This research addresses challenges in understanding and developing lightweight, Web-based informal music education environments that bring the complexity and joy of orchestral music to diverse audiences. The challenges span from providing awareness and appreciation of different classical music genres through creation of multi-instrument musical compositions, in ways that are fun and interactive.
Sustainability has become a pressing concern, especially given the looming effects of climate change. Sustainable development aims to meet current needs while ensuring sustainability of natural systems and the environment so as to not compromise the ability of future generations to meet their own needs. Current software engineering methods, however, do not explicitly support sustainability or sustainable development.
In the era of big data and personalization, websites and (mobile) applications collect an increasingly large amount of personal information about their users. The large majority of users decide to disclose some but not all information that is requested from them. They trade off the anticipated benefits with the privacy risks of disclosure, a decision process that has been dubbed privacy calculus. Such decisions are inherently difficult though, because they may have uncertain repercussions later on that are difficult to weigh against the (possibly immediate) gratification of disclosure. How can we help users to balance the benefits and risks of information disclosure in a user-friendly manner, so that they can make good privacy decisions?
Computer games may well be the quintessential domain for software engineering R&D. Why? Modern multi-player online games (MMOG) must address core issues in just about every major area of Computer Science and SE research and education.
Research shows that sharing one’s location can help people stay connected, coordinate daily activities, and provide a sense of comfort and safety [1]. Recently, smartphones and location-based services (LBS) have become widely available in developed countries [7], but only a small percentage of smartphone users have ever tried sharing location with other people [8]. Our work aims to understand real-world factors shaping behaviors and attitudes towards social location-sharing, especially in regards to why people avoid or abandon the technology, or limit their usage.
One of the many challenges of software development and maintenance is the need to collaborate among many constituents and stakeholders. For example, clients interact with software development organizations; software-development organizations consist of many developers and maintainers within the same location and across different locations; and the development organization often outsources some of the testing efforts to independent test agencies. Each of these parties may reside in different locations, often across many very disparate time zones.
When there is a major environmental disruption such as a natural disaster or war, it is not only the technical infrastructure that needs to be repaired but also the human infrastructure. I am currently studying collaboration resilience-the extent to which people continue to work and socialize despite such a disruption. In this project we are examining the role that information technology plays in helping people repair their human infrastructure.
This research focuses on techniques for identifying and reducing the costs, streamlining the process, and improving the readiness of future workforce for the acquisition of complex software systems. Emphasis is directed at identifying, tracking, and analyzing software component costs and cost reduction opportunities within acquisition life cycle of open architecture (OA) systems, where such systems combine best-of-breed software components and software products lines (SPLs) that are subject to different intellectual property (IP) license requirements.