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Who Am |

 Recently got my Ph.D.
(in 08/11)

e |nterested in (static
and dynamic) program
analysis

— Theoretical
foundations

— Applications
* Recent interest---

Prinri.ples
of Program
»_ Analysis

http://www.ics.uci.edu/~guoqgingx



Is Today’s Software Fast Enough?

e Pervasive use of large-scale, enterprise-level
applications

— Layers of and

— Object-orientation encourages excess
 No free lunch anymore from hardware

advances

— The size of software grows faster than the
hardware capabilities (a.k.a. )



Memory Bloat

Heaps are getting bigger
e Grown from 500M to or more in the past few years
e But not necessarily supporting more users or functions

Surprisingly common (all are from real apps):

e Supporting thousands of users ( are expected)
e Saving 500K session state per user (7 is expected)

e Requiring 2IVI for a text index per simple document

e Creating 100K temporary objects per web hit

Consequences for scalability, power usage, and performance



Outline

 Anecdotes

— Costs of objects

— Costs of fine-grained modeling
e Goals

— Raise awareness of memory bloat

— Give you a way to make informed tradeoffs



Anecdote 1: Costs of Objects

Q: are objects really cheap in memory?

Boolean
|6 bytes

header boolean alignment
12 bytes | byte 3 bytes

Double
24 bytes

header double alignment
12 bytes 8 bytes 4 bytes

char{2] g
24 bytes

header 2 chars alignment
16 bytes 4 bytes 4 bytes

From experiment on one 32.hit \/M

IR R JERRUIEE APt

JVM & hardware impose
costs on objects. Can be
substantial for small
objects

Headers enable
functionality and
performance
optimizations

8-byte alignment in this
vV

Costs vary with JVM,
architecture



Another Example

Example: An 8-character String

® only 25% is the
8-char String actual data

64 bytes

® 75% is overhead of
representation

String
o bres felds 12 byiey” 4 bpees overhead to be
20% or less
char(]
I chars I
JVM overhead data

16 bytes 16 bytes



Consequences of Excessive Object Creation

e Case study: Hyracks, a parallel data processing
system written in Java

— Extremely poor packing factor

— Cannot process 1GB input data on a 12 GB heap if
data elements are represented using objects

e Solutions
— Release/remove objects soon after they are used
— Reusing objects
— Using memory in buffers (e.g., java.nio.ByteBuffer)



Anecdote 2: Costs of Fine-Grained Modeling

e Q: What’s the cost of using a java.util.TreeMap



TreeMap

A 100-entry TreeMap
TreeMap
x| = 3.9KB

TreeMap

Fixed overhead: 48 bytes

TreeMap$Entry | J

Per-entry overhead: 40 bytes

data

How does a
TreeMap spend its
bytes?

Collections have
fixed and variable
costs



TreeMap

TreeMap<Double, Double> (100 entries)

® 82% overhead

overall
TreeMap 100%
x| = 3.9KB overhead

® Design enables
updates while
maintaining order
100 100
Double Double 67% o _
x100 = 2.3KB x100 = 2.3KB | overhead Is it worth the
price?!




TreeMap

Alternative implementation (100 entries)

double[]
Ix = 816 bytes

double[]
Ix= 816 bytes

2%
overhead

Binary search
against sorted
array

Less functionality —
suitable for load-
then-use scenario

2% overhead



TreeMap

TreeMap<Double, Double> (10,000 entries)

TreeMap ® Overhead is still
[#)
xI =391KB 82% of cost

Overhead is not
amortized in this
design

10000 10000

Double Double
x 10000 = 234KB x10000 = 234KB

High constant cost
per element:
88 bytes



TreeMap<Double, Double>

M Data
[l Overhead

100K

200K

TreeMap

300K 400K

Overhead is still
82% of cost

Overhead is not
amortized in this
design

High constant cost
per element:

88 bytes



TreeMap

Alternative implementation

~ 0%
overhead

¥ Data
[ Overhead

[ 100K 200K 300K 400K

Overhead starts
out low, quickly
goes to 0

Cost per element
is 16 bytes, pure
data



Consequences of Too Many Delegations

 Garbage collection is not free
— Cost of a typical GC algorithm is
e Hyracks

— SELECT a, COUNT(*) AS FROM b GROUP BY c;

— Using a Java Hashtable for grouping leads to
significantly increased GC time (47% of the total
running time)

e Solutions

— Arrays

— Buffers

— Customized data structures with less delegations



Conclusions

e Alot of things in object-orientation are not as
cheap as we think

 Develop more specialized data types and
operations

My research targets these problems by
developing language, compiler, and runtime
system support
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