
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Christoph Dorn
University of California, Irvine
cdorn@uci.edu, c.dorn@infosys.tuwien.ac.at

Richard N. Taylor
University of California, Irvine
taylor@ics.uci.edu

 Mapping Software Architecture Styles and
Collaboration Patterns for

Engineering Adaptive Mixed Systems

June 2011
ISR Technical Report # UCI-ISR-11-4

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Mapping Software Architecture Styles and Collaboration Patterns for
Engineering Adaptive Mixed Systems

Christoph Dorn
Institute for Software Research
University of California, Irvine

cdorn@uci.edu

Richard N. Taylor
Institute for Software Research
University of California, Irvine

taylor@uci.edu

Abstract

Software architecture styles determine to large de-
gree a system’s ability to adapt during runtime. Sim-
ilarly collaboration patterns describe the flexibility
with which humans can join or leave a team and
what constraints apply. With the rise of large-scale
mixed systems, the boundary between humans and
software becomes increasingly blurry. Thus, in this
paper, we propose to map architectural styles to col-
laboration patterns. We raise awareness on how adap-
tation strategies in software systems might facilitate the
management of Internet-scale collaborations and vice
versa. Ultimately, understanding the mutual properties
and interdependencies is fundamental for a holistic
approach to run-time adaptation of mixed systems.

1. Introduction

Over the past twenty years we have observed a
trend towards ”social software” leaving the realm of
group support systems for small or medium sized
teams and entering the dimension of internet-scale
collaborations. We find collective intelligence and user
participation among the main characteristics of the
Web 2.0 [1]. Especially noteworthy is the increasingly
blurry boundary between humans and software. Hu-
mans have become both provider and consumer of
content and computation. Humans are no longer just
the ”users” of a system but an integral part. Their
interactions with other humans and software elements
has a significant impact on the runtime management of
software components. In mixed systems humans and
software components are equal, first-class entities.

At the same time, systems have become too complex
and large-scale to be managed by human administra-
tors alone and mechanisms for self-adaptive systems
have been proposed [2]. In mixed systems any adapta-
tion mechanism now also needs to consider the human

Technical Report UCI-ISR-11-4, June 2011

collaboration structure. As repeatedly pointed out [3],
[4], architecture-based approaches to self-management
address adaptation on the right level of abstraction and
generality, rather than focusing on language-level or
network-level adaptation. On the architectural level,
adaptation actions generally describe the replacement
of components and the reconfiguration of connectors.
To this end, the underlying architectural style deter-
mines to a large extent the effort required to implement
runtime changes [5].

We argue that the same holds true for the human col-
laboration structure. Collaboration patterns at design-
time define what aspects change, how long adaptation
takes, what the sideeffects on the collaboration status
are, and what adaptation restrictions exist. Patterns at
runtime enable abstraction from detailed interactions
and shared artifacts to reason about the structure of
the collaboration. This motivates the main contribution
of this paper: mapping architectural styles to collabo-
ration patterns. Note especially that we do not claim
a perfect mapping between architectural styles and
collaboration patterns, as human entities exhibit a far
higher degree of autonomy and dynamicity than any
pure software system.

The insights gained from this mapping are bidi-
rectional. On the one hand, experience from building
large-scale software systems can be applied to hitherto
unseen internet-scale collaborations. In return, adapta-
tion strategies in collaborative settings potentially open
up new perspectives on self-adaptation in systems of
massively autonomous entities.

The remainder of this paper is structured as follos.
In Section 2, we discuss software runtime adaptation
aspects as first introduced in [5] and how these apply
in a collaborative context. These aspects then serve to
characterize the mapping of architectural styles to col-
laboration patterns in Section 3. We apply the runtime
aspects in Section 4 to analyze existing mixed systems
with respect to collaboration adaptation capabilities.
We discuss insights on adaptation of mixed systems
and the interplay between software architectural styles

and collaboration patterns in Section 5 before con-
cluding this paper with an outlook on future work in
Section 6.

2. Runtime Adaptation Aspects

In our attempt to combine software architecture and
human collaboration structures, it seems natural to
build upon the software runtime adaptation aspects
defined in the BASE framework [5], [6] — behavior,
asynchrony, state, and execution context. We revisit
the initial BASE aspects for sake of completeness,
and then map the BASE aspects to the corresponding
properties of collaboration patterns.

Behavior highlights the scope of supported change.
This aspect concerns the means for changing a sys-
tem’s behavior and the respective level of abstraction
(e.g., reconfiguration at code level or at component
level), and whether adaptation is limited to compo-
sition of existing behaviors or new behaviors can be
introduced. This also includes specification of behavior
that must remain unmodified.

Asynchrony addresses the implications that come
with the lag between initiating a system’s adaptation
and its completion. Large-scale distributed systems
take potentially longer to update than compact, central
systems and might never reach a completely updated
status. Relevant issues also include maintenance of
system constraints during adaptation and continuous
system availability.

State refers to potential adaptation ”side effects”
that have an impact on the system’s state. Changing a
data type definition might require updating all current
instances to the new definition. Replacement of a com-
ponent potentially involves extracting that component’s
state for initializing the new component with that data
before the system can resume.

Execution Context raises awareness of constraints
that determine whether or not adaptation can com-
mence. For example, a component currently having
control cannot be modified directly. When adaptation
is time critical, however, a new, modified instance of
that component called with the same input might be
deployed while aborting the old version.

These aspects represent equally important concerns
in the context of collaboration patterns.

Behavior similarly addresses the means for adapta-
tion. Reconfiguration of collaboration patterns is not
limited to replacing a user. Again, there are multiple
levels of granularity that allow behavior adaptation.
Replacement of a complete company, a team, adding
another worker, or acquiring a required skill all cor-
respond to component adaptation in software systems.

Overall, adaptation goes beyond human components.
Also messages between members and shared artifacts
represent significant loci of adaptation. Actions are
the equivalent to software component Connectors in
interaction patterns. They link humans to messages,
artifacts, and involved software components. Actions
thereby define how to influence and drive a collab-
oration and simultaneously specify how flexibly the
collaboration can evolve by itself.

Asynchrony in collaborations refers to the time it
requires to establish a (new) team, replace a worker,
become acquainted to another worker, or learn a new
skill and how the joint work is affected during that
phase. This aspect likewise raises awareness on con-
straints that need to be enforced during the adaptation.
As an example requirement, there must always exist
one software development team member who is fa-
miliar with any particular piece of code rather than
exchanging the whole team at once.

State aspects draw attention to direct and indirect
adaptation side effects when altering the means of
communication, the manipulation of shared artifacts, or
replacement of workers. The most knowledgable form
of direct state change is loss of implicit collaboration
know-how upon removing a worker. Handover of such
implicit collaboration information between outgoing
and incoming workers needs explicit consideration
when adapting the human interaction structure.

Execution Context refers to the possibility to adapt
during an active collaboration session. Whether a hu-
man may cease work on a particular task, or whether
it is necessary to wait until task completion depends
on multiple factors such as explicit contracts, cost and
time for repeating the task, or executing compensation
actions. The same holds true for the degree of coupling
between two or more workers during an ongoing
interaction.

3. Style-Pattern Mapping

For each mapping of architectural style to interaction
pattern, we provide a short description of the archi-
tectural style followed by a longer discussion of the
pattern. We also supply real world example systems
that support the respective pattern.

3.1. SOA/(C)REST vs Secretary

The basic components of the World Wide Web are
clients requesting data and services from a set of
servers. The REpresentational State Transfer (REST)
style defines: URLs as the sole means of identify-
ing resources, a limited set of resource manipulation

primitives, state-less communication interactions, and
meta data describing the exchanged resources [7].
Service-oriented Architectures (SOA) follow the same
client/server paradigm and share some of the REST
principles but focus on providing operations (i.e., ser-
vices) rather than content [8]. Computational REST
(CREST) aims to go beyond a mere combination of
the simplicity of REST and the computational aspects
of SOA [9]. CREST enables seamless interleaving
of content and computation thereby supporting the
(partial) execution of services not only on the server
side but also on the client side. All three styles encour-
age the use of intermediaries such as proxies [10] or
brokers [11] for adaptation purposes.

In human collaboration, secretaries (or assistants)
take on a role similar to SOA/(C)REST intermediaries.
Clients cannot contact the desired person directly. In-
stead, they pass their request to the secretary first, who
forwards the message to the principal and relays the
response back to the client. Alternatively, secretaries
may respond immediately on behalf of the principal.
Principals in turn act as clients of their superiors.
Depending on the particular application, secretaries
serve as load balancing proxies, protection proxies,
caching proxies, or brokers [12].

Behavior: Clients are volatile and expected to con-
tact a secretary unannounced.Secretaries and principals
may be replaced anytime, however their relation is
longer lasting than between client and secretary. The
set of supported message types and artifact types varies
for each secretary and principal instance. Associated
Secretaries and principals, however, necessarily sup-
port overlapping type sets. A single secretary may be
coupled to more than one principal and vice versa.

Asynchrony: The secretary may decide on how to
respond and on how to route the request depending on
the client’s request and the principal’s availability. In
case neither principal nor secretary are able to respond,
the secretary can ask the client to repeat the request at
a later time. Where supported, the secretary may offer
to put the request on hold and notify the client once
the principal becomes available again.

State: Secretaries are initially stateless and build
up any required internal state from interactions or
querying the principals for preferences. Having the
new secretary temporarily observe the current secretary
enables rapid establishing of state. Alternatively, a
secretary can refer clients to another secretary during
replacement.

Execution Context: A principal may decide to
refuse responding to any requests, forcing the secretary
to reply on behalf or reroute the request to another
principal. A secretary needs to complete all current

requests before replacement but can redirect new re-
quests to other assistants.

3.2. Publish-Subscribe vs Mailinglists

In the pub/sub style, publishers and subscribers
communicate indirectly by means of events and are
typically unaware of each other’s identity [13]. Tra-
ditionally, a message oriented middleware (e.g., a
message bus) manages event collection and distribu-
tion. Subscribers process the received events and may
produce new events of their own. Such strong com-
ponent decoupling enables simple adaptation through
runtime adding and removing of event producers and
consumers [14]. Additional event filtering allows for
more fine-grained adaptation [15].

In collaborative environments, the main purpose of
mailing lists (or newsletters) is pushing information
of general interest to a larger audience. Mostly in the
form of emails (e.g., Listserv [16]), this collaboration
pattern comes in different flavors, characterized by the
anonymity of sender and/or receivers, the ability of re-
ceivers to reply or post their own message, and whether
the list is topic or person-centric. In recent years,
micro-blogging platforms such as Twitter have become
a popular tool for rapidly disseminating information
in large-scale environments [17]. In contrast to purely
topic-centric subscriptions in pub/sub, subscriptions
in micro-blogging environments are mostly person-
centric. Here additional filtering capabilities are called
for to distinguish between truly relevant events and
noise.

Behavior: With topic-centric lists, publishers and
readers may dynamically join and leave while the
respective list remains unaffected. The lifetime of a
person-centric list usually remains coupled to the pub-
lishing activity of its respective author. Simultaneously,
new topics emerge and existing topics loose their
relevance.

Asynchrony: Changes to a list’s subscriber base
have no side-effects. Single changes are instantaneous
and require no synchronization with other users. Au-
thor removal from person-centric lists and single-
publisher lists may cause receivers to resort to alter-
native event sources. However, support mechanisms
for subscribing to relevant lists is outside the pattern’s
scope.

State: The collaboration domain and purpose de-
fines the requirements for state transfer upon swapping
publishers. Consumers build their internal state as new
messages arrive. Most mailing list and micro-blogging
implementations maintain a history of past messages
that enable immediate state reconstruction.

Execution Context: Message dispatching and re-
ceiving is considered atomic. Hence, independent uni-
directional messages pose no restrictions on the re-
placement of publishers or readers. When multiple
individual messages from multiple authors create a
discussion thread the removal of an involved publisher
requires other authors to compensate. Newly joining
readers need to build the discussion thread from his-
torical records or wait for the end of the discussion.

3.3. Tuple-spaces vs Collaborative Editing

Tuple-spaces are similar to the publish-subscribe
style with respect to strong decoupling of producers
and consumers. Instead of messages, a tuple-space
manages storage and retrieval of data items (i.e., ar-
tifacts) thereby imitating a (distributed) shared mem-
ory [18]. Consumers have potential write access to
manipulate the shared artifacts. Any update becomes
visible to other consumers including the initial pro-
ducer [19].

Collaborative editing describes any type of ac-
tivity where participants communicate predominantly
through the manipulation of a shared artifact. Research
in the domain of CSCW focused early on such capa-
bilities in the context of shared workspace systems and
groupware systems [20]. Several approaches were pro-
posed for large-scale environments [21], until internet-
scale collaborative editing became a universal success
with the emergence of wikis [22]; the most prominent
example being Wikipedia.

Behavior: Authors and collaborators may join or
leave the workspace at any time. Collaborators are
free to create new shared artifacts (thereby becoming
authors) or manipulate existing ones. Typically, only
authors can remove the artifacts they own. Altering
the shared artifact’s type is usually limited to new
artifact instances. How to obtain artifact access rights
is outside the pattern’s scope.

Asynchrony: Where upgrading an existing artifact
is envisioned, authors and collaborators need to wait
while the upgrade takes place. A permanently leaving
author needs to hand over ownership for each of his
artifacts to at least one collaborator. Replacement of
regular collaborators requires termination of all their
artifact manipulation activities.

State: The shared artifact maintains the collabo-
ration status. The collaborative editing system needs
to disclose the manipulation log when collaborators
require the artifact’s history to construct their inter-
nal state. Alternatively, swapping two collaborations
requires an out-of-band mechanism to exchange their
internal states.

Execution Context: Multiple concurrent write re-
quests need queuing and/or duplication of the item,
subsequent parallel manipulation, and finally merging.
The collaborative editing pattern lacks any primitives
to coordinate mutually depending artifact read and
write actions by distributed collaborators.

Online discussions forums [23] ,bulletin boards, and
blogs [24] populate the spectrum between Mailinglists
and Collaborative editing. Knowledge is distributed
from producers to consumers, who in turn raise the
message to the level of a shared artifact through
refinement or extension in the form of commentary.
Discussion topics, and blog entries are thus more than
a simple broadcasted messages but at the same time
do not offer the full range of manipulation capabilities
that come with shared artifacts.

3.4. Components and Connectors (C2) vs Or-
ganizational Control

C2 is an event-based style to decouple components
via explicit connectors [25]. Components cannot in-
teract directly but hand over any events and requests
to connectors which pass them on to the respective
destination component. Components form a hierarchy
where lower-level components request operations from
higher-level components. Communication down the
hierarchy, however, is limited to notifications.

The C2 style describes also inverse hierarchical or-
ganizations, with managers situated towards the bottom
and workers towards the top. The two interface types
in C2 — upward requests and downward notifications
— corresponds to two functions of organizational
control [26]: behavior control and output control. The
supervisor applies (pro-active) behavior control (i.e.,
upward requests) to trigger a specific, desired behav-
ior. Output control describes the manager monitoring
work progress (i.e., downward events) to reactively
maintain, or respectively restore, work performance.
Requests and notifications are not addressed directly
to individual employees but roles. Hence, roles are
bound to particular capabilities thereby decoupling the
request addressing from the actual person executing
the request.

Behavior: Organizational structures lack the same
degree of loose coupling that C2 Connectors achieve.
Assistants can be compared to connectors but are usu-
ally not universally implemented (i.e., typically only in
management). Organizational charts describe the links
between the different roles and the mapping to actual
humans but cannot provide request and event buffering.
Adaptation corresponds to structural updates of the
organization chart in terms of reassigning employees

to roles and rewiring role relations.
Asynchrony: When replacing an employee or

rewiring a role, higher-level subordinates need to buffer
notifications until adaptation has completed. Likewise,
lower-level supervisors will not receive notifications
for the adaptation duration and have to refrain from
dispatching requests to the affected employee. With
assistants in place, responsibility for buffering of re-
quests and notifications is transferred from employee
to assistants.

State: Individual employees maintain their own
state. State transfer is only required between two
switching employees when collaboration know-how
remains employee internal and cannot otherwise be
made explicit. New employees can apply the orga-
nizational chart to contact colleagues to retrieve (ad-
ditional) information necessary for constructing state.
Organizations typically store general purpose state
information in corporate ”data warehouses” at the
highest relevant level in the hierarchy. Accounting data,
for example, remains low at the management level,
whereas travel guidelines are placed at the top of the
hierarchy available to every employee.

Execution Context: Any ongoing request needs to
be completed before an employee can be replaced.
If an employee becomes unavailable during request
execution, the request has to be addressed again with
her substitute employee.

3.5. Map-Reduce vs Master-Worker

Map-Reduce leverages parallel computing by divid-
ing a task into multiple independent subtasks [27].
A central coordinator node subsequently assigns each
subtask to a different processing machine (map phase).
In the reduce phase, the coordinator collects the indi-
vidual task outcomes and distributes them again for
aggregation to generate the final result.

Partitioning tasks also works well in human collabo-
ration when the resulting subtasks remain independent.
The Master defines the individual work packages.
In contrast to Map-Reduce, task distribution occurs
both in push and pull style. The former procedure
has tasks directly assigned to Workers, whereas the
latter procedure enables workers to choose which task
they prefer to work on. The large-scale deployment
of the Master/Worker pattern is often referred to as
crowd sourcing [28], the most prominent example
being Amazon Mechanical Turk.

Behavior: The master decides upon the number of
workers that can work in parallel on the same task
artifact. In the pull-style assignment, workers choose
which tasks to perform, and whether to return a task

unfinished. In push-style assignment, workers receive
new tasks in their inbox but may still have the option
to reject or delegate a task.

Asynchrony: A task artifact completely decouples
master and workers. The master has the option to
reassign the task to another worker (or make it avail-
able again) when the worker fails to complete the
task in a predefined time-frame. The master has the
responsibility to schedule multiple identical tasks for
sake of reliability, or issue multiple sequential tasks
until the desired result quality has been achieved.

State: The task artifact contains the complete col-
laboration state. Replacement of workers has no side-
effect on the state.

Execution Context: All workers execute their task
independently, hence, no synchronization of results is
required. Multiple workers assigned to the same task
artifact work on distinct copies and have no knowledge
about each other. They remain similarly unaware of
any replacement of the master. The new worker sim-
ply obtains the task description and commences task
execution independently of any previous work done.

3.6. Peer-to-Peer (P2P) vs Self-organization

The P2P style assumes a large number of entities,
each offering the same service they simultaneous re-
quest from their peers [29], but not possessing nec-
essarily the same state. The major motivation behind
P2P is resilience to node failures. To this end, P2P
systems usually lack a centralized control mechanisms
and expect peers to arbitrarily join and leave the
network. Instead, nodes maintain a limited list of
neighboring peers for exchanging and updating their
view of the network. In sufficiently large networks,
super peers have proven to increase efficiency by pro-
viding higher-level coordination services (potentially
forming an overlay peer-to-peer network themselves).
The dominant application area of P2P technologies is
content distribution networks [30].

The P2P style appropriately describes self-
organizing teams where no dedicated coordination
structure exists. Instead, individual members
collaborate in an ad-hoc fashion to complete a
common goal. The flexibility provided by P2P
allows individual members to become more active
whenever they see fit without incurring much
coordination overhead. Newcomers receive briefings
from multiple members and thus are quickly
brought up-to-date. Multiple communication paths
maintain the information flow in case a member
becomes temporarily or indefinitely unavailable.
Many open-source software development efforts are

structured in a P2P fashion which allows them to
form self-organizing teams [31]. Self-organization,
however, also has its downside as the effect of
(flash)mobs demonstrates. Another challenge poses
the mobilization of sufficiently many participants to
keep the collaborative momentum alive.

Behavior: In a self-organizing team, every member
is free to leave any time, and new members join spon-
taneously. Existing members are able to form arbitrary
links to any other member, e.g., send messages to any
other member they consider a relevant receiver. Stable
members are suitable candidates for super peers but not
expected to serve that role permanently. In addition
usually super peers introduce new message types to
improve collaboration efficiency.

Asynchrony: Typically only a (small) subset of
members fluctuates at a single point in time which
hardly disrupts the team. Retirement of super peers
potentially degrades a team’s performance until an-
other member assumes the vacant position. The uptake
of new message types occurs gradually as the update
percolates through the network.

State: Collaboration state is generally spread about
multiple members (i.e., those that were involved in
joint activities). However, additional mechanisms for
externalizing member state such as shared artifacts or
message history is outside the scope of the pattern.
New members gather the required state information
from existing peers.

Execution Context: Members engage in joint ac-
tivities and are free to leave at any time. They are,
however, expected to either complete the task before
leaving or at least externalize the task relevant part
of their internal state. Abruptly leaving members may
result in lost collaboration know-how.

4. Example Systems

In the following subsections, we present some real
world examples of mixed systems and analyze how the
underlying collaboration patterns influence the support
for adaptation.

4.1. Amazon Mechanical Turk

Amazon Mechanical Turk 1 (MTurk) is one of the
most prominent examples for crowd sourcing. The
MTurk platform implements the Master-Worker collab-
oration pattern, enabling Requestors to register a Hu-
man Intelligence Task (HIT). Workers are subsequently
able to search through the set of registered HITs and

1. http://www.mturk.com

accept HITs they are interested in. Besides task spe-
cific details, a requestor configures the HIT’s lifetime,
monetary reward, duration, the maximum number of
assigned workers, and required worker skills. Once the
worker has accepted a HIT, he has the allotted time
(duration) to complete his copy of the task (i.e., his as-
signment). Alternatively the worker can return the HIT
within the allotted time, or let it time out. The HIT is
then considered abandoned. Returning and abandoning
reflects in a worker’s reputation. The requester retrieves
the submitted assignment and approves it when the
result quality is satisfactory, or otherwise rejects it
without paying the worker.

Runtime adaptation focuses on those mechanisms
that provide for a satisfying collaboration of all par-
ticipants; both requestors and workers. The requestor
aims for timely and high quality HIT execution. The
worker’s primary goal is finding interesting and suit-
able HITs and receiving pay for the work performed.

Behavior: As outlined in Section 3.5, the Master-
Worker pattern’s main form of adaptation lies in the
replacement of workers, the rewiring of workers to
tasks, and the manipulation of the task artifacts. As
MTurk supports only pull-based task assignment and
features a dynamic workforce that cannot be directly
controlled, all adaptation actions unfold their effects
indirectly through HIT manipulation.

Requestors have full control over the creation, re-
configuration, and removal of HITs. They regulate the
wiring of workers to HITs through (i) direct blocking
of workers and (ii) specification of required skills. The
requestor has full control over the HIT relevant skills
and can assign and revoke the corresponding worker
qualification anytime.

Workers have less control over HITs per se, but typ-
ically filter HITs for matching qualifications, rewards,
and duration. In MTurk, only workers can establish
a collaboration through accepting an assignment. Al-
though they are able to return or abandon a HIT, this
reflects negatively on their reputation.

Asynchrony: The crowd sourcing environment of
MTurk does not foresee explicit replacement of a
unresponsive or low quality worker. In the former
case, MTurk automatically makes the HIT available
again once the work duration has expired. In the
second case, the requestor needs to register the HIT
again. The requester decides on appropriate HIT values
for the number of simultaneous workers, reward, and
duration to promote timely and high-quality results.
Unattractive rewards or unrealistic timelines coupled
with a lack of backup workers leads to delays in HIT
execution.

Similarly, MTurk addresses unresponsive requestors.

Each HIT specifies a deadline after which an assign-
ment is automatically approved.

State: Workers have read-only access to the HIT
description. They also remain unaware of any other
worker having (currently or previously) accepted the
respective HIT. Returning or abandoning a HIT has
thus no side-effect on any other worker assigned in
parallel. The assignment results remain with the worker
until he explicitly submits his work. No modifications
are possible thereafter. The requester obtains read
access to an assignment as soon as it is submitted.
Approval and rejection are independent of other as-
signments of the same HIT but multiple results are
usually compared for quality assurance purposes.

Execution Context: The collaboration between re-
questor and worker ends upon assignment approval
or rejection. Both parties can prematurely terminate a
HIT anytime. As outlined above, a worker can return
or abandon the HIT with reputation side-effects. The
requestor has the options to force expire the HIT such
that it becomes invisible to new workers but allows
existing assignments to be completed. The result is
then open for approval or rejection. Alternatively the
requester can disable a HIT which removes the HIT
and automatically approves all submitted and pending
assignments.

4.2. Twitter

Twitter 2 is a micro-blogging platform used to
create and maintain a social network [17] as well as
distributing news [32]. Twitter supports collaboration
according to the Publish-Subscribe style: every user is
simultaneously a publisher and subscriber. A user sub-
scribes to another user’s twitter feed, thereby becoming
a follower of the other user.

When a user posts a message — denoted a tweet
which may be up to 140 characters — it becomes
visible on her profile page (if the account is public).
At the same time, the tweet is pushed to the home
timeline of all her followers. Twitter supports message
meta information in the form of hash tags as topic
descriptors (e.g., #music), references to other users
(so-called mentions, e.g., @BarackObama), and URL
shorteners to link to external resources. Users apply
retweeting to refer to a previous messages, or replies
to respond to another user.

Behavior: Run-time behavior adaptation focuses
on managing subscriptions — i.e., manipulation of
the follower list artifact — and on message content.
Subscribers are free to follow any publisher with a
public profile. Subscription requests for private profiles

2. http://twitter.com

need the publisher’s approval. Twitter provides to each
publisher a list of followers. The publisher has the
option to block a particular subscriber. This prevents
messages from showing up on the subscriber’s home
timeline, but they remain available to everyone on the
publisher’s public profile.

Although each publisher is associated with a single
account and thus profile, she typically distinguishes
different message types using hash tags. New hash tags
may be introduced by any publisher anytime. Users
then search for a particular hashtag and subscribe to
the respective tweeter feeds to become followers.

Asynchrony: An unavailable publisher has no direct
effect on her subscribers. Followers merely cease to
receive events from that publisher but continue to re-
ceive events from other publishers. A subscriber needs
to search for an alternative message source in case a
publisher is his single sources of (a particular type of)
continuously required events. Offline followers receive
the latest events upon reconnecting to Twitter. They
are not guaranteed to receive all messages after an ex-
tended duration of absence as Twitter does not provide
the complete history but only the recent messages. The
subscription operation is typically instantaneous and
new messages are accessible immediately. Messages
are delayed until approval when requesting to follow
a user with private profile.

State: Users gather information (i.e., state) from
public profiles available before following the publisher.
Hence, a user having just joined Twitter can easily per-
ceive which existing users to follow. On the publisher’s
side, messages remain available even when there are
no followers.

Execution Context: There are no constraints for
(un)following a publisher or blocking a subscriber.
Merely private profiles require approval before a re-
lation is established.

While the main collaboration pattern is pub-
lish/subscribe, twitter also supports direct messages
that remain private between the sender and receiver.
A private message can only be sent to followers, has
the same 140 character limit as a tweet, and can be
deleted from the receiver’s inbox by the sender.

5. Discussion

Differences within the patterns become manifest
in current collaboration frameworks. Support for
large-scale collaborative work remains unsatisfactory
whereas examples of large-scale deployments exist
for all architecture styles. This hints at exploitable
synergies between styles and patterns.

5.1. Differences between Patterns

The presented collaboration patterns address differ-
ent approaches for coordinating work, communication
between users, and disseminating information.

They differ in which users can be replaced or rewired
and who has control over the respective (adaptation)
actions. The Master-Worker pattern enables Masters
to decide over which worker may work on a particular
task. In pure Self-organizing teams, no worker has
explicit control over any other collaborator.

Changes may have little to no effect on the over-
all collaboration or potentially bring it to a com-
plete standstill. A new Secretary might break ac-
cess to a whole range of principals, while a leaving
worker might cause only a small delay in the Master-
Worker pattern. In Collaborative Editing, an unavail-
able worker has typically no impact.

Some patterns support explicit externalization of
state while others neglect this aspect. The Master-
Worker pattern defines explicit task artifacts. Mail-
inglists frequently keep a history of recent messages
while Organizational Control has no explicit notion of
collaboration state.

Finally, some patterns allow users to freely leave and
join the collaboration at any time, while certain pat-
terns come with explicit, non-trivial side-effects. Re-
placing a Secretary or Principal requires more prepa-
ration than merely adding a new Worker to a Master.
A Mailinglist consumer can leave any time without
effecting other subscribers, whereas a member of a
Self-organizing team commonly needs to externalize
his collaboration state first.

5.2. Scalability of Styles and Patterns

In recent years we have found applications and
frameworks for each of the discussed architectural
styles that support deployment in a large-scale fashion.
REST represents the fundamental style of the World
Wide Web. Publish-Subscribe systems such as Siena
bring together thousands of publishers and event con-
sumers. Tuple-spaces serve as the underlying coordina-
tion mechanism in massive agent-based systems [33].
The Myx framework3 supports the implementation of
C2 style applications. Hadoop is one implementation
of the Map-Reduce style supporting petabyte sized data
warehouses [34]. Finally, Bittorrent is an exemplary
protocol for efficient internet-scale P2P content distri-
bution [35].

3. http://www.isr.uci.edu/projects/archstudio/myx.html

General purpose technical systems for large-scale
human collaboration do not cover the collaboration pat-
terns to the same extent. On the simple side, message-
centric systems such as Twitter and Google Groups
provide pub/sub facilities. Email, Skype, and XMPP
are examples for human P2P communication. Social
networks and blogging sites blur the boundary between
messages and artifacts. Wikis and source code repos-
itories support Collaborative editing. Crowd sourcing
applications such as MTurk realize the Master-Worker
pattern but severely limit human interactions. Other
task-centric frameworks such as Bugzilla remain very
domain specific without becoming true Collaborative
editing environments. At the internet-scale level, we
find no systems or frameworks that support the Secre-
tary pattern, Organizational control, or Self-organizing
teams that go beyond message-based interaction. Note
that these patterns are nevertheless supported by group-
ware systems targeting small and medium-scale en-
vironments. Furthermore, P2P style collaborations in
software developer teams exhibit emergent behavior
such as secretaries (SOA/(C)REST) or managers (C2).
However, corresponding tool support in large-scale
settings is virtually non existent.

As we explore new directions to cover yet unsup-
ported patterns in large-scale settings, we should apply
lessons learned from designing and building large-
scale software systems. As we point out in the next
subsection, insights apply in both directions.

5.3. Synergies between Styles and Patterns

As the authors of the original BASE framework have
pointed out [6]: the vital mechanisms for architecture-
driven run-time adaptation are (i) identification of the
exchangeable parts and rendering them malleable, (ii)
managing the interactions involving those parts, and
(iii) explicit state management. We observe the same
strategies in human collaborations: (i) establishing the
involved roles and their respective adaptation authority,
(ii) capturing and externalizing collaboration know-
how, and (iii) promoting explicit shared artifacts (es-
pecially task descriptions).

Adaptation plans in pure software systems are typi-
cally simply enacted. This approach, however, cannot
be directly applied to human collaborations. The rules
and implications of automatic collaboration adaptation
actions need to be known upfront to all involved
parties. Most often, however, individual users retain a
significant amount of control over their environment.
Here, we can only give recommendations on what to
do, e.g., who to contact, how to filter information,
or what artifacts to manipulate. Adaptation mecha-

nism addressing such human collaborations are thus
becoming candidates for designing new techniques
for managing software system comprising massive,
autonomous, unreliable components. Individual, self-
governing components cannot be directly manipulated
but accept only recommendations. They might follow
the recommendations or choose to ignore them based
on internal, unobservable constraints. Subsequently,
human-inspired properties such as trust, reputation, or
cooperativity potentially become applicable to software
components. Software entities might take context into
account when deciding upon cooperation. In turn, un-
cooperative components may face resource restrictions
or have access limited to noncritical resources.

When we choose a collaboration pattern during
system design, we have to keep in mind that a sin-
gle pattern usually fits only very simple, independent
tasks. Complex work — be it large-scale, under-
specified, or distributed — calls for more freedom and
flexibility and thus requires combination of multiple
styles. Take platforms for open source development
such as GitHub or Sourceforge as an example: they
provide an integration of wikis, mailing lists, code
repository, and bug tracking. Note in general that the
presented patterns provide idealistic structures for un-
derstanding the implications of system design choices.
Most real world applications integrate two or more
collaboration patterns to cover complementary needs.
Facebook, for example, primarily adopts a publish-
subscribe/mailinglist style (3.2) for personal status
updates and enables additionally a P2P style (3.6) text
chat between friends for more focused communication.

Thus when collaboration complexity increases, ex-
ternalizing state becomes ever more important as we
have to trade-off strong decoupling for the benefits
of joint creativity. This immediately raises privacy,
respectively security issues. Large-scale collaborative
environments in particular need to take up design prin-
ciples from software systems — e.g., least privilege,
complete mediation, separation of privilege — and ap-
ply them to human entities. In return, the mechanisms
how humans establish trust through joint, repeated
interactions provides an alternative, self-regulating se-
curity approach in open software systems.

6. Conclusion

Architectural styles and collaboration patterns share
the same run-time adaptation aspects: behavior, asyn-
chrony, state, and execution context. We applied these
aspects to highlight how architectural styles can be
mapped to collaboration patterns and vice versa. We
hope that becoming aware of the similarities helps

to cross-pollinate adaptation strategies for software
systems and collaborative work. Fault-resilient archi-
tectural styles such as P2P or tuple spaces provide
us techniques for understanding and governing self-
organizing open source teams or large-scale collabora-
tive editing. In return, collaboration patterns that lever-
age human dynamics and autonomy provide concepts
to address adaptation of systems comprising multiple,
independent software components.

Two complementary future efforts build upon this
mapping of styles and patterns. On the one hand, we in-
tend to refine the aspects that currently describe large-
scale, dynamic systems (e.g., WWW, protein networks)
to better characterize internet-scale collaborations. We
expect relevant aspects to include the power-law link
distribution, the rich-club phenomenon, and network
motifs. On the other hand, we have begun work on an
architectural description language that integrates the
human collaboration structure and software architec-
ture. Ultimately, such a description will enable rea-
soning about the effects of software reconfiguration on
human collaboration and vice versa, thereby realizing
a true, unified adaptation of the overall mixed system.

Acknowledgment

This work is supported in part by the National
Science Foundation under grants CCF-0917129, CCF-
0820222, and CCF-0808783 and the Austrian Science
Fund (FWF) under grant number J3068-N23.

References

[1] T. O’Reilly, “What is web 2.0: Design patterns and
business models for the next generation of software,”
MPRA Paper 4578, Mar. 2007.

[2] M. C. Huebscher and J. A. McCann, “A survey of au-
tonomic computingdegrees, models, and applications,”
ACM Comput. Surv., vol. 40, pp. 7:1–7:28, August
2008.

[3] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosen-
blum, and A. L. Wolf, “An architecture-based approach
to self-adaptive software,” IEEE Intelligent Systems,
vol. 14, pp. 54–62, May 1999.

[4] J. Kramer and J. Magee, “Self-managed systems: an
architectural challenge,” in International Conference on
Software Engineering, 2007, pp. 259–268.

[5] R. N. Taylor, N. Medvidovic, and P. Oreizy, “Ar-
chitectural styles for runtime software adaptation,” in
WICSA/ECSA, 2009, pp. 171–180.

[6] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Run-
time software adaptation: framework, approaches, and
styles,” in Companion of the 30th international confer-
ence on Software engineering, ser. ICSE Companion
’08. New York, NY, USA: ACM, 2008, pp. 899–910.

[7] R. T. Fielding and R. N. Taylor, “Principled design
of the modern web architecture,” ACM Trans. Internet
Technol., vol. 2, pp. 115–150, May 2002.

[8] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Ley-
mann, “Service-oriented computing: State of the art
and research challenges,” Computer, vol. 40, pp. 38–
45, November 2007.

[9] J. R. Erenkrantz, M. M. Gorlick, G. Suryanarayana, and
R. N. Taylor, “From representations to computations:
the evolution of web architectures,” in ESEC/SIGSOFT
FSE, 2007, pp. 255–264.

[10] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software. Reading, MA: Addison-Wesley, 1995.

[11] F. Buschmann, K. Henney, and D. C. Schmidt, Pattern-
Oriented Software Architecture, Volume 4: A Pattern
Language for Distributed Computing. Chichester, UK:
Wiley, 2007.

[12] S. Dustdar and T. Hoffmann, “Interaction pattern de-
tection in process oriented information systems,” Data
Knowl. Eng., vol. 62, pp. 138–155, July 2007.

[13] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-
M. Kermarrec, “The many faces of publish/subscribe,”
ACM Comput. Surv., vol. 35, pp. 114–131, June 2003.

[14] L. Fiege, F. C. Gärtner, O. Kasten, and A. Zei-
dler, “Supporting mobility in content-based pub-
lish/subscribe middleware,” in Middleware, 2003, pp.
103–122.

[15] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A.
Ross, and D. Shasha, “Filtering algorithms and imple-
mentation for very fast publish/subscribe systems,” in
Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, ser. SIGMOD ’01.
New York, NY, USA: ACM, 2001, pp. 115–126.

[16] D. Grier and M. Campbell, “A social history of bitnet
and listserv, 1985-1991,” Annals of the History of
Computing, IEEE, vol. 22, no. 2, pp. 32 –41, apr-jun
2000.

[17] D. Zhao and M. B. Rosson, “How and why people
twitter: the role that micro-blogging plays in informal
communication at work,” in Proceedings of the ACM
2009 international conference on Supporting group
work, ser. GROUP ’09. New York, NY, USA: ACM,
2009, pp. 243–252.

[18] D. Gelernter, “Generative communication in linda,”
ACM Trans. Program. Lang. Syst., vol. 7, pp. 80–112,
January 1985.

[19] G. P. Picco, D. Balzarotti, and P. Costa, “Lights:
a lightweight, customizable tuple space supporting
context-aware applications,” in Proceedings of the 2005
ACM symposium on Applied computing, ser. SAC ’05.
New York, NY, USA: ACM, 2005, pp. 413–419.

[20] C. A. Ellis and S. J. Gibbs, “Concurrency control in
groupware systems,” in Proceedings of the 1989 ACM
SIGMOD international conference on Management of
data, ser. SIGMOD ’89. New York, NY, USA: ACM,
1989, pp. 399–407.

[21] F. Pacull, A. Sandoz, and A. Schiper, “Duplex: a
distributed collaborative editing environment in large
scale,” in Proceedings of the 1994 ACM conference on
Computer supported cooperative work, ser. CSCW ’94.
New York, NY, USA: ACM, 1994, pp. 165–173.

[22] A. Kittur and R. E. Kraut, “Harnessing the wisdom of
crowds in wikipedia: quality through coordination,” in
Proceedings of the 2008 ACM conference on Computer
supported cooperative work, ser. CSCW ’08. New
York, NY, USA: ACM, 2008, pp. 37–46.

[23] L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Acker-
man, “Knowledge sharing and yahoo answers: everyone
knows something,” in Proceeding of the 17th interna-
tional conference on World Wide Web, ser. WWW ’08.
New York, NY, USA: ACM, 2008, pp. 665–674.

[24] B. A. Nardi, D. J. Schiano, M. Gumbrecht, and
L. Swartz, “Why we blog,” Commun. ACM, vol. 47,
pp. 41–46, December 2004.

[25] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, Jr., and J. E. Robbins, “A component- and
message-based architectural style for gui software,” in
Proceedings of the 17th international conference on
Software engineering, ser. ICSE ’95. New York, NY,
USA: ACM, 1995, pp. 295–304.

[26] W. G. Ouchi and M. A. Maguire, “Organizational con-
trol: Two functions,” Administrative Science Quarterly,
vol. 20, no. 4, pp. pp. 559–569, 1975.

[27] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51,
pp. 107–113, January 2008.

[28] D. C. Brabham, “Crowdsourcing as a model for prob-
lem solving,” Convergence: The International Journal
of Research into New Media Technologies, vol. 14,
no. 1, pp. 75–90, 2008.

[29] A. Oram, Peer-to-Peer: Harnessing the Power of Dis-
ruptive Technologies. Sebastopol, CA, USA: O’Reilly
& Associates, Inc., 2001.

[30] S. Androutsellis-Theotokis and D. Spinellis, “A survey
of peer-to-peer content distribution technologies,” ACM
Comput. Surv., vol. 36, pp. 335–371, December 2004.

[31] K. Crowston, Q. Li, K. Wei, U. Y. Eseryel, and J. How-
ison, “Self-organization of teams for free/libre open
source software development,” Inf. Softw. Technol.,
vol. 49, pp. 564–575, June 2007.

[32] H. Kwak, C. Lee, H. Park, and S. Moon, “What is
twitter, a social network or a news media?” in WWW
’10: Proceedings of the 19th international conference
on World wide web. New York, NY, USA: ACM,
2010, pp. 591–600.

[33] G. Cabri, L. Leonardi, and F. Zambonelli, “Mars:
a programmable coordination architecture for mobile
agents,” Internet Computing, IEEE, vol. 4, no. 4, pp.
26 –35, jul/aug 2000.

[34] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Antony, H. Liu, and R. Murthy, “Hive -
a petabyte scale data warehouse using hadoop,” Data
Engineering, International Conference on, vol. 0, pp.
996–1005, 2010.

[35] D. Qiu and R. Srikant, “Modeling and performance
analysis of bittorrent-like peer-to-peer networks,” in
Proceedings of the 2004 conference on Applications,
technologies, architectures, and protocols for computer
communications, ser. SIGCOMM ’04. New York, NY,
USA: ACM, 2004, pp. 367–378.

