To enable much of our research to enable program understanding, software quality, and maintenance, we utilize and develop analyses of program code. These analyses model the flows of information through the logic of programs and systems. With these analysis models enable automated techniques to assist development and maintenance tasks.
Microtask crowdsourcing systems such as FoldIt and ESP partition work into short, self-contained microtasks, reducing barriers to contribute, increasing parallelism, and reducing the time to complete work. Could this model be applied to software development? To explore this question, we are designing a development process and cloud-based IDE for crowd development.
The number of malicious Android apps is increasing rapidly. Android malware can damage or alter other files or settings, install additional applications, etc. To determine such behaviors, a security analyst can significantly benefit from identifying the family to which an Android malware belongs, rather than only detecting if an app is malicious. Techniques for detecting Android malware, and determining their families, lack the ability to handle certain obfuscations that aim to thwart detection.
The broad goal of this project is to understand how to combine sustainability knowledge with information and communication technology (ICT) in creating sustainable communities. The Transition Movement is a global social experiment aiming to promote sustainable living and build ecological resilience in the near future at local levels. The Transition movement began in 2005 in Totnes, UK, a market town in South Devon. Today there are about 1000 registered Transition towns in 34 countries.
In order to produce effective fault-localization, debugging, failure-clustering, and test-suite maintenance techniques, researchers would benefit from a deeper understanding of how faults (i.e., bugs) behave and interact with each other. Some faults, even if executed, may or may not propagate to the output, and even still may or may not influence the output in a way to cause failure. Furthermore, in the presence of multiple faults, faults may interact in a way to obscure each other or in a way to produce behavior not seen in their isolation.
This research focuses on techniques for identifying and reducing the costs, streamlining the process, and improving the readiness of future workforce for the acquisition of complex software systems. Emphasis is directed at identifying, tracking, and analyzing software component costs and cost reduction opportunities within acquisition life cycle of open architecture (OA) systems, where such systems combine best-of-breed software components and software products lines (SPLs) that are subject to different intellectual property (IP) license requirements.
The fantasy genre has captivated our attention in popular media for decades, providing us with inspiring imagery of valiant fighters and enchanting spell casters. Guild Wars 2, a massively multiplayer online game (MMO), introduces a range of races and characters not found in the traditional fantasy genre. When first experiencing a new fantasy world, does knowledge and information gained from previously consumed media influence players’ interpretations of new fantasy environments?
We developed a fault-localization technique that utilized correlation-based heuristics. The technique and tool was called Tarantula. Tarantula uses the pass/fail statuses of test cases and the events that occurred during execution of each test case to offer the developer recommendations of what may be the faults that are causing test-case failures. The intuition of the approach is to find correlations between execution events and test-case outcomes --- those events that correlate most highly with failure are suggested as places to begin investigation.