
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Thomas A. Alspaugh
University of California, Irvine
alspaugh@ics.uci.edu

Annie I. Antón
North Carolina State University
anton@csc.ncsu.edu

Use Case, Goal, and Scenario Analysis of the
Euronet System :

Comparing Methods and Results

November 2003

ISR Technical Report # UCI-ISR-03-12

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

Use Case, Goal, and Scenario Analysis of the Euronet System :
Comparing Methods and Results

Thomas A. Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425 U.S.A.

alspaugh@ics.uci.edu

Annie I. Antón
College of Engineering

North Carolina State University
Raleigh, NC 27695-8207 U.S.A.

aianton@eos.ncsu.edu

ISR Technical Report #UCI-ISR-03-12
November 2003

Abstract: In this paper, we compare the results of three related requirements engineering efforts: an industrial requirements
specification produced with a use case based process, a case study analyzing those use cases by means of goal analysis; and
a second case study analyzing the original use cases with an integrated scenario analysis and management approach and
software tool support. The scenario-based analysis proved more effective than either of the other two approaches. The results
provide validation for both the integrated scenario analysis and the software tool.

Use Case, Goal, and Scenario Analysis of the Euronet System :
Comparing Methods and Results

Thomas A. Alspaugh
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425 U.S.A.

alspaugh@ics.uci.edu

Annie I. Antón
College of Engineering

North Carolina State University
Raleigh, NC 27695-8207 U.S.A.

aianton@eos.ncsu.edu

ISR Technical Report #UCI-ISR-03-12
November 2003

Abstract

In this paper, we compare the results of three related re-
quirements engineering efforts: an industrial requirements
specification produced with a use case based process, a case
study analyzing those use cases by means of goal analysis;
and a second case study analyzing the original use cases
with an integrated scenario analysis and management ap-
proach and software tool support. The scenario-based anal-
ysis proved more effective than either of the other two ap-
proaches. The results provide validation for both the inte-
grated scenario analysis and the software tool.

1. Introduction

Scenarios have increased in popularity among software
engineers due,in part, to Jacobson’s use case approach [14]
and the more recent introduction of the Unified Modeling
Language (UML) [10]. UML’s availability and tool support
have made scenario and use case analysis even more acces-
sible to requirements analysts and software practitioners.

Scenarios are used to “stimulate thinking” in various dis-
ciplines. In software engineering, scenarios are used to
elicit and validate requirements [8, 15]. Scenarios are also
an approach for managing change and evolution during the
software process. For example, evolutionary scenarios are
used to envisage how a system may change due to, for
instance, political or technological discontinuities [8]. In
requirements engineering, scenarios are valuable for com-
municating with stakeholders and providing context for re-
quirements [7, 18, 22, 20, 23]. Although valuable, sce-
narios and use cases can be difficult to manage, and their
management is increasingly important as system complex-

ity increases. Scenario management is receiving increased
attention among researchers in the requirements community
[3, 15, 23].

The state of scenario management in practice was re-
ported by Weidenhauptet al. [23], who examined the use
of scenarios in 15 European projects to learn how scenar-
ios were produced and utilized, and to identify the benefits
and problems associated with scenario usage in industrial
settings. Practitioners using scenarios or use cases in in-
dustrial settings face very specific challenges. Key areas
needing support include the need for appropriate process
guidance as well as comprehensive support for managing
both scenario traceability and evolution [23].

In this paper, we discuss our experiences using our
strategies for utilizing a collection of syntactic analyses of
scenarios and management strategies, which we termInte-
grated Scenario Analysis(ISA) [2, 3], and a software tool
SMaRT (Scenario Management and Requirements Tool, de-
veloped at North Carolina State University), to analyze the
requirements for a business-to-business e-commerce sys-
tem. We present the results of a case study on the Eu-
ronet system, providing data on the effectiveness of ISA
and SMaRT. In this case study, we analyzed and managed
a large collection of scenarios during requirements speci-
fication activities. Euronet is a quote management system
used internally by ABB to create and manage quotes for
transformers, line items that give the details of the quotes,
and resulting orders from customers. Three approaches
have been employed to analyze the Euronet system require-
ments: a use case based analysis, resulting in the original
system requirements; a goal analysis [6]; and the scenario-
based analyis reported here. For this particular study, we
employed the ISA analysis and process guidance methods
[2, 3], supplemented by scenario identification and elabo-

ration heuristics from GBRAM (Goal-Based Requirements
Analysis Method) [5] and the Inquiry Cycle [20]. The anal-
ysis was assisted in part by SMaRT, which was in a proto-
type stage during the case study.

In Section 2, we discuss relevant work in requirements
specification. We briefly summarize our findings from the
use case and goal-driven analysis in Section 3, before dis-
cussing integrated scenario analysis in Section 4. Section
4 also discusses our use of SMaRT (Scenario Management
and Requirements Tool). Section 5 contrasts the three anal-
ysis methods within the context of the Euronet system and
the the lessons learned are detailed in Section 6. The paper
concludes with a discussion of future work in Section 7.

2. Related Work

The terms “use cases”, “scenarios”, and “goals” mean
different things to different people; we thus discuss these
terms in the context of other relevant work including the
requirements engineering literature.

2.1. Scenarios and Use Cases

Scenarios aid analysts and stakeholders in developing an
understanding of current or envisaged systems and busi-
ness processes [5, 7, 8, 9, 11, 14, 18, 23]. They describe
concrete system behaviors by summarizing behavior traces.
Use cases, introduced by the object-oriented community
[10, 14], describe groups of system interactions that exter-
nal agents may have with a system. In UML, use cases are
comprised of sets of actions and interactions that involve
specific objects. Requirements engineering benefits from
an initial emphasis on use cases, but they benefit in turn
from a semantics that connects them to purposeful activi-
ties [18, 19]. A representational framework for scenarios
and use cases is given by Antón and Potts [8].

Scenario analysis is a very effective and proven tech-
nique for surfacing goals during requirements engineering.
The CREWS-SAVRE tool organizes scenarios hierarchi-
cally according to goals and goal obstacles; the goals serve
as a grounded, shared understanding for stakeholders [16].
Goal-scenario coupling, as documented in [21, 22], pro-
vides an integrative approach to goal and scenario-oriented
requirements analysis. The CREWS-L’Ecritoire approach
employs bi-directional coupling to facilitate navigation be-
tween goals and their associated scenarios.

SMaRT supports management and analysis of scenario-
based specification [2, 3]. It provides a database for storing
scenarios in a standard form, facilities for searching, com-
paring, and identifying duplicates and near-duplicates, ca-
pabilities for identifying, recording, and preserving depen-
dencies between scenarios, automated analyses for process

guidance, and other features. SMaRT was used in the re-
search presented in this paper.

2.2. Goals and Scenarios

Goals are the objectives and targets of achievement for
a system. Goal-driven approaches focus on why systems
are constructed, expressing the rationale and justification
for the proposed system. Goals are evolutionary and they
provide a common language for analysts and stakeholders.
Focusing on goals, instead of specific requirements, allows
analysts to communicate with stakeholders using a language
based on concepts with which they are both comfortable
and familiar. Furthermore, since goals are typically more
stable than requirements [5], they are a beneficial source
for requirements derivation. Goals are operationalized and
refined into requirements and point to new, previously un-
considered scenarios. Similarly, scenarios also help in the
discovery of goals [7, 9, 15, 19, 22].

Goal hierarchies offer a useful way to visualize goals and
their related scenarios [4, 5]. Organizing goals hierarchi-
cally provides a useful way to represent the relationships be-
tween goals and subgoals so that we can reason about those
relationships [7, 12]. The Goal-Based Requirements Anal-
ysis Method (GBRAM) uses a goal topography to structure
and organize such requirements information as scenarios,
goal obstacles, and constraints [5, 9]. These topographies
support analysts in finding and sorting goals into functional
requirements while scenarios help in documenting issues,
surfacing new goals and elaborating requirements.

The next section provides an overview of the ABB Eu-
ronet System as well as the use case and goal-driven anal-
yses which provided the basis of comparison for our more
recent scenario-based analysis.

3. E-Commerce & Quotation System Analysis

ABB has numerous plants throughout the Americas,
Asia, and Europe that manufacture a variety of engineer-
ing products. The parent company maintains its own sales
force, whose members provide quotations for product pric-
ing and place orders for customers. Existing processes for
providing quotations or ordering products were numerous
andad hoc, with each sales person and each plant having a
different process, using various computer systems, printed
catalogs or direct sales persons as plant contacts. A new,
more tightly integrated system was needed to facilitate the
provision of consistent lowest prices with a streamlined bid-
ding process to aid the company’s distributed sales force.
Specifically, the new system was expected to produce con-
sistent quotations and order prices while tracking statistical
information such as market trends. Another advantage iden-

2

tified in the development of this system was to provide bet-
ter service capabilities to current and potential customers.

3.1. Euronet Use Case Analysis

A development team, comprised of software developers,
IT specialists, and people with intimate knowledge about
the business activities, was assembled to deliver this system.
The development team began working in several parallel
tracks. First, members with intimate knowledge about the
business defined the business implications of uniting sales
and technical support people across Europe with a single
system. Second, an initial Software Requirements Specifi-
cation (SRS) was created consisting primarily of a collec-
tion of use cases. This SRS serves as the basis for the goal
driven analysis and ISA analysis compared in this paper.
Third, based on the functionality of the prototypes devel-
oped, rather than the SRS, software developers began the
Euronet system implementation while the creation of the
SRS was still under way.

According to the software development team, the SRS
use cases were insufficient as requirements in developing
the system; they did not provide a complete and consistent
specification of what the Euronet system was required to do.
Nor were the prototypes a sufficient guide. Consequently,
the Euronet system implementation effort ran far beyond
schedule and over budget. It was because of this that ABB
requested the goal-driven analysis of the SRS to analyze
whether and in what ways the SRS was not sufficient.

The initial ABB SRS consists of a general overview, 52
use cases, and 26 screen designs [1]. The use cases are
numbered 1 through 52 and have brief titles such as “User
Log On”. Each use case consists of a one- to three-sentence
overview, a main scenario consisting of a list of events, a
list of screens used by the use case, notes on information
not otherwise given in the use case, and the author’s name.
Most of the use cases have informal pre- and postconditions.
25 of the use cases have one or more paragraphs describing
secondary (alternative) scenarios. The use case event lists
range in length from 1 to 19 events, with three events being
the most common length. The use cases employ each other
as events; 27 of the use cases are referred to in event lists,
and individual use cases include as many as six other use
cases directly, and as many as 19 indirectly. The “includes”
hierarchy of the use cases is given in Figure 1. This hierar-
chy was determined as part of the scenario-based analysis.
The use cases vary in length from one to six pages , with
two pages being the most common.

The results of the initial use case based analysis and of
our previous goal-driven analysis case study provide a stan-
dard against which to compare. The goal of our second Eu-
ronet case study, presented herein, was to compare the re-
sults of applying ISA and SMaRT to the results of applying

34 4 2912e

47 5 6 7

33

30

14

16 17 18 19

k 1315 j a h

21

b

24

2

d46

31 8

32 c

10 3

22 51

37 38 36

39

41

42 26 25

27

11

f i

9

20

g

50

l

¥¥
¥¥

kkkkkkk

??
??

¤¤
¤¤

¤¤
¤¤

¤¤

ÄÄ
ÄÄ
½½
½ 44
4

qqq
qqq

½½
½ FFFF

¶¶
¶

ddddddddddddddddd
MMM

MMM

¯̄
¯̄
¯̄
¯̄
¯

ooooo

½½
½½
½½
½½
½½
½½
½

ÄÄ
ÄÄ

eeeeeeeeeeeee

GGGG
PPPPPP

TTTTTTTT
//

/

 //
/

LLLLL
TTTTTTTT

··
· //
/

GGGG
LLL

LLL AAA
A

 $$
$

33
33

JJJ
JJ

¼¼
¼

qqq
qqq
ÄÄ

ÄÄ
³³
³ **
*
ÄÄ

ÄÄ

**
*

··
··
··
··tttttttttttttt **

*

||
||

||
||

||
| **

**
**

**
²²
²

qqq
qqq

nnnnnn
wwww

²²
²

WWWWWWWWWW
jjjjjjjj

sssssssssssssssssss

DDDDDDDDDDDDDDD

}}
}}

}}
}}

··
·

TTTTTTTT
ggggggggggg

QQQQQQ
FFFF

nnnnnn

$$
$

??
??

MMM
MMM

oooooo
¶¶
¶CC

CC ""
"

ÄÄ
ÄÄ

¡¡
¡¡

ppp
ppp

¦¦
¦¦

Figure 1. The “includes” hierarchy for the
ABB Euronet SRS. Numbers are use case
numbers; letters identify use cases referred
to but not defined; boldface numbers high-
light those use cases that are not included in
other use cases. The 11 use cases that nei-
ther include nor are included are not shown.

goal-driven analysis, and to the results of ABB’s original
requirements engineering work as embodied in the specifi-
cation.

3.2. Euronet Goal-driven Analysis

For the goal-driven analysis [6], our efforts entailed de-
riving goals from the 52 use cases in the initial ABB SRS.
During this analysis, each goal was annotated with relevant
auxiliary notes including agents, constraints, pre- and post-
conditions, scenarios, and questions as well as answers pro-
vided by various stakeholders during follow-up interviews.
For traceability we tracked any changes to the goals and
the associated rationale. All of the above information was
documented using Microsoft Excel spreadsheets because
the analysts lacked specialized tool support. Although the
analysis consumed 21 analyst-hours over the course of two
months, only 13 of the 52 use cases were actually analyzed.
From these 13 use cases, the analysts derived 130 goals and
119 scenarios. The goals were relatively broad, but the sce-
narios were extremely detailed, focusing mainly on excep-
tions and alternatives to ensure that the goal analysis was
complete and not simply reflective of normative system use.

As an ancillary part of the goal analysis, an “includes”
hierarchy of use cases was created to identify those that
were named but not defined in the original ABB SRS. Fif-
teen such use cases were located using this technique [6].
That hierarchy is no longer available, but the similar hierar-
chy produced during the ISA analysis appears in Figure 1.

3

4. Integrated Scenario Analysis (ISA)

ISA consists of a group of mutually reinforcing ap-
proaches that are amenable to automated support. The ap-
proaches include:

• structuring scenarios as event sequences plus attribute
values [3];

• structuring each event as an actor-action pair;
• structuring scenario characteristics as attribute values;
• using glossaries to define attribute values and events;
• using glossaries of words and phrases that are used

with system-specific meanings;
• using episodes to express scenario dependencies; and
• using syntactic similarity to measure similarity be-

tween scenarios, for searching and for uncovering du-
plication.

The structure ISA gives to scenarios is shown in Fig-
ure 2. Scenarios is organized into attribute-value pairs. For
example, the goals of a scenario are expressed as the val-
ues of the scenario’s “goal” attributes. Each event of a sce-
nario is defined to be an actor and an action; an event is
expressed as the value of an “event” attribute of the sce-
nario, and its actor and action are expressed as the values
of the event’s “actor” and “action” attributes. A scenario’s
events are expressed in a sequence. The event sequence for
a scenario may include simple events as described above
andepisodes, which are intentionally-shared subsequences
of events that may appear in two or more scenarios [3]. We
have extended the event sequence structure beyond our ear-
lier work to add expressiveness and convenience, by also
including iterated subsequences of events, and alternation
between two or more alternative events or subsequences.

Using such a structure provides a number of benefits.
Tool support for scenarios is made more straightforward,
and a basis for automated scenario analyses is laid. Once
scenarios are cast into this form, it is possible to begin ask-
ing whether analysis of the scenario’s structure, which can
be done automatically, can indicate answers that otherwise
require an experienced analyst, careful consideration, and
hard work. ISA is one such analysis approach, supported
by SMaRT as discussed in the next section.

4.1.SMaRT

For this case study, we employed a software tool,
SMaRT, which supports the representation of scenarios as
attribute-value pairs, glossaries of attribute values, glos-
saries of terms, episode management, and (eventually) syn-
tactic similarity measures [3]. SMaRT is currently imple-
mented as a database on a server accessed over the Internet
through a browser. Data presented by SMaRT is organized
into projects. Each project can have one or more analysts

Scenario

Event sequence

Event

Iteration Alternation EpisodeSimple
Event

Actor Action

Attribute-value
pair

Value

AttributeGlossary

Precondition Postcondition

Primitive
terms

*

Is-a

Has-a

0 or more

''
OOOOOOO

²²∗
88

xx ∗
qqqqqqqq

CC

¤¤ ∗
¨̈

¨̈
¨

WW

ºº ∗

/////
ff

&& ∗

LLLLLLLL

¨¨
²²²² ºº

////

¤¤∗

¨̈
¨̈

¨̈
¨̈

¨̈

ºº

////

ªª

¶¶¶¶¶¶¶¶¶¶

oo

ºº∗

/////

ZZ eeFF RR

¾¾ ∗
7777 ££ ∗

¦¦¦¦¦

//

//

Figure 2. Metamodel for ISA

allowed to edit or view the contents. For each project there
is a set of scenarios, a set of episodes, and a glossary for
each attribute (including goals) that a scenario or episode
can possess. Scenarios and episodes can be created and
edited using attribute values in the glossaries. These at-
tributes include: actors, actions, events, goals, obstacles, re-
quirements, and conditions. New values can be created for
an attribute; existing values can be edited; and values that
are not referenced can be deleted. A clickable list of every
reference to the value can be generated automatically; click-
ing a reference takes the analyst to the scenario (episode,
event) that uses the value. Event lists can include simple
events, episodes, iteration of event sub-lists, and alterna-
tion between event sub-lists. Episode references in an event
sequence can be expanded to show the episode’s event se-
quence where it would occur, and the episode’s event se-
quence can be edited in the context of a scenario referenc-
ing it. Clicking on episode or events takes the analyst to the
episode or event editor, where all the information about that
episode or event is available.

A screen shot of the Scenario Editor is shown in Figure 5.
The scenario being edited is EuronetS2 “Retrieve Existing
Quote”; it exhibits a number of features of our represen-
tation, including an event list containing episodes and alter-
nation (indicated by indentation, hierarchical event number-
ing, and color-coding), and attributes that include goals and
pre- and post-condions. Future work for SMaRT includes
implementation of similarity measures [3], expanded cross-
reference capability, “includes” hierarchies for episodes,
and integration of scenario network support [2].

4

4.2. Euronet Scenario Analysis Case Study

For the scenario-based analysis, our efforts entailed de-
riving scenarios from the same 52 Euronet use cases that
were analyzed using the goal-driven approach. The sce-
narios identified from the use cases were documented in
SMaRT and were analyzed as discussed below.

The analysts (the co-authors of this paper) met for
marathon sessions ranging from five to eight hours in du-
ration, daily for seven work days. During our analysis ses-
sion we concentrated primarily on revising and extending
the identified scenarios and discussing intricacies pertain-
ing to alternations and iterations within certain scenarios as
well as the identification and elaboration of episodes.

The scenario analysis began by identifying scenarios in
the ABB SRS use cases main and secondary scenarios.
Scenarios and their associated information were identified,
numbered, and stored as shown in Figure 5. The informa-
tion tracked (partially to ensure traceability) included the
scenario number, responsible agent(s) (documented in an
agent index), the use case from which each scenario was
derived (documented in a included-by and includes index),
pre- and postconditions, as well as any issues, rationale or
questions related to the scenario.

SMaRT facilitated our efforts by ensuring that all ref-
erenced terms (e.g. actors, actions, scenarios, episodes,
pre- and postconditions) were defined within the project
repository, thereby enforcing a minimal level of consis-
tency. Higher-level and more sophisticated consistency
checks were conducted manually by the analysts. Some of
these checks are automatable and planned for future SMaRT
releases. For example, we used an episode in one scenario
and before subsequently reusing the episode in another sce-
nario, we manually checked the episode to ensure it was
suitable for use by both scenarios. Although such checks
were manual, they were made much easier by the tool. Sce-
narios were named using a descriptive title that reflected
what each scenario achieves, numbering them based upon
the original use case number. Our initial ISA analysis of
the use cases produced 28 scenarios and 34 episodes, 321
events composed of 8 actors and 232 actions, and 29 condi-
tions used in pre- and postconditions.

A careful syntactic examination of the Euronet use cases
immediately revealed a large number of problems. For ex-
ample, the use cases named in the “Utilizes” section of each
use case description frequently did not match the use cases
that appeared in the event list. Twelve use case names were
referred to in events but not defined. Ten screens named in
the use cases were not defined; four of the ten were deemed
equivalent to similarly-named defined screens, leaving six
that were definitely undefined. Of the 26 defined screens,
three were never referenced in any use case.

The Euronet “includes” hierarchy highlights the pres-

ence of use cases that are referenced but not defined. A
“includes” hierarchy is a graph whose nodes are use cases
(or scenarios and episodes), and whose edges show inclu-
sion or reference of one node by another. For example, in
Figure 1, there is a line from use case 30 down to use case
33 because 30 includes 33 as part of its event list. Although
the analysis of “includes” hierarchies has not been a part of
ISA, we found it to be extremely useful for Euronet. Our
earlier goal-driven analysis included the production of “in-
cludes” trees for individual use cases, and discovered the
same instances of undefined use case names, [6]. The com-
plete hierarchy for the entire collection of use cases in the
ABB SRS (Figure 1) draws attention to other potential areas
of interest: the depth of the hierarchy relative to the number
of use cases involved, and two patterns of strongly intercon-
nected groups within the hierarchy.

The hierarchy is surprisingly deep compared to the num-
ber of use cases (see Figure 1). There are 64 use cases
named in the Euronet specification, 52 with definitions and
12 without. Of these 64 use cases, 53 appear in the hierar-
chy, and the remaining 11 neither use nor are used by any
other use case. The four deepest “includes” paths connect
five use cases each (about 9% of the nodes in the hierar-
chy). Twenty-six paths connect four use cases each. Deep
“includes” hierarchies indicate likely problems, especially
in the absence of tool support to display the nested inclu-
sions:

• analysts may not have examined the consequences of
including deeply-nested events;

• the specification is unlikely to have been reviewed
thoroughly, due to the inconvenience of manually
looking up the included event sequences in context;

• spurious dependencies between scenarios (or use
cases) are implied by the incompletely-considered in-
clusions; and

• unintended behavior is specified by the deeply-nested
inclusions.

We can draw more specific conclusions from the inter-
connections in some areas of the hierarchy in Figure 1. The
complete connections from use cases 12, 34, 4, and 29 to 47,
5, 6, and 7 indicate that the upper use cases should be sim-
ilar in other ways, and raise the question of whether 47, 5,
6, and 7 should be separate use cases since they only appear
together (and in the same sequence, although the hierarchy
does not show this). Use cases 16, 17, 18, 19, and 21 are
less completely connected tok, 13, 15,j, g, andh, but still
indicate that attention should be paid to them; 16, 17, and
18 should be similar in other ways, and one should inquire
whether 13, 15,j, anda should be separate use cases.

The analysis of “includes” hierarchies was so unexpect-
edly fruitful for Euronet that we are incorporating it into
ISA and adding support for it to SMaRT. Tool support is

5

needed because it is time-consuming and tedious to extract
the “includes” relationships from the scenarios and episodes
and collate them into a hierarchy; and this tedious task
needs to be re-done whenever an event list is changed to
include an episode or not. Consequently we did not pro-
duce “includes” hierarchies regularly during the ISA anal-
ysis. As we discuss below, had we regularly examined the
“includes” hierarchy, it would have guided us to produce a
different (better) collection of scenarios and episodes.

The “includes” hierarchy resulting from ISA applied to
Euronet is shown in Figure 3. As in Figure 1, only the sce-
narios that include episodes are depicted. From this dia-
gram we can see that ISA, without the explicit guidance of
“includes” hierararchy diagrams, took care of some of the
problems we noted in Figure 1 on other grounds. Fewer
episodes are used, and those that are used are included in
simpler ways. The parts of the hierarchy that were nested
5 deep turned out to have problems that ISA identified and
that the analysts repaired guided by ISA. For example, when
we examined the event sequence ofS27 “Revise Quote”
with the events that were represented by its inclusion of
S25 “Approve Quote”,S26 “Assemble Quote Package”, and
S24 “Submit Quote”, it became clear thatS25 andS26 did
not belong withinS27. Rather, they described event se-
quences that were associated withS27, before or after the
other events thatS27 listed. For example, a desired behav-
ior of Euronet was clearly

1. assemble a quote package (S26),
2. revise it once (much ofS27’s own events),
3. examine and approve the quote package (S25), and
4. submit the quote (S24).

Other sequences described desired Euronet behavior as
well, including re-assembling a quote package after sub-
stantial revisions; examining a quote package several times,
revising it in between until it is finally approved completely;
and revising a submitted quote package in the face of new
information from the customer. Most of this behavior had
no place inS27, and when it was removed the long inclusion
paths beginning atS27 vanished. Other changes that flat-
tened and simplified the “includes” hierarchy can be seen
by comparing the two diagrams.

However, other problems still remain, although these
were not identified during the ISA analysis because we were
not regularly generating and examining the “includes” hier-
archy. Several episodes were only included by a single sce-
nario or episode. While this can be reasonable if the episode
represents behavior that is expected to be shared in the fu-
ture, we had no reason to believe that was the case in many
instances. Examples of this areEp41 which is only included
by S42, andEp32 which is only included byEp31. Another
problem was the clusters of inclusions visible in the dia-
gram. ISA eliminated the cluster of nearly identical inclu-

14 29 4 34 e 31 8 2 22 51 20 23 35 38 21 b

24

F47 5 6 7 46 32 d

3 10 33

30

41

42

36

39

**
*

hhhhhhhhhh

®®
®

jjjjjjjj

==
==

==
==

==

²²
² //
/

III
II

uuu
uu

lllllll

qqqqq

11
11

11
11

1

MMMMM
jjjjjjjj

22
2

22
2

°°
°

//
/

III
II

RRRRRRR
XXXXXXXXXXXX

²²
²

ÃÃ
ÃÃ
ÃÃ
ÃÃ

®®
®

®®
®

44
4

wwww

33
33

YYYYYYYYYYYYYY
NNN

NNN
oooooo

uuu
uu
²²
² //
/

lllllll
¯̄
¯

CC
CC

QQQQQQQ

qqqqq

TTTTTTTT
®®
®

TTTTTTTT

Figure 3. “Includes” hierarchy for the results
of ISA applied to Euronet. Bold numbers
highlight scenarios.

8 2 31 29 4 22 20 23 35 38 24

K F46

3 10 30 42 39

??
??

WWWWWWWWWW

&&
&&
&&
&&

??
??

PPPPPP

SSSSSSS

»»
»»
»»
»»

ÄÄ
ÄÄ

nnnnnn
eeeeeeeeeeeeee

PPPPPP
nnnnnn &&

&&
&&
&&

kkkkkkk
FFFF

ÄÄ
ÄÄ

iiiiiiiii

xxxx

ffffffffffff
»»
»»
»»
»»gggggggggg

Figure 4. “Includes” hierarchy for Euronet af-
ter ISA and refinement.

sions of use cases 13, 15,j, anda on other grounds, but left
the cluster including 47, 5, 6, and 7. Figure 4 shows the “in-
cludes” hierarchy after refinements guided by examination
of Figure 3. 47, 5, 6, and 7 have been merged into a single
episodeEpK that is included in their place; and single inclu-
sions such as that ofEpb by S47 have been eliminated by in-
lining the included event sequence. The resulting hierarchy
is simpler and flatter, with only two paths deeper than two,
and the corresponding scenarios and episodes are easier to
read, evaluate, validate, and maintain. For specifications
such as Euronet’s SRS that make heavy use of “includes”
between use cases or between scenarios and episodes, the
techniques outlined here provide effective guidance.

5. Comparison of Analyses

This section contrasts the results of the previously men-
tioned requirements analysis efforts for the Euronet system.
The results are summarized in Table 1.

The original use case based requirements analysis pro-
duced 52 use case definitions. References to 27 of the use
cases are included as events in one or more of the 52 use
cases. The use cases exhibited a number of general prob-
lems. The context of the use cases was not made clear, both
the organizational context of ABB’s practices and policies
and the behavioral context in the overall Euronet system
function; the use cases were too focused on GUIs and sys-

6

tem design and implementation; they were referred to with
inconsistent names; and some names appeared to refer to
undefined use cases [6].

In the goal-driven analysis effort the 52 original use
cases were retained. Only 13 of the use cases were ana-
lyzed because this was sufficient to achieve the necessary
results, which were to show whether the original SRS was
complete, consistent, and a sufficient basis for software de-
velopment (it was not). These use cases were annotated
with substantial detail, including goals and obstacles as well
as additional preconditions, postconditions, and scenarios.
As previously mentioned, the analysis yielded 130 distinct
goals, derived from the 52 use cases. During the goal identi-
fication and elaboration process, the analysis identified 119
new secondary scenarios. These scenarios refined the 52
use cases, representing alternative paths at a very low level
rather than new high level behavior not covered by the use
cases. The 119 secondary scenarios were heavily influenced
by analysis of the screen sketches in the SRS. During this
effort, it became evident that some use cases were refer-
enced but not defined. The analyst team thus conducted a
supplementary syntactic analysis, creating of an “includes”
hierarchy to determine whether all referenced use cases had
definitions; this led to the identification of 15 distinct use
cases that were referenced, but not defined. Three of the 15
were deemed synonymous with other uses cases and recon-
ciled accordingly [6].

ISA analysis was applied to all 52 of the original SRS use
cases. 28 of these use cases were retained as first-class sce-
narios describing behavior initiated by system users. The
remaining 24 use cases were characterized as episodes de-
scribing behavior that occurred only in the context of an
“includes” reference by a scenario or another episode. ISA
identified 12 distinct use cases that were named as included
but never defined, resolving the other three found in the
goal-driven analysis asprima faciemisspellings. The an-
alysts gave definitions to five of the twelve based upon the
contexts in which they were used and their names. Three
of these five were resolved as likely misspellings of other
use cases. A fourth was absorbed into a new episode that
generalized behavior that the initial use cases defined for
some contexts but left undefined for others. The fifth was
absorbed into a new scenario that defined behavior analo-
gous to that of an existing scenario, but under different pre-
conditions. Finally, ISA identified a new scenario based on
comparison of pre- and postconditions of existing scenarios.
The new scenarios and episode were of a larger scope and
greater significance than the 119 new scenarios identified by
the goal-driven analysis. ISA also identified these new sce-
narios and episode with a comparitively small investment
of time. The screen sketches in the initial SRS were not
considered during the ISA analysis, following the practice
recommended by Antón et al. [6]. The ISA analysis was

performed using early prototypes of SMaRT. The effects of
using these prototypes was both positive and negative. The
prototypes provided some automated support for the syn-
tactic analyses that comprise ISA. The remaining syntac-
tic analyses were done by hand. The user interface for the
SMaRT prototype, particularly the early prototype, was rel-
atively inefficient so that its use slowed the analysis during
that period rather than speeding it. We can see that SMaRT,
when fully functional, will be much faster to use and will
automate those analyses that were done by hand in this case
study, thus making ISA substantially more efficient.

It is instructive to compare the weight and scope of the
new scenarios found by the goal-driven analysis to those
found by ISA. An example scenario identified by ISA is
S98 “User Log Off”, defining the events needed for logging
off, the preconditions for the contexts in which logging off
can occur, and the postconditions defining the results of log-
ging off. On the other hand, consider the scenarios yielded
by analysis of the goal <ENSURE adjustments for
pricing for a standard product provided> dur-
ing the goal driven analysis. This goal yielded seven sec-
ondary scenarios to represent possible pricing adjustment
alternatives:

• Adjustment determined by competitive level.
• Adjustment determined by item quantity.
• Adjustment determined by rush delivery.
• Adjustment determined by sales channel.
• Adjustment determined by special features.
• Adjustment determined by plant loading.
• Adjustment determined by end customer.

Clearly, the level of granularity for these scenarios is much
smaller than those identified during the ISA analysis.

One marked difference between ISA supported by
SMaRT and goal analysis is the time and effort required.
Our ISA analysis of all 52 use cases required 41 analyst-
hours, while the goal analysis of only 13 use cases required
21 analyst-hours; extrapolated linearly to the full set of 52
use cases, the goal analyis would require approximately
twice as much effort (84 analyst-hours).

We note that although the second author was involved
in the goal analysis as well as the scenario analysis, nearly
four years had elapsed between the two case studies, with no
intervening work in that domain. The other scenario analyst
was completely unfamiliar with the domain before the case
study began.

Some might think that comparing the ISA tool support
provided by SMaRT with the goal analysis tool support pro-
vided by Excel is not a fair comparison. We note that goal
analysis requires less automated support than ISA does.
The spreadsheet functioned mainly as a means of storing
and organizing data for the goal analysis; further automated
support was not needed. A more powerful tool would not
make much difference. SMaRT also stores and organizes
data, and of course for both goal and ISA analysis the data

7

must be entered. But ISA depends on calculations and
comparisons of large amounts of data, and these are time-
consuming and error-prone if done manually. Automated
support makes a substantial contribution here. We also note
that during the ISA analysis of Euronet, SMaRT was still in
a prototype stage. Some of the automatable analysis (such
as the derivation and construction of Figures 1, 3, and 4) had
to be done manually. Automated support for these functions
would have reduced the number of analyst-hours required.

6. Lessons Learned

Our analysis yielded several lessons learned that we be-
lieve to be of interest to practitioners and researchers alike.

The return on investment is higher for ISA and SMaRT

Scenario analysis using ISA and SMaRT yielded a more
complete and consistent set of scenarios than either goal
analysis or the original use case analysis by itself, and did
so with a comparatively small investment of time and ef-
fort. The improvements produced by ISA and SMaRT were
of more significance than the smaller-scale details fixed by
goal analysis. Although the collation and calculation re-
quired for ISA is time-consuming if done manually, it is
well suited to automated support and the SMaRT prototype
was able to assume a substantial part of the burden. A more
advanced SMaRT would reduce the manual effort even fur-
ther. The addition of ISA supported by SMaRT to the ABB
use case analysis resulted in a markedly better specification
for a small additional investment of time and effort.

Many inconsistencies should be immediately reconciled, not
managed

In the inconsistency-management approach, inconsisten-
cies are identified and then not reconciled but managed for
some period of time to extract the most information from
them [13, 17]. However, the great majority of the inconsis-
tencies we identified with SMaRT and ISA were not infor-
mative but simply indicated missing information. For ex-
ample, the use cases referred to a large number of statuses
of various items, but these statuses were never defined and
in many cases an entity’s status was set but never examined,
or examined but never set. We believe many of these were
due to the fact that no analyst had paid attention to the in-
consistent items before. SMaRT and ISA are effective in
identifying and drawing attention to such inconsistencies.

Automated episode identification reveals duplication

Although SMaRT’s episode identification functionality
was not implemented at the time we performed this case
study, the use of SMaRT helped us more readily identify du-
plication that we had previously overlooked. For example,

we observed thatUC42 “Change Language” partially dupli-
cates a secondary scenario ofUC1 “Log On”; and the use
case hierarchy and our episode cross-reference showed us
that the four episodesEp47, Ep5, Ep6, andEp7 always ap-
peared together in the same sequence, and never otherwise,
and thus that they could be merged into a single episode.
The Euronet analysts were apparently unaware of these rep-
etitions, and SMaRT helped us identify them more easily.

We noted a number of instances of actions, events, and
episodes that were identical except for one or two words.
For example, we found several actions of the form “requests
X” for variousX ’s, and corresponding events of the form
“U : requestsX” for various usersU and the sameX ’s.
A concrete example was “BA Engineer : requests Report”.
In a few cases this continued up to episodes; for example,
the episodesEpF1 “Save/Close Item,”EpF2 “Save/Close
Order,” EpF3 “Save/Close Quote,” andEpF4 “Save/Close
Quote Package.” If actions, events, and episodes are pa-
rameterized, then fewer individual episodes are needed, and
related ones can be standardized in a way that can be auto-
matically supported.

Standardizing on a small number of action words makes it
easier to find the right action and to express actions consis-
tently

Although this lesson may seem jejune, the problem it ad-
dresses still occurs in industrial practice (it was prominent
in the Euronet use case based analysis) and its impact is con-
siderable. The events in the original Euronet use cases were
worded in an inconsistent fashion. We found that choos-
ing a set of standard words to employ wherever possible
greatly reduced the number of separate actions, and at the
same time made the events clearer and easier to understand
relative to each other. For example, we standardized using
the word “select” in place of “choose,” “find,” “click,” etc.
whenever it was appropriate. This lesson was analogous to
the similar finding for goal wordings by Antónet al. [6].

Long paths in an “includes” hierarchy indicate a need for
further refinements

In the “includes” hierarchy of use cases shown in Fig-
ure 1, we found two overlapping paths of 5 use cases. Sev-
eral of the use cases in these two paths (UC25, UC26, and
UC27) were later found to have disagreements between their
events and the events in the use cases they used, several lev-
els down. We observed that a deep “includes” hierarchy
(more than 3) indicates a proclivity for inconsistencies be-
tween the episodes being used and the context in which they
are used, as well as the need to refine the set of scenarios.

Figure 3 shows the “includes” hierarchy for the scenarios
and episodes resulting from the ISA analysis. The number
of levels in the initial SRS “includes” hierarchy (Figure 1)
suggests opportunities for refinement, as in the following

8

Use case based Goal-driven Integrated Scenario Analysis

52 use cases 13 use cases analyzed 28 scenarios retained.
27 of these included in others 24 episodes retained,

15 undefined UCs identified, 12 undefined episodes identified;
3 were likely misspellings 2 merged into a new episode or scenario,
of other UCs 1 new episode identified.

119 new scenarios identified 2 new scenarios identified.
130 goals identified

140 analyst-hours over 5 days 21 analyst-hours over 2 months. 41 analyst-hours over 8 days.

Table 1. Comparison of the three approaches

two examples. Some episodes are included in only one sce-
nario, such asEp36 in S39, andEp41 in S42. In most cases,
such episodes should be absorbed into the scenario. An-
other example is that of a sequence of episodes is called in
the same order by more than one scenario, such asEp47,
Ep05, Ep06, and Ep07, which are called in the same se-
quence byEp04, S29, andEp34. Such episodes should be
merged into a single episode, as shown in Figure 4. It is im-
portant not to do any absorbing or merging until the analy-
sis is in the refinement phase, because the absorption means
that the former episode no longer exists for reuse, and an
episode created in anticipation of future reuse should be re-
tained until it is clear whether that reuse will take place.

7. Discussion and Future Work

The goal-driven analysis required approximately 21
analyst-hours to analyze 13 use cases, or roughly a quar-
ter of the initial SRS. In contrast, the ISA analysis required
approximately 41 analyst-hours to analyze the entire set of
52 use cases of the initial SRS. ISA, supported by SMaRT,
guided and assisted the researchers so that the analysis re-
quired approximately half as much effort as the goal driven
analysis would have for the entire SRS.

The results of the goal-driven analysis are characterized
as detailed and low-level. In contrast, the results of the ISA
analysis are larger-scale and comparatively high-level. We
believe that such high-level results are more valuable, espe-
cially in the early stages of requirements engineering work.

Traceability was both a priority and a challenge through-
out this investigation. We have begun to provide support for
traceability by providing appropriate tool support for sce-
nario management in SMaRT [3].

In this paper, we demonstrate that using SMaRT pro-
vides a more consistent set of requirements, minimizing the
practitioners’ efforts. We have developed scenario manage-
ment strategies [3] in an effort to address the challenges dis-
cussed by Weidenhauptet al. [23]. Our scenario manage-
ment strategies support evolution by employing shared sce-

nario elements to identify and maintain common episodes
among scenarios. Measures are used to quantify the simi-
larity between scenarios, serving as heuristics that provide
process guidance to practitioners in finding, for example,
duplicate scenarios, scenarios needing further elaboration
or those that may have been previously overlooked. Even
though SMaRT is still under development, its automation
supported this case study with great success.

8. Acknowledgements

The authors wish to thank Aldo Dagnino of ABB for his
cooperation and support of this study, and to thank Paul
Zaremba, William Stufflebeam, and Roksolana Antonyuk
for their work on SMaRT. This research was was funded by
NSF CAREER #530195.

References

[1] Software requirements specification for Euronet v.2. Asea
Brown Boveri – Electric Systems Technology Institute, Mar.
1999. Confidential.

[2] T. A. Alspaugh. Scenario networks and formalization for
scenario management. Ph.D. Thesis, North Carolina State
University, Raleigh, NC, Sept. 2002.

[3] T. A. Alspaugh, A. I. Ant́on, T. Barnes, and B. W. Mott.
An integrated scenario management strategy. InFourth
IEEE International Symposium on Requirements Engineer-
ing (RE’99), pages 142–149, June 1999.

[4] A. Antón, E. Liang, and R. Rodenstein. A web-based re-
quirements analysis tool. In5th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
pages 238–243, June 1996.

[5] A. I. Ant ón. Goal-based requirements analysis. InSec-
ond International Conference on Requirements Engineering
(ICRE’96, pages 136–144, 1996.

[6] A. I. Ant ón, R. A. Carter, A. Dagnino, J. H. Dempster,
and D. F. Siege. Deriving goals from a use-case based re-
quirements specification.Requirements Engineering Jour-
nal, 6(1):63–73, 2001.

9

[7] A. I. Ant ón, M. McCracken, and C. Potts. Goal decomposi-
tion and scenario analysis in business process reengineering.
In Proceedings of the 6th International Conference on Ad-
vanced Information Systems Engineering (CAiSE’94), pages
94–104, 1994.

[8] A. I. Ant ón and C. Potts. A representational framework for
scenarios of systems use.Requirements Engineering Jour-
nal, 3(3–4):219–241, Dec. 1998.

[9] A. I. Ant ón and C. Potts. The use of goals to surface require-
ments for evolving systems. InProceedings of the 1998 In-
ternational Conference on Software Engineering (ICSE’98),
pages 157–166, Apr. 1998.

[10] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Mod-
eling Language User Guide. Addison-Wesley, Reading,
Massachusetts, USA, 1999.

[11] K. K. Breitman and J. C. S. do Prado Leite. A framework
for scenario evolution. InThird International Conference
on Requirements Engineering (ICRE’98), pages 214–223,
1998.

[12] A. Dardenne, A. v. Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition.Science of Computer Pro-
gramming, 20(1–2):3–50, Apr. 1993.

[13] S. Easterbrook and B. Nuseibeh. Managing inconsistencies
in an evolving specification. InSecond IEEE International
Symposium on Requirements Engineering (RE’95), pages
48–55, Mar. 1995.

[14] I. Jacobson, M. Christerson, P. Jonsson, and G.Övergaard.
Object-Oriented Software Engineering: A Use Case Driven
Approach. ACM Press, 1992.

[15] M. Jarke, X. T. Bui, and J. M. Carroll. Scenario manage-
ment: An interdisciplinary approach.Requirements Engi-
neering Journal, 3(3–4):155–173, 1998.

[16] N. A. M. Maiden, S. Minocha, K. Manning, and M. Ryan.
CREWS-SAVRE: Systematic scenario generation and use.
In Proceedings: 3rd International Conference on Require-
ments Engineering, pages 148–155, 1998.

[17] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framework
for expressing the relationships between multiple views in
requirements specification.IEEE Transactions on Software
Engineering, 20(10):760–773, Oct. 1994.

[18] C. Potts. Using schematic scenarios to understand user
needs. InProc. ACM Symposium on Designing Interac-
tive Systems: Processes, Practices and Techniques (DIS‘95),
Aug. 1995.

[19] C. Potts. ScenIC: A strategy for inquiry-driven requirements
determination. InFourth IEEE International Symposium
on Requirements Engineering (RE’99), pages 58–65, June
1999.

[20] C. Potts, K. Takahashi, and A. I. Antón. Inquiry–based
requirements analysis.IEEE Software, 11(2):21–32, Mar.
1994.

[21] C. Rolland, K. Grosz, and R. Kla. Experience with goal-
scenario coupling in requirements engineering. InFourth
IEEE International Symposium on Requirements Engineer-
ing (RE’99), pages 74–83, June 1999.

[22] C. Rolland, C. Souveyet, and C. Ben Achour. Guiding goal
modeling using scenarios.IEEE Transactions on Software
Engineering, 24(12):1055–1071, Dec. 1998.

[23] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer. Sce-
narios in system development: Current practice.IEEE Soft-
ware, 15(2):34–45, Mar./Apr. 1998.

10

Figure 5. Screen shot of the SMaRT scenario
editor screen

11

