Memory Bloat in the Real World

Harry Xu
UCI ISR Open Forum
05/18/2012

Who Am |

 Recently got my Ph.D.
(in 08/11)

e |nterested in (static
and dynamic) program
analysis

— Theoretical
foundations

— Applications
* Recent interest---

Prinri.ples
of Program
»_ Analysis

http://www.ics.uci.edu/~guoqgingx

Is Today’s Software Fast Enough?

e Pervasive use of large-scale, enterprise-level
applications

— Layers of and

— Object-orientation encourages excess
 No free lunch anymore from hardware

advances

— The size of software grows faster than the
hardware capabilities (a.k.a.)

Memory Bloat

Heaps are getting bigger
e Grown from 500M to or more in the past few years
e But not necessarily supporting more users or functions

Surprisingly common (all are from real apps):

e Supporting thousands of users (are expected)
e Saving 500K session state per user (7 is expected)

e Requiring 2IVI for a text index per simple document

e Creating 100K temporary objects per web hit

Consequences for scalability, power usage, and performance

Outline

 Anecdotes

— Costs of objects

— Costs of fine-grained modeling
e Goals

— Raise awareness of memory bloat

— Give you a way to make informed tradeoffs

Anecdote 1: Costs of Objects

Q: are objects really cheap in memory?

Boolean
|6 bytes

header boolean alignment
12 bytes | byte 3 bytes

Double
24 bytes

header double alignment
12 bytes 8 bytes 4 bytes

char{2] g
24 bytes

header 2 chars alignment
16 bytes 4 bytes 4 bytes

From experiment on one 32.hit \/M

IR R JERRUIEE APt

JVM & hardware impose
costs on objects. Can be
substantial for small
objects

Headers enable
functionality and
performance
optimizations

8-byte alignment in this
vV

Costs vary with JVM,
architecture

Another Example

Example: An 8-character String

® only 25% is the
8-char String actual data

64 bytes

® 75% is overhead of
representation

String
o bres felds 12 byiey” 4 bpees overhead to be
20% or less
char(]
I chars I
JVM overhead data

16 bytes 16 bytes

Consequences of Excessive Object Creation

e Case study: Hyracks, a parallel data processing
system written in Java

— Extremely poor packing factor

— Cannot process 1GB input data on a 12 GB heap if
data elements are represented using objects

e Solutions
— Release/remove objects soon after they are used
— Reusing objects
— Using memory in buffers (e.g., java.nio.ByteBuffer)

Anecdote 2: Costs of Fine-Grained Modeling

e Q: What’s the cost of using a java.util.TreeMap

TreeMap

A 100-entry TreeMap
TreeMap
x| = 3.9KB

TreeMap

Fixed overhead: 48 bytes

TreeMap$Entry | J

Per-entry overhead: 40 bytes

data

How does a
TreeMap spend its
bytes?

Collections have
fixed and variable
costs

TreeMap

TreeMap<Double, Double> (100 entries)

® 82% overhead

overall
TreeMap 100%
x| = 3.9KB overhead

® Design enables
updates while
maintaining order
100 100
Double Double 67% o _
x100 = 2.3KB x100 = 2.3KB | overhead Is it worth the
price?!

TreeMap

Alternative implementation (100 entries)

double[]
Ix = 816 bytes

double[]
Ix= 816 bytes

2%
overhead

Binary search
against sorted
array

Less functionality —
suitable for load-
then-use scenario

2% overhead

TreeMap

TreeMap<Double, Double> (10,000 entries)

TreeMap ® Overhead is still
[#)
xI =391KB 82% of cost

Overhead is not
amortized in this
design

10000 10000

Double Double
x 10000 = 234KB x10000 = 234KB

High constant cost
per element:
88 bytes

TreeMap<Double, Double>

M Data
[l Overhead

100K

200K

TreeMap

300K 400K

Overhead is still
82% of cost

Overhead is not
amortized in this
design

High constant cost
per element:

88 bytes

TreeMap

Alternative implementation

~ 0%
overhead

¥ Data
[Overhead

[100K 200K 300K 400K

Overhead starts
out low, quickly
goes to 0

Cost per element
is 16 bytes, pure
data

Consequences of Too Many Delegations

 Garbage collection is not free
— Cost of a typical GC algorithm is
e Hyracks

— SELECT a, COUNT(*) AS FROM b GROUP BY c;

— Using a Java Hashtable for grouping leads to
significantly increased GC time (47% of the total
running time)

e Solutions

— Arrays

— Buffers

— Customized data structures with less delegations

Conclusions

e Alot of things in object-orientation are not as
cheap as we think

 Develop more specialized data types and
operations

My research targets these problems by
developing language, compiler, and runtime
system support

Acknowledgements

IBM T. J. Watson Research Center
— Nick Mitchell

— Gary Sevitsky

— Matthew Arnold

UCI

— Yingyi Bu

— Vinayak Borkar

— Michael Carey
Ohio State University
— Nasko Rountev

— Tony Yan

Office: 3212

	Memory Bloat in the Real World
	Who Am I
	Is Today’s Software Fast Enough?
	Memory Bloat
	Outline
	Anecdote 1: Costs of Objects
	Another Example
	Consequences of Excessive Object Creation
	Anecdote 2: Costs of Fine-Grained Modeling
	TreeMap
	TreeMap
	TreeMap
	TreeMap
	TreeMap
	TreeMap
	Consequences of Too Many Delegations
	Conclusions
	Acknowledgements

