Centralize or Decentralize? A Requirements Engineering
Per spective on I nternet-Scale Ar chitectures

EricYu
University of Toronto
http://www.fis.utoronto.cal~yu

Large-scde systems are hard to design because of tensions among many interacting forces. For
example, in considering whether to centraize or decentralize afunction or resource, the designer
has to make tough tradeoffs among competing requirements guch as performance, cost, usability,
reliability, security, time-to-market, maintainability, evolvability, etc. In the aea of
Reguirements Engineering, techniques have been developed to support the managing of large
numbers of requirements (functional and non-functional), detecting and analyzing their
interactions, using requirements to guide the exploration, puning and evaluation of design
aternatives, andto support change. Such techniques typically emphasize the neea to find suitable
ways to represent knowledge, and to huild tools that manipulate that knowledge in support of
human design adivities [MBY97]. A knowledge-based approach to software engineering thus
may include the foll owing comporents:

1. arepresentationa framework (notations, models, languages, orntologies) that is expressive
enough to deal with the subjed matter: domain concepts, requirements, elaboration steps,
design tedniques, design configurations, design steps and pocess, aternatives,
relationships, etc.,

2. analysis and design techniques that make use of the semantics of the modelling constructs to
suppat the engineering activities, e.g., andyzing interadions among requirements,
generating design options, evaluating implications of design aternatives, etc.,

3. collections of reusable knowledge (knowledge bases), ranging from case studies to generic
knowledge such as common types of requirements and their possible elaboration, design
principles, methods, rules, techniques, patterns of solutions to common design problems,
architedures, frameworks, etc.,

4. methoddogies for guiding the use of the gproach, models, principles, techniques, etc., in
various sttings, and

5. tods which makes use of the structure and semantics of the knowledge to automate some
aspects of the engineering activities, e.g., visudization, animation, smulation, verification,
suppat for reasoning (e.g., quelitative, quantitative, case-based, etc.), and basic management
facilities (maintaining design history, traceability, navigation, qlery, retrieval, version and
change management, etc.).

The NFR framework [MCY99] [CNYM 00], for example, treats nonfunctional requirements
such as performance, reliability, usability, etc. as goals applied to various aspects of a system.
These aeto beincrementally elaborated and refined urtil specific techniques for addressing them
are identified. Each potentia solution or refinement may have implicdions for other
requirements. The conflicts and synergies may be detected via aknowledge base of correlations.
The designer makes dedsions by evaluating the tradeoffs among competing (and complementary)
goals. The process involves the mnstruction d a graph representing the design space. The
elaboration, pruning, and evaluation d the graph is guided by previoudy acamulated reusable
knowledge as well as case-spedfic judgements [CY 98].



Considerations to centralize or to deceitralize may come up at various points in the design
process and when considering different aspects of the system. From the viewpoint of a
systematic, knowledge-based, requirements-driven approach to design, centraization and
decantralization would refer to broad classes of design techniques or design patterns that have
been invented over the yeas in a number of design areas. Thus the entralize/decentralize
gquestion may arise when considering transaction pocessing, long-term storage, system
avail ability, security, or management functions. Specific techniques for addressing performance,
seaurity, reliability, etc. may have dasses of solutions that are ceitraized or decantralized. For
example, replication for speed of global access distributed data close to source or user for local
processing nedals, redundancy for reliability, centralized management to reduce management
costs, single database to avoid inconsistencies, fewer sites to reduce seaurity expasures, etc. Each
of these techniques tends to addressone primary requirement, but typicdly have impads on other
requirements. A systematic gpproach therefore allows these complex interacting isaues to be
discerned, clarified, and analyzed.

The centralizatiorn/decentralization question typicaly arises within the cntext of many other
patential techniques which may be or need to be used in conjunction, e.g., interface and protocol
adoption or design, agorithms, database design, data integration issues, etc. Also, the
centrali zation/decentrali zation question may arise at each of many layers in the achitecture. A
systematic design processthat keeps track of all these steps and linkages can provide traceability
and revision support through the proper tools.

In most systems, requirements come from many quarters — various kinds of users, operations
personnel and management in the user organization, and developers, product managers, project
managers, quality assurance marketing, etc., in the development organizaion. Tradeoffs among
competing requirements are therefore not among requirements as abstract impersonal goals, but
as omewhat negotiable stakes among stakehaders [BI96]. Organizational isaues therefore dfect
technical decisions in significant ways, resulting in architectures that reflect some apects of
organizational structure.

In Internet-based applicdions, the organizational factors are likely to be more pronourced since

there may be many distinct econamic and legal entities involved in the development, use, and

management of the system, al with their distinct interests. The centralize-or-decentralize

guestion arises at many levels not only because of the inherently distributed nature of the Internet,

but also because there can be many ways of dividing up the scope of control at various levels.

Some of these divisions include:

- administrative and management domains

- trust domains, from the viewpoint of each stakeholder or clases of stakehdders, eg.,
application poviders, network providers, user organizations, end-users, intermediaries, etc.

- developer domains— dvisions of responsibility in the development organization(s)

- ownership danains

- operations management domains — e.g., failure recovery, performance optimization, load
balancing, etc.

- subsystems, comporents, modues at various levelsin the technicd architecture.

These different ways of dividing up the scope of control may intersect in different ways too. For
example, the trust domains may coincide with administrative domains, ownership damains may
overlap with design damains, etc. Sometimes these dignments are by design, aher times they
areincidental. In any case, the alignments may be imperfed and may drift over time.



Eacdh scope of control entails some localized tradeoffs among competing goals relevant to that
domain (both a development time and during operations) as well as negotiations across domain

SCOpES.

The systematic, goal-oriented modelling and support of the design process discussed above (e.g.,
as offered in [CNYMOQ] and [BI96]) therefore need to be extended to explicitly dea with the
complexity of “organizaional issues’ arising from the many different ways in which stakeholder
interests arise, how they are resolved and manifested in architectures and designs, and how they
evolve over time.

Thei* framework [Yu95 introduces the intentional actor as a modelling abstraction to deal with
locality and distribution at an intentional level (i* stands for distributed intentiondity). Actors are
intentional in that they have goals, beliefs, abilities, commitments, and so on,and relate to each
other in terms of these intentional properties. Actors depend oneah aher for goals to be
achieved, tasks to be performed, and resources to be furnished. While each actor isfreeto pusue
its interests autonomoudly, it must also consider the consequences of its decisions and actions
because of its relationships with other actors.

The ddliberations of each actor is modelled in a similar fashion as in the graph structure of the
NFR framework (the Strategic Rationale model in i*). However, the design spaceis now carved
up into many locdized spaces. The intentional relationships among adors define the interfaces
among the localized spaces (the Strategic Dependency model in i*). Actors have limited
knowledge &ou theinterna rationales of other actors.

Moddling intentional relationships among adors and their rationales offers a higher level
description of complex distributed architectures. Conventional architedural descriptions
typically model nonintentional aspects such as data and control flows and interfaces. Intentional
models explicitly portray the kinds of design freedoms that each architectural unit has, how these
freedoms are exercised during design to mee competing demands, and hav the freedomsin ore
unit impinge on the freedoms of other units. Design alternatives can be analyzed in terms of what
design freedoms are alocated to which architedural units, and the @nsequences of such
alocations. Explicit representation o design goals al ows means-ends analysis and exploration
of dternatives.

Thei* framework was originaly developed to model primarily human organizationa isaues (e.g.,
as they arise in business process modelling [YML96] or enterprise modelling [Yu99). It is
currently being extended to model technical system architectures [CGY99][GY00]. The
intentional level of modelling off ers a good common framework for understanding and analyzing
the interactions among human organizational issues and technical system design issues, as is
especialy needed in Internet-scde applications. Research challenges exist in each o the five
areas.

- representation: What modelling constructs are gopropriate for describing architedures at
an intentional level?

- analysis and design: What computational tedhniques are avail able for supporting the
exploration and evaluation of intentional descriptions of architectures?

- collections of reusable design knowledge: What are the avail able bodies of knowledge to
suppat this area of design, and hav can they be ercoded to take alvantage of tool
suppat?

- methoddogies: How can these models and techniques be used in practical settings?



- tods. What computational environments and infrastructures are needed to make the
approad effective?

The TWIST 2000[TWIST00] workshop theme raises good oppaetunities for testing and further
developing this approach and framework. Many current Internet-based systems are hastily
constructed using ad hac gproadies and tedhniques, in order to med tight time-to-market
requirements. These systems risk bemming legacy systems, as market, technology, and
personnd shifts continue at rapid rates. The requirements-oriented, knowledge-based approach
will hopefully provide a more systematic way to support the development and evolution o
Internet-scae systems.

References

[BI196] B. Boehm and H. In. Identifying Conflicts Among Quality Requirements. Proceedings of
the Second International Conference on Requirements Engineering. (ICRE'96) Los Alamitos,
Cdlif.: IEEE Computer Society Press Also appeared in |EEE Software (March 1996).

[CNYMOQ] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, 2000.

[CGY99 L. Chung, D. Gross, E. Yu. Architectura Design to Med Stakehoder Requirements.
Software Architecture, Patrick Donohte, ed., Kluwer Academic Publishers. 1999. pp.545
564. (TC2 First Working IFIP Conference on Software Architecture (WICSAL), 22-24
February 1999,San Antonio, Texas, USA.)

[CYQ9§] L. Chung and E. Yu. Achieving System-Wide Architectura Qualities. OMG-DARPA-
MCC Workshop on Compositional Software Architectures, Janurary 6-8, 1998, Monterey,
Cdlifornia.

[GYOQ] D. Grossand E. Yu. From Non-Functional Requirements to Design through Patterns.
Proceedings of the 6th International Workshop on Requirements Engineering: Foundations
for Software Quality (REFSQ 2000). June 5-6, 2000, Sockholm, Sveden.

[MBY97] J. Mylopoulos, A. Borgida, and E. Yu. Representing Software Engineeaing
Knowledge. Automated Software Engineering, Kluwer Academic Publishers, 4(3): 291-317.
July 1997.

[MCY99] J. Mylopoulos, L. Churg, and E. Yu. From Object-Oriented to Goal-Oriented
Requirements Anaysis. Communications of the ACM, 42(1): 31-37, January 1999.

[TWISTOO] The Workshop on Internet-scde Software Technologies — Organizational and
Technical Iswes in the Tension Between Centralized and Decentralized Applicaions on the
Internet (TWIST 2000), July 13-14, 2000. University of California, Irvine, Irvine, California,
USA. Cdl for participation. http://www.isr.uci.eduevents/twist/twist2000/ Last viewed May
15, 2000.

[Yu9g E. Yu. Modelling Strategic Relationships for Process Reengineering. Ph.D. Thesis. Dept.
of Comp. Sci., University of Toronto. 1995.

[Yu99 E. Yu. Strategic Modelling for Enterprise Integration. Proceedings of the 14th World
Congress of International Federation of Automatic Control (IFAC'99), July 5-9, 1999,
Beijing, China. pp.127132 Permagon, Elsevier Science.

[YMLY96] E. Yu, J Mylopaulos and Y. Lespérance Al Models for Business Process
Reengineering. |EEE Expert: Intelligent Systems and Their Applications, August 1996,pp. 16
23.



