Dismal Science

So what can you do?

Bad Ideas Good Ideas

Add up-front
design to

agile processes

End-to-end
integration

testing

Kinda Depends

YAGNI
without

refactoring

Continuous
refactoring to

maintain conceptual
integrity

Adapt agile
processes to
incorporate
traditional

design steps

Software Architecture: The Dismal Science

Leaking Abstractions

Software Architecture: The Dismal Science

Leaking Abstractions

l  Physical architecture influence over logical architecture is
increasing
◆  Virtualization à DevOps à Containers à

Microservices
l DevOps technologies are influencing

◆  Specialized hardware (e.g., GPUs, other accelerators)
require tighter connection between software and
hardware

Software Architecture: The Dismal Science

Key Issues

l  Some –ilities can be addressed at new layers
◆  E.g., reliability, performance through high-availability

and load balancing at the container level
l  Virtualization or containerization of legacy applications

◆  Implications not always easy to understand
l  Usual issues with emerging technology issues

◆  These will likely settle out over time
l  Conflict between virtualization and accelerator

technologies

Software Architecture: The Dismal Science

So what can you do?

Bad Ideas Good Ideas

Refactor
Legacy apps

to containers or
microservices Understand

deployment
technology

early

Kinda Depends

Ignore
trends;

hope they
go away

Get Dev and Ops
People Together

Refactor
legacy apps
to virtualize

Software Architecture: The Dismal Science

Takeaways

l  Architecture remains important, but top-down
architecture may diminish
◆  Architecture “in the large” à “in the small”
◆  Architecture prescriptions à emergent architecture
◆  Maintain architectural quality through

l Conceptual integrity
l Continuous refactoring
l Applying best practices even when the support is

lacking

Software Architecture: The Dismal Science

Disclaimers

l  The trademarks, service marks and trade names
contained herein are the property of their respective
owners.

