
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Thomas A. Alspaugh
University of California, Irvine
alspaugh@ics.uci.edu

Scenarios, Business Rules, and Matching

April 2006

ISR Technical Report # UCI-ISR-06-5

Institute for Software Research
ICS2 110

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Scenarios, Business Rules, and Matching

Thomas A. Alspaugh

Institute for Software Research
University of California, Irvine

Department of Informatics
Donald Bren School of Information and Computer Sciences

Irvine, CA 92697-3425 USA
alspaugh@ics.uci.edu

ISR Technical Report #UCI-ISR-06-5
April 2006

Abstract

Scenarios (or use cases) and business rules each have strengths and offer mutually reinforcing views of a software system.
Scenarios describe uses of a system in terms of situations, interactions, and events unfolding over time. Business rules
describe fundamental constraints on a system’s transactions. However, analysis of scenarios and business rules together can
be challenging. We present an approach for evaluating these two distinct views in combination. We operationalize business
rules as scenarios that must match the world in every appropriate context, or as negative scenarios that must not match.
Scenarios are patterns that can match occurrences in the world; a system whose behavior meets its requirements results in
occurrences that its scenarios match successfully. We mediate the interaction of business rules and scenarios through co-
matching events appearing in two or more scenarios. A co-matched event is not judged to have successfully matched unless
all the events that co-match it do. A case study of business rules for automated teller machines illustrates our approach.

Scenarios, Business Rules, and Matching

Thomas A. Alspaugh

Institute for Software Research
University of California, Irvine

Department of Informatics
Donald Bren School of Information and Computer Sciences

Irvine, CA 92697-3425 USA
alspaugh@ics.uci.edu

ISR Technical Report #UCI-ISR-06-5
April 2006

Abstract

Scenarios (or use cases) and business rules each have strengths and offer mutually reinforcing views of a software system.
Scenarios describe uses of a system in terms of situations, interactions, and events unfolding over time. Business rules
describe fundamental constraints on a system’s transactions. However, analysis of scenarios and business rules together can
be challenging. We present an approach for evaluating these two distinct views in combination. We operationalize business
rules as scenarios that must match the world in every appropriate context, or as negative scenarios that must not match.
Scenarios are patterns that can match occurrences in the world; a system whose behavior meets its requirements results in
occurrences that its scenarios match successfully. We mediate the interaction of business rules and scenarios through co-
matching events appearing in two or more scenarios. A co-matched event is not judged to have successfully matched unless
all the events that co-match it do. A case study of business rules for automated teller machines illustrates our approach.

1. Introduction

Both scenarios and business rules are widely used to describe the required behavior of systems. It can be challenging to
determine whether a group of scenarios follows a set of business rules, however. Identifying the rules that apply to specific
scenarios, and analyzing each scenario for compliance to them, are tasks that typically require human expertise and insight.
For systems described by commercial-sized collections of scenarios and business rules, this can be a daunting challenge. Our
approach uses a combination of scenario expressiveness and analysis techniques to address this challenge, with the potential
for automated support.

Scenarios (and use cases containing them) describe uses of a system in terms of situations, interactions between agents,
and events unfolding over time. They are widely used in a number of ways during the development process, and by a
variety of participants [2]. Stakeholders (customers, users, and others affected by a system) use them to communicate what
is wanted, and developers (designers, programmers, testers, etc.) use them to confirm their understanding [6, 14]. They are
used to simulate and explore a system’s use [6] or a design’s utility [22].

Business rules describe fundamental constraints and policies for the transactions conducted by an organization and its
systems. They provide a global perspective on the operations of the organization, in contrast to the local, partial descriptions
provided by scenarios. Because they are global, they can be used to check that scenarios are consistent with the principles
and procedures of the organization as a whole. The primary audience for business rules is the business-oriented members
of the organization or similar organizations, rather than technically-oriented developers. Business rules are typically written

informally in natural language, or alternatively as structured natural language corresponding to a more formal underlying
structure in a logic. They are not system requirements themselves, but are at a higher level and give rise to system require-
ments [11, 18].

Scenarios and business rules provide complementary and mutually reinforcing kinds of knowledge. Both scenarios and
business rules are expressed in prose forms; both stakeholders and developers can understand and work with them directly.
Scenarios are specific behaviors desired for the system, illustrating particular uses in specified contexts. A scenario shows
how the system will act in achieving a desired result while satisfying business rules. Business rules are more general policies
or procedures that apply in many or all contexts. The business rules express system properties that are often distributed across
many different scenarios. A rule expresses in one place a policy that every relevant scenario must adhere to. Business rules
can provide an understanding of how a particular scenario fits into the overall system behavior. Scenarios provide specific
examples or counterexamples for a business rule, helping communicate the meaning of the rule and aiding stakeholders and
developers in coming to a common understanding. In addition, the use of scenarios to explicate business rules brings those
rules into the same domain as the scenarios that must satisfy them. Separating these two types of concerns simplifies the
expression of each one, but finding a common ground enables evaluation and validation of both.

Because business rules express things in a markedly different way than scenarios, it can be challenging to identify conflicts
between the business rules and the scenarios that are to adhere to them. Indeed, it is not straightforward to locate the scenarios
that might satisfy or contradict a particular business rule. The current trend in commercial products is toward the generation
of code from business rules, either as a means of integrating services provided by components produced separately, or for
inclusion in a system to monitor and verify that business rules are followed. However, stakeholders and developers still need
to analyze whether a proposed system may be expected to follow business rules, and this analysis is needed before resources
have been expended to implement the system.

We describe an approach for integrating and evaluating the combination of business rules and scenarios. We operationalize
business rules with scenarios describing specific ways in which each business rule may succeed or fail. They are either
scenarios that must match the world in every appropriate context (else the system has failed), or negative scenarios that must
not match. These scenarios may describe behaviors that are in some sense test cases for success or failure of a business
rule, or (depending on the rule) may arguably apply to every possible success (or failure). Scenarios are patterns that
can match occurrences in the world, and a system whose behavior meets its requirements results in occurrences that its
scenarios match successfully. We use our language ScenarioML for expressing scenarios in a form close to natural language
but offering significant additional expressive power; its novel facilities for parameterization of events, variables for newly
identified entities, anaphora, and co-matching events offer a significant foundation for evaluating scenarios in terms of the
occurrences they match in the world. We mediate the interaction of business rules and scenarios through co-matching, in
which one scenario gives additional constraining context to an event in another. By expressing scenarios in a language with
semantics defined in terms of matching, we can model interactions between scenarios and business rules by examining how
their semantics compare. This allows us to begin to evaluate and draw inferences about them, for example by identifying
scenarios that do not follow a specific business rule, and business rules that do not constrain any scenario and thus have no
effect, all based on comparison of what each scenario can match. We believe our approach can offer significant benefits for
early-lifecycle evaluation and analysis.

The remainder of this paper is organized as follows. Section 2 defines scenario terminology used in the paper. Section 3
discusses business rules and gives some examples. Section 4 explores how scenarios match against the world. Section 5
presents our scenario language ScenarioML which we use here in exploring scenario matching and the interaction of business
rules and scenarios. Section 6 illustrates our approach using examples from a case study of ATM scenarios and business rules.
Section 7 presents related work, and Section 8 summarizes the lessons learned and future work.

2. Scenario terminology

A scenario is a sequence of events, and associated information such as the necessary context.
An event describes something that can happen over an interval of time: an action performed by some agent, a commu-

nication from one entity to another, a change in the world’s state, an interval during which a condition holds, or in general
anything of interest that may happen.

An occurrence is something that actually happens in the world (or could), and that may be described by an event in a
scenario.

A simple event is one not subdivided into briefer component events. A compound event is composed of subevents and
specific temporal relations between them. A compound event begins when its earliest subevent begins, and ends when its

2

latest subevent ends.
Corresponding to a compound event, a constellation of occurrences is a set of occurrences and their relations.
Scenarios and events match the world when they describe occurrences that have taken place. A simple event can match

a single occurrence. A compound event can match a constellation of occurrences, if each subevent matches a distinct occur-
rence and the relation between every two matched occurrences is consistent with the relation between the events matching
them.

A negative scenario is a scenario for which the sense of matching success is negated: a negative scenario successfully
matches the world whenever its events fail to match.

Two scenarios are equivalent if they match the same constellation. A scenario is a generalization of another if it matches
every constellation the other does, plus some more.

3. Business rules

Business rules represent policies, procedures, and constraints that describe an enterprise’s way of doing business. A
business rule may address a process for achieving an objective, the way the business views the world and structures its
records, or an obligation imposed by outside regulation or custom. Conceptually, business rules lie between high-level
objectives and system requirements; they are seen as arising from the objectives of the enterprise and leading to system
requirements [11, 18]. Below are some example business rules.

• “A bank requires a supervisor’s signature before cashing a check over $5000.” [18]

• “A meeting must have a meeting initiator.” [11]

• “Whenever the stock is below the reorder point, only good customers will have their order immediately processed.”
[26]

• “Good customers of a product are defined as those who have bought at least twice the average sales per customer over
the last 12 months.” [26]

• “Put the orders of bad payers on a waiting list, until they pay the amounts due.” [26]

A business rule can be operationalized positively by a scenario that describes how the rule is followed, or negatively by
one describing how it fails to be followed. An informal scenario positively operationalizing the first example business rule is

(1) A customer presents a check for more than $5000 to a teller to be cashed;
(2) The teller obtains a supervisor’s signature for the check;
(3) The teller cashes the check and gives the amount to the customer.

The business rule is integrated with other scenarios for the bank’s operations by having (1) and (3) in the business rule
scenario co-match with any appearance of events (1) and (3), respectively, in another scenario. Thus this scenario becomes
a necessary context for any transaction involving cashing a check for more than $5000. If there is any situation in which
this necessary context prevents another scenario from matching, then that is a situation in which the business rule fails to be
followed. We use potential co-matched events to identify other scenarios or combination of scenarios for which the business
rule should apply, then analyze them to find any contexts in which the business rule fails, as will be described in Section 6.

An informal scenario negatively operationalizing the second example business rule is

Precondition: Meeting M has no meeting initiator.
(1) The meeting scheduler system schedules M.

This scenario uses a precondition to restrict the contexts in which the scenario can match: only for a meeting M that has no
meeting initiator. Because it negatively operationalizes the business rule, any context in which it matches is one in which the
business rule fails to be followed. As with the positive business rule scenario, we look for potential co-matched events to
identify other scenarios or combinations of scenarios for which the business rule should apply, then analyze them further to
search for ways it could fail.

3

4. Scenarios and matching

We believe that the meaning of a scenario is the set of all possible occurrences in the world that the scenario could match.
We cannot deal with this set directly (it is generally infinite), but we can use it to understand scenarios better and make the
most effective use of them. A simple event matches individual occurrences in the world; two simple events whose description
is the same match the same occurrences, and are equivalent. A compound event matches constellations of occurrences; a
compound event consisting of a sequence of events matches constellations of the occurrences matched by the events in
the sequence, where the sequence of the occurrences in each constellation is the same as the sequence of the corresponding
events matching them. Two event sequences containing equivalent events in the same sequence match the same constellations,
and are equivalent also. A scenario consisting of an event sequence matches the constellations that the sequence matches,
constrained by the scenario’s precondition if present. An episode (or inclusion of a use case), an event that stands for another
scenario, matches if the referred-to scenario matches. This description covers the vast majority of scenarios (and use cases).

However, a closer examination shows that more is going on. Most scenarios and events are implicitly parameterized: “A
customer inserts an ATM card into the ATM” is implicitly parameterized by at least the choice of customer, ATM card, ATM,
and time. Some of these may be parameters of the scenario, which were bound to entities in the world before the scenario
began. Others, probably all four in this case, are variables that were newly bound to entities when the event was matched to
an occurrence. The concrete scenario

Alan Windham inserts his wife’s ATM card into the FCU (Friendly Credit Union) ATM at the corner of Fourth
and Main two seconds after a backhoe cut the main communication line to the central server

while it may or may not match the world, is clearly related to the original.
Similarly, most scenarios and many events are implicitly quantified on one or more implicit variables and/or parameters:

“An individual who can read either English or Spanish inserts any one of the thousands of FCU ATM cards into any one of the
ATMs running our software” is one reasonable interpretation of the original event. The quantification ranges are necessarily
conjectural, as it is rare for a scenario to say anything about them directly. Later events in the same scenario use anaphora
to refer back to implicit variables and parameters in earlier events, as in “The ATM returns the ATM card and displays a
welcome screen.” In this case it is certain that the same ATM and card mentioned earlier are meant. However in a scenario
involving two of the same thing (such as a transfer from one account to another) the situation is more complex.

Closer consideration also shows that a strict sequence of events is not always intended. Adjacently-listed events may be
intended each to begin when the preceding one ends (as in “The ATM beeps while the card is in the ejected position” followed
by “The customer takes the card”); with some time in between, as is often the case; overlapping (as in some ATMs that print
a receipt while asking if another transaction is desired); or in other relationships.

Event schemas such as alternation and iteration are also seen in scenarios and related notations, and can be defined in
terms of matching. We distinguish schemas from other events because

• each schema represents a set of events and matches the union of what those events match,

• an alternation represents the set of its alternative events, and

• an iteration represents a set of sequences of the iterated event.

Whereas a scenario containing no schema is still essentially the classic script or linear sequence of events that is its most
common definition, a scenario containing a schema (or a schematic scenario) is equivalent to a set of scripts. We find event
schemas are essential in expressing behavior with a manageably small number of scenarios. Schemas also support reasoning
reuse because each schema’s pattern provides its own kind of consistent modularity and relations for its subevents.

Taking account of parameterization, quantification, anaphora, relations between events, and schematic events enables us to
compare and reuse events more effectively. With this knowledge we have a better grasp on what occurrences or constellations
an event can match, and how this may vary when the same event appears in different contexts.

We can make further use of this knowledge in using co-matching. Any event is constrained to match in the context that its
scenario provides. The event “The teller obtains a supervisor’s signature for the check” does not occur in isolation. It happens
after a customer presents a check for more than $5000, and before the teller pays out the check. If an event is part of several
scenarios, then it can occur in any of the contexts those scenarios provide for it, and can match in all the constellations any of
them match. Co-matching is a way not of adding a new possible context, but of constraining contexts previously available.
If event e in scenario S becomes co-matched by event c in scenario C, e’s context is constrained. Before it could match in

4

b
a

b
a

b
aa

b
a

b

a precedes b a meets b a overlaps b a finished
by b

a contains b
(b during a)

p m o F D

time

Figure 1. The basic positive Allen relations

any constellation S matched. Now it can match only in a constellation S matches that shares at least one occurrence with
a constellation C matches. The shared occurrence is the one matched both by e in S and by c in C. By adding a scenario
describing how a supervisor verifies a check (signature, endorsement, sufficient balance, etc.) and ending with “The teller
obtains a supervisor’s signature for the check” co-matched with the same event in the original scenario, we constrain the
contexts in which large checks can be cashed. We accomplish this without complicating the original scenario, and have a
new scenario that is more likely to be reusable.

5. ScenarioML

ScenarioML is an XML-based language for expressing scenarios in natural language with additional supporting informa-
tion. Its goal is to support ordinary scenario use while allowing enhanced expressiveness and automated operations. The
enhanced expressiveness includes the parameterization, quantification, anaphora, relations between events, and co-matching
discussed in the preceding section. Examples of ScenarioML scenarios appear below in Section 6. During the two-year
evolution of the language to its present form, automation has been prototyped for comparison of events for equivalence and
for generalization, matching scenarios against occurrence streams, transformations between equivalent forms or to special-
izations, and translation to presentation forms such as HTML and LATEX [4].

We use ScenarioML rather than plain text because it supports automated analysis and manipulation that plain text does not.
We work with scenarios rather than Message Sequence Charts (MSCs) and similar formalisms because we believe that not
all events should be modeled as messages from one agent to another, especially in pre-design phases, and that the substantial
benefits of scenarios in this context are worth pursuing.

Simple events in ScenarioML are text, with optional markup to identify parameterization, quantification, and anaphora.
There is support in ScenarioML for defining entity types and subtypes for parameters, variables, and quantification ranges.
Compound events are constructed using Allen’s interval algebra relations between the subevents. These relations are the
thirteen possible disjoint qualitative relationships between two concrete time intervals, and all combinations thereof; they
support a variety of operations including temporal inference [3]. We focus on the positive relations, the 25 combinations of
the five basic relations for which the first-listed interval begins before the second one. The five positive basic relations are
illustrated in Figure 1. ScenarioML classifies compound events into three cases, both to simplify the expression of the most
common and simplest compound events, and to make use of much more efficient algorithms wherever possible.

• event chains (ordinary sequences), in which successive events are related by positive Allen relations;

• partial orders of events whose covering relations are positive Allen relations; and

• general event graphs with unrestricted Allen relations.

Event chains are simplest and by far the most commonly encountered compound events, and event partial orders are more
complex but rare. Comparison and inference with these is quite manageable. The general satisfaction problem for Allen’s
interval algebra is NP-complete; but we have yet to encounter a scenario that requires a general event graph, much less one
of substantial size, so the intractability of the general case is not of practical concern.

ScenarioML provides event schemas for alternation and iteration.
Any scenario in ScenarioML may be used as an episode, of another scenario. If the scenario has parameters then it may be

given arguments in its appearance as an episode. To better support reuse of individual events, ScenarioML allows definition
of parameterized event types that take an event (simple, compound, or schema) as a template. Instances of the event type
then appear as individual events, with arguments if the type was parameterized.

5

The base task for matching ScenarioML events and scenarios against the world is to classify occurrences by the simple
events that match them. In the most straightforward case the occurrences are themselves strings, and a simple event matches
an occurrence if their strings match. This is the case in our use of ScenarioML in computed social worlds [5]. In general,
the implementation of occurrence classification must be done on at least a domain-by-domain basis. Once simple events are
matched, compound events and event schemas are matched recursively as discussed above in Section 4.

Comparison of scenarios and events follows a similar recursive pattern. Except in a small number of special cases, an
event of each kind can only be equivalent to another event of the same kind: two simple events, two event chains, two
episodes, etc. Exceptions occur for chains of one event, partial orders of one event, alternations of one event, etc. (each
is equivalent to that event); linear partial orders, equivalent to the corresponding event chain; alternations of all unrollings
of a finite iteration, equivalent to the iteration; and so forth. The situation is more complex but analogous when comparing
events for generalization-specialization; due to space limitations here, we will simply note that parameterization becomes a
significant issue.

6. Case study: ATM business rules

We validated our approach on a collection of business rules and scenarios for ATMs, from which we selected the examples
presented in this section. The business rules were obtained from the author’s credit union and from a contact at a bank; the
scenarios were recorded and abstracted from notes of interactions with a variety of ATMs in the United States and Europe,
focusing on ATMs at two credit unions in the U.S. and using the remainder as comparisons and contrasts for insight. Each
business rule was used to derive one or more scenarios, either positive scenarios that matched ways the business rule could
be satisfied, or (more commonly) negative scenarios that matched ways the rule could fail to be satisfied. Where possible,
we produced scenarios for which we could argue that the scenarios matched all ways the rule could be satisfied (or fail
to be). Where this did not appear possible with ScenarioML as it stands now, we noted the rules for further research.
We found no business rules in this study for which operationalization seemed impossible in principle. We analyzed the
original scenarios plus the business rule scenarios to identify equivalence classes of events, and reworded equivalent events
as necessary so events in each class were textually identical. We made use of event parameterization wherever possible to
efficiently produce larger sets of equivalent events that differed only by which account was involved, for example. Finally,
we derived an event type definition for each equivalence class, and replaced each equivalent event by a reference to that type.
Note that for clarity, most events shown in the figures of this paper have not had this final replacement of identical events
done. Because this case study was an initial study investigating the practicality of our approach, resources were not spent
to produce automated support beforehand. Instead, transformations and comparisons were done manually, with care that the
manual process followed the projected automated process as closely as possible, and did not produce results that required
human insight. The event classification process can be assisted by software tools such as SMaRT [21], and is a necessary
preliminary for conversion of scenarios to MSCs or other formalized notations for further analysis in that form.

The four business rules presented below as examples interact with a number of scenarios, including the ATM “Withdrawal”
scenario sketched in Figure 2. The scenario has three parameters, the particular ATM involved, the person interacting with
it, and the account to which the ATM card is tied (lines 2–4). The body of the scenario is a sequence of events similar to those
encountered at many ATMs. Many of the events are parameterized to refer to the specific ATM, customer, or account of this
scenario (for example, line 7 refers to the ATM parameter). The first two business rule scenarios contain events equivalent
to the simple event named ‘debit’ at lines 27–31. In the figures the equivalent events have been made textually identical
(compare Figure 3; the event at lines 12–21, which is textually identical with it except for the particular references and the
coMatched element, which does not participate in the comparison). The other event appearing in more than one is the
typed event at line 24 (line 9 of Figure 3). This event matches the duration of the transaction, and temporally contains the
event that debits the amount and the event that dispenses that amount of cash.

6.1. “Fee for over five savings transfers”

The first example is of a business rule whose goal is to discourage excessive transfers out of savings accounts:

Each withdrawal from savings over five transactions/month will be charge a fee of $1.00 each.

At the credit union in question, every transaction that withdraws from a savings account is counted, whether from an ATM or
by another method.

6

1 <scenario name="Withdrawal">

2 <parameter name="ATM" type="ATMtype"/>

3 <parameter name="cust" type="custType"/>

4 <parameter name="acct" type="acctType"/>

5 <eventChain relation="pm">

6 <simpleEvent>

7 <ref to="ATM">The ATM</ref> displays a list of
8 <ref to="acct">the account</ref>’s subaccounts
9 and ”Please select the ’from’ subaccount”.
10 </simpleEvent>

11 <simpleEvent>

12 <ref to="cust">The customer</ref> selects
13 <variable name="fr">a subaccount</variable>.
14 </simpleEvent>

15 <simpleEvent>

16 <ref to="ATM">The ATM</ref> displays ”Please
17 enter withdrawal dollar ammount”.</simpleEvent>

18 <simpleEvent>

19 <ref to="cust">The customer</ref> enters
20 <variable name="amt" which="any"

21 type="DollarAmtType">the amount</variable>.
22 </simpleEvent>

23 <eventChain relation="D">

24 <typedEvent type="Transaction"><ref to="ATM"/>

25 <ref to="acct"/></typedEvent>

26 <eventChain relation="m">

27 <simpleEvent name="debit">

28 <ref to="ATM">The ATM</ref> debits
29 <ref to="amt">that amount</ref> from
30 <ref to="fr">the selected subaccount</ref>.
31 </simpleEvent>

32 <simpleEvent>

33 <ref to="ATM">The ATM</ref> dispenses
34 <ref to="amt">that amount</ref>.
35 </simpleEvent>

36 </eventChain>

37 </eventChain>

38 </eventChain>

39 </scenario>

Figure 2. Withdrawal scenario

We operationalized this business rule with the scenario FeeForOverFive of Figure 3. This scenario describes how the
business rule can fail to be met; thus, it is a negative scenario (line 1), since matching of it in the ordinary sense corresponds
to failure. Its event at lines 12-21 must co-match with the Withdrawal scenario’s ‘debit’ event; for the events to match
the same occurrence, the ‘debit’ event’s reference to variable ‘fr’ must produce the same value as FeeForOverFive’s
parameter ‘fr’. Finally, FeeForOverFive has a negative event at lines 22-25. This event succeeds if it does not match.
In total, from the inside out, this scenario attempts to match transactions out of the same savings subaccount during a single
month, but not transactions for which a fee was paid. The scenario as a whole attempts to match six such fee-less transactions.
Because it is a negative scenario, if it matches then it fails; and it fails when the business rule has not been observed.

Having operationalized the business rule as a scenario, we can now analyze its interactions with the other scenarios in
several ways.

• We can look for scenarios with unsuspected connections to the business rule. Having divided the simple events into
equivalence classes, it is possible to identify other scenarios containing events of the same classes as the business rule
scenario, and examine these scenarios individually and in combination in search of potential co-matching with the
business rule.

• We can see what specific actions the business rule requires from each related scenario, in terms of the kind of events
the scenario is expressed with.

• We can see what specific actions the business rule forbids, in terms of the events each scenario is expressed with.

7

1 <scenario name="FeeForOverFive" negative="true">

2 <parameter name="fr" type="subaccountType"/>

3 <eventChain relation="D">

4 <typedEvent type="CalendarMonth">

5 Any calendar month.</typedEvent>

6 <iteration>

7 <iterationsCounted min="6" max="unbounded"/>

8 <eventChain relation="D">

9 <typedEvent type="Transaction"><ref to="ATM"/>

10 <ref to="acct"/></typedEvent>

11 <eventChain relation="pm">

12 <simpleEvent>

13 <coMatched><ref to="Withdrawal.debit">

14 <argument parameter="fr" ref="fr"/>

15 </ref></coMatched>

16 <variable which="any" type="ATMtype"

17 name="ATM">An ATM</variable> debits
18 <variable which="any" type="DollarAmtT">some
19 amount</variable> from
20 <ref to="fr">the subaccount</ref>.
21 </simpleEvent>

22 <simpleEvent negative="true">

23 <ref to="ATM">The ATM</ref> debits the fee
24 from <ref to="fr">the subaccount</ref>.
25 </simpleEvent>

26 </eventChain>

27 </eventChain>

28 </iteration>

29 </eventChain>

30 </scenario>

Figure 3. Scenario FeeForOverFive

• We can evolve the scenarios toward better satisfaction of the business rules, by changing the scenarios to add events
the business rule demands and elide events the business rule forbids, in particular contexts.

• Because all these analyses are in terms of scenario matching, tool support based on matching can be implemented.

These benefits are provided when any business rule is operationalized as a scenario using our approach.

6.2. “Limit six savings transfers”

A similar business rule, attributed by the credit union to federal regulations, limits transfers from savings to six each
month:

You are currently allowed six (6) transfers per month from savings, as set by Federal Regulation D. The limit
is reset on the first of every month.

On the face of it, this business rule seemed questionable when compared with the previous one. We following our process
to operationalize it and identify related scenarios. It was operationalized as a negative scenario, matching only in contexts
in which the business rule was not followed. Figure 4 shows the scenario. We compared its set of matched constellations
with that of FeeForOverFive’s operationalization, giving savings subaccounts to both as arguments. The sets were not
comparable, as each one matched contexts the other did not (“FeeForOverFive” matched a seventh savings transfer out,
while “LimitSix” matched six savings transfers out without any fee paid). Our approach compared scenarios, but only for
equivalence or generalization, and this was neither. This part of our approach was not helpful for this business case.

However, since the two business rule scenarios shared two of their events, and our approach did look for shared events,
our approach did bring the two business rules to our attention. for further examination as possibly conflicting.

None of the ATM scenarios we elicited supported this business rule, as we had not observed that there was such a limit.
Further tests with an ATM seemed to show that the rule was no longer active.

8

1 <scenario name="LimitSix" negative="true">

2 <parameter name="fr" type="subaccountType"/>

3 <eventChain relation="D">

4 <typedEvent type="CalendarMonth">

5 Any calendar month.</typedEvent>

6 <iteration>

7 <iterationsCounted min="7" max="unbounded"/>

8 <simpleEvent>

9 <variable which="any" type="ATMtype"

10 name="ATM">An ATM</variable> debits
11 <variable which="any" type="DollarAmtT">some
12 amount</variable> from
13 <ref to="fr">the subaccount</ref>.
14 </simpleEvent>

15 </iteration>

16 </eventChain>

17 </scenario>

Figure 4. Scenario LimitSix

1 <scenario name="StandaloneFastCash" negative="true">

2 <eventChain relation="D">

3 <simpleEvent name="Standalone">

4 <variable name="ATM" which="any">An
5 ATM</variable> has no connection with
6 the central server.</simpleEvent>

7 <eventChain relation="p">

8 <simpleEvent name="Cash1">

9 A customer withdraws cash from
10 <ref to="ATM">the ATM</ref> using
11 <variable name="ATM-card" which="any">an
12 ATM card</variable>.</simpleEvent>

13 <simpleEvent name="Cash2">

14 A customer withdraws cash from
15 <ref to="ATM">the ATM</ref> using
16 <variable name="ATM-card" which="any">the
17 same ATM card</variable>.</simpleEvent>

18 </eventChain>

19 </eventChain>

20 </scenario>

Figure 5. Scenario StandaloneFastCash

6.3. “Standalone mode fast cash”

Several credit union business rules apply only to ATMs in standalone mode, when the ATM does not have communications
with the central server. An example is

Each ATM in standalone mode will only allow one withdrawal per account, and only of the ‘fast cash’
amount.

We operationalized this rule with the scenario sketched in Figure 5.
The scenario StandaloneFastCash is a negative scenario, one that fails to match the world if the systems described

are functioning properly. It describes a counterexample for the BR-StandaloneFastCash business rule, in which the ATM is
in standalone mode (event ‘Standalone’), during (relation="D") which interval the same ATM card is used first for one
withdrawal (event ‘Cash1’) and then for a second (event ‘Cash2’) from the same ATM. This scenario matches every way the
business rule can fail to be followed.

The next step in our approach was to identify the scenarios that this business rule could co-match with. In our case
study, there were no scenarios specific to stand-alone mode, as we had never observed it or any sign of its existence during
elicitation. Therefore the normal-case scenario for withdrawing cash matched twice in succession along with cash-withdrawal
events in the business rule’s negative scenario, indicating a violation of the business rule. The chosen solution was to create

9

1 <!-- Authorization for ATM transactions -->

2 <simpleEvent>

3 A customer inserts an ATM card for
4 an accoutn into the ATM. </simpleEvent>

5 <simpleEvent>

6 The customer enters the PIN for the ATM card
7 into the ATM. </simpleEvent>

8 <simpleEvent>

9 The ATM verifies that the PIN matches the ATM card.
10 </simpleEvent>

11

12 <!-- Authorization for teller transactions -->

13 <simpleEvent>

14 The customer tells or shows the teller the account number.
15 </simpleEvent>

16 <simpleEvent>

17 The customer shows his or her drivers license to the teller.
18 </simpleEvent>

19 <simpleEvent>

20 The teller verifies that the name on the license
21 matches an owner of the account. </simpleEvent>

22

23 <!-- Authorization for mail transactions -->

24 <simpleEvent>

25 The customer writes a letter giving his or her name
26 and account number and requesting a specific transaction.
27 </simpleEvent>

28 <simpleEvent>

29 The customer signs the letter.
30 </simpleEvent>

31 <simpleEvent>

32 The teller verifies that the name is of an owner of the account,
33 and that the signature matches the one on file.
34 </simpleEvent>

Figure 6. Authorization in several contexts

new scenarios specific to stand-alone mode, and edit the current scenarios to exclude them from matching in stand-alone
mode. This made direct use of the knowledge we had gained by operationalizing the business rule.

6.4. Crosscutting authorization rule

The final business rule presented here was, strictly speaking, not part of the case study, as it was suggested by a colleague
rather than obtained from a credit union. A little reflection and investigation show that a credit union always requires a
customer to show authorization for the requested transactions, no matter how those transactions are handled: at an ATM, a
teller window, by physical mail, etc.

The suggested business rule was

A customer’s authorization must be confirmed before he or she can request a transaction.

This is a reasonable business rule, and one that is presumably a generalization of all the specific business rules requiring
authorization of an ATM customer, a teller customer, etc.

The operationalization of this business rule was beyond the present capabilities of ScenarioML, primarily because each
specific sub-rule’s scenario had a list of parameters, and each list was different. We considered several approaches but
concluded none was sufficient. Figure 6 shows three specific operationalizations of the hypothesized business rules, for
ATMs, teller windows, and mail transactions. We considered what a scenario language would need in order to express these
scenarios, and concluded that while it was conceivable, it might not repay the effort.

10

7. Related work

Although business rules have been widely discussed in the trade press and are becoming more prominent in the software
industry, there has been relatively little research on them in the requirements community. Leite et al. examine the connections
between business rules and the requirements baseline, using business policies as a useful viewpoint from which to understand
and analyze requirements evolution [11]. Rosca et al. propose a metamodel and methodology for explicitly modeling business
rules. The metamodel and methodology support and guide work with business rules, including analysis of a set of rules and
their degree of conformity with an enterprise’s policies [18]. Wan-Kadir et al. explore the relation between business rule
evolution and evolution of related software systems [26].

There has been a substantial amount of work on scenario and use case languages, models, and semantics. Many authors
have proposed event schemas in one form or another. Various forms of alternation, iteration, and exception/interuption are
described by Dardenne et al. [8], the Message Sequence Charts specification [10], Maiden [13], and many others. Basic
scenarios have been extended with specific sets of temporal relations between events, including important work by Maiden
[13] and by Breitman et al. [7] Episodes under one name or other appear to have been nearly universal in scenario and
use case languages, including notably Potts et al. [17] and the OMG [16]. Negative scenarios, anti-scenarios, and misuse
cases have been explored and shown effective by Alexander [1], Hope et al. [9], Sindre et al. [20], and Uchitel et al. [25].
The structure of ScenarioML is built squarely on this work; perhaps the most distinctive features of ScenarioML are its use
of parameterization, variables for newly bound entities, quantification for restricting variable bindings, and anaphora, its
emphasis on matching the world as the basis for the meaning of events and scenarios, and co-matching so that one scenario
may be used to constrain the context of another.

Perhaps the most successful approaches to date for analyzing collections of scenarios have been those that first translate
the scenarios into a more formal structure such as labeled transition systems. Uchitel et al. have achieved striking and basic
results in this way [24], [12]. Our work is an early investigation into the possibilities of analyzing scenarios on their own
terms.

Finally, researchers have investigated the fundamentals of combining different forms of specification, notably a long line
of work on Viewpoints [15], [19] and model merging [23] Our work is much less general and specifically focused on one
specific pair of forms.

8. Lessons learned and future work

In this paper we discussed an approach for evaluating business rules and scenarios together, by operationalizing the
business rules as scenarios, mediating their interactions with other scenarios theough co-matching events, and examining
their combination through a consideration of the occurrences they match. We make use of ScenarioML’s flexible support for
parameterization, variables and their quantification, and anaphora to increase the range of events that can co-match. Finally,
we make use of negative scenarios to increase the expressive power of scenarios and match a broader yet focused set of
occurrences, the better to cover the cases that follow a business rule and conversely to cover the counterexamples that fail to
follow it.

Results from our first case study, presented in this paper, indicate that this approach for analyzing scenarios and business
rules in combination is more promising than we had expected. While it is clear that a practical application of the approach
will require software support, at the same time we see that there are opportunities to take advantage of prototype automation
for scenario matching tasks, and the use of ScenarioML highlighted the possibilities of support of other tasks.

During the course of the case study, we learned that matching scenarios manually is more challenging that is first apparent.
We found that our intuition about precisely which scenarios would interact how was incomplete or inaccurate in many cases.
Manually working through the matching process was tedious, as expected, but also surprisingly error-prone. The equivalent
of a “scenario match calculator” would be of great utility for this approach; among other tasks, it might evaluate two co-
matching scenarios to determine if the intersection of the sets of occurrences each matches is empty, or equal to the set of
one or the other scenario.

Finally, we were pleasantly surprised at the expressibility of scenarios in ScenarioML in practice, both for matching a
broad swath of constellations and for matching quite focused sets. We did note it has limitations as well. However, its
possibilities for extending the ease and power of ordinary scenario practice may be of considerable interest.

Our future work includes the continuation of a case study on ScenarioML as a language for expressing software require-
ments in the form of scenarios. We will continue to apply scenarios and ScenarioML in addressing areas outside requirements

11

per se, such as software testing, especially using goals and plans to do more effective specification-bsed testing; the connec-
tion between requirements, software architecture, and design; and computed societies and the areas connected to it. As
ScenarioML has become more stable and mature, it is more practical to pursue software support for its use. We are particu-
larly interested in the possibilities of using Allen’s interval algebra with event chains and partial orders, and in investigating
the extent to which calculations in it for these restricted but useful cases can be built on in working with scenarios. We are
presently doing work for Unisys Corp. to investigate the connection and synergy between scenarios and business rules, of
which the present research is a first small step.

References

[1] I. F. Alexander. Initial industrial experience of misuse cases in trade-off analysis. In 10th IEEE Joint International Conference on
Requirements Engineering (RE’02), pages 61–70, Sept. 2002.

[2] I. F. Alexander and N. Maiden, editors. Scenarios, Stories, Use Cases: Through the Systems Development Life-Cycle. John Wiley &
Sons, Ltd., 2004.

[3] J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, 26(11):832–843, Nov. 1983.
[4] T. A. Alspaugh. Temporally expressive scenarios in ScenarioML. ISR Technical Report UCI-ISR-05-06, Institute for Software

Research, University of California, Irvine, May 2005.
[5] E. Baumer, B. Tomlinson, M. L. Yau, and T. A. Alspaugh. Normative echoes: use and manipulation of player generated content by

communities of NPCs. 2006. To appear: AIIDE’06.
[6] K. Benner, M. S. Feather, W. L. Johnson, and L. Zorman. Utilizing scenarios in the software development process. In IFIP Working

Group 8.1 Working Conference on Information Systems Development Processes, Dec. 1992.
[7] K. K. Breitman, J. C. S. d. P. Leite, and D. M. Berry. Supporting scenario evolution. Requirements Engineering Journal, 10(2), May

2005.
[8] A. Dardenne, A. v. Lamsweerde, and S. Fickas. Goal-directed requirements acquisition. Science of Computer Programming, 20(1–

2):3–50, Apr. 1993.
[9] P. Hope, G. McGraw, and A. I. Antón. Misuse and abuse cases: Getting past the positive. IEEE Security and Privacy, 2(3):90–92,

2004.
[10] Message Sequence Chart (MSC). ITU-T Recommendation Z.120, International Telecommunications Union, Nov. 1999.
[11] J. C. S. d. P. Leite and M. C. Leonardi. Business rules as organizational policies. In Ninth International Workshop on Software

Specification and Design (IWSSD’98), pages 68–76, Apr. 1998.
[12] E. Letier, J. Kramer, J. Magee, and S. Uchitel. Monitoring and control in scenario-based requirements analysis. In 27th International

Conference on Software Engineering (ICSE ’05), pages 382–391, May 2005.
[13] N. A. M. Maiden. CREWS-SAVRE: Scenarios for acquiring and validating requirements. Automated Software Engineering,

5(4):419–446, Oct. 1998.
[14] N. A. M. Maiden, S. Minocha, K. Manning, and M. Ryan. CREWS-SAVRE: Systematic scenario generation and use. In Proceedings:

3rd International Conference on Requirements Engineering, pages 148–155, 1998.
[15] B. Nuseibeh, A. Finkelstein, and J. Kramer. Fine-grain process modelling. In Proceedings of the Seventh International Workshop on

Software Specification and Design, pages 42–46, Dec. 1993.
[16] OMG Unified Modeling Language specification (version 1.5). Document formal/03-03-01, Object Management Group, Framingham,

MA, Mar. 2003.
[17] C. Potts, K. Takahashi, and A. I. Antón. Inquiry–based requirements analysis. IEEE Software, 11(2):21–32, Mar. 1994.
[18] D. Rosca, S. Greenspan, and C. Wild. Enterprise modeling and decision-support for automating the business rules lifecycle. Auto-

mated Software Engg., 9(4):361–404, 2002.
[19] M. Sabetzadeh and S. M. Easterbrook. An algebraic framework for merging incomplete and inconsistent views. In 13th IEEE

International Requirements Engineering Conference (RE’05), pages 306–318, 2005.
[20] G. Sindre and L. Opdahl. Eliciting security requirements with misuse cases. Requir. Eng., 10(1):34–44, 2005.
[21] W. Stufflebeam, A. I. Antón, and T. A. Alspaugh. Smart — scenario management and requirements tool. In 11th IEEE Joint

International Conference on Requirements Engineering (RE’03), page 351, Sept. 2003.
[22] A. Sutcliffe. Scenario-based requirements engineering. In 11th IEEE Joint International Conference on Requirements Engineering

(RE’03), pages 320–329, Sept. 2003.
[23] S. Uchitel and M. Chechik. Merging partial behavioural models. In SIGSOFT-2004/FSE-12: ACM SIGSOFT Symposium on Foun-

dations of Software Engineering, pages 43–52, 2004.
[24] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models from scenarios. IEEE Trans. Softw. Eng., 29(2):99–115, 2003.
[25] S. Uchitel, J. Kramer, and J. Magee. Incremental elaboration of scenario-based specifications and behavior models using implied

scenarios. ACM Trans. Softw. Eng. Methodol., 13(1):37–85, 2004.
[26] W. M. N. Wan-Kadir and P. Loucopoulos. Relating evolving business rules to software design. J. Syst. Archit., 50(7):367–382, 2004.

12

