Cross-situational personality consistency has been of interest in social psychology since the 1960s. With the advent of the Internet, a new range of “situations” has been presented for investigating human behavior in online environments.
DELDroid is an automated system for determination of least privilege architecture in Android and its enforcement at runtime. A key contribution of our approach is the ability to limit the privileges granted to apps without the need to modify them.
DELDroid utilizes static program analysis techniques to extract the exact privileges each component needs for providing its functionality. A Multiple-Domain Matrix representation of the system's architecture is then used to automatically analyze the security posture of the system and derive its least-privilege architecture.
We developed a token-based approach for large scale code clone detection which is based on a filtering heuristic that reduces the number of token comparisons when the two code blocks are compared. We also developed a MapReduce based parallel algorithm that uses the filtering heuristic and scales to thousands of projects. The filtering heuristic is generic and can also be used in conjunction with other token-based approaches. In that context, we demonstrated how it can increase the retrieval speed and decrease the memory usage of the index-based approaches.
The rising popularity of mobile apps deployed on battery-constrained devices has motivated the need for effective energy-aware testing techniques. Energy testing is generally more labor intensive and expensive than functional testing, as tests need to be executed in the deployment environment, specialized equipment needs to be used to collect energy measurements, etc. Currently, there is a dearth of automatic mobile testing techniques that consider energy as a program property of interest.
COVERT is a tool for compositional verification of Android inter-application vulnerabilities. It automatically identifies vulnerabilities that occur due to the interaction of apps comprising a system. Subsequently, it determines whether it is safe for a bundle of apps, requiring certain permissions and potentially interacting with each other, to be installed together.
In addition to the dynamic nature of software while executing, this dynamism extends to the evolution of the software's code itself. The software's evolution is often captured in its entirety by revision-control systems (such as CVS, Subversion, and Git). By utilizing this rich artifact, as well as other historical artifacts (e.g., bug-tracking systems and mailing lists), we can offer a number of techniques for recommending future actions to developers.
Although a wide variety of approaches identify vulnerabilities in Android apps, none attempt to determine exploitability of those vulnerabilities. Exploitability can aid in reducing false positives of vulnerability analysis, and can help engineers triage bugs. Specifically, one of the main attack vectors of Android apps is their inter-component communication (ICC) interface, where apps may receive messages called Intents.