
1

Centralize or Decentralize? A Requirements Engineering
Perspective on Internet-Scale Architectures

Eric Yu
University of Toronto

http://www.fis.utoronto.ca/~yu

Large-scale systems are hard to design because of tensions among many interacting forces. For
example, in considering whether to centralize or decentralize a function or resource, the designer
has to make tough tradeoffs among competing requirements such as performance, cost, usability,
reliability, security, time-to-market, maintainability, evolvability, etc. In the area of
Requirements Engineering, techniques have been developed to support the managing of large
numbers of requirements (functional and non-functional), detecting and analyzing their
interactions, using requirements to guide the exploration, pruning and evaluation of design
alternatives, and to support change. Such techniques typically emphasize the need to find suitable
ways to represent knowledge, and to build tools that manipulate that knowledge in support of
human design activities [MBY97]. A knowledge-based approach to software engineering thus
may include the following components:

1. a representational framework (notations, models, languages, ontologies) that is expressive
enough to deal with the subject matter: domain concepts, requirements, elaboration steps,
design techniques, design configurations, design steps and process, alternatives,
relationships, etc.,

2. analysis and design techniques that make use of the semantics of the modelling constructs to
support the engineering activities, e.g., analyzing interactions among requirements,
generating design options, evaluating implications of design alternatives, etc.,

3. collections of reusable knowledge (knowledge bases), ranging from case studies to generic
knowledge such as common types of requirements and their possible elaboration, design
principles, methods, rules, techniques, patterns of solutions to common design problems,
architectures, frameworks, etc.,

4. methodologies for guiding the use of the approach, models, principles, techniques, etc., in
various settings, and

5. tools which makes use of the structure and semantics of the knowledge to automate some
aspects of the engineering activities, e.g., visualization, animation, simulation, verification,
support for reasoning (e.g., qualitative, quantitative, case-based, etc.), and basic management
facilities (maintaining design history, traceability, navigation, query, retrieval, version and
change management, etc.).

The NFR framework [MCY99] [CNYM 00], for example, treats non-functional requirements
such as performance, reliabil ity, usability, etc. as goals applied to various aspects of a system.
These are to be incrementally elaborated and refined until specific techniques for addressing them
are identified. Each potential solution or refinement may have implications for other
requirements. The conflicts and synergies may be detected via a knowledge base of correlations.
The designer makes decisions by evaluating the tradeoffs among competing (and complementary)
goals. The process involves the construction of a graph representing the design space. The
elaboration, pruning, and evaluation of the graph is guided by previously accumulated reusable
knowledge as well as case-specific judgements [CY98].

2

Considerations to centralize or to decentralize may come up at various points in the design
process, and when considering different aspects of the system. From the viewpoint of a
systematic, knowledge-based, requirements-driven approach to design, centralization and
decentralization would refer to broad classes of design techniques or design patterns that have
been invented over the years in a number of design areas. Thus the centralize/decentralize
question may arise when considering transaction processing, long-term storage, system
availability, security, or management functions. Specific techniques for addressing performance,
security, reliability, etc. may have classes of solutions that are centralized or decentralized. For
example, replication for speed of global access, distributed data close to source or user for local
processing needs, redundancy for reliabili ty, centralized management to reduce management
costs, single database to avoid inconsistencies, fewer sites to reduce security exposures, etc. Each
of these techniques tends to address one primary requirement, but typically have impacts on other
requirements. A systematic approach therefore allows these complex interacting issues to be
discerned, clarified, and analyzed.

The centralization/decentralization question typically arises within the context of many other
potential techniques which may be or need to be used in conjunction, e.g., interface and protocol
adoption or design, algorithms, database design, data integration issues, etc. Also, the
centralization/decentralization question may arise at each of many layers in the architecture. A
systematic design process that keeps track of all these steps and linkages can provide traceability
and revision support through the proper tools.

In most systems, requirements come from many quarters – various kinds of users, operations
personnel and management in the user organization, and developers, product managers, project
managers, quality assurance, marketing, etc., in the development organization. Tradeoffs among
competing requirements are therefore not among requirements as abstract impersonal goals, but
as somewhat negotiable stakes among stakeholders [BI96]. Organizational issues therefore affect
technical decisions in significant ways, resulting in architectures that reflect some aspects of
organizational structure.

In Internet-based applications, the organizational factors are li kely to be more pronounced since
there may be many distinct economic and legal entities involved in the development, use, and
management of the system, all with their distinct interests. The centralize-or-decentralize
question arises at many levels not only because of the inherently distributed nature of the Internet,
but also because there can be many ways of dividing up the scope of control at various levels.
Some of these divisions include:
- administrative and management domains
- trust domains, from the viewpoint of each stakeholder or classes of stakeholders, e.g.,

application providers, network providers, user organizations, end-users, intermediaries, etc.
- developer domains – divisions of responsibility in the development organization(s)
- ownership domains
- operations management domains – e.g., failure recovery, performance optimization, load

balancing, etc.
- subsystems, components, modules at various levels in the technical architecture.

These different ways of dividing up the scope of control may intersect in different ways too. For
example, the trust domains may coincide with administrative domains, ownership domains may
overlap with design domains, etc. Sometimes these alignments are by design, other times they
are incidental. In any case, the alignments may be imperfect and may drift over time.

3

Each scope of control entails some localized tradeoffs among competing goals relevant to that
domain (both at development time and during operations) as well as negotiations across domain
scopes.

The systematic, goal-oriented modelling and support of the design process discussed above (e.g.,
as offered in [CNYM00] and [BI96]) therefore need to be extended to explicitly deal with the
complexity of “organizational issues” arising from the many different ways in which stakeholder
interests arise, how they are resolved and manifested in architectures and designs, and how they
evolve over time.

The i* framework [Yu95] introduces the intentional actor as a modelling abstraction to deal with
locality and distribution at an intentional level (i* stands for distributed intentionality). Actors are
intentional in that they have goals, beliefs, abilities, commitments, and so on, and relate to each
other in terms of these intentional properties. Actors depend on each other for goals to be
achieved, tasks to be performed, and resources to be furnished. While each actor is free to pursue
its interests autonomously, it must also consider the consequences of its decisions and actions
because of its relationships with other actors.

The deliberations of each actor is modelled in a similar fashion as in the graph structure of the
NFR framework (the Strategic Rationale model in i*). However, the design space is now carved
up into many localized spaces. The intentional relationships among actors define the interfaces
among the localized spaces (the Strategic Dependency model in i*). Actors have limited
knowledge about the internal rationales of other actors.

Modelling intentional relationships among actors and their rationales offers a higher level
description of complex distributed architectures. Conventional architectural descriptions
typically model non-intentional aspects such as data and control flows and interfaces. Intentional
models explicitly portray the kinds of design freedoms that each architectural unit has, how these
freedoms are exercised during design to meet competing demands, and how the freedoms in one
unit impinge on the freedoms of other units. Design alternatives can be analyzed in terms of what
design freedoms are allocated to which architectural units, and the consequences of such
allocations. Explicit representation of design goals allows means-ends analysis and exploration
of alternatives.

The i* framework was originally developed to model primarily human organizational issues (e.g.,
as they arise in business process modelling [YML96] or enterprise modelling [Yu99]). It is
currently being extended to model technical system architectures [CGY99][GY00]. The
intentional level of modelling offers a good common framework for understanding and analyzing
the interactions among human organizational issues and technical system design issues, as is
especially needed in Internet-scale applications. Research challenges exist in each of the five
areas:

- representation: What modelling constructs are appropriate for describing architectures at
an intentional level?

- analysis and design: What computational techniques are available for supporting the
exploration and evaluation of intentional descriptions of architectures?

- collections of reusable design knowledge: What are the available bodies of knowledge to
support this area of design, and how can they be encoded to take advantage of tool
support?

- methodologies: How can these models and techniques be used in practical settings?

4

- tools: What computational environments and infrastructures are needed to make the
approach effective?

The TWIST 2000 [TWIST00] workshop theme raises good opportunities for testing and further
developing this approach and framework. Many current Internet-based systems are hastil y
constructed using ad hoc approaches and techniques, in order to meet tight time-to-market
requirements. These systems risk becoming legacy systems, as market, technology, and
personnel shifts continue at rapid rates. The requirements-oriented, knowledge-based approach
will hopefully provide a more systematic way to support the development and evolution of
Internet-scale systems.

References

[BI96] B. Boehm and H. In. Identifying Conflicts Among Quality Requirements. Proceedings of
the Second International Conference on Requirements Engineering. (ICRE'96) Los Alamitos,
Calif.: IEEE Computer Society Press. Also appeared in IEEE Software (March 1996).

[CNYM00] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, 2000.

[CGY99] L. Chung, D. Gross, E. Yu. Architectural Design to Meet Stakeholder Requirements.
Software Architecture, Patrick Donohue, ed., Kluwer Academic Publishers. 1999. pp. 545-
564. (TC2 First Working IFIP Conference on Software Architecture (WICSA1), 22-24
February 1999, San Antonio, Texas, USA.)

[CY98] L. Chung and E. Yu. Achieving System-Wide Architectural Qualities. OMG-DARPA-
MCC Workshop on Compositional Software Architectures, Janurary 6-8, 1998, Monterey,
California.

[GY00] D. Gross and E. Yu. From Non-Functional Requirements to Design through Patterns.
Proceedings of the 6th International Workshop on Requirements Engineering: Foundations
for Software Quality (REFSQ 2000). June 5-6, 2000, Stockholm, Sweden.

[MBY97] J. Mylopoulos, A. Borgida, and E. Yu. Representing Software Engineering
Knowledge. Automated Software Engineering, Kluwer Academic Publishers, 4(3): 291-317.
July 1997.

[MCY99] J. Mylopoulos, L. Chung, and E. Yu. From Object-Oriented to Goal-Oriented
Requirements Analysis. Communications of the ACM, 42(1): 31-37, January 1999.

[TWIST00] The Workshop on Internet-scale Software Technologies – Organizational and
Technical Issues in the Tension Between Centralized and Decentralized Applications on the
Internet (TWIST 2000), July 13-14, 2000. University of California, Irvine, Irvine, California,
USA. Call for participation. http://www.isr.uci.edu/events/twist/twist2000/ Last viewed May
15, 2000.

[Yu95] E. Yu. Modelling Strategic Relationships for Process Reengineering. Ph.D. Thesis. Dept.
of Comp. Sci., University of Toronto. 1995.

[Yu99] E. Yu. Strategic Modelling for Enterprise Integration. Proceedings of the 14th World
Congress of International Federation of Automatic Control (IFAC’99), July 5-9, 1999,
Beijing, China. pp. 127-132. Permagon, Elsevier Science.

[YML96] E. Yu, J. Mylopoulos and Y. Lespérance. AI Models for Business Process
Reengineering. IEEE Expert: Intelligent Systems and Their Applications, August 1996, pp. 16-
23.

