
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Michael M. Gorlick
University of California, Irvine
mgorlick@acm.org

Richard N. Taylor
University of California, Irvine
taylor@uci.edu

Motile: Reflecting an Architectural Style
in a Mobile Code Language

June 2013
ISR Technical Report # UCI-ISR-13-1

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Motile: Reflecting an Architectural
Style in a Mobile Code Language

Michael M. Gorlick and Richard N. Taylor
Institute for Software Research
University of California, Irvine

Irvine, CA 92697
mgorlick@acm.org, taylor@ics.uci.edu

Abstract
Decentralized services, that is, services distributed across
multiple, distinct spheres of authority, offer substantial chal-
lenges; particularly when we demand that they be both adap-
tive and secure. We consider decentralized services in the
context of COmputAtional State Transfer (COAST), an ar-
chitectural style for which service adaptivity and security are
principal concerns, and discuss how the style is reflected in
our reference implementation: MOTILE, a mobile code lan-
guage, and ISLAND, a complementary peering infrastructure.

We analyze both COAST and MOTILE/ISLAND from the
perspectives of safety and security, detailing how these goals
influenced the language, its supporting infrastructure, and
the extent to which MOTILE/ISLAND conforms to the COAST
style. We then evaluate a portion of COASTCAST, a decen-
tralized service for the distribution, sharing, and manip-
ulation of soft, real-time, high-definition video written in
MOTILE/ISLAND, to illustrate the security and safety that the
COAST style conveys.

The deep interplay between style and language is instruc-
tive. Our combined analyses and evaluation demonstrate that
the three principal mechanisms of the style—mobile code,
execution sites, and Capability URLs (CURLs)—act in con-
cert to provide effective security and safety for decentralized
services, with language-specific mechanisms playing a criti-
cal role.

Categories and Subject Descriptors D.2.11 [Patterns]:
client/server

General Terms architectural style, mobile code, decentral-
ized services, distributed services

[Copyright notice will appear here once ’preprint’ option is removed.]

Keywords COAST, Motile, Island

1. Introduction
We have formulated a set of design constraints (an archi-
tecture style) to guide the development of adaptable and se-
cure decentralized services. But an architectural style alone,
while helpful, is rarely sufficient. Often a style is deliber-
ately under-specified to avoid limiting the range of imple-
mentations and in any case, a style addresses only critical
constraints with little if any implementation guidance. The
gap between a style and a conforming implementation may
be significant, requiring sophisticated algorithms and infras-
tructure.

To simplify the development and deployment of decen-
tralized services in our style we have implemented a style-
specific language and a supporting infrastructure. Our case
study, presented here, of the relationships between the style,
the language, and the infrastructure reveals both the benefits
and costs of a deep, style-specific language and infrastruc-
ture. In particular, considerable effort has been devoted to
safety and security—we judge the exercise both worthwhile
and a contribution to the security technology for decentral-
ized services.

There are numerous examples of effective programming
languages whose semantics and features are influenced by
one or more architectural styles. We address the question
of the intersection of architectural style and language in the
context of COmputAtional State Transfer (COAST), a practi-
cal architectural style for secure and adaptive decentralized
services. Our focus is MOTILE—a mobile code language de-
signed and implemented expressly to meet the safety and
security demands of COAST. Since the extent to which an
architectural style can and should be reflected in a program-
ming language is an open question, we present MOTILE and
COAST as a detailed example of the marriage of language
and architectural style.

We first expand on our view of decentralized services as
motivation for COAST, describe the style, and offer design
guidelines. We next introduce an example of MOTILE in

Motile/Island and COAST 1 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

action where a simple decentralized service is adapted by
a service consumer to provide a new service not explicitly
accommodated by the provider. Adaptations of this form
are one of the primary motivations for COAST. From there
we turn to a detailed review of the semantics of MOTILE,
highlighting the intersection of architectural style, language
semantics, service adaptivity, and service security.

The language run-time, embedded in a peering infrastruc-
ture called ISLAND, also plays a vital role in maintaining the
safety and security constraints of the COAST style, so we re-
view critical aspects of its structure and performance. Next
we consider the language and its run-time in the context of a
decentralized application for distributing and sharing high-
definition, real-time video streams, examining the degree to
which the language mechanisms provide tailored security
policy in a manner consistent with the style.

2. Languages and Architectural Styles
Creating a style-specific language is, of course, not the only
way that architectural styles have been supported in the
past. Implementations of architectural styles often take the
form of frameworks, for example, C2, an architectural style
for GUI software, implemented as Java-based framework
[55]; Rails, a RESTful web application framework written
in Ruby [45]; and GStreamer, a data-flow style framework
written in C for multimedia applications [1].

Frameworks have several distinguishing characteristics.
First, they typically exhibit inversion of control where the
flow of control is dictated by the framework and not by the
application. In other words, the framework embodies a style-
specific control flow to which the application must adapt.
Second, a framework presents default behaviors that number
among the distinguishing benefits of the style. This relieves
the developer of the burden of implementing those critical
behaviors. Third, each framework is usually extensible in
some manner and those mechanisms are the means by which
the style is adapted to the specific domain and use cases of
the subject system. Finally, each framework also presents
immutable behaviors that are not subject to change, often
reflected in core portions of the framework implementation
that can not be safely modified.

Frameworks may reduce implementation effort, speed de-
ployment, and ease system evolution. Because a framework
has many principal system design decisions already “baked
in,” it reduces the degrees of freedom in system design and
consequently lessens development risk. However, a frame-
work may interpret a style so narrowly that, in some cases, it
becomes confining or obstructive. Finally, each framework
is expressed in a particular programming language whose
semantics, structure, performance, availability, or reliability
may not be suitable for a specific system.

2.1 Domain-Specific Languages (DSLs)
While many DSLs are clearly not style-specific—such as
SQL for relational database queries, flex for lexers, bison
for parsers, or Mathematica for symbolic mathematics—
others occupy a fuzzy middle ground between domain- and
style-specific. These languages offer lessons for designing
style-specific languages. For example, Orc [30] is a func-
tional language used to express orchestrations and wide-area
computations in a simple and structured manner reflecting a
service architecture in which clients make requests to ser-
vice providers, an abstraction of REST or WS-*. Orc deals
with concurrency, ordering, and failure using a small set of
powerful combinators—operators that abstract parallel and
sequential execution, blocking, priority, and timeouts. Many
common idioms (such as fork/join and priority poll) are im-
plemented in Orc as higher-order functions. Orc illustrates
that a rich and robust concurrency semantics requires only
a few simple but general primitives combined with higher-
order functions.

Adobe Postscript [2] is a functional, concatenative, in-
terpreted language whose primary application is to describe
the appearance of text, graphical shapes, and sampled im-
ages on printed or displayed pages. Postscript and its inter-
active derivative, Display Postscript [28], are complex lan-
guages containing about 400 commands of which approxi-
mately half are related to graphics (a reflection of the rich-
ness and complexity of two dimensional page description),
the rest being general programming language constructions.
Postscript relies heavily on global state to both minimize
the size of programs (hence the amount of source code that
must be shipped to a printer’s Postscript interpreter) and im-
prove interpreter efficiency (an essential consideration given
the comparatively impoverished processors embedded in the
laser printers of the late 1980s and early 1990s).

One can argue that PostScript is a mobile source-code
language reflecting a specialized client/server style where
the server is a printer or display device. In any case, it is
clear that both the domain and the intended architectural
style had a profound influence on the language. Scholz [48],
however, contends that alternative formulations rooted in
lazy functional programming and monad-based imperative
streams are more transparent, efficient, and compact.

galsC is a C dialect targeted to event-driven, resource-
constrained embedded systems such as networks of sen-
sors and actuators [14, 15]. galsC is distinguished by its
Globally Asynchronous Locally Synchronous (GALS) con-
currency model in which actors communicate with one an-
other at the application level asynchronously by message
passing but within any single actor components communi-
cate synchronously via method calls. Here we see an ex-
ample of a computational model, actors, adapted to the re-
source and timing requirements of a specialized domain.
Orc, Postscript, and galsC are domain-specific (orchestra-
tion, page description, and embedded systems) but each is

Motile/Island and COAST 2 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

also strongly influenced by an architectural style: REST, mo-
bile code plus client/server, and event-driven, respectively.

2.2 Architectural Style-Specific Languages
Several style-specific languages focus on the REST archi-
tectural style. Links is a programming language for web ap-
plications that generates code for all three tiers of a web ap-
plication from a single source [17]. Intended for rich “Ajax-
like” applications, Links generates code for both client- and
server-side. It also presents a unified programming model
for dealing with the three-tier pattern of web business appli-
cations, a client-facing tier, a middle business logic tier, and
a database back-end tier. Flapjax is a language designed for
web mashups, browser-side applications that communicate
with servers and have rich, interactive interfaces [33].

The dataflow architectural style has influenced many
domain-specific programming languages, for example Lab-
VIEW, a visual dataflow language for laboratory instrumen-
tation, data acquisition, and industrial automation [57]. Dis-
tributed dataflow offers several examples: Swift is a scripting
language for executing domain-specific applications repeat-
edly on large collections of file-based data [59]; however,
Swift is deliberately sparse and omits many of the con-
structs commonly found in other scripting languages such as
Python or the Bourne shell. Skywriting, on the other hand, is
a complete pure functional scripting language for describing
file-based distributed computations [39, 40].

Distributed systems, though too broad to be an architec-
tural style, are addressed by several noteworthy languages.
Emerald is a landmark object-based, mobile code language
designed to simplify the construction of distributed systems
[11, 29]. Erlang, first developed for telephone switches, is a
functional language modeled after Prolog for highly reliable,
soft real-time, distributed systems [5]. Clojure is a LISP-
inspired functional language for distributed applications dis-
tinguished by its rich collection of persistent, functional data
structures and its commitment to dynamic systems [23]. We
comment further on other related languages in Section 8, af-
ter the relevant details of MOTILE and ISLAND have been pre-
sented.

3. COAST Background
COAST, an architectural style for decentralized services, de-
fines the transfer of computations among peers, the nam-
ing of computations, and the interpretation and evaluation
of computations [27]. The COAST style explicitly accom-
modates capability security [34] to confine and regulate vis-
iting computations; its handmaiden, the Principle of Least
Authority (POLA) [46], is the guide for allocating, modulat-
ing, and transferring capability among computations.

A capability is an unforgeable reference whose posses-
sion confers both authority and rights of access to a principal
[50, 51]. Unless a computation holds a capability for a prin-
cipal a it can not directly access or manipulate a in any way.

In a world of mobile visiting computations capability secu-
rity is the only reliable means by which a peer can protect
itself against misuse, abuse, or attack.

The COAST style posits five rules:

1. Computation exchange. All services are computations
whose sole means of interaction is the asynchronous mes-
saging of closures, continuations, and binding environ-
ments

2. Functional capability. Each computation executes within
the confines of some execution site 〈E,B〉 where E is an
execution engine and B is a binding environment

3. Computation names. All computations are named by Ca-
pability URLs (CURLs), an unforgeable, tamper-proof
cryptographic structure that conveys the authority to
communicate

4. Communication capability. A computation may deliver a
message to a computation x only if it holds a CURL u
naming x

5. Message interpretation. The interpretation of a message
delivered to computation x via a CURL u naming x is
u-dependent

Rule 1 defines computations as closures, continuations, and
binding environments and specifies exchange as the asyn-
chronous messaging of same. Rule 1 also ensures isolation
of computations since messaging is the only means by which
computations may interact. Rule 2 allows COAST-based ser-
vices to support multiple mobile-code programming lan-
guages, each with a distinct semantics and implementation—
additional dimensions of service variation.

Rules 2, 3, and 4 are the basis for capability security un-
der COAST. There are only two forms of capability, func-
tional capability, which delimits what visiting mobile com-
putations can do, and communication capability, which de-
termines where, when, and how computations can communi-
cate with another. Since the sole means of interaction among
computations is asynchronous messaging (by Rule 1), Rules
3 and 4 guarantee that computation x, absent a CURL u
naming computation y, can never directly communicate with
y. By regulating the propagation of CURLs a COAST-based
host can exert control over the local interactions of the com-
putations that it executes.

Rule 5 ensures the freedom of computations to interpret
messages in a computation-dependent manner. The same
message m delivered to computations x and y via CURLs
ux and uy (naming x and y respectively) may yield entirely
different results—a dimension of service diversity.

3.1 Design Intuitions
First and foremost, COAST relies on mobile code [13, 24], a
technology whose history stretches back to the mid-1960s.
There is wide variation in mobility semantics and state man-
agement among mobile code languages, including differ-

Motile/Island and COAST 3 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

ences in scoping and name resolution, dynamic linking, state
distribution, migration strength, replication, and sharing [18,
19]. At a minimum, a mobile code language compatible
with the COAST style must provide closures, continuations,
and binding environments as fundamental language objects.
However, COAST is silent on many other details, for example
the implementation of concurrency and asynchronous mes-
saging, the structure and formulation of execution sites, the
transport representation for mobile code, and the exact con-
tents of Capability URLs. These details are nontrivial and
influence the efficacy of a COAST-compliant implementation
in ways numerous and subtle.

Second, security and peer safety are overriding concerns.
Decentralized services complicate security and mobile code
exacerbates the risk. Among decentralized services the secu-
rity environment is at best uneven and fluid. Individual ser-
vices are governed by multiple, distinct spheres of author-
ity; are implemented, deployed, and maintained by distinct,
autonomous organizations; and evolve independently in re-
sponse to the interests and circumstances (legal, regulatory,
economic, social, competitive) of the responsible organiza-
tion. By definition there is no one, single security perimeter;
instead, there are multiple perimeters, and the failure of one
perimeter must not lead to the breach of others.

Ajax-based mashups [32], itself a style reliant on mobile
code (JavaScript source code embedded in web pages), is
a popular form of decentralized services as well as a cau-
tionary example. Historically, Ajax has introduced new vul-
nerabilities into web applications and increases the attack
surface of applications by exposing additional targets for
exploitation—both server- and browser side. Mashups are
prey to a broad variety of attacks, such as XML external
entity injection, request forgery, cross-site request forgery,
covert manipulation of the browser DOM such as user inter-
face redress (“clickjacking”) or the capture and covert loss of
sensitive information, and can be exploited as a launch point
against other vulnerabilities. [53]. As we shall demonstrate,
MOTILE/ISLAND capitalizes on the COAST rules to thwart at-
tacks, reduce risk, and minimize damage.

Third, COAST-based services blur the distinction between
service provider and service consumer; a service consumer
can deploy an application to a provider just as easily as a ser-
vice provider can deploy an application to a consumer. De-
centralized services organized around mobile code present
distinctive challenges to service consumers and providers
alike. Variety and variation predominate. No single uniform
code base is likely among large numbers of disparate ser-
vices. While a small common core is feasible, beyond that,
organizations will tend to specialize, driven by their own
interests and needs. As we shall see, COAST-based mobile
code helps providers and consumers compensate for the ser-
vice omissions of others. Decentralized partners may come
and go, alter security policy, or adjust trust levels as they
please. The mechanisms of decentralized services must re-

spect this reality. Fortunately, the security mechanisms of
COAST are symmetric and dynamic, allowing providers and
consumers alike to maintain a security posture appropriate
to their needs and circumstances.

The influence of COAST on MOTILE/ISLAND, our ref-
erence implementation of COAST, is best motivated and
demonstrated by a small MOTILE program. Section 4 presents
a decentralized MOTILE implementation of a search for
palindromes to sketch how a MOTILE programmer, build-
ing upon the assets presented by a service provider, creates
a client-specific, custom service in a COAST application.

4. MOTILE/ISLAND in Action: Adaptive Services
An adaptive service offers service primitives that may be
composed and rearranged on demand by clients to suit client
needs. MOTILE, a single-assignment dialect of Scheme [21],
is the language of service interaction and adaptation between
provider and consumer. Each MOTILE computation is an in-
dependent thread of control (an actor [3]) executing within
the context of an execution site 〈E,B〉 (COAST Rule 2). E
is the execution engine for the actor: an interpreter, byte-
code virtual machine, physical processor, JIT compiler, or
the like. B is a binding environment, a map from sym-
bols to values. At a minimum the values encompass im-
mutable primitives such as numbers, characters, strings, and
byte strings; persistent, functional, compound data structures
such as lists, vectors, tuples, records and hash maps [41]; and
higher-level constructs such as closures, continuations and
binding environments.

When is the binding environment B of an execution site
referenced? Whenever the closure under execution refer-
ences a free symbol not bound over lexical scope. Conse-
quently, when a closure is transmitted from one actor to an-
other (via a message—the only means by which actors inter-
act) it leaves all of the bindings of its free variables behind
and obtains new bindings from the binding environment of
the execution site in which it is called.

Why these particular binding semantics for MOTILE mo-
bile code? These binding semantics:

• Are easy to explain and understand and are obvious when
inspecting MOTILE source code. Other mobile code lan-
guages such as MAST [58], allow programmers to pick
and choose which free variable bindings to drag along,
as do some formal models [8]. These alternative formu-
lations are COAST-consistent but are more difficult to ex-
plain and understand and their notation can complicate
source code.

• Enforce functional capability. It is impossible for arriving
mobile code to carry unwanted or dangerous functions
through the security perimeter of a computation as a clo-
sure leaves all of its “global” bindings behind as it transits
from one execution site to another. Since all executions
are grounded in the contents of the binding environments

Motile/Island and COAST 4 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

of their respective execution sites their “functional reach”
is bounded. By restricting the contents of binding envi-
ronments (an application of POLA), hosts can minimize
the risk or at least confine the damage of an erroneous or
malicious mobile closure.

• Improve security. Appropriate construction of the clo-
sures populating a binding environment (we omit the de-
tails here) prevents proprietary or sensitive implemen-
tations from ever leaving the confines of the execution
site in which they appear. A COAST service provider can
safely include specialized functions within its execution
sites without fear that the implementations will be trans-
mitted outside of its sphere of authority

• Offer opportunities for per-binding customization such as
logging, monitoring, debugging, and restriction

• Relieve the COAST implementation of the burden of re-
quiring a single, uniform execution engine throughout all
decentralized services, thereby encouraging diversity of
implementation and providing an important avenue for
evolution and innovation

Finally, unlike other languages such as Lisp, Lua, PHP,
Python, Ruby, or even classic Scheme, MOTILE does not
contain an eval-like function. Consequently no MOTILE

program (closure) can dynamically construct a program
abstraction and then execute it. This restriction allows
MOTILE/ISLAND to authoritatively determine the complete
set of global functions that a closure may reference. A sphere
of authority may simply decline to execute visiting code that
references functions that may be easily abused (for example,
functions for creating, writing, and reading scratch files) or
may more closely monitor its execution than it might other-
wise.

To illustrate MOTILE binding semantics consider the func-
tion palindrome? shown in Figure 1:

1. The symbols s, left, and right (lines 1, 3, and 4 re-
spectively) are each bound within lexical scope

2. The expressions (let . . .), (or . . .), (and . . .) are
special forms recognized by the MOTILE compiler and in
this context none of let, or, and are free symbols

3. The symbols sub1 (lines 4 and 11), string-length
(line 4), >= (line 6), char=? (line 8), string-ref (lines
8 and 9), and add1 (line 10) are free but not bound within
lexical scope

The latter set (item 3 above—sub1 and its ilk) are bound
(defined) by the binding environmentB of the execution site.
When a closure is transmitted to an execution site the bind-
ings of all of its free variables not in lexical scope are left
behind and rebound (redefined) by the binding environment
of its destination execution site.

1(define (palindrome? s)

2(let loop

3((left 0)

4(right (sub1 (string-length s))))

5(or

6(>= left right)

7(and

8(char=? (string-ref s left)

9(string-ref s right))

10(loop (add1 left)

11(sub1 right))))))

Figure 1. A MOTILE predicate to test for palindromes. It
returns true if its string argument s is a palindrome and false
otherwise.

4.1 MOTILE Actors and Message Passing
Each MOTILE actor resides on an island, a single, network-
accessible, uniform address space. An island is a locus of
MOTILE computations operated and deployed by a single
sphere of authority, the COAST analog of a web server. Each
island is uniquely identified by an island-specific public key
[7] that allows any two communicating islands to certify the
identity of the other.

Actors are spawned by other actors. The initial trusted
actors on an island are started ab initio when the island
is created. The MOTILE primtive function (spawn f B)
enables actor x residing on island I to create an additional
island co-resident actor. It takes two arguments, a thunk (a
zero-argument closure) f and a binding environment B. It
spawns a new actor executing thunk f in the context of an
execution site 〈E,B〉 where E is the execution engine of
actor x and B, the binding environment argument of spawn.
Remote (inter-island) spawning is implemented using spawn
in combination with inter-actor message-passing.

Associated with each MOTILE actor is a mailbox, a queue
for incoming messages. The MOTILE function (receive)

returns the next queued message and removes it from the
mailbox. If the mailbox is empty then (receive) blocks un-
til a message arrives. MOTILE/ISLAND guarantees that mes-
sages sent from actor x to actor y arrive in transmission or-
der; while not required by the actor model it simplifies the
implementation of many distributed algorithms. Messages
are the only means by which MOTILE actors may interact
(COAST Rule 1).

Each Capability URL (CURL) names an actor on some
island and conveys the capability to communicate with that
actor (COAST Rule 3). The MOTILE function

(curl/send u v)

which takes two arguments, a CURL u and a MOTILE value
v, transmits v asynchronously to the mailbox of the actor x
named by u.

We now have enough to implement inter-island spawning

Motile/Island and COAST 5 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

1(let*

2((reply (promise/new 60.0))

3(reply/settlement (car reply))

4(reply/curl (cdr reply))

5(palindromes

6(lambda ()

7(curl/send reply/curl

8(words/filter palindrome ?)))))

9(curl/spawn J@ palindromes)

10(promise/wait reply/settlement))

Figure 2. A MOTILE program to search for palindromes.

1(define (curl/spawn u@ f)

2(curl/send u@ (list "SPAWN" f))

where argument u@ is a CURL naming an actor to which
the message ("SPAWN" f) is directed. curl/send deliv-
ers a list (u t v) where u is the CURL to which message
v was directed and t is the identity of the transmitting is-
land. This delivery structure is essentially dictated by COAST
Rule 5 that grants each actor the right to interpret a message
v in the context of the CURL u employed by the sender. At
its discretion receiving actor x will (by convention) execute
(spawn f B) to spawn an new actor executing closure f in
the context of a binding environment B where the bindings
of B may be u-, t-, and v-specific. However, x could inter-
pret the value ("SPAWN" f) quite differently, for example,
logging the spawn request and forwarding it on to actor y
for spawning only if the originating island t was known to
be trustworthy (COAST Rule 5).

This simple example also illustrates two other conse-
quences of the COAST rules. Actor x can spawn another co-
resident actor only if:

• The spawn primitive function is defined in the binding
environment of the execution site of x or

• Actor x communicates with actor y with the requisite
functional capability. Either x either holds a CURL u for
y or x holds a CURL u for actor z that forwards (directly
or indirectly) the request of x on to y

This observation is the cornerstone of COAST capability se-
curity. In the former case x possesses the functional capabil-
ity to spawn co-resident actors. In the latter case x possesses
both the functional capability (curl/send) and the commu-
nication capability to enlist a proxy actor to act on x’s behalf.

MOTILE implements “communication by introduction”
[16] meaning that actor x can’t directly communicate with
actor y until it has been “introduced” to y. Actor x can ac-
quire a CURL (an introduction) in only three ways:

• The closure with which it is spawned contains one or
more CURLs among its lexical scope bindings

• Functions in the binding environment of the execution
site of x may return CURLs as their values or the value
of a binding (say a list) may contain one or more CURLs

• CURLs may be contained in the messages that x receives

Consequently, to the extent that an island’s sphere of au-
thority can interdict the immigration of CURLs embedded
in closures, control the contents of the binding environments
of execution sites, and embargo the transfer of CURLs in
inter-actor message traffic it can regulate the transfer and
propagation of communication capability.

4.2 Intra- versus Inter-island Message Passing
Actors residing on the same island, by definition of an island,
share a single, homogeneous address space. MOTILE/ISLAND,
for reasons of efficiency, implements intra-island message
passing by reference. To eliminate the distinction between
intra- and inter-island message passing MOTILE is a single-
assignment language in which all primitive and compound
values are immutable. Data structures such as extensible vec-
tors and hash tables are functional and persistent [41], that
is, immutable and version-preserving. All objects (including
messages) shared among an island’s actors are immutable;
this improves actor isolation and eliminates the classic data
races seen in threaded imperative languages.

4.3 Promises
To bridge the gap between functional programming and
asynchronous messaging MOTILE implements promises, a
proxy object for a result that, at the outset, is undefined be-
cause the computation of its value is incomplete. Figure 2
illustrates the use of promises. The client computation cre-
ates a new promise (named reply) with a lifespan of 60.0
seconds (line 2). There are two components to each promise,
a settlement s and a CURL u (lines 3 and 4 respectively). The
settlement s is effectively an opaque container (implemented
as an actor) for the expected value while u is a single-use
CURL that references the settlement. A single-use CURL u
may be used as the target for a message transmission only
once; thereafter any message transmitted via u will be im-
mediately discarded by the receiving host.

Many computations within the network may hold a
promise CURL u simultaneously, but only one message
transmission via u will resolve the promise; any others
will be silently rejected. Finally, promise/wait (line 10)
blocks until either the promise is resolved (that is, some ac-
tor has transmitted a value to the settlement via the CURL
reply/curl) or the promise expires (in this case 60 sec-
onds after it was created). If the promise has been resolved
then promise/wait returns the value of the resolution; oth-
erwise it returns false, the default value if resolution fails
(other options are available but omitted here for the sake of
simplicity).

4.4 A Client Computation for Palindromes
Figure 2 outlines how a COAST client constructs an alterna-
tive service from the primitives defined by a service provider.
For the sake of brevity, we assume that the palindrome?

Motile/Island and COAST 6 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

predicate shown in Figure 1 is defined within the lexical
scope of the code of Figure 2.

The variable palindromes (line 5) is bound to a thunk
(a zero-argument closure) defined in lines 6–8. The func-
tion words/filter (line 8) is a domain-specific function
defined by the binding environment of the destination ex-
ecution site. It is a combinator that applies its argument, a
predicate function (the function palindrome? defined in
Figure1), to each word contained in the database of host
J , the service provider, and returns a list containing only
those words satisfying that predicate. The list of filtered
words, each word a palindrome, is the value that resolves the
promise settlement (reply/settlement) held by the client
(lines 7–8). In line 9 the client actor spawns the execution
of the palindromes computation on island J via CURL J@

(we omit here, for the sake of clarity, the details of how the
client actor came to possess this CURL). Finally (line 10),
the client actor blocks, waiting for its list of palindromes.

4.5 Summary
The palindromes example of Figures 1 and 2 illustrates the
critical role that binding environments (COAST Rule 2) play
in COAST-based services. However, while the COAST rules
call for closure transfer as a form of computation exchange
(Rule 1), the style is silent on the the binding semantics
for the variables of transported closures. MOTILE closure
transfer always rebinds free variables not closed over lexical
scope in the context of the binding environment of the desti-
nation execution site; in other words, the bindings for global
free variables are always left behind. This choice is easily
explained and understood, maximizes the opportunities for
service variation and differentiation, and guarantees that the
destination host has complete control of the functional capa-
bility that it allocates to visiting mobile code. Here a single
element of an architectural style deeply influences the se-
mantics, adaptivity, and security of a style-specific language.

5. Motile/Island Implementation
The COAST style is deliberately under-specified and many
significant details relevant to security and safety are left to its
implementation. For example, COAST Rule 2 requires that
each COAST computation is confined to an execution site,
but says nothing about the structure or semantics of execu-
tion engines or the particulars of binding environments, both
of which are critical for managing functional capability. Nor
does COAST include mention of serialization or the network
transport representation for MOTILE mobile code and values.
Here we sketch the details of the MOTILE compiler pertaining
to execution engines, describe the interaction between com-
piler and serializer, and outline the implementation of bind-
ing environments—all elements of enforcing MOTILE bind-
ing semantics.

Both MOTILE and ISLAND are implemented in Racket1,
a well-known, high-performance Scheme implementation
with a machine-independent bytecode virtual machine cou-
pled to a native code JIT. MOTILE is implemented as a
Scheme-to-Scheme closure compiler [22, 56] in which each
MOTILE closure is compiled in lexical scope passing, binding
environment passing, continuation passing style. The output
of the MOTILE compiler is essentially a fixed execution en-
gine (implemented as threaded code) for which the binding
environment is an argument. In other words, our reference
infrastructure holds the execution engine constant but al-
lows the binding environment to vary independently among
an island’s execution sites.

From the perspective of the underlying Scheme host each
compiled MOTILE closure f is a Scheme function (f k s B)
of three arguments: a continuation k (implemented as a
single-argument function in the underlying Scheme host),
a lexical-scope stack s (whose top frame contains f ’s argu-
ments) and a binding environment B. This representation of
f is hidden from users at MOTILE-level.

Each MOTILE closure f “knows” how to decompile it-
self into a MOTILE Assembly Graph (MAG), a machine-
independent, engine-independent, directed graph representa-
tion of f . MAG nodes are instructions for an abstract, high-
level lambda calculus engine whose annotations contain the
lexical scope values captured by the closure. A MAG graph
is human-readable and it is possible, though tedious, to di-
rectly program in the MAG representation. The call (f 1 . . .)
by trusted island-level code returns the MAG of MOTILE clo-
sure f . Other argument combinations (in each case the first
argument is a distinct small positive integer) return addi-
tional f -specific meta-level information. A similar technique
is used by Mobit [42], a portable Scheme-to-Scheme trans-
lator for Termite [25], an Erlang-influenced mobile code
Scheme.

The MOTILE/ISLAND serializer is trusted code that reduces
MOTILE values to a flat structure. As the serializer walks a
value it decompiles any MOTILE closures that it finds into
their MAG representations and flattens the graph. The seri-
alizer deliberately rejects some MOTILE types; for example,
the serializer will not serialize a MOTILE actor since actors
are pinned to the island on which they were born.

The deserializer is the inverse of the serializer. It accepts
an instance of the flat structure generated by a serializer
and reconstructs the expression; in particular, any MAGs
are reconstructed into their graph form and then recompiled
into closure form. For any value v for which (serialize v) is
defined the value returned by (deserialize (serialize v)) is
structurally equivalent to v; in other words, structure sharing
in v is preserved.

MOTILE binding environments are implemented as ideal
hash trees [6], a functional data structure that is both im-
mutable and version preserving [41]. As binding environ-

1 www.racket-lang.org

Motile/Island and COAST 7 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

ments and their contents are immutable they may be freely
shared among multiple execution sites within a island. They
are parsimonious as well, since a derived binding environ-
ment leaves the root binding environment unchanged (ver-
sion preserving) and wherever possible an ideal hash tree
shares unchanged subtrees with the tree from which it is de-
rived. “Sculpting” a binding environment (that is, adding, re-
moving, or modifying bindings) is inexpensive and there are
no significant performance barriers to customizing a binding
environment for each and every actor on an island. In prac-
tice many actors on an island will share a common binding
environment.

The MOTILE compiler, in cooperation with the ISLAND

serializer/deserializer, enforce the binding semantics for
MOTILE mobile code. All free variables α not bound within
lexical scope are compiled into lookups by name using the
MAG instruction (reference/global α) where α is the name
of a binding within the binding environment of the mobile
code’s execution site.

The interactions between compiler and serializer/deseri-
alizer are sufficient for the binding semantics but will not
pin sensitive functions in an island binding environment to
the island. To illustrate, suppose that zig and zag are two
closely held functions in a binding environment of an execu-
tion site on island I . But island I can’t prevent MOTILE code
from transmitting them off-island to island J—the expres-
sion (curl/send J@ (list zig zag)) will (apparently)
transmit both functions to island J from island I . Preventing
this behavior requires additional cooperation between bind-
ing environments and serialization, as detailed in Section 6.

6. Serialize for Security
Three distinct but related mechanisms are the building
blocks for important elements of intra- and inter-island
security: binding environments, the binding semantics for
MOTILE closures, and (de)serialization. Combined they im-
plement fixed assets (pinning a computational, algorithmic,
or information resource to an island) as well as the tracking
and interdiction, both intra- and inter-island, of functional
and communication capability. An island can monitor in
real-time the transfer of functional capability on-island and
the transfer, both incoming and outgoing, of communica-
tion capability. Knowledge of these transfers is essential for
constructing higher-order security awareness [60] among de-
centralized services and the critical role of (de)serialization
in this regard is an unexpected result.

In retrospect COAST facilitates the pivotal role of se-
rialization. Its rules explicitly define the location of func-
tional and communication capability and confine its trans-
fer among computations to messaging. COAST is silent on
the means of organizing and delineating spheres of authority
but any implementation of the COAST style for decentralized
services must choose a model. Once that choice is made the
only points of interdiction, embargo, and control are bind-

ing environments and the transfer of CURLs and closures by
messages.

Distributed messaging demands serialization, but the pre-
cise nature of that serialization is determined by choices well
outside the scope of the COAST style. The abstract trans-
fer representation of closures—a graph of instructions for
a lambda calculus engine—works in our favor since it de-
mands “deep” inspection for the sake of mobile code trans-
mission and reception. A lower-level representation, such as
byte codes for virtual machine instructions, requires less ef-
fort and inspection but is more difficult to analyze and less
amenable to interdiction and embargo. In any case, both
what the COAST style dictates and what it leaves unsaid,
have strongly influenced MOTILE and its run-time support.

6.1 Inter-island MOTILE Binding Semantics
Circling the wagons to interdict the transmission of zig and
zag (Section 5, last paragraph) requires one additional re-
finement. The binding environments of execution sites are
largely populated with primitive operations, that is, functions
implemented in the underlying Scheme host (for example +,
map, or list) or are wrappers for domain-specific functions
implemented in another language altogether such as C or
Objective-C. In both cases mobility for such functions is im-
possible and likely not machine-independent; after all, what
is the MOTILE/ISLAND serializer to do with a Racket Scheme
or C function? Rationalizing the capture of global bindings
is necessary as the sample code of Figure 3 illustrates: two
global bindings, zig and zag, are captured in lexical scope
(line 1) and then (apparently) transmitted off-island (line 2).

1(let ((x zig) (y zag))

2(curl/send J@ (list x y)))

Figure 3. Transmitting a fragment of a binding environment
from island I to island J .

Confining functions to prevent their transmission off-
island is quite simple. Each function f in the binding en-
vironment B of an island execution site is wrapped such
that when decompiled by an island serializer it decompiles
into a single MAG node (reference/global α) where bind-
ing α : f ∈ B. The wrapping mechanics are implemented
as a small set of Racket Scheme macros and are applied to
execution-site binding environments as islands are instanti-
ated and deployed by a sphere of authority.

Enforcing MOTILE mobile code inter-island binding se-
mantics, and in particular guaranteeing the integrity of island
fixed code assets, requires the intimate cooperation of the
MOTILE compiler, the detailed construction of execution site
binding environments, and the serializer/deserializer of the
underlying island infrastructure. The COAST style permits
other interpretations of the mobile code binding semantics,
but the demands of decentralized services, particularly the
trust boundaries among multiple spheres of authority, dictate

Motile/Island and COAST 8 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

that an authority have the power to restrict asset mobility. It
is an excellent example of the influence of safety and secu-
rity on multiple, interacting subsystems.

6.2 Intra-island MOTILE Binding Semantics
Mobile code exchanged inter-island must be serialized for
network transmission by the originating island and then de-
serialized by the receiving island, but intra-island code ex-
change is simply by reference. Consequently, actors x and y
executing in the context of binding environmentsBx andBy

can exchange functions found only in their respective bind-
ing environments, for example x sending function zip to y2

via (curl/send y@ zip) and y sending function zap to x
via (curl/send x@ zap).

How can we prevent co-resident island actors from shar-
ing functional capability that should remain sequestered?
The answer combines serialization with binding environ-
ment sculpting. Consider the example above where actor y
on island I transmits the closure zap : . . . ∈ By to x on
island I in (curl/send x@ zap). Serializing the value of
variable zap means serializing the closure f to which zap is
bound, that is, zap : f ∈ By . The construction of By guar-
antees that closure f will serialize to the MAG instruction
(reference/global zap), thereby interdicting f . The second
half of the answer requires that the primitive curl/send

∈ By be specialized to serialize every message directed to
a co-resident actor and then transmit the deserialization to
its destination. Specializing curl/send and inserting it into
binding environment By is straightforward and the cost of
serialization/deserialization is low. However, this treatment
increases the overhead of on-island actor communications
over unmediated transmission by reference.

For many actors interdiction of this form is unneces-
sary: their binding environments may not contain closures
that justify this treatment, their communication capability is
sharply restricted (that is, they can’t acquire the CURLs of
actors that may present a threat to island integrity), or they
may be executing trusted code whose behavior is well un-
derstood and consistent with island security policy. Sharing
closures from a binding environment may be appropriate,
for example, an actor can be a function factory, wrapping
and specializing closures from its binding environment for
distribution on demand to other actors, or it may distribute
closures to actors for dynamic adaptation or upgrade.

6.3 Serialization/Deserialization is a Security Tool
By definition, serialization must recursively walk and dis-
sect an entire compound or structured value (for exam-
ple lists, hash maps, or closures). Serialization is the mo-
bile code equivalent of deep packet inspection—everything
within the object under serialization is exposed to view. The
MOTILE/ISLAND serializer exposes the presence of functional

2 The shorthand x@ and y@ denotes CURLs for actors x and y respectively.
How x came to hold y@ and y hold x@ is not discussed here.

and communication capability; detecting and noting each
and every closure and CURL that it encounters as it serial-
izes a value. Detecting closures originating from the binding
environments of execution sites is easy, as they always de-
compile into the MAG instruction (reference/global α) for
some symbol α and are the only MOTILE closures to do so.
CURLs, a first-class data type in MOTILE, are just as easy to
discover as serialization proceeds.

Serialization, the outward bound gate through which all
inter-island communications must pass, exposes the outgo-
ing transfer of communication capability (CURLs) among
islands. The transmitting island always knows which CURLs
are going where and can interdict (prevent the transmis-
sion of) any CURLs that violate island security policy. For
example, islands contain actors responsible for critical is-
land services such as communications and processor allo-
cations whose CURLs should never be exposed off-island.
Conversely, deserialization, the inward bound gate through
which all inter-island communications must pass, exposes
the incoming transfer of communication capability among
islands. At this point an island I has an opportunity to pre-
vent an untrusted, island-resident actor from acquiring a
CURL it should not have, for example a CURL naming an
island whose behavior is suspect or blacklisted. Nor can an
island J hide a questionable CURL u buried inside a closure
it spawns on I since I’s deserializer will bring u to light as
it recompiles the closure for execution on I .

Serialization and deserialization are required under any
circumstances for inter-island communications and the addi-
tional overhead of collecting the CURLs embedded in inter-
island messages is insignificant in comparison to the base
costs of (de)serialization and network overhead. It is possi-
ble for an island I to track, for every actor x spawned on
I by another island, all of the CURLs that x may hold ei-
ther because they were encapsulated in the closure defining
the spawning or they were delivered to x in messages (in-
cluding closures) transmitted from other islands.3 Island I
can also assemble a partial view of the distribution of its
CURLs among other islands by tracking I-CURLs in out-
bound messages and their subsequent use by remote islands
to communicate with actors on I . More generally, aggrega-
tions of islands can pool extracts of their individual views of
CURL distribution to obtain a broader perspective of CURL
distribution as a whole that can be used for monitoring, de-
bugging, performance, threat and traffic analysis, and early
warning of attacks.

Where required, serialization and deserialization can be
employed, as described in Section 6.2, in a like manner
to track the transfer of functional capability (closures from
binding environments) among actors intra-island. It is pos-
sible, if required by island security policy, for an island

3 Tracking the CURLs delivered to x in messages from other, co-resident
I-island actors is also easily done using a minor variation of the techniques
described in Section 6.2.

Motile/Island and COAST 9 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

to comprehensively track the transfer of critical closures
island-wide, actor by actor, with an exhaustive accounting
of the functional capability held by each actor. Alternatively,
an island can track selectively, focusing its attention on high-
value or suspicious actors.

7. CURLs: The Final (Security) Frontier
Capability URLs (CURLs) are the only form of communica-
tion capability in COAST; possession of a CURL u for actor
y by actor x is necessary for x to deliver a message to y.
The restrictions of functional capability and communication
capability enforce “communication by introduction” and de-
lineate the means by which any actor can acquire CURLs
(Section 4.1). COAST is silent on the details of CURLs, leav-
ing the choices of structure, mechanics, and cryptography
open. MOTILE/ISLAND takes advantage of this lack of speci-
ficity to broaden and strengthen the security and safety of
communication. Here the strength of the COAST style lies
not in what it prescribes but what it excludes: the COAST
style, by restricting all inter-computation communication to
messaging via CURLs, offers conforming implementations
an architectural “choke” point for implementation-specific
interpretations of COAST messaging. Additional implemen-
tation details and examples of CURL use can be found in
[26].

7.1 CURLs are Cryptographic Structures
An actor may generate CURLs for itself (assuming that
the binding environment of its execution site contains the
requisite primitive functions) but not for any other actor.
CURLs are primitive MOTILE data types, are immutable, and
each CURL is signed by the issuing island; consequently,
CURLs are effectively impossible to counterfeit and are
tamper-proof (COAST Rule 3).

CURLs are cryptographically unique—not only are the
CURLs of one island distinguishable from the CURLs
of another island but the CURLs of a single island are
also distinguishable from one another. However, under
MOTILE/ISLAND it is not possible for island I to reliably de-
termine the actor to which a island J CURL refers. In other
words, if I comes into possession of two J island CURLs, u
and u′, I can not reliably determine from the CURLs alone
if u and u′ both refer to the same actor x on J . This “cloak-
ing” frustrates I’s efforts to discover J’s internal structure,
thereby impeding attacks against J .4

7.2 CURLs Protect the Perimeter
CURLs are the “frontier” of an island. Guarding the frontier
is fundamental to island security and safety. To this end each
MOTILE/ISLAND CURL u is metered by a use count, limiting
the total number of message transmissions allowed for u; a
rate limit, a ceiling on the rate of message transmissions for

4 In general island I no more trusts an actor x on island J than it trusts
island J itself.

u; and an expiration date, after which u is invalid. A use
count of n > 0 for CURL u means that u may be used
at most n times to transmit and deliver a message and is
decremented when a message is delivered to the mailbox of
the actor denoted by u. When an n-use CURL u is shared
among multiple islands the (at most n) uses are first-come
first-served.5

CURL rate limits are expressed in Hz, the maximum
number of message deliveries per second, for example; a
CURL for which the maximum rate is 1 message every 10
seconds has a rate limit of 0.1. ISLAND uses a leaky bucket al-
gorithm to gauge the rate of message arrival; message deliv-
eries exceeding the rate are silently rejected. When a CURL
u is shared among multiple islands the message arrival rate is
shared, first-come first-served, among those islands. In this
case one island may enjoy a higher delivery rate relative to
the others depending on the combined transmission rates, de-
livery timing and network conditions.6

Each CURL has an expiration date and once the CURL
expires all messages sent via the CURL will be rejected
by the destination island (since no island can safely rely
on a sending island to respect the expiration date). CURL
lifespans may be as short as a few milliseconds but common
practice may see lifespans of a few hours to months. Use
counts, rate limits, and expiration dates require that islands
maintain island-side state for each CURL they issue. We
omit details of the mechanisms but note that, at worst, the
state memory amounts to a few tens of bytes per CURL and
even a modest island can afford to have 105–106 CURLs in
circulation at any one time.

Finally, a CURL umay be revoked by the issuing island at
any time prior to its expiration. This allows the island, should
it determine that u is being misused or has been acquired by
an untrustworthy island, to immediately protect itself against
further hostilities. CURL revocation may also be used to
protect critical resources against the actions of erroneous or
faulty islands or if the ill-behaving island is itself thought to
be under attack. Preemptive isolation may slow or constrain
the propagation of attacks and limit their damage.

7.3 CURL-Specific Constraints
Decentralized services must maintain a defensive posture
since even a trusted partner, once hacked and penetrated,
may be used as a platform for attacks on other portions of
a decentralized infrastructure. Under COAST protection and
adaptation are two sides of the same coin and to these ends a
CURL may be further constrained in time, space, domain, or
application by guards embedded within the CURL. Guards
can implement: complex temporal restrictions (an island re-
stricting service to a client to the even calendar days of the

5 ISLAND also provides a mechanism by which multiple I island distinct
CURLs u1, . . . , um, share a single use count.
6 The same mechanism by which an island I shares use counts also allows
multiple distinct CURLs of island I to share a single rate limit.

Motile/Island and COAST 10 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

month); delegation (restricting use to a set of trusted islands
thereby limiting the effective propagation of a CURL among
islands); defensive consistency (ensuring that incoming mes-
sages conform to the expectations of the receiver); or precon-
ditions based upon observables such as an island’s workload
or the spot price of gold on the London exchange.

CURLs, at the discretion of the issuing actor or island,
may contain arbitrary metadata, including closures and bind-
ing environments. Among other roles CURL-borne closures
implement guards: MOTILE predicates g of three arguments
(g u t v) where u is the CURL used by the sending island;
t is the cryptographic identity of the sending island (includ-
ing its network address); and v is the message payload, the
value transmitted by the sending island. Its return value may
depend upon the metadata contained in CURL u, the iden-
tity t of the sender, the value of the message v, or arbitrary
conditions and events within the issuing island I or other
islands known to I . The guards g1, . . . , gm of a CURL u is-
sued by an island I are evaluated in sequence in the context
of gi-specific (hence I-specific) binding environments.

When a message m arrives at island I via CURL u then
message m is deposited in the mailbox of the target actor
only if u has not been revoked, the use count of u is positive
(> 0), u is unexpired (the expiration date of u lies in the
future), the arrival rate of messages via u (including the
arrival of message m) does not exceed the rate limit of u,
and the guards of u evaluate to true; otherwise the message
is rejected by I .

7.4 Summary of CURLs
Managing communication capability among decentralized
services is critical for limiting risk, containing damage, or
minimizing loss of information from attacks. In this instance
the influence of the COAST style is lightly prescriptive—
it limits communication capability to CURLs but does not
restrict the formulation of CURLs in any substantial way.
MOTILE/ISLAND exploits this freedom in two distinctive
ways: it enforces metered communication (per-CURL use
count, expiration date, and rate limit) and employs COAST
mobile code embedded in CURLs to enforce arbitrary re-
strictions on communications in space (delegation and non-
delegation), time (temporal access), and domain (for exam-
ple, limiting communications when workloads exceed an
island-specific threshold). Since CURLs are tamper-proof7

the issuing island of a CURL u can safely and securely em-
bed island-, domain-, actor-, and CURL-specific functions
within the CURL to regulate and modulate communication
capability. This result is unexpected—when adequately con-
strained, mobile code can be used to implement rich and
complex forms of higher-order security. Here the influence
of the COAST style on the language and infrastructure is pro-

7 A ny island J holding a CURL u purportedly issued by an island I can
determine conclusively if u is counterfeit or corrupted in some manner.

found, and what the style omits is just as important as what
it includes.

8. Related Object-Capability Languages
COAST is an architectural style for which both functional
and communication capability are explicit elements (Sec-
tion 3, Rules 2, 3, and 4). Here, we examine related work
through the lens of capability-based security; other impor-
tant aspects of the related work are detailed in [26, 27].

First introduced in the context of operating systems such
as KeyKOS [12], Amoeba [54], and W7 [44], capability-
based security is embodied in several object-oriented pro-
gramming languages such as E [34], AmbientTalk [20], and
Caja [38]. All of these languages are examples of the object-
capability model [36, 52], which restricts the classic object-
oriented model in three ways: only connectivity begets con-
nectivity (all access must derive from previous access), ab-
solute encapsulation (no access to object internals absent
an object’s explicit consent), and all authority by references
only8 (no object can synthesize a reference to another object
from bits alone).

Maffeis, Mitchell, and Taly [31] “formalize a form of
[the] object-capability model, focusing on reachability prop-
erties, in the context of operational semantics of imperative
languages and compare capabilities with authority princi-
ples” to prove that capability safety implies authority safety
(no amplification of authority). They go on to prove that a
subset of Caja [38], an object-capability JavaScript dialect,
enforces capability safety. Caja is an example of a strong,
dynamic typed object-capability language.

In Emerald, a mobile object language [29], object refer-
ences are capabilities. Objects encapsulate the concepts of
process, procedure, data, and location; objects are the units
of programming and distribution, and the endpoints of com-
munication within a distributed system. In addition, object
location and mobility are explicit notions within the lan-
guage. Everything within Emerald is an object, including
primitive values such as booleans or integers. Emerald en-
forces abstract types (known informally as “duck types” to-
day), objects are instantiated by nested lambda invocations,
rather than classes or prototypes, and are fully encapsulated
[43], a necessary restriction for the object-capability model.
Emerald is an early example of a strong, static typed object-
capability language.

Erlang [5] is a functional, single-assignment language
with immutable data types. Orginally designed for imple-
menting high-reliability, fault-tolerant, distributed systems,
Erlang is based on the Actor model [3] of computation—
isolated processes (actors) communicating solely via asyn-
chronous messaging. Each actor is fully encapsulated, there
is no global state, and actor references are capabilities
(granting the right to communicate)—the rules by which
actor references are acquired and transmitted conform to the

8 For example, casting an integer as a pointer is a violation of this constraint.

Motile/Island and COAST 11 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

object-capability model. Erlang is an example of a strong,
dynamic typed object-capability language.

9. Evaluating COAST and MOTILE/ISLAND

Our analysis here emphasizes capability confinement, the
degree to which a system can limit and regulate the propaga-
tion of capability—a critical element of safety and security
for decentralized services [35, 37] and a principal concern
of COAST.9 We consider the efficacy of COAST-based ca-
pability security in the context of COASTCAST, a COAST-
based application for distributing and manipulating high-
definition video streams in soft real-time and in doing so
evaluate MOTILE/ISLAND as an object-capability language. A
functional and performance analysis of COASTCAST is given
in [27].

For the sake of capability security COASTCAST assumes
three different kinds of islands: camera islands, display is-
lands, and relay islands; each distinguished by the services
(execution sites) that it offers. Camera islands offer services
for access to one or more live video cameras, display islands
support display and control services for video streams, and
relay islands provide publish/subscribe services to distribute
compressed video streams to display islands.10

The allocation and propagation of capability is framed in
terms of CURLs. First, access to camera services is restricted
to only a few islands via non-delegable camera CURLs with
limited use counts and lifespans. Each camera CURL con-
tains camera-specific metadata including frame size, frame
rate, and color model.

To obtain camera service on camera island I a client is-
land J dispatches a thunk t via a camera CURL u for exe-
cution. In response (assuming that J is a legitimate delegate
for u) I inspects CURL u and generates a custom binding
environment Bu for t containing initialization, frame read,
and encoder primitives tuned to the frame size, frame rate,
and color model given in the CURL as well as transforms or
other image operators offered as primitives. A camera island
can issue a collection of CURLs to clients with each CURL
specifying a different combination of frame size, frame rate,
and color model.

In addition, camera island I imposes resource caps on the
actor x it spawns to execute t to ensure that x does not waste
processor cycles, hoard frames, or consume excess network
bandwidth in transmitting the encoded video stream to the
relay chosen by t (the CURL for the relay is included in
the lexical scope bindings of closure t). It is straightforward
(though not implemented) to also limit the lifespan of the

9 Information confinement, for example decentralized information flow con-
trol [4, 9], is neither the intent nor the focus of COAST, and is not ad-
dressed here.
10 While a single island may incorporate all three “kinds” of service it is
convenient, for the purposes of analysis, to treat them as distinct. The isola-
tion and encapsulation of COAST computations as actors bound to execu-
tion sites guarantees that this logical separation is an accurate representation
of the actual behavior.

client actor that is consuming video frames and, by using
CURL rate limits, to bound how frequently any particular
client may deploy its mobile code to the camera service. A
camera island may provide camera service to several clients
simultaneously. However, given the computational costs of
video encoding and compression, our implementation re-
flects an island policy of one client per camera at any time.

The interaction between camera provider and camera ser-
vice consumer in COASTCAST illustrates the propagation and
confinement of capability. CURLs restrict access to cam-
eras via non-delegation. Metadata within CURLs helps cam-
era providers customize and restrict the functional capability
granted to client code and confine a client’s resource con-
sumption. Time and rate limits on camera use help ensure
that no one client unfairly monopolizes a camera. Higher-
order temporal constraints can restrict use to a particular
time of day or grant access conditional on events (for ex-
ample, use for 30 minutes if an intrusion alarm is tripped).
Client access to a camera can be withdrawn at any time by
revoking the related CURL.

Camera access and use under COASTCAST illustrate why
MOTILE/ISLAND is an object-capability language. A client
must possess a CURL u to access a camera and only by
prior access via some transitive chain of CURLs can a client
acquire such a CURL (only connectivity begets connectiv-
ity). All objects are absolutely encapsulated (cameras, clo-
sures, actors, binding environments) as absent a specific ac-
cess function in an execution site’s binding environment no
MOTILE actor can violate encapsulation. Finally, without di-
rect access to the (de)serializer no untrusted code can syn-
thesize a reference to an object such as a camera or an is-
land (authority by references only). Under these conditions
all MOTILE mobile code conforms to the object-capability
model.

More work is needed to establish the safety and security
of COAST and MOTILE/ISLAND. Continuation transfer (called
out by COAST Rule 1) is unimplemented although there are
hooks for it in the MOTILE compiler. In retrospect, continua-
tion transfer is a security threat since it transmits a complete
runtime stack whose lower frames may contain sensitive in-
formation that should remain on-island. Delimited continu-
ations [49] can ameliorate this risk and are a topic for future
research.

Threat analysis is a time-honored evaluation technique
for security systems [10]. There can be numerous threats
against a provider, including resource exhaustion, malicious
exploitation of functional capability, efforts by mobile code
to communicate with untrusted peers, the unsafe acquisition
of additional functional or communication capability, and
application-level denial of service attacks. Our analyses and
experiments to date strongly suggest that the elements of
execution site, CURLs, and mobile code can be manipulated
to prevent, thwart, or minimize these threats. Additional

Motile/Island and COAST 12 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

test applications (for example, access to electronic health
records) are planned to confirm our hypothesis.

Finally, object-capability patterns [47] such as seal/unseal
and proxy embody known security attributes and behaviors.
We intend to explore their generalization to decentralized
systems in the context of MOTILE/ISLAND.

10. Conclusion
Often an architectural style is based on prior patterns and
practices. For COAST, however, there are few substantial
prior examples to which we can refer. To gauge the efficacy
of COAST we constructed both a reference implementation
for the style, MOTILE/ISLAND, and a challenging application,
COASTCAST, for the distribution and manipulation of soft
real-time, high definition video. Maintaining the constraints
of the style required the intimate cooperation of both the
mobile code language MOTILE and its complementary peer-
ing infrastructure ISLAND. The consequences of the style are
both subtle and pervasive and a comprehensive implemen-
tation is a significant undertaking—nonetheless our work to
date is highly encouraging.

The dual goals of security and safety and the style, as an
abstraction of principal security mechanisms, dominate al-
most all aspects of the language and infrastructure. In this
case the COAST architectural style had a profound influ-
ence on MOTILE/ISLAND and accounts for all of its distinc-
tive features: mobile code as the engine of both adaptivity
and higher-order security, execution sites as a mechanism for
the modulation and confinement of functional capability, and
Capability URLs (CURLs) as the conveyance of communi-
cation capability in time, space, domain, and application.

Acknowledgments
This work was supported by National Science Foundation
Grants CCF-0917129 and CCF-0820222.

References
[1] GStreamer: open source multimedia framework. URL

gstreamer.freedesktop.org, February 2012.

[2] Adobe Systems Incorporated. PostScript Language Reference
Manual (Third Edition). Addison-Wesley, February 1999.

[3] G. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, December 1986.

[4] O. Arden, M. D. George, et al. Sharing Mobile Code Securely
with Information Flow Control. In IEEE Symposium on Secu-
rity and Privacy, May 2012.

[5] J. Armstrong. Programming Erlang: Software for a Concur-
rent World. Pragmatic Bookshelf, 2007. ISBN 978-1-93435-
600-5.

[6] P. Bagwell. Ideal Hash Trees. PhD thesis, Ecole Polytech-
nique Federale de Lausanne, Switzerland, 2001.

[7] D. J. Bernstein et al. High-speed high-security signatures.
Journal of Cryptographic Engineering, 2:77—89, 2012.

[8] G. Bierman et al. Dynamic Rebinding for Marshalling and
Update, with Destruct-time λ. In International Conference on
Functional Programming, pages 99–110, August 2003.

[9] A. Birgisson, A. Russo, and A. Sabelfeld. Capabilities for
Information Flow. In Programming Languages and Security,
PLAS’11, pages 5:1–5:15. ACM, June 2011.

[10] M. Bishop. Computer Security: Art and Science. Addison-
Wesley Professional, first edition, December 2002.

[11] A. P. Black, N. C. Hutchinson, E. Jul, and H. M. Levy. The
Development of the Emerald Programming Language. In
History of Programming Languages, HOPL III, pages 11:1–
11:51. ACM SIGPLAN, 2007.

[12] A. C. Bomberger et al. The KeyKOS Nanokernel Architec-
ture. In Workshop on Micro-kernels and Other Kernel Archi-
tectures, pages 95–112. USENIX Association, April 1992.

[13] P. Braun and W. R. Rossak. Mobile Agents: Basic Concepts,
Mobility Models, and the Tracy Toolkit. Morgan Kaufmann,
January 2005. ISBN 1558608176.

[14] E. Cheong and J. Liu. galsC: A Language for Event-Driven
Embedded Systems. In Proceedings of Design, Automation
and Test in Europe, DATE’05, pages 1050–1055. IEEE Com-
puter Society, March 2005.

[15] E. Cheong, J. Liebman, J. Liu, and F. Zhao. TinyGALS: A
Programming Model for Event-Driven Embedded Systems. In
Symposium on Applied Computing, SAC’03, pages 698–704.
ACM, 2003.

[16] T. Close. Decentralized Identification. http://www.

waterken.com/dev/YURL/, 2001.

[17] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links: Web
Programming Without Tiers. In Proceedings of the 5th Inter-
national Conference on Formal Methods for Components and
Objects, FMCO’06, pages 266–296. Springer-Verlag, 2007.

[18] G. Cugola, C. Ghezzi, G. Picco, and G. Vigna. A Charac-
terization of Mobility and State Distribution in Mobile Code
Languages. In Proceedings of the First Workshop on Mobile
Object Systems, ECOOP ’96, pages 309–318, July 1996.

[19] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna. Analyzing
Mobile Code Languages. In Mobile Object Systems: Towards
the Programmable Internet, pages 91–109. Springer, 1997.
ISBN 978-3-540-62852-1.

[20] T. V. Cutsem. Ambient References: Object Designation in Mo-
bile Ad hoc Networks. PhD thesis, Vrije Universiteit Brussel,
May 2008.

[21] R. K. Dybvig. The Scheme Programming Language. MIT
Press, 4th edition, 2009.

[22] M. Feeley and G. Lapalme. Using Closures for Code Genera-
tion. Computer Languages, 12(1):47–66, 1987.

[23] M. Fogus and C. Houser. The Joy of Clojure: Thinking the
Clojure Way. Manning Publications, April 2011. ISBN
9781935182641.

[24] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code
Mobility. IEEE Transactions on Software Engineering, 24(5):
342–361, 1998.

Motile/Island and COAST 13 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

[25] G. Germain, M. Feeley, and S. Monnier. Concurrency Ori-
ented Programming in Termite Scheme. In Scheme and Func-
tional Programming Workshop, pages 125–136, 2006.

[26] M. M. Gorlick and R. N. Taylor. Communication and Ca-
pability URLs in COAST-based Decentralized Services. In
REST: Advanced Research Topics and Practical Applications.
Springer, to appear Summer 2013.

[27] M. M. Gorlick, K. Strasser, and R. N. Taylor. COAST: An
Architectural Style for Decentralized On-Demand Tailored
Services. In WICSA/ECSA’12, pages 71–80, August 2012.

[28] D. A. Holzgang. Display Postscript Programming. Addison-
Wesley, July 1990. ISBN 0201518147.

[29] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained
Mobility in the Emerald System. ACM Transactions on Com-
puter Systems, 6(1):109–133, February 1988.

[30] D. Kitchin, A. Quark, W. R. Cook, and J. Misra. The Orc Pro-
gramming Language. In Proceedings of FMOODS/FORTE
2009, pages 1–25. Springer, June 2009.

[31] S. Maffeis, J. C. Mitchell, and A. Taly. Object Capabilities
and Isolation of Untrusted Web Applications. In Proceedings
of the IEEE Symposium on Security and Privacy, May 2010.

[32] A. Mesbah and A. van Deursen. An Architectural Style for
Ajax. In WICSA’07, pages 44–53. IEEE Computer Society,
2007.

[33] L. A. Meyerovich et al. Flapjax: A Programming Language
for Ajax Applications. In OOPSLA’09, pages 1–20, October
2009.

[34] M. S. Miller. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, Baltimore, Maryland, USA,
May 2006.

[35] M. S. Miller and J. S. Shapiro. Paradigm Regained: Abstrac-
tion Mechanisms for Access Control. ASIAN’03, pages 224–
242. Springer-Verlag, December 2003.

[36] M. S. Miller, C. Morningstar, and B. Frantz. Capability-
Based Financial Instruments. In International Conference
on Financial Cryptography, pages 349–378. Springer-Verlag,
2001.

[37] M. S. Miller, K.-P. Yee, and J. Shapiro. Capability myths de-
molished. Technical Report SRL2003-02, Systems Research
Laboratory, Johns Hopkins University, 2003.

[38] M. S. Miller, M. Samuel, et al. Safe active content in
sanitized JavaScript. http://google-caja.googlecode.

com/files/caja-spec-2008-06-07.pdf, June 2008.

[39] D. G. Murray and S. Hand. Scripting the Cloud with Sky-
writing. In Hot Topics in Cloud Computing, HotCloud’2010.
USENIX Association, 2010.

[40] D. G. Murray et al. CIEL: A Universal Execution Engine
for Distributed Data-Flow Computing. In Networked Systems
Design and Implementation, NSDI’11. USENIX Association,
2011.

[41] C. Okasaki. Purely Functional Data Structures. Cambridge
University Press, 1998.

[42] A. Piérard and M. Feeley. Towards a Portable and Mobile
Scheme Interpreter. In Scheme and Functional Programming
Workshop, pages 59–68, September 2007.

[43] R. K. Raj et al. Emerald: A General-Purpose Programming
Language. Software - Practice and Experience, 21(1):91–118,
1991.

[44] J. A. Rees. A Security Kernel Based on the Lambda Calculus.
PhD thesis, Massachusetts Institute of Technology, 1996.

[45] S. Ruby, D. Thomas, and D. H. Hansson. Agile Web Devel-
opment with Rails (Fourth Edition). Pragmatic Bookshelf,
March 2011. ISBN 1934356549.

[46] J. H. Saltzer. Protection and the Control of Information Shar-
ing in Multics. Communications of the ACM, 17(7):388–402,
July 1974.

[47] M. Scheffler. Object-Capability Security in Virtual Environ-
ments. Master’s thesis, Bauhaus-Universität Weimar, Septem-
ber 2007.

[48] E. Schulz. A Framework for Programming Interactive Graph-
ics in a Functional Programming Language. PhD thesis, Freie
Universit at Berlin, Berlin, Germany, 1998.

[49] C. Shan. Shift to control. In Proceedings of the Fifth Workshop
on Scheme and Functional Programming, September 2004.

[50] J. S. Shapiro. EROS: A Capability System. PhD thesis,
University of Pennsylvania, Philadelphia, Pennsylvania, 1999.

[51] J. S. Shapiro and N. Hardy. EROS: A Principle-Driven Op-
erating System from the Ground Up. IEEE Software, 19(1):
26–33, January 2002.

[52] A. Spiessens. Patterns of Safe Collaboration. PhD thesis, Uni-
versite Catholique de Louvain, Louvain-la-Neuve, Belgium,
February 2007.

[53] D. Stuttard and M. Pinto. The Web Application Hacker’s
Handbook: Finding and Exploiting Security Flaws. John Wi-
ley & Sons, 2nd edition, September 2011. ISBN 0470170778.

[54] A. S. Tanenbaum, R. van Renesse, H. van Staveren, et al.
Experiences with the Amoeba Distributed Operating System.
Communications of the ACM, 33(12):46–63, December 1990.

[55] R. N. Taylor, N. Medvidovic, et al. A Component- and
Message-Based Architectural Style for GUI Software. Trans-
actions on Software Engineering, pages 390–406, June 1996.

[56] P. Thiemann. Higher Order Code Splicing. In European Sym-
posium on Programming Languages and Systems, ESOP’99,
pages 243–257. Springer-Verlag, March 1999.

[57] J. Travis and J. Kring. LabVIEW for Everyone: Graphical
Programming Made Easy and Fun (3rd Edition). Prentice
Hall, August 2006. ISBN 0131856723.

[58] D. Vyzovitis and A. Lippman. MAST: A Dynamic Language
for Programmable Networks. Technical report, MIT Media
Laboratory, May 2002.

[59] M. Wilde et al. Swift: A Language for Distributed Parallel
Scripting. Parallel Computing, 37(9):633–652, 2011.

[60] A. R. Yumerefendi and J. S. Chase. The Role of Account-
ability in Dependable Distributed Systems. In Hot Topics in
System Dependability. USENIX Association, June 2005.

Motile/Island and COAST 14 2013/3/27

UCI ISR Technical Report # UCI-ISR-13-1

