
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Michael Gorlick
University of California, Irvine
mgorlick@acm.org

Kyle Strasser
University of California, Irvine
kstrasse@uci.edu

Richard N. Taylor
University of California, Irvine
taylor@uci.edu

COAST: Architectures for
Decentralized On-Demand Tailored Services

April 10, 2012
ISR Technical Report # UCI-ISR-12-2

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

COAST: Architectures for Decentralized
On-Demand Tailored Services

Michael Gorlick Kyle Strasser Richard N. Taylor
Institute for Software Research
University of California, Irvine

Irvine, CA 92697
mgorlick@acm.org kstrasse@uci.edu taylor@ics.uci.edu

Abstract
Decentralized systems are systems-of-systems whose ser-
vices are governed by two or more separate organizations
under distinct spheres of authority. Coordinated evolution
among the various elements of a decentralized system may
be difficult, if not impossible, as individual organizations
evolve their service offerings in response to organization-
and service-specific pressures, including market demand,
technology, competitive and cooperative interests, and fund-
ing. Consequently, decentralized services offer unique chal-
lenges for evolution and adaptation that reach well beyond
any one single organizational boundary. However, client-
driven service customization and tailoring is a powerful tool
for meeting conflicting, independent client demands in an
environment where disorderly and uneven service evolution
predominates. To this end we contribute an architectural
style, COmputAtional State Transfer (COAST), designed
to provide extensive, but safe and secure, client-directed
customization of decentralized services. COAST combines
mechanisms from software architecture, cryptography, secu-
rity, programming languages, and systems, granting applica-
tion architects flexible provisioning of their core services and
assets while, at the same time, protecting those services and
assets from attack and misuse.

Keywords software architecture, decentralized systems,
service-oriented architectures, client-driven adaptation.

1. Introduction
Architectures of future decentralized service ecosystems,
systems-of-systems whose component systems are governed
by multiple distinct organizations, pose significant chal-
lenges. Irrespective of architecture, all decentralized ser-
vices must come to terms with: the unpredictable granu-
larity of service interfaces and communication; recursively
structured services that themselves rely upon multiple other
services outside of their own organizational boundary; un-
predictable semantic demands that belie assumptions of
uniform interfaces; multiple implementation languages and

environments; and a broad span of trust relationships that
change over time. Decentralization exacts an ongoing toll as
a service-consuming agency now exposes itself to the whims
of another as services come and go, as the performance of
decentralized resources fluctuates, or as application inter-
faces evolve. A service-providing agency must expose (to
some degree) valuable assets to productively participate in
decentralized ecosystems, yet access to those assets must be
mediated and is rarely unconditional.

In this environment efforts on the part of service providers
to vary, evolve and tailor content-based service interfaces
and semantics in favor of particular service consumers sim-
ply will not scale. Previous work, from the point of view
of mobile code [11, 26, 27], suggests an alternative: sim-
ply allow service consumers to program service providers.
This approach introduces a division of labor between ser-
vice providers and service consumers; providers create fine-
grained and sufficiently general interfaces for their services
and assets, and consumers orchestrate those fine-grained in-
terfaces to produce exactly the services they require.

In this light, how should we design architectures for dy-
namic and tailored services in decentralized environments,
specifically, feasible on-demand, customized, decentralized
services? Our contributions are:

• A summary of computation exchange, a novel mode of
interaction among Internet-scale service providers and
consumers that enables tailored service construction and
adaptivity (Section 2). Though we first sketched a view
of computation exchange in prior work [6–8, 14] we
describe here a more informed view of its architectural
consequences, with particular emphasis on safety and
security.

• COmputAtional State Transfer (COAST), an architectural
style for computation exchange as the sole means for con-
structing, deploying and controlling services (Section 3).
We devote special attention to the security mechanisms
that we incorporated into the core elements of the style
and the safety assurances that result.

ISR Technical Report # UCI-ISR-12-2 1 2012/4/10

• A mobile code language, MOTILE, and supporting in-
frastructure, ISLAND, that reflect the COAST style. When
combined they induce security and flexibility for both
service provider and service consumer (Section 4).

• A prototype application, COASTCAST, whose construc-
tion and performance suggests that MOTILE/ISLAND may
be expressive (enough) and efficient (enough) for various
decentralized service applications (Section 5).

2. Background: Computation Exchange
Computation exchange (the computational analogue of con-
tent exchange) is the bilateral exchange of computations
among peers in a decentralized system containing multiple
distinct spans of authority. In this regime content delivery
is a byproduct of the evaluation of computations exchanged
among peers. Our focus is decentralized SOAs, whose indi-
vidual constituent services (themselves SOAs) operate under
distinct spans of authority. Decentralized service providers
must meet two conflicting goals: the protection of valuable
fixed assets (e.g., servers, databases, sensors, data streams,
and algorithms) and meeting the evolving service demands
of a diverse client population. Computation exchange re-
solves that conflict, but at a price, imposing significant obli-
gations on architectures that implement it as a core technol-
ogy for tailoring and adapting decentralized services.

Computation exchange engenders all of the risks associ-
ated with mobile code [11] including waste or theft of fungi-
ble resources (processor cycles, memory, storage, or network
bandwidth), denial of service via resource exhaustion, ser-
vice hijacking for attacks elsewhere, accidental or deliberate
misuse of service functions, or as a springboard for direct at-
tacks against the service itself. In this environment perimeter
protection, while desirable, is insufficient since even a com-
putation accepted from a trusted source may be erroneous or
misapply a service function due to honest misunderstanding
or ambiguity. Even a “correct” computation may expose pre-
viously unknown bugs in critical service functions leading to
inadvertent loss of service.

Notwithstanding, the advantages of computation ex-
change are too tempting to ignore [26, 27]: customize ser-
vices per-client since computations dispatched by service
consumers to service providers may compose service primi-
tives to obtain tailored service, transfer computation to data
sources to reduce system overhead, query latency and un-
wanted results, increase agility for service providers as they
need not (nor can not) anticipate every possible service de-
mand, ease service upgrade for providers who may offer
multiple versions of a service simultaneously, shorten de-
velopment and deployment cycles for both service providers
and service consumers, monetize a greater variety of service
products as both providers and consumers may interchange
roles, increase service innovation as the barrier to construct-
ing and deploying services is lowered, increase service re-
dundancy as the multiplicity of service offerings increases

thereby reducing the impact of service outages, enlarge
opportunities for collaboration among organizations at all
scales, rapidly amortize fixed assets through asset-based ser-
vices to new markets, increase access to high-value services
that otherwise may be beyond the reach of a small organi-
zation, enrich service compositions to better match evoling
client requirements, improve adaptation to ever changing
business needs, and expand the ecology of service as the
risks of computation exchange are reduced.

In general, for decentralized SOAs, authentication, se-
crecy, and integrity are necessary but insufficient for as-
set protection as there is no common defendable security
perimeter when function is integrated across the multiple,
separate trust domains [32]. Here an attack on one authority
threatens all. At best a breach may lead to failures in other
trust domains. At worst a breached authority may under-
take an “insider” attack against its confederates. With this in
mind decentralization demands that security be everywhere
always. Applications that cross authority boundaries inher-
ently bring security risks; adaptations in such contexts only
increase the peril. Experience teaches that retrofitting secu-
rity to existing systems is problematic at best, hinting that
security should be a core architectural element.

3. The COAST Architectural Style
An architectural style is

a named collection of architectural design decisions
that are applicable in a given context (computation ex-
change), constrain architectural design decisions spe-
cific to a specific system (decentralized SOAs) within
that context, and elict beneficial qualities (safety and
security, among others) in each resulting system [29].

Any architectural style addressing computational ex-
change must confront the security risks inherent in exchang-
ing and executing mobile code across multiple, distinct,
spheres of authority where malicious mobile code is a near
certainty. The mechanisms of the style must be resilient to
attack, to the extent that resilience is technically feasible.
Where not, aggrieved parties must turn to other avenues
(economic, social, legal, or cultural) for remediation.

The COAST architectural style relies on two principles:
the Principle of Least Authority (POLA) [24] and capability-
based security [3]. POLA dictates that security is a cross-
product of the authority offered to a principal (that is, the
base functional power available to a principal) and the rights
of the principal (that is, the rights of use conferred upon that
principal with respect to the authority). At each point within
a system a principal must be simultaneously confined with
respect to both authority and rights. A capability is an un-
forgeable reference whose possession confers both authority
and the respective rights to a principal. Our insight is that
these principles apply equally well to both mobile code and
the design of architectural styles.

ISR Technical Report # UCI-ISR-12-2 2 2012/4/10

For the safety and integrity of the platform, the authority
and rights granted to visiting mobile code must be mini-
mized. For example, the mobile code might be allowed to
read exactly one specific file (say a machine-readable speci-
fication for an electronic component) and no other. Each dis-
tinct sphere of authority may confer separate sphere-specific
authority and rights to the same mobile code, reflecting the
fundamental freedoms of agency that any decentralized ar-
chitectural style must accommodate. An architectural style
can constrain both where and when the delegation of au-
thority and rights occurs and the mechanisms of delegation.
COAST is but one architectural style for computation ex-
change just as “pipes and filters” is but one of many archi-
tectural styles for data processing. The constraints COAST
imposes, drawn from capability-based security, mandate
where, when and how authority and rights are conveyed.
Given a particular instance of the style (a specific architec-
ture), those constraints assist providers and consumers alike
in precisely identifying both the points in an architecture
where capability is conveyed and the consequences of that
conveyance.

Not all security properties of interest can be induced
by architecture—some point solutions are required. How-
ever, architecture can identify which solutions to employ and
how to integrate those solutions with the base elements of
an architectural style. Architectures for decentralized mo-
bile code exchange benefit from supporting services such
as a Public-Key Infrastructure (PKI) and/or a Web of Trust
(WoT) for predicting the rough outlines of mobile code be-
havior (for example, can we expect the code to be “well be-
haved”). Similarly, mechanisms for monitoring and account-
ability [32] are used to determine if those trust expectations
hold. Finally, capability architectures can make good use of
services that modulate and restrict capability on-demand in
response to abuses and attacks.

The COAST style dictates:

• All resources are computations whose sole means of in-
teraction is the asynchronous exchange of closures (func-
tions plus their lexical-scope bindings [5]), delimited
continuations1 and binding environments [16]

• All computations execute within the confines of some
execution site 〈E,B〉 whereE is an execution engine and
B a binding environment

• All computations are named by Capability URLs (CURLs),
an unforgeable, untamperable cryptographic structure
that conveys the authority to communicate

1 Delimited continuations [10, 25] reduce the risk of needlessly and acci-
dentally capturing state that may prove a security risk, and simplify the
construction of many powerful control structures. For these reasons they
are preferable here to the classic Scheme continuations captured by call/cc
[5].

• Computation x may deliver a closure, delimited contin-
uation or binding environment to computation y if and
only if x holds a valid CURL uy of y

• The interpretation of a closure, delimited continuation
or binding environment delivered to computation y via
CURL uy is uy-dependent

Over its lifespan each COAST computation is confined
to some execution site 〈E,B〉. Execution engines E may
vary from site to site: for example, a Scheme interpreter
or a JavaScript just-in-time compiler. The execution engine
E defines the semantics of evalution of the computation.
The binding environment B contains all of the functions
and global variables offered to the computation at that
execution site. A computation is the execution of a closure λ
by the execution engine E of its execution site in the context
of B.2 Names unresolved within the lexical scope of λ (the
free variables of λ) are resolved, at time of reference, within
the binding environment B of the execution site—if B fails
to resolve the name the computation is terminated.

Each binding in B is either a primitive value (integer,
string, boolean . . .), a closure, or recursively a data structure
(list, vector, CURL, binding environment . . .) whose con-
stituent values are themselves primitives, closures, or data
structures. The set of all values reachable from B (either di-
rectly or transitively) sets the initial floor for the functional
capability of a closure λ executing at site 〈E,B〉—all the
procedures the mobile code may call. All additional func-
tions either defined by λ or received inter-island as mobile
code by λ can not increase the functional capability of λ
since in each case their free variables are resolved by B
the source of functional capability in execution site 〈E,B〉.
However, the transfer via intra-island messaging of closures
γ from the binding environments Bi of other actors execut-
ing in execution sites 〈E,Bi〉 to λ can increase the func-
tional capability of λ since it is trivial for a closure γ to cap-
ture in its lexical scope a function f bound in Bi. Thus, over
its lifespan, the functional capability of a computation λ can
increase over and above the floor set by Bi.3

Both the execution engine and binding environment of an
execution site 〈E,B〉 may vary independently and multiple
sites may be offered within a single address space. E may
enforce site-specific semantics: for example, limits on the
consumption of fungible resources such as processor cycles,
memory, storage, or network bandwidth; rate-throttling of
same; logging; or adaptations for debugging. The contents of
B may reflect both domain-specific semantics (for example,

2 Delimited continuations are reified as closures, so, for the sake of brevity
and convenience, we will conflate the two.
3 The techniques required to prevent λ from increasing its functional ca-
pability are well beyond the scope of this paper. Suffice to say that these
techniques, many of them refined applications of the base mechanisms al-
ready available to Motile/Island, can be employed to guarantee that λ never
acquires additional functional capability beyond that initially granted to it
in binding environment B.

ISR Technical Report # UCI-ISR-12-2 3 2012/4/10

B contains functions for image processing) and limits on
functional capability (B contains functions for access to a
subset of the tables of a relational database). In keeping with
POLA, each B of an execution site should contain just the
functional capability that visiting mobile code requires to
implement a confined segment of service. For example, we
may have 〈E,B1〉 and 〈E,B2〉,B1 6= B2, whereB1 andB2

offer access to two disjoint subsets of the tables of a single
relational data base. B1 is for accounting while B2 is for
data-mining market trends.

The capability to communicate rests solely with CURLs.
CURLs are unguessable, unforgeable and tamper-proof as
they contain one or more large, cryptographic-grade random
numbers and are signed by the issuer. Every messagem (clo-
sure, delimited continuation or binding environment) a com-
putation y receives is accompanied by the specific CURL uy
used by the sending computation. The interpretation of m is
uy-dependent because the CURL, as a capability, conveys
both the authority to communicate and the specific rights
bound with that authority.

CURLs may contain mobile code as metadata (in the
form of closures, delimited continuations and binding en-
vironments) as well as any mobile Motile data type (for rea-
sons of security not all Motile data types are mobile). More-
over, as uy is tamper-proof y may safely rely on the state
(and mobile code) uy contains. When constructing CURL
uy as a target for message transmissions, y can ensure that
uy contains all of the static state y will need in the future (in-
cluding arbitrary y-generated closures) to validate, restrict,
and act upon the messages sent via uy . In this manner a
CURL conveys both the authority to communicate and the
specific rights bound with that authority.

A CURL uy denotes an execution site η = 〈E,B〉 of-
fered by a computation y. When actor x sends a closure,
delimited continuation, or binding environment for evalua-
tion to y via uy we say x is dereferencing uy . There may be
j > 1 such CURLs u(y,η,j) where each conveys a distinct ca-
pability with respect to execution site η of y—for example, y
only accepts messages sent using u(y,η,e) that pattern-match
a certain format. Furthermore, y may capture its base bind-
ing environmentB, draw binding environmentsB1, . . . , Bm
fromB (using environment sculpting) and “deploy” multiple
distinct execution sites 〈E,B0〉, . . . , 〈E,Bm〉, where each
〈E,Bi〉 is denoted by one or more distinct CURLs. In gen-
eral, computation y has three degrees of freedom for each
y-specific 〈E,B〉: the execution engine E, the binding envi-
ronment B, and the CURLs denoting the E/B pair. These
degrees of freedom give y broad latitude in defining and cus-
tomizing the services it offers to other computations.

Just as a computation y can acquire additional functional
capability over its lifespan it can also accumulate communi-
cation capability in the form of additional CURLs. The only
sources of communication capability are CURLs:

• Contained in the closure λ defining the execution of y

• Returned as values by functions invoked by y
• Embedded as values in the messages y receives.

For both functional and communication capabilities, the
only two sources of capability (beyond any CURLs included
in the defining closure of the computation) are the functions
in B available to y and the contents of the messages that y
receives.

The sphere of authority of a COAST execution host uni-
laterally dictates the base semantics and side-effects of all
possible closures by crafting any number of individual exe-
cution sites 〈E,B〉. No local computation beyond that per-
mitted by B is possible since, for any mobile code λ, B is
the only resolver for the free variables of λ.

No computation can escape the resource restrictions of
〈E,B〉 since resource consumption is either capped by E,
by the behavior of specific functions in B, or is simply im-
possible because B doesn’t contain the requisite functions
(it is impossible for computation λ to consume file storage
if all of the functions for creating files or writing to them
are missing from the binding environment of λ’s execution
site). Computations confine all possible interactions with
other computations by issuing CURLs that provide exactly
the state necessary to interpret a message. No communica-
tion between computations is possible except through those
CURLs. In this respect, the style defines all the architectural
points at which capability may be restricted or modulated for
the safety and security of service providers.

Given these security properties, we conjecture that COAST
is a feasible architectural style for constructing client-tailored
services. Computations are both suppliers and consumers of
service. Computations, acting as suppliers, can offer mul-
tiple execution sites for service consumers, with each site
specialized by execution engine, binding environment, and
referencing CURLs. Computations, acting as consumers,
can dispatch closures for evalution to any execution site for
which they hold a valid referencing CURL. A consumer’s
closure composes just the execution site functions it requires
to implement exactly the tailored service it requires.

Given the primacy of binding environments and CURLs
as the arbiters of capability, it is clear how to introduce the
point solutions that complement the essentials of a COAST
implementation. Trust relationships, computed with data
from a PKI/WoT infrastructure, are important when accept-
ing closures as new computations and selecting the 〈E,B〉
offered to each computation—including the limits placed on
the fungible resources made available to the computation
and the policies bounding the computation’s activity. Any
security service need only monitor execution site activity
and communications (via CURLs) to minimize misuse of
capability, detect an attack (whose telltale signs are misuse
of capability), mitigate the damage of an attack (by revok-

ISR Technical Report # UCI-ISR-12-2 4 2012/4/10

ing capability), and blame the responsible party (with the
assistance of a PKI/WoT).4

4. Island/Motile: A COAST Reference
Implementation

Our implementation of the COAST style contains two com-
ponents: MOTILE, a mobile code language whose semantics
and implementation enforce key constraints on the use and
migration of capability, and ISLAND, a peering infrastruc-
ture for MOTILE computations. We focus on the key deci-
sions made while implementing MOTILE/ISLAND and the ar-
chitectural characteristics induced by those decisions, omit-
ting many of the implementation details of MOTILE/ISLAND.
We discuss four key constructs: the representation of COAST
computations as actors, the role of MOTILE in that represen-
tation, the role of Island in computation exchange and its
contributing security provisions, and a more detailed exami-
nation of the semantics of CURLs.

Each COAST computation is implemented as an actor [1].
Each actor is an independent thread of computation whose
actions are limited to transmitting asynchronous messages
to other actors, receiving asynchronous messages from other
actors, conducting private computation, and spawning new
actors. Each of these four actions are implemented (and per-
haps selectively restricted) by functions in binding environ-
ments. Message transmission, in addition, requires that the
sending actor possess a CURL naming the target actor.

MOTILE is a Scheme-like [5] single-assignment, func-
tional language augmented with the actor model. All MOTILE

actors are named by one or more CURLs. All MOTILE data
structures are purely functional [21] (hence immutable).
This choice reduces the semantic distinctions between intra-
island messaging (where all collocated actors share an ad-
dress space) and inter-island messaging (where the sender
and receiver occupy separate address spaces). Since all data
structures (including messages) are immutable the data syn-
chronization races common to shared-memory, imperative
languages are not possible.

An island is a single, homogeneous address space occu-
pied by one or more MOTILE actors. Each island is uniquely
identified by a triple: the public key half of a public/private
key pair, a DNS name, and an IP port number. No two islands
share the same public key; no two islands share the same
DNS name/port number pair. All islands are self-certifying
[19, 31]—each authenticates its identity to every other is-
land with which it communicates—and all communication
between islands is encrypted. Each island is instantiated with
an initial set of execution engines and binding environments
and a single distinguished root actor. The root actor then
bootstraps the island, spawning additional on-island actors
(from a trusted MOTILE code base) for island governance.

4 Details of a PKI/WoT are out of scope for our current efforts. Section 4
contains a few suggestions for how a PKI/WoT might be used.

A CURL denotes a fixed actor x residing on a specific is-
land I and conveys the capability to communicate with x on
I .5 CURLs are cryptographically signed by the issuing is-
land and any attempt at tampering or forgery can be detected
by any actor. Given these guarantees no actor x may obtain
the capability to communicate directly with actor y unless it
comes into possession of a CURL for y. CURLs are a ba-
sic, serializable MOTILE data type and have precedent in the
capability-augmented URLs of Waterken6, the unique URLs
of Second Life7, and the time-limited, signed URLs of Ama-
zon S38. The capability to communicate is central to COAST
systems and a primary means by which capability can prop-
agate among actors. Each CURL supports, by construction,
four base restrictions:

• Use count (total number of messages per-CURL)
• Expiration date (after which the CURL is useless)
• Rate limits (rate of message transmissions per-CURL)
• Revocation (permanently withdraw, per-CURL, the capa-

bility to communicate).

All are enforced by the issuing island of the CURL: no
island I would reasonably trust any other island to enforce
I-specific restrictions, and all four restrictions require I to
maintain a small amount of state.

An actor a may issue multiple independent and unique
CURLs for itself, each representing a distinct communica-
tion capability. Every message m transmitted to a resid-
ing on island I is accompanied by an I-signed CURL ua.
A trusted I-island actor inspects each CURL/message pair
ua/m on arrival, passing the pair onto a if and only if
CURL ua is valid and the pair satisfy all I-imposed restric-
tions. At CURL generation time actor a may insert arbitrary
MOTILE expressions, including procedures generated by a,
into CURL Ua in addition to customizing the base restric-
tions listed above. In this manner a enforces a-specific, ua-
specific restrictions on communication including complex
temporal constraints (“only on alternate Thursdays before
noon”), use scenarios (“only legal expressions in a domain-
specific language”), limits on delegation (“only messages
from island J”) and conditionals based on observables (“the
price of gold on the NYMEX must be < $1657 per ounce”).

Each CURL ua carries with it both the mobile code and
static state information a requires to enforce the ua-specific
restrictions. Therefore a, in many instances, need not retain
any state at all to enforce those restrictions. Consequently,

5 Actors themselves are not mobile and the “identity” of each actor is
distinct. Actor z is spawned when a closure is transmitted by an actor x
to an execution site maintained by an actor y. z has an identity distinct
from that of both x and y. Actors are not agents [4], neither computation
exchange nor COAST are models for agents, and MOTILE/ISLAND is
not an agent infrastructure.
6 http://waterken.sourceforge.net
7 http://wiki.secondlife.com/wiki/Protocol#Capabilities
8 http://docs.amazonwebservices.com/AmazonS3/latest/dev/RESTAuthentication.html

ISR Technical Report # UCI-ISR-12-2 5 2012/4/10

inter-actor communication can be stateless since the CURL
can be used as the carrier of both the context and functions
a requires to interpret and enact the message. Even in the
worst case, a might retain only a modest amount of state.

MOTILE is implemented in Racket, a high-performance
Scheme dialect, as a single-pass, MOTILE-to-Racket, closure
compiler [9] whose “object code” is Racket closures. Clo-
sure transmission is the means by which MOTILE actors ex-
change computations; hence, the semantics imposed by the
MOTILE compiler play a key role in the mechanics of closure
exchange. The closures output by the MOTILE backend are
in continuation-passing (Section 3.4 of [5]), lexical-stack-
passing, binding-environment-passing style.9 When a clo-
sure is sent from one actor to another (whether intra- or inter-
island) the closure abandons its old binding environment B
and is invoked with another binding environment C by the
receiving actor. In other words, whenever a closure λ trans-
fers from one actor to another it leaves all of the bindings of
its free variables behind.

To transmit a MOTILE closure inter-island (and, recur-
sively, any MOTILE data structure containing such, including
binding environments) the sending island “decompiles” the
closure into a directed (possibly cyclic) graph whose nodes
are akin to the instructions of a high-level lambda calculus
abstract machine, serializes the graph, and transmits the en-
tire serialization as a byte string. The receiving island con-
verts the byte string back into graph form and recompiles the
abstract code into the closures of the host language (in our
case, Racket closures).10

Only core MOTILE datatypes are serializable, though
other host-specific data types may be introduced and ac-
cessed through binding environments and manipulated by
MOTILE actors (for example, neither file handles nor database
connections can be serialized). In the taxonomy of [11]
MOTILE offers weak mobility. This choice is deliberate, as
strong mobility [11] threatens the security of decentralized
collaborations. Weak mobility prevents visiting mobile code
from automatically transferring access to island fixed assets
(for example, a database or sensor) off-island, where audit-
ing and detecting misuse of the asset would be more difficult.
Weak mobility implies that direct control of a high-value as-
set will never transfer to another sphere of authority, even
inadvertently through error.

Serialization is necessary for inter-island computation ex-
change. However, for the sake of performance, intra-island
exchange is simply by reference, since an island is a sin-

9 Every closure generated by the backend accepts three extra arguments: a
continuation, a lexical scope stack, and a binding environment. All refer-
ences to free variables are resolved, at point of reference, relative to the
current binding environment argument of the closure—usually the binding
environmentB of the execution site of the actor. These details are managed
by the MOTILE runtime and are invisible to MOTILE programmers.
10 As of April 2012 closure (and recursively binding environment) transmis-
sion is fully implemented; however, delimited continuation transmission is
not.

gle, homogeneous address space and all MOTILE structures
are immutable. However this efficiency has consequences: I-
island actor x can share closures in its binding environment
Bx with another I-resident actor y (in fact x can, under cer-
tain conditions, share the complete binding environment Bx
of its execution site with y). Sharing functional capability in
this fashion can be both useful—xmay be a factory dispens-
ing safely confined versions of powerful functions to other
on-island actors—and dangerous if x transfer functions to y
that y should never possess. While a full discussion of this
issue and the preventative mechanisms required to constrain
or forestall the intra-island “leakage” of functional capabil-
ity is outside the scope of this paper the first line of defense
is to prevent x from ever communicating with y in the first
place, a task for which CURLs are designed.

Actors on a single island are arranged in a tree struc-
ture, with capability afforded narrowing from the root to the
leaves of the tree. The root actor delegates capability and
resources to trusted actors called chieftains. Each chieftain
is responsible for the behavior of the actors who are mem-
bers of its clan who themselves may be chieftains. The re-
sources (processor cycles, memory, network bandwidth, file
space and so on) granted to a chieftain are divided, accord-
ing to clan policy, among the membership of the clan. This
hierarchy of chieftains and actors is illustrated in Figure 1.
Figure 2 illustrates a chieftain accepting a closure for a new
actor in the context of a site 〈E,B〉 the chieftain selects.

The root actor is the chieftain of the distinguished clan,
the root clan. The chieftain of each clan is responsible for
creating all of the other actors within the clan and for mon-
itoring their behavior. Actors created by a chieftain are
members of the clan represented by the chieftain. In addi-
tion a chieftain C can create chieftains (and hence clans)
C1, . . . , Cm to each of which chieftain C allocates a portion
of its resources. C is the parent of chieftains Cj . In Figure 1
the root chieftain is the parent of chieftains A and B while
chieftain A is the parent of chieftain C. The root chieftain,
and chieftains A, B, C are members of the root, A, B, and C
clans respectively. Every actor on an island (including chief-
tains) is the member of exactly one clan.

The capability granted to a chieftain is always equal to
or strictly less than the capability of its parent. All actors,
including chieftains, execute within the confines of a sand-
box that bounds the resources they may consume. Any actor
(chieftain) whose resource consumption exceeds its budget
is suspended and its clan chieftain (parent chieftain) notified.
The responsible chieftain terminates the errant actor and re-
leases the resources it holds. If a chieftain is guilty of exces-
sive consumption then the entire clan (including all derived
clans) is terminated and then restarted. This policy staves
off denial of service attacks (via resource exhaustion) from
untrusted actors executing closures from malicious islands,
prevents catastrophic island failure due to innocent errors in
visiting mobile code, and constrains runaway resource con-

ISR Technical Report # UCI-ISR-12-2 6 2012/4/10

Figure 1. An arrangement of chieftains, clans and actors on
an island. In this instance all chieftains hold CURLs naming
their child chieftains.

sumption by an element of the trusted code base of the is-
land. In all cases a log entry is generated for post analysis
and debugging.

The propagation of capability across a single island is
the starting point for analyzing the security and safety of
COAST across multiple spheres of authority. One island can
support hundreds of individual actors simultaneously and a
single GB of main memory will accommodate 50 or more
islands whose actor populations are on the order of 102–103.
Given the modest memory footprint per island, architects
may feasibly reduce the complexity of individual islands to
improve island security and safety at the cost of increasing
the total number of islands required for service provisioning.

Narrowing the binding environments of execution sites
is a powerful tool for elimiminating needless capability.
As a matter of design and best practice, chieftains prac-
tice environment sculpting to generate tailored, domain- and
service-specific binding environments for their execution
sites. MOTILE binding environments are persistent, func-
tional structures [21], hence immutable and safely shared
among any number of actors simultaneously, and the cost
of deriving one binding environment from another (envi-
ronment sculpting) is negligible. Per-binding customization
supports tracing, security logging, error checking, code in-
strumentation, metering, and resource monitoring.

These implementation details induce system properties
complementary to those induced by the COAST style itself.
Here we summarize the most important of them.

The semantics of the medium of exchange (expressions
in the MOTILE language) enforce a particular view of data
and code mobility that is island-centric; that is, each island
trusts only its own implementation. In this context, weak
mobility serves an additional purpose, by preventing access
to fixed assets (such as sensors or databases) beyond the
immediate sphere of authority of the island. The island need

Figure 2. An simplified actor startup sequence for an actor
a where a grants communication capability to its spawner
c. (1) Some actor c submits a closure λa as a new spawn
in clan Z. λa has a CURL uc naming c embedded in it. (2)
Chieftain Z allocates 〈E,B1〉 to the new actor a. (3) a sends
a new CURL ua back to c and c now has the capability to
send to a. c is then free to pass ua on to any other actor for
which it holds a CURL.

only employ local actions (such as killing an actor) to halt
any attack against local assets.

The serialization semantics of Motile separates the capa-
bilities required for the successful execution of mobile code
(the free identifiers that must be present in the binding en-
vironment of the destination’s execution site) from the ca-
pabilities carried with it (any procedures or data in the lex-
ical scope bindings of the closure). This separation allows
islands to apply nonstandard interpretions to visiting mobile
code for many purposes including: debugging, tracing, log-
ging, dynamic analysis, profiling, trending, and policy en-
forcement.

COAST computations can customize the authority granted
to anyone who communicates with them via restrictions on
CURLs. Each actor specifies exactly the parameters of the
communication it desires to respond to (to the extent that its
requirements can be adequately expressed using the current
restriction mechanisms – mechanisms are feasible). Since
all CURLs are also revocable any attack conducted using an
issued CURL may be halted once the attack is detected.

Chieftains and clans provide a framework for reasoning
about security at each point in the architecture of an is-
land as capability narrows as one descends the tree of clans.
The mechanisms outlined here are flexible enough to accom-
modate wrappers, monitors, tracing and traffic analysis—all
useful tools for evaluating behavior [32] and managing trust
relationships with the help of a PKI/WoT.

5. Evaluation
We consider COAST performance and expressivity in the
context of COASTCAST, a system for sharing and manipu-
lating real-time High Definition (HD) decentralized video
streams as flows [13]. A flow is a stream for which the

ISR Technical Report # UCI-ISR-12-2 7 2012/4/10

source, middle, and sink may each be independently manip-
ulated as if the flow were a pliable “garden hose.”

COASTCAST implements HD video flows, from camera to
display, as collections of actors exchanging computations. A
single flow may transit multiple spans of authority: the flow
source (real-time HD video cameras), flow midpoints, and
flow sink (displays of various sizes and resolutions) may
reside on many distinct hosts each answering to a distinct
and separate sphere of authority. Streaming and manipulat-
ing real-time video is a demanding application domain and
in COASTCAST it serves merely as a convenient substitute for
any high-bandwidth, soft real-time, data stream.

A single video flow contains, at a minimum, from source
to sink (→ indicates both the presence and direction of
computation exchange):

video encoder → publish/subscribe relay → video decoder
→ display driver

Video encoders and decoders are deployed (as actors spawned
from MOTILE closures) to islands containing cameras and
displays respectively. A video encoder, calling functions
available in the binding environment of its execution site,
is granted access to a camera on the island (an example of
a fixed island asset). A video decoder, again through func-
tions in the binding environment of the decoder’s execution
site, obtains a CURL granting communication capability to
the island display driver (itself an actor executing a MOTILE

closure). Publish/subscribe relays are deployed (as actors
spawned from MOTILE closures) as transit points within the
flow to simplify dynamic flow modification following flow
establishment. The closures implementing all four roles are
generated at runtime, each parameterized by the CURLs re-
quired to construct a complete flow. To replicate portions of
a flow we merely dispatch those closures to other execution
sites as needed.

Four distinct binding environments are used by islands
implementing COASTCAST: camera access and video encod-
ing, video decoding, display driver, and a standard binding
environment allocated to actors that do not require domain-
specific functions or special privileges that approximates the
Scheme R5RS standard [18] in scope and size.

We explore the architectural expressivity of COAST in
this domain by sketching the features possible with clo-
sure spawning, exchange and replication. COASTCAST users
share individual flows by exploiting the mobility of MOTILE

closures. To share a video flow with Alice, Bob instructs the
video decoder actor d1 responsible for the flow to spawn a
copy of d1 on Alice’s island using the closure λd, form-
ing the new and distinct video decoder actor d2.11 Re-
establishment of the flow between publish/subscribe relay r,
decoder d2 and display driver happens automatically once λd
is accepted as a new spawned actor d2. Alice’s island allows

11 To do this Bob must have a CURL for a chieftain on Alice’s island. How
Bob came to possess this CURL is out of scope for this discussion.

Island C (Alice)

Island D (Bob)

Island E Publish/
Subscribe
Relay r (λr)

Reader/
Encoder e

(λe)

Display
Driver
(λdd1)

Decoder
d1 (λd)

Asset control
Inter-actor data flow

Spawn

Display
Driver
(λdd2)

Decoder
d2 (λd)

Figure 3. A COAST user constructing a complete flow by
spawning a reader/encoder e, publish/subscribe relay r and
decoder d (on islands E and D), and that user sharing the flow
with another user by copying closure λd (to island C). Each
island is a distinct sphere of authority. Clans and chieftains
are ommitted for clarity.

d2 to discover the location of her own display driver actor
through a binding environment function. Since the CURL ur
(naming r) is embedded in the closure λd, d2 can subscribe
to r’s flow using ur immediately upon spawning. Multiple
flows are shared by repeating the process for each decoder
dn. Figure 3 illustrates these features.

To explore flow composition as a consequence of clo-
sure generation and spawning, we implemented picture-in-
picture (PIP). Two video flows, designated major flow fM
and minor flow fm, are composited so that fm’s output is
scaled and displayed in a subregion of the display of fM .
We implement PIP as a specialized form of video decoder,
pip, that holds CURLs to the publish/subscribe relays for
both fM and fm. λpip, the closure implementing pip, is gen-
erated after acquiring, at runtime, two CURLs identifying
the relays r1 and r2 responsible for publishing fM and fm.
Like d1, pip can spawn λpip on other islands to replicate
(share) its services. It is also capable of decomposing itself
into two separate decoders d3 and d4, recovering the stan-
dalone views of the flows fM and fm. pip creates d3 and d4
by generating two fresh closures using the CURLs naming
r1 and r2 and spawning those closures on its own island.

Moving video decoders from one island to another is
akin to moving the sink end of the “garden hose” from one
location to another. Moving video encoders is the equivalent
of shifting the source end to another location. To shift the
source of the flow a video encoder (actor) e transmits a
closure λe of itself to an island I whose fixed assets include
a camera and supporting execution site. On island I a new
actor is spawned executing λe and the original e terminates.

ISR Technical Report # UCI-ISR-12-2 8 2012/4/10

Table 1. Summary of Performance Measurements (* signi-
fies < 0.1%)

CPU Time (msecs)
Activity E % D %
1 All actor activity 1,180,271 86.3 197,583 32.0

1.1 Video processing 1,164,856 85.2 26,628 4.3
1.2 Binding resolution 18 * 50 *
1.3 On-island messaging 14 * 84 *

2 Inter-Island messaging 137,404 10.0 227,018 37.0
2.1 Serialization 198 * 146 *
2.2 Deserialization 8 * 4,480 0.7

3 On-screen rendering N/A N/A 120,213 19.6
4 Miscellaneous 50,272 3.4 69,862 11.1
Total CPU msecs 1,367,947 100 614,676 100

We measured the performance of the flow from E to D
illustrated in Figure 3 where island E hosts a video encoder
and a publish/subscribe relay, and a second island D hosts
a video decoder and a display driver. To eliminate measure-
ment error due to network latency we hosted the two islands
D and E as separate processes on a single Ubuntu Linux
10.04 host equipped with a 4-core Intel i7 2600K processor
and 8 GB of RAM. Our video camera, a Logitech C910, cap-
tures 720p resolution video with a maximum framerate of 10
FPS. Our actual framerate in these experiments averaged 9.6
FPS. After flow establishment we streamed data for approx-
imately 2.5 minutes per trial. Using the standard Racket pro-
filer we collected performance data every 0.1 milliseconds
and ran a total of ten trials. Our results are reported in Ta-
ble 1, a sum of the profiles from all ten runs. For any trial
where an activity was not observed we assigned 0 to that
activity count in the trial (activities 1.2, 1.3, and 2.2 were
absent from some profiles). “Miscellaneous” refers to back-
ground activities at both actor and island level, such as in-
termediate message routing, user interface initialization, in-
frastructure idle time, one-time bootstrapping and setup, and
the overhead of profiling.

Like many other video applications all of the low-level
video processing of COASTCAST (encoding, decoding, and
rendering) is conducted with library routines implemented
in the C language and made available in two of the binding
environments of islands C, D and E of Figure 3. With this
in mind the distribution of CPU activity within these two
islands is unlikely wholly representative of COAST-based
service architectures at large. However, many service appli-
cations will have this general form where MOTILE/ISLAND

serves as a coordination and orchestration layer over a vari-
ety of backend, computationally-intensive services.

In this environment the overhead of resolving free vari-
ables (18 and 50 msecs respectively on islands E and D) is
swamped by the costs of video encoding on island E (85%
of E’s CPU cycles) and video decoding and video rendering
on island D (approximately 24% of D’s CPU cycles). Much
of the actor activity not accounted for by video processing

or binding environment lookup consists of actors blocking
on their message queues waiting for the next message or
closure to arrive. As COASTCAST transmits individual video
frames inter-island as closures it is worth noting, in this ex-
ample, that the cost of serializing closures for transmission
from encoding island E to decoding island D is so low as
to be insignificant (< 0.1%). Likewise, the cost of deserializ-
ing and recompiling those closures on decoding island E is
also quite small (< 1%). While this example might be atyp-
ical, other measurements (not reported here) for inter-island
serialization and deserialization indicate that the overhead is
quite modest.

6. Related Work
COAST and MOTILE/ISLAND have been influenced by prior
work on mobile code including remote evaluation [26, 27],
Scheme-based mobile code languages [12, 15, 23, 30], the
actor-like language Erlang [2], the object-capability lan-
guage E [20], and capability-based architectures [3]. Island
self-certification is drawn from self-certifying file systems
[19] and self-certifying URLs [17, 31]. Our previous work
on CREST [6–8, 14] inspired computation exchange and led
us to consider the problem of scalable decentralized services
that COAST addresses.

7. Conclusion
Starting with an architectural paradigm (computation ex-
change) we derive an architectural style (COAST) consistent
with that paradigm, construct a reference implementation
(MOTILE/ISLAND) consistent with the style, and evaluate an
application (COASTCAST) that exploits both the style and the
reference implementation to deliver novel features arising
out of computation exchange. At each step in the progres-
sion, from paradigm to style to reference implementation,
we sketch the derivation of constraints and mechanisms that
ensured each successive step was consistent with its prede-
cessor and, in doing so, draw out the security principles and
properties embodied in each step. In this sense the security of
the architectural style, COAST, and the reference implemen-
tation, MOTILE/ISLAND, is necessary and explicit though not
always sufficient. A full analysis of the architecture-induced
security properties for the last step of the progression, from
reference implementation to application, is not reported here
and is the subject of ongoing work. Our approach to the
derivation and design of architectural styles and their instan-
tiations as infrastructure, frameworks, and applications hints
at a form of disciplined analysis for the directed invention of
novel architectural styles.

Up to this point we have focused on basic safety proper-
ties for mobile code. However COAST may also contribute
toward higher-level security properties, themselves imple-
mented as COAST-based services. In particular, COAST is an
attractive medium for attack detection, isolation, mitigation,
and non-repudiable blame [32].

ISR Technical Report # UCI-ISR-12-2 9 2012/4/10

Our prior work in self-adaptive architectures [22, 28] sug-
gests that COAST is suitable for architecture-based adapta-
tion and runtime evolution in decentralized systems. We con-
jecture that variants of mobile code, binding environments
and CURLs can induce unilateral adaptivity—customized
semantics and behavior for selected collaborators in a de-
centralized ecosystem.

Acknowledgments
This work supported by the National Science Foundation
under Grant Nos. CCF-0917129 and CCF-0820222. Any
opinions, findings, and conclusions or recommendations ex-
pressed here are our own and do not necessarily reflect the
views of NSF.

References
[1] G. Agha. Actors: A Model of Concurrent Computation in

Distributed Systems. MIT Press, December 1986.

[2] J. Armstrong. Programming Erlang: Software for a Concur-
rent World. Pragmatic Bookshelf, 2007.

[3] A. C. Bomberger, W. S. Frantz, A. C. Hardy, N. Hardy, C. R.
Landau, and J. S. Shapiro. The KeyKOS nanokernel architec-
ture. In Proceedings of the Workshop on Micro-kernels and
Other Kernel Architectures, pages 95–112. USENIX Associ-
ation, 1992.

[4] P. Braun and W. R. Rossak. Mobile Agents: Basic Concepts,
Mobility Models, and the Tracy Toolkit. Morgan Kaufmann,
2004.

[5] R. K. Dybvig. The Scheme Programming Language. MIT
Press, 4th edition, 2009.

[6] J. R. Erenkrantz. Computational REST: A New Model for De-
centralized, Internet-Scale Applications. PhD thesis, Univer-
sity of California, Irvine, September 2009.

[7] J. R. Erenkrantz, M. M. Gorlick, G. Suryanarayana, and R. N.
Taylor. From representations to computations: The evolution
of web architectures. In Symposium on the Foundations of
Software Engineering, pages 255–264, September 2007.

[8] J. R. Erenkrantz, M. M. Gorlick, and R. N. Taylor. Rethinking
web services from first principles. In Proceedings of the
2nd International Conference on Design Science Research in
Information Systems and Technology, Pasadena, California,
May 2007.

[9] M. Feeley and G. Lapalme. Using closures for code genera-
tion. Computer Languages, 12(1):47–66, 1987. ISSN 0096-
0551. doi: http://dx.doi.org/10.1016/0096-0551(87)90012-9.

[10] M. Felleisen. The theory and practice of first-class prompts.
In Proceedings of the Symposium on Principles of Program-
ming Languages, pages 180–190, New York, New York, USA,
January 1988. ACM.

[11] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding Code
Mobility. IEEE Transactions on Software Engineering, 24(5):
342–361, 1998.

[12] G. Germain, M. Feeley, and S. Monnier. Concurrency ori-
ented programming in Termite Scheme. In Proceedings of

Scheme and Functional Programming Workshop, pages 125–
136, September 2006.

[13] M. M. Gorlick. Streaming state kinematics and flow engineer-
ing. Technical Report UCI-ISR-06-3, Institute for Software
Research, University of California, Irvine, March 2006.

[14] M. M. Gorlick, K. Strasser, A. Baquero, and R. N. Taylor.
CREST: principled foundations for decentralized systems. In
Proceedings of the ACM international conference companion
on Object oriented programming systems languages and ap-
plications companion, SPLASH’11, pages 193–194, October,
2011. ACM.

[15] D. A. Halls. Applying Mobile Code to Distributed Systems.
PhD thesis, University of Cambridge, June 1997.

[16] S. Jagannathan. Metalevel building blocks for modular sys-
tems. ACM Transactions on Programming Languages and
Systems, 16(3):456–492, May 1994.

[17] M. Kaminsky and E. Banks. SFS-HTTP: Securing the web
with self-certifying URLs. Technical report, MIT Laboratory
for Computer Science, 1999.

[18] R. Kelsey, W. Clinger, and J. R. (Editors). Revised5 Report on
the Algorithmic Language Scheme, February 20, 1998.

[19] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel.
Separating key management from file system security. In Pro-
ceedings of the 17th ACM Symposium on Operating Systems
Principles, pages 124–139, Kiawah Island, South Carolina,
USA, 1999. ACM Press.

[20] M. S. Miller. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, Baltimore, Maryland, USA,
May 2006.

[21] C. Okasaki. Purely Functional Data Structures. Cambridge
University Press, 1998.

[22] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, and D. Rosenblum.
An architecture-based approach to self-adaptive software.
IEEE Intelligent Systems, 14(3):54–62, May-June 1999.

[23] A. Piérard and M. Feeley. Towards a portable and mo-
bile Scheme interpreter. In Proceedings of the Scheme and
Functional Programming Workshop, pages 59–68, September
2007.

[24] J. H. Saltzer. Protection and the control of information sharing
in Multics. Communications of the ACM, 17(7):388–402,
1974.

[25] C. Shan. Shift to control. In Proceedings of the Fifth Workshop
on Scheme and Functional Programming, September 2004.

[26] J. W. Stamos and D. K. Gifford. Remote evaluation. ACM
Transactions on Programming Languages and Systems, 12(4):
537–564, 1990. ISSN 0164-0925. doi: http://doi.acm.org/10.
1145/88616.88631.

[27] J. W. Stamos and D. K. Gifford. Implementing remove eval-
uation. IEEE Transactions on Software Engineering, 16(7):
710–722, July 1990.

[28] R. N. Taylor, N. Medvidovic, and P. Oreizy. Architectural
styles for runtime software adaptation. In Proceedings of the
Eighth Joint Working IEEE/IFIP Conference on Software Ar-

ISR Technical Report # UCI-ISR-12-2 10 2012/4/10

chitecture and Third European Conference on Software Archi-
tecture, pages 171–180. IEEE Computer Society, 2009.

[29] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software
Architecture: Foundations, Theory, and Practice. John Wiley
& Sons, January 2010. ISBN 0470167742.

[30] D. Vyzovitis and A. Lippman. MAST: A dynamic language
for programmable networks. Technical report, MIT Media
Laboratory, May 2002.

[31] M. Wolfe. SCURL authentication: A decentralized approach
to entity authentication. Master’s thesis, University of Cali-
fornia Irvine, October 2011.

[32] A. R. Yumerefendi and J. S. Chase. The role of accountability
in dependable distributed systems. In Proceedings of the First
conference on Hot topics in system dependability, HotDep’05,
Berkeley, CA, USA, June 2005. USENIX Association.

ISR Technical Report # UCI-ISR-12-2 11 2012/4/10

