Given the availability of large-scale source-code repositories, there have been a large number of applications for clone detection. Unfortunately, despite a decade of active research, there is a marked lack in clone detectors that scale to large software repositories. In particular for detecting near-miss clones where significant editing activities may take place in the cloned code.
We developed SourcererCC, a token-based clone detector that targets the first three clone types, and exploits an index to achieve scalability to large inter-project repositories using a standard workstation. SourcererCC uses an optimized inverted-index to quickly query the potential clones of a given code block. Filtering heuristics based on token ordering are used to significantly reduce the size of the index, the number of code-block comparisons needed to detect the clones, as well as the number of required token-comparisons needed to judge a potential clone.
We evaluated the scalability, execution time, recall and precision of SourcererCC, and compare it to four publicly available and state-of-the-art tools. To measure recall, we use two recent benchmarks, (1) an exhaustive benchmark of real clones, BigCloneBench, and (2) a Mutation/Injection-based framework of thousands of fine-grained artificial clones. SourcererCC has both high recall and precision, and is able to scale to a large inter-project repository (250MLOC) using a standard workstation.
This work builds on earlier Token-Based Code Clone Detection research.