
1

Managing
Web Service Quality

James Skene, Franco Raimondi and
 Wolfgang Emmerich
London Software Systems
Dept. of Computer Science
University College London

http://sse.cs.ucl.ac.uk

2

Setting the scene

“Deutsche Bank AG has agreed to
outsource two internal business
processes to Accenture Ltd. as part of
its ambitious program to cut costs and
increase efficiency by moving non-core
operations to external service providers.
Under the service agreement
announced Thursday, Deutsche Bank
will outsource its worldwide corporate
purchasing and accounts payable
services to Accenture. The global
consultancy and software development
group, located in Hamilton, Bermuda,
will provide IT systems and tools to
manage the bank's entire procurement-
to-payment process.”
 [Source: IDG, 30 Jan 2004]

2

3

Setting the scene

Tracking

Funds
Transfer

Order

Accounts
Receivable

Accounts
Payable

Purchase
Request
Server

Purchase
Request

Client

4

Web Service Quality

• Current SOA standards mainly
focus on functionality

• But organizations depend on
quality of services provided by
3rd parties

• Their service needs to be
delivered with agreed quality
– Availability / Timeliness
– Reliability
– Confidentiality
– Integrity, …

3

5

Quality Management

• Testing web services alone is
insufficient because service quality
determined by
– Resource provision available in the

run-time environment
– Service usage profile

• For web services, we need to
– have quality norms and standards
– know how to measure quality
– have continuous quality monitoring
– use quality criteria for service selection

• These need to be reified at run-time

6

Managing quality in WS Architectures

Purchase
Request
Server

Purchase
Request

Client

Client
Monitor

Server
Monitor

SLA
violations

 Component
Message passing
Generation
Feedback Loop

SLA

4

7

Service Level Agreements

• Associate penalties to aberrant
service behaviour

• Are often part of service delivery
contracts

• Mitigate risk
• Previously mostly written in natural

language
– Ambiguous
– Incomplete
– Inconsistent

• We focus on SLAs in formal
languages

8

Service Level Agreements

• Determine required and
provided service quality

• Written in terms of
– Non-functional requirements
– Usage constraints

• Often annexed to a service
provision contract

• Bi-lateral
• Bi-directional

5

9

SLA content

SLAs determine conditions, e.g.
• Reliability
• Timeliness
• Availability
• Throughput
• Backup
May include terms determining
• Monitorability
• Penalties
• Administration
• Schedules of applicability

10

SLA Language Engineering

• Aim: defining precise and
unambiguous SLAs language

• Use OMG’s Meta Object
Facility (MOF) to define
– Abstract syntax of SLA language
– Service observation domain

model
• Define semantics of SLA langu-

age in model denotational style
– Behavioural constraints between

syntax and domain model

SLA
Abstract Syntax

Service Observation
Domain Model

Behavioural
 constraints

See: J. Skene, D.D. Lamanna and W. Emmerich: Precise Service Level Agreements. Proc. ICSE 04

6

11

Syntax definition for web service SLAs in MOF
ServiceTerms

ReliabilityClause
+maximumLatency
+reliability
+window

InputThroughputClause

+inputWindow
+concurrency

FailureModeDefinition
+kind
+maximumLatency

OperationDefinition

ServiceConditions

SLA ServiceDefinition

PenaltyDefinition

1..* operations

penalty

terms

conditions

penalties

failureModes

operations

services
1..*

1..*

1..*

1..*

reliability

inputThroughput

1..*

1..*
See: http://uclslang.sourceforge.net

conditions

sLA

12

SLA in OMG Human readable Textual Notation

SLA() {
 terms = ServiceTerms[terms]() {
 penalties = {
 ::slang::PenaltyDefinition[p1]("Pay client 100 dollars.")
 }
 services = ServiceDefinition[service](Notification port")
 operations = {
 OperationDefinition[o1]("notify") { }
 OperationDefinition[o2](”subscribe") { }
 }
 failureModes = {
 FailureModeDefinition[f1]() {
 kind = OPERATION;
 operations = {OperationDefinition[o1]}
 maximumLatency = ::types::Duration(5, S)
 }
 }
 }

7

13

SLA in HUTN (cont’d)
 conditions = ServiceConditions[conditions]() {
 inputThroughput = {
 InputThroughputClause[iTC1]() {
 inputWindow = ::types::Duration(1, min)
 inputConcurrency = 10
 operation = {OperationDefinition[o1]}
 }
 }
 reliability = {
 ReliabilityClause[rC1]() {
 failureModes = {FailureModeDefinition[f1]} // When > 5 secs
 reliability = ::types::Percentage(0.9)
 window = ::types::Duration(1, min)
 penalties = {
 UnreliabilityPenaltyClause() {
 penalty = ::slang::PenaltyDefinition[p1]
 }
 }
 }
 }
 }

14

Further SLA syntax: Administration

SLA Administration

ViolationCalculation

Reconciliation Account

Party

Violation

Evidence
+date

calculation

admin

violation

reconciliation agreed

owner

evidence

1..* 1..*

ServiceTerms ClientDefinition
violator

clientDefinitionterms

party

ServerDefinition
serverDefinition

party

sLA

sLA

admin

admin

8

15

Service observation domain model
Party

Evidence

+date

ServiceUsageRecord
+duration
+outcome:Outcome

Report

ReportRecord

+sent
+received

Outcome
+SUCEEDED:int=1
+FAILED:int=2
+NO_RESPONSE:int=3
+DATA_AGED:int=4

DefectReport
+defectKind

DefectKind
+PARAMETER:int=1
+OPERATION:int=2
+SERVICE:int=3
+DATA:int=4

OperationDefinition

owner

evidence

operation

1..*

1..*

records

report

measurement

reportdefectEvidence

16

Semantics of input-throughput clause

class InputThroughputClause {
invariant {
 conditions.sLA.admin->forAll(
 a : ::services::Administration |
 violationFirstUsage(a.reconciliation.agreed)->forAll(
 first : ::services::es::ServiceUsageRecord |
 a.calculation.violation->one(
 v : ::services::Violation |
 v.violator = conditions.sLA.terms.clientDefinition.party
 and v.violatedClause = self
 and v.penalty = penalty
 and v.evidence =
 violationEvidence(a.reconciliation.agreed, first)
)
)
)
}

9

17

Reminder

Purchase
Request
Server

Purchase
Request

Client

SLA

Server
Monitor

Client
Monitor

SLA
violations

18

Generating SLA Monitors

• SLAs machine readable
• MOF gives standard

representation
• Idea: Generate monitoring

component from SLA
• Given service observation

data monitor decides
whether actual service
level complies with SLA

• Generator written using
– Java Metadata Interface

(Sun)
– Eclipse Platform

10

19

Key idea

• SLAs concern many timeliness constraints:
– Latency
– Input and Output Throughput
– Reliability
– Availability

• Events can be intercepted and time stamped without
changing web service requester and provider

• Monitors can be expressed using timed automata
• Detection of SLA violations reduces to acceptance of

timed words that consist of timed events

20

Timed Automata

• A time sequence is a sequence of real numbers
τ=τ1τ2…τn such that τi>τi-1.

• A timed word is a pair (w,τ) where w is a word of
length n and t is a time sequence of length n

• Timed automata extend finite automata in the
following way:
– They introduce a set of clocks
– They allow definition of time constraints over transitions
– They allow to reset clocks.

• Timed automata accept timed words and recognize
timed languages.

See: Alur & Dill, 1994: A Theory of Timed Automata. Theoretical Computer Science 126(2):183-253

11

21

Expressing Web Service Reliability Constraints

• Negate constraint (i.e. timed automaton accepts
timed word that indicates non-reliability)

• In this example, no more than one failure occurrence
(fm) per minute.

• Online monitoring per transition is efficient (constant
in number of outgoing transitions per state).

See: F. Raimondi, J. Skene, W. Emmerich & B. Wozna: A Methodology for On-line Monitoring
Non-Functional Requirements Specifications of Web Services. Proc. PROVECS Workshop
at Tools Europe. Zurich. 2007.

22

On-line monitoring Architecture

Client Provider

in
te

rc
ep

to
r

SLA
Monitor

SLA
Violation
Evidence

SLA Timed
Automata

12

23

Performance

24

Summary

Purchase
Request
Server

Purchase
Request

Client

SLA

Server
Monitor

Client
Monitor

SLA
violations

13

25

Ongoing Work

• SLAs with Virtualization:
• SLAs and Orchestration:

– SLAs with service providers
– A service composition

What SLA can be offered
for the composite service?

