
Jeff Magee

Distributed Software Engineering
Department of Computing

Imperial College
London

Distributed Software Engineering:
an Architectural Approach

Work conducted with
my close colleague,

Jeff Kramer

2

Distributed Software
Distribution is inherent in
the world

objects, individuals,
Interaction is inevitable
with distribution.

computer communication, speech,

Interacting software
components

3

Engineering distributed software?

 Structure
Programming-in-the-small Vs
Programming-in-the-large

deRemer and Kron, TSE 1975

 Composition
“Having divided to conquer, we must
reunite to rule”

Jackson, CompEuro 1990

4

Our underlying philosophy

A focus on system structure as
interacting components is essential for
all complex systems. It directs
software engineers towards
compositional techniques which offer
the best hope for constructing
scalable and evolvable systems in an
incremental manner.

5

Three Phases

 Explicit Structure

 Modelling

 Dynamic Structure

6

Phase 1. Explicit Structure

“configuration
programming”

CONIC

7

The National Coal Board project

The investigators:

The Research Assistant:

The mission:
Communications for computer control & monitoring
of underground coalmining.

8

Coalmines

Underground coalmines consist
of a number of interacting
subsystems:

• coal cutting
• coal transport
• ventilation
• drainage …

Model…

9

The research results

 Software Architecture for control
applications running on a distributed
computing platform.

The solution had three major parts …

The mission:

The result:

 Communications for computer control &
monitoring of underground coalmining.

DCS 1981

10

Part I - components

methane
level cmd

enable
PUMP_CONTROL

Key property of context independence
simplified reuse in the same system e.g.
multiple pumps, and in different systems
e.g. other mines.

•parameterised
component types

•input and output
ports

11

Part II - architecture description
Explicit separate description of the structure
of the system in terms of the composition of
component instances and connections.

methane

level
cmd

enable
PUMP_CONTROL

cmd
PUMP

level

WATER

OPERATOR
enable

methane

SENSOR

log •Hierarchical
composition

PUMPSTATION

12

Part III – “configuration programming”

Construction
Build system from software architecture
description.

Modification/Evolution
On-line change to the system by changing
this description.

Toolset and runtime platform support
for:-

We return to this later…
TSE 1985, CompEuro 1990

13

Benefits

Reusable components
The control software for a particular
coalmine could easily and quickly be
assembled from a set of components.

On-line change
Once installed, the software could be
modified without stopping the entire
system to deal with change
- the development of new coalfaces.

Final outcome…

14

Outcome - the CONIC system

Wider application than coalmining.
Distributed worldwide to academic and
industrial research institutions.
Conceptual basis lives on…

Research team:
Naranker
Dulay

Kevin
Twidle

Keng
Ng

TSE 1989

15

Software Architecture
The fundamental architectural principles embodied
in CONIC evolved through a set of systems and
applications:

GIN & TONIC
parallel computing

REX
Reconfigurable & Extensible

Distributed Systems

Steve Crane

REGIS
Distributed Services

Ulf Leonhardt
Location Services

Christos Karamanolis
Highly Available
Services

Parle 1991, SEJ 1992, DSEJ 1994

16

Darwin - A general purpose ADL
Component types have one or
more interfaces. An interface
is simply a set of names
referring to actions in a
specification or services in an
implementation, provided or
required by the component.

Systems / composite
component types are
composed hierarchically
by component instantiation
and interface binding.

interfaces
Component

Composite Component

ESEC/FSE 1995, FSE 1996

17

Koala

In the ARES project
Rob van Ommering saw potential of
Darwin in specifying television
product architectures and
developed Koala, based on Darwin,
for Philips.

First large-scale industrial
application of an ADL.

Computer 2000

18

Darwin applicability…

Darwin enforces a strict separation
between architecture and components.

Build the software for each product
variant from the architectural description
of that product.

Variation supported by both different
Darwin descriptions and parameterisation.

Variants can be constructed at compile-
time or later at system start-time.

19

Koala - example

20

What we could not do…

In advance of system
deployment, answer the
question:

Will it work?

When faced with this question
engineers in other disciplines build
models.

21

Phase 2. Modelling

“behaviour
models”

CONIC

22

Engineering Models

Abstract

Complexity
Model << System

Amenable to
Analysis

23

Architecture & Models
Modelling technique should exploit structural
information from S/W architecture.

Use process calculus FSP in which
static combinators capture structure and
dynamic combinators component behaviour.

instantiation inst
composition
binding bind
interfaces

instantiation :
parallel composition ||
relabelling /
sets and hiding @

DarwinDarwin FSPFSP

FTDCS 1997, WICSA 1999

24

Process Calculus - FSP

level cmd

CONTROL
cmd
PUMP

pump

PUMP = STOPPED,
STOPPED = (cmd.start -> STARTED),
STARTED = (pump -> STARTED
 | cmd.stop -> STOPPED
).

||P_C = (CONTROL || PUMP)@{level,pump}.

25

Analysis - LTSA
What questions can we ask of the
behaviour model?

fluent RUNNING = <start,stop>
fluent METHANE = <methane.high, methane.low>

Model…

assert SAFE = [](tick->(METHANE -> !RUNNING))

26

Contributors…

Nat Pryce
 - Animation

Dimitra Giannakopoulou
- Progress & Fluent LTL

Shing-Chi Cheung
- LTS, CRA & Safety

ICSE 1996, FSE 1999, ICSE 2000, ESEC/FSE 2003

27

Engineering distributed software

Models
Mathematical Abstractions

- reasoning and property checking

Systems
Compositions of subsystems

- built from proven components.

S/W Tools
Automated techniques and tools

- construction and analysis

28

“dynamic
 structure”

Phase 3. Dynamic Structure

29

 Software Architecture
+

programmed software
components

Managed Structural Change

evolved structural
description

change
script

system

Construction/
implementation

evolved system

change
script

e.g. Conic, Regis
TSE 1985

30

Structural change

 load
component type
 create/delete
component instances
 bind/unbind
component services

But how can we do this safely?
Can we maintain consistency of the
application during and after change?

T

a:T

a
b

31

General Change Model

PASSIVE ACTIVE

bind

unbind

activate

create

delete

passivate

Component
States

A Passive component
 - is consistent with its environment, and
 - services interactions, but does not initiate them.

Principle:

Separate the
specification
of structural
change from
the
component
application
contribution.

32

Change Rules

Quiescent – passive and no transactions
are in progress or will be initiated.

Operation Pre-condition
 delete – component is quiescent
 and isolated
 bind/unbind – connected component
 is quiescent
 create - true

TSE 1990

33

Example - a simplified RING Database

rcv snd

node[0]

local

rcv snd
node[2]

local

rcv

snd

node[1]
local

rcv

snd
node[3]

local

Nodes perform
autonomous
updates

Updates propagate
round the ring via
channels

CDS 1998, IEE Proc 1998

34

Required Properties (1)
// node is PASSIVE if passive signalled and not yet changing or deleted
fluent PASSIVE[i:Nodes]
 = <node[i].passive,
 node[i].{change[Value],delete}>

// node is CREATED after create until delete
fluent CREATED[i:Nodes]
 = <node[i].create, node[i].delete>

// system is QUIESCENT if all CREATED nodes are PASSIVE
assert QUIESCENT
 = forall[i:Nodes] (CREATED[i]->PASSIVE[i])

35

Required Properties (2)
// value for a node i with color c
fluent VALUE[i:Nodes][c:Value]
 = <node[i].change[c], ...>

// state is consistent if all created nodes have the same value
assert CONSISTENT
 = exists[c:Value] forall[i:Nodes]
 (CREATED[i]-> VALUE[i][c])

// safe if the system is consistent when quiescent
assert SAFE = [](QUIESCENT -> CONSISTENT)

// live if quiescence is always eventually achieved
assert LIVE = []<> QUIESCENT

36

Software Architecture for
Self-Managed Systems

Autonomous adaptation
in response to change of
goals and operating
environment.

Self
 - Configuring
 - Healing
 - Tuning

37

Three-level architecture (from Gat)

Goal

Management

Change

Management

Component

Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”

Goal

Management

Change

Management

Component

Control

Status

Change Actions

C1 C2

P1 P2

Change Plans

Plan Request

G

G’ G”

38

Test-bed

Koala
Robots

Backbone ADL
(UML 2 compatible)

39

Research Challenges

Scalable
decentralised
implementation.

Analysis tools

Capability to update
goals & constraints
for operational
system

We have some of the pieces ,
but need …

40

In conclusion...

41

Architecture as a structural skeleton ….

…so that the same simple architectural
description can be used as the framework to
compose behaviours for analysis, to compose
component implementations for systems, ….

42

Darwin support for multiple views

Behavioural
View

Service View

Structural View

Analysis Construction/
implementation

Performance View

43

Model-centric approach

System
Architecture

Goals Scenariosmodels

Analysis
Model Checking

Animation
Simulation

44

Research into practice…

Application

Education…

Further research…

45

Education…

1999

2006

46

Further research…

Model synthesis
from scenarios
 Model synthesis
from goals

Probabilistic
performance models
Self-managing
Architectures

Sebastian
Uchitel

Emmanuel
Letier

47

Research voyage of discovery

Has been a
lot of fun
and is far
from over
:-)

