Centralized vs. Decentralized Design in Internet-Scale
Applications
Statement of Interests

Adriana Iamnitchi
Department of Computer Science
The Unwversity of Chicago
anda@cs.uchicago.edu

My research interests are in the area of distributed computing. My first contact with the
centralized vs. decentralized design conflict occurred while working on a branch-and-bound
algorithm for Internet connected resources. Given the large number of resources needed
to solve very large problems, and given the unreliable target system, the obvious choice
seemed to be a fully decentralized approach. However, the existent (and successful to some
extent, in that that they solve problems using hundreds of processors simultaneously) branch-
and-bound algorithms use mostly the master-worker design, hence they are centralized. The
centralized approach is unscalable for a very large number of resources, e.g., tens of thousands
of worker processes. We proposed a fully decentralized branch-and-bound algorithm. We
tested our algorithm in a simulation environment and we obtained very encouraging results!
regarding reliability, scalability, and overall performance. However, until this algorithm is
implemented, the existent master-worker branch-and-bound implementations will solve some
of the scientific problems.

The example above is from the class of applications that would benefit from the large
collection of resources existent in Internet. Another class of problems that involve scalability
issues is the middleware services—protocols and software that support the parallel execution
of Internet-scale applications. I am currently interested in resource discovery mechanisms
on Internet-scale collections of resources. My current research is in the context of Globus?®
project.

Because of its simplicity, a centralized design was initially chosen for implementing the
Information Service. This centralized solution was conceptually simple: a new entity that
joins the testbed registers itself to the central Information Service server. When a request for
information is addressed to the server, the server has quick access to all existent information
and is able to answer efficiently. After the centralized design became a bottleneck and a
reason for multiple failures with the growing number of resources in the testbed, the decen-

! Adriana Tamnitchi and Ian Foster. A Problem-Specific Fault-Tolerant Mechanism for Asynchronous
Systems. To appear in Proceedings of the International Conference on Parallel Processing, 2000.
http:/ /www.globus.org



tralized design became obviously a better option. In a decentralized Information Service,
there is no central point of control. Therefore, challenges like providing accurate information
in short time and implementing security policies in a highly heterogeneous environment be-
come more difficult to overcome. In addition, new problems are to be solved, like providing
a flexible frame while assuring that communication between various Information Servers can
still be possible.

Scalability and reliability are the key requirements for most Internet-scale applications.
To achieve scalability and reliability, I would argue that computationally expensive appli-
cations need at least a partially decentralized design. Some applications that are not very
computationally intensive (like the examples from the TWIST 2000 web page: Amazon.com,
eBAY and AOL) can benefit from the simplicity of the centralized design.

I find the topic of TWIST 2000 very interesting and challenging. I am sure that my
understanding of the various scalability issues would be enriched by the participation to this
workshop.



