
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Erik Trainer
University of California, Irvine
etrainer@uci.edu

David F. Redmiles
University of California, Irvine
redmiles@ics.uci.edu

 Initial Successes and Failures Prototyping
Socio-technical Visualizations

Using a Collaboration Infrastructure

November 2010

ISR Technical Report # UCI-ISR-10-5

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Page 1 of 17

Initial Successes and Failures Prototyping Socio-technical
Visualizations Using a Collaboration Infrastructure

Erik H. Trainer and David F. Redmiles

Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3425

{etrainer, redmiles}@ics.uci.edu

ISR Technical Report #UCI-ISR-10-05

November 2010

Abstract:

Empirical studies, including our own, have concluded that dependencies between source-

code modules create coordination needs among developers working on those modules. As

described in our previous work, we developed Ariadne, a dependency plug-in infrastructure for
the Eclipse IDE and later, Jazz. The decision to extend Eclipse‟s plug-in model was largely based

on the extent of services it provides client plug-ins, from dependency analysis to user-interface

widgets, to back-end resource modeling and storage mechanisms. As such, we could architect
Ariadne to be general enough to support different programming languages, CM repositories, and

visualization representations.

In this work, we report on the choices that drove the integration of our tool with Eclipse,

some of the problems we faced prototyping visualizations, and some suggested improvements to
both the infrastructure and research tools based on our experiences. We also report for the first

time, our experiences integrating data provided by IBM‟s new software development

collaboration platform, Jazz, into Ariadne.
We conclude that although the Eclipse and Jazz infrastructures provide powerful APIs

and interfaces for accessing data representative of collaboration activities, current support in the

IDE for socio-technical visualization on top of that data is inadequate for several reasons. These
observations serve as an initial step toward bridging research on visualization with data mined

from collaboration infrastructures.

Page 2 of 17

Initial Successes and Failures Prototyping

Socio-technical Visualizations Using a

Collaboration Infrastructure

Erik H. Trainer

David F. Redmiles

Institute for Software Research

Donald Bren School of Information and Computer Science

University of California, Irvine

etrainer@ics.uci.edu

redmiles@ics.uci.edu

Introduction

The current wave of software engineering tools that has been emerging of late

rely on the automatic collection and sharing of information to prepare developers for, and

assist in, handling a host of increasingly complex coordination issues, of which

developers are generally aware (Grinter 1995; de Souza et al. 2003), but do not always

anticipate, including: identifying, providing a "project-level" view for managers to gauge

team progress, recognizing and resolving conflicts due to parallel work, and

recommending relevant artifacts for development tasks such as evolving code, triaging

bugs, and understanding a code base (Trainer and Redmiles 2009). These issues derive

from the complex technical and social inter-relationships that emerge as software is

designed, implemented, and maintained by software development teams: dependencies

between the tasks that share resources, and necessarily between the developers assigned

to complete those tasks.

One way to more deeply understand these social and technical, or socio-technical,

relationships is to examine dependency relationships between developers that originate

from the interdependencies between common development activities. Empirical studies,

including our own (Morelli, Eppinger et al. 1995; Grinter 2003; de Souza et al. 2004;

Cataldo et al. 2006) have provided a basis for the claim that dependencies between

source-code modules in a call-graph create dependencies between the developers

implementing those modules. We found that, to some extent, developers are aware of

these interdependencies--but lack adequate tool support.

In response, we developed a set of scenarios (de Souza et al. 2007) based on field

data collected in cooperation with distributed teams at a major corporation that represent

more informal, yet critical aspects of development such as finding developers who use

the same modules and staying aware of evolving dependencies in order to more smoothly

Page 3 of 17

pace coordination efforts. Although this information is available in the change

management system, it is not easily found. For example, consider the case of finding

which developers program against a particular interface. Looking at the commit

information for the interface allows one only to identify who checked it in, not who

actually uses it, which would instead require an exhaustive search of who was involved in

commits of code that call methods defined by the interface in question. It is not difficult

to conclude that automating this process by way of tool support can significantly speed

up such queries. These observations drove key functional design requirements for

Ariadne.

A dependency-centric perspective, from which one navigates the socio-technical

“maze” of a software project is the concept embodied in our tool, Ariadne. Ariadne is a

dependency management infrastructure for exploring the design space of socio-technical

visualizations based on information about dependent artifacts and authorship activity

contained in a project‟s change management repository. Since 2005, we have maintained

different versions of the tool in the form of Eclipse (Trainer et al. 2005) and more

recently, Jazz, plug-ins. This paper explores our experiences visualizing socio-technical

relationships with data mined from traditional development environments such as

Eclipse, and more collaborative development environments (Booch 2003) such as Jazz.

In the following sections, we describe requirements for Ariadne itself, the features

the Eclipse and Jazz infrastructures provide, and how we traded off these features to

prototype our new socio-technical visualizations. We conclude with a discussion of these

trade-offs and how they may be managed in a collaborative development environment.

Ariadne‟s Requirements

There were three high-level requirements for Ariadne in the early stages of

design. First the tool needed to be launchable within, rather than outside the workspace.

It needed to have the same “look and feel” as other views in the workspace so that it

would not distract from other development activities occurring within the IDE.

Second, more crucially, it needed to extract artifacts and authorship information

for those artifacts from data stores associated with the development workspace. In

particular it needed to define interfaces to CM repositories and source-code call-graphs.

We reported in our earlier work (Trainer et al. 2005) that source-code is just but one type

of artifact that can be modeled with a socio-technical network. In a later section of this

paper, we show how we extended Ariadne to accept work items, or tasks, as another type.

Third, Ariadne needed to provide different visual representations of a project‟s

socio-technical network. Ultimately, we found existing graphics libraries to be

insufficient and eventually experimented with different visualization frameworks.

However, this led us outside the Eclipse infrastructure, requiring us to give up a certain

amount of integration with existing views in the workspace. In the next sections we

enumerate characteristics of the infrastructure that shaped the design of Ariadne and the

socio-technical visualizations it creates.

Eclipse‟s Architecture: Plug-in Model

Page 4 of 17

 Ariadne has taken the form of an Eclipse plug-in since its initial implementation

(Trainer et al. 2005). This decision was driven by Eclipse‟s large user base and its well-

established corpus of user-generated plug-ins at the time (some developed specifically for

academic research, e.g. Mylyn (http://mylyn.net). The platform has achieved a critical

mass of users, and its user base represents the target audience of Ariadne, i.e. software

developers, facilitating deployment and evaluation of the tool. Developing Ariadne as an

Eclipse plug-in not only makes it easy to distribute in the form of a compact download,

but makes it possible for developers, including ourselves, to extend the tool by

implementing additional plug-ins such as source-code generators and visualizations that

can be used to analyze and explore projects in specific languages using different visual

representations.

Ariadne integrates different components according to a layered architectural style.

It consists of a core dependency management plug-in and several client plug-ins that

extend the Eclipse development platform: dependency generation, authorship annotation,

and visualization (Figure 1).

A core plug-in manages the linking of dependency generation and authorship

annotation plug-ins to create a social dependency graph consisting of dependencies

between developers based on the artifacts for which they have completely, or partially

authored (Trainer et al. 2005; de Souza et al. 2007). The core plug-in defines listeners

that respond to callback functions from available visualization plug-ins and subsequently

displays the data using the specified visual representations.

Essentially, dependency generation plug-ins construct static call-graphs of source-

code currently in the workspace for the source-code language each generation plug-in is

defined to accept, authorship annotation plug-ins extract who authored what lines of

source-code (and in the case of the Jazz SCM, who is involved in the evolution of work

items) for the types of repositories they are defined to analyze, and visualization plug-ins

provide graphical interfaces to the socio-technical relationships that developing source-

code creates.

Figure 1. Ariadne‟s layered architecture consists of three sets of plug-ins (dependency

generation, authorship annotation, and visualization) coordinated and accessed

by a core plug-in, the “CM and dependencies API.”

Because the CM and dependencies API can be accessed regardless of the

implementation type of each client plug-in, Ariadne is general enough to support various

programming languages (e.g., Java, C++ or both), CM repositories, and forms of

Page 5 of 17

visualization. By default, we have provided Java dependency generation, CVS, SVN,

and Jazz SCM authorship extractors, social network node-and-edge visualizations (de

Souza et al. 2007), and more recently a novel TableGraph visualization (Trainer et al.

2008). Each piece of this functionality was implemented as a plug-in of the

corresponding type and integrated into the tool with minimal effort. We believe this to be

attributed to the extensibility of Ariadne‟s architecture.

Infrastructure APIs

 In addition to the plug-in mechanisms provided by Eclipse, the wealth of

available APIs lowered the barrier to developing critical pieces of Ariadne‟s

functionality. For example, we were able to reuse the JDT SearchEngine to calculate

dependencies between Java source-code modules (i.e., packages, classes, and methods) as

well as the Eclipse Team APIs to hook into different types of CM repositories such as

CVS and SVN to determine authorship for the modules. Other hooks into different GUI

components such as “perspectives,” “views” and dialogs made it easy to give Ariadne‟s

Graph Editor and display windows and input forms the same “look and feel” as the ones

in Eclipse. Additionally, we were able to reuse the Eclipse Resource Model data

structures to access source-code modules and developer attributes, as well as import and

export our dependency graphs into the workspace and display them in a custom editor.

 Even a good infrastructure will not always provide the APIs and mechanisms tool

building requires. Sometimes certain services are not offered because their design has

not been finalized, and, as such are subject to frequent change (de Souza et al. 2004). In

the design of our CVS authorship plug-in, we had to use unpublished Team APIs provide

by the Eclipse team that ended up changing later and breaking our code as a result.

Collaborative “Traces”

 Collaborative development environments (Booch 2003) such as Eclipse and Jazz

provide traces of collaborative activity, such as lists of developers and the files they

modify and when they modify them, as well as records of the work to be completed (and

who should be involved) as defined in process descriptions. These “collaborative traces”

imply relationships among the developers assigned and/or responsible for completing

tasks.

In our previous work (de Souza et al. 2007), we described using source-code

modules and authorship as “socio-technical” collaborative traces to infer coordination

dependencies between developers. In our newest work using the Jazz environment and

an anonymized data set from IBM, we extended Ariadne‟s authorship annotation plug-in

to support authorship extraction from the Jazz SCM, and more critically, added work

items, descriptions of tasks, to the list of collaborative traces Ariadne is defined to accept.

Along the way, we observed that the default visualizations on top of work item

data in Jazz do not support good socio-technical exploration because they 1) rely on

developers to manually associate themselves with work items beyond what is included in

the initial description of the work item and 2) they only show dependencies between

work items themselves, omitting developer-developer relationships that arise from

relationships between work items, source-code, and the developers involved. This

Page 6 of 17

observation partially motivates the decision to explore socio-technical visualizations

beyond what is offered by the infrastructure.

The following section presents these particular experiences and observations in

greater detail.

Work Items in Jazz

A work item is a generalized notion of a development task, such as a bug, a

feature enhancement, or a refactoring (Figure 2). It provides a high level description of

work to be completed, who is responsible, and, sometimes, how it should be done. Work

items are added to a project‟s specification either by project managers or developers

themselves.

Figure 2. Work item types.

Once a work item has been filled out in the Jazz wizard, it is viewable within the Jazz

Work Item Editor. The editor consists of several pages:

 Overview – main attributes, summary of the work to be done

 Links – file attachments, subscribed users, other artifacts

 Approvals – reviews, verifications defined for the work item

 Custom – custom attributes defined in process specification

 History – history of work item changes

Page 7 of 17

Figure 3. The Work Item Editor.

Links indicate relationships between work items and other artifacts, such as

source-code change-sets via the related link and other work items via the similar and

depends on links, as well as relationships between developers and work items, via the

subscriptions link. Developers add links using an editor accessible from the links tab

(Figure 4). In other words, developers themselves must make the conscious decision to

subscribe to work items might involve files with which they work. By extension, they

must determine whether one work item is dependent on another without automated tool

support. As the number of work items grows, it is not difficult to see that this manual

approach does not scale. In response, we reflected on how to automate this process.

Page 8 of 17

Figure 4. Subscribers (1), depends on (2), and relationship types (3)

for a Work Item.

In the same way that source-code authorship distributed among dependent code

implicitly creates dependencies between developers, work items that involve dependent

source-code modules create dependencies between developers working on that source-

code. This is especially important because developers who have not explicitly added

themselves to receive updates about certain work items will not be able to account for

eventualities that arise from dependent work items that have not been addressed, or are

blocking the completion from specific development tasks. This observation led us to

conclude that in addition to source-code, work items should be added to the Ariadne

infrastructure as another “collaborative trace.”

More precisely, we define work item a to be dependent on work item b if:

 The “depends on” (a,b) relationship has been set in a‟s “links” page to point to b;

or

 A has one or more modules in its “related” link that are also included in b‟s

“related” link.

In addition, we say that if a developer is listed in work item a‟s “subscribers” link,

that developer has “authorship” associated with a. “Authorship” in this sense is really

just a proxy for a relationship to the work item, whatever that relationship may be. In

turn, developers who subscribe to work items dependent on a will depend on the

aforementioned developer.

Figure 5 and 6 below show a socio-technical network (Figure 5) and social

dependency network (Figure 6) that illustrate this concept. One can see that the work

item “externalize strings" involves user13874 and is dependent on “Work items:

1

2 3

Page 9 of 17

externalize strings,” which involves user1976. The resulting social dependency network

illustrated in Figure 6 shows this underlying dependency:

Figure 5. Socio-technical network displaying Work Items annotated with

developers.

Page 10 of 17

Figure 6. Social dependencies showing dependencies between the developers

highlighted in Figure 5, specifically underlying work item “extract strings.”

Visual Representations

 After integrating work items into Ariadne‟s data storage layer, we looked at ways

of visualizing socio-technical relationships using several different types of

representations. We subsequently identified two factors that influenced our visualization

decisions: scalability of the representations and variability in both the representations‟

vocabulary and layout.

 The first visualizations we implemented were fully integrated into the Eclipse

editor, by extending the Eclipse UI views with a node-edge visualization. Figure 5 shows

such a visualization of call-relationships between modules (and work items) of a system

annotated with nodes corresponding to the developers of those modules. This particular

Page 11 of 17

visualization was created with JUNG (http://jung.sourceforge.net), a software library that

provides interfaces for modeling, analyzing, and visualizing data that can be represented

as a graph or network. However, we had problems with respect to the variability of the

layout and representations as well as scalability of the visual elements included in the

JUNG tool.

Due to the variability of common graph layouts such as the Force Directed

Layout, in which vertex placement is determined by a hypothetical physical process

usually incorporating attraction between adjacent vertices balanced by a tendency for

vertices to repel each other (Fruchterman and Reingold, 1991; Kamada and Kawai,

1989), it was difficult to compare visualizations of the same project (Figure 7).

There also existed little variability in the representations provided by the

visualization package. JUNG is inherently limited to node and edge representations. In

response, we looked at some of the graphic support in the Eclipse APIs such as the GEF

framework, but its limited set of representations such as boxes and arrows were too

general for our purposes, and proved to be no more helpful than node and edge diagrams

in showing entities and relationships.

Moreover, as the size of the project increases, or if one tries to visualize the whole

project in order to put one‟s activities in the context of others‟, the visualizations become

increasingly cluttered and individual nodes and labels are hard to recognize at all (Figure

8). Therefore, ensuring the scalability of node-edge representations at the project level

became problematic.

Page 12 of 17

Figure 7. Layout algorithms produce different layouts for the same graphs.

Figure 8. Node and edge visualizations do not scale at the project level (as

illustrated by the illegibility of this figure).

Page 13 of 17

 Scalability and variability were also issues in visualizations provided by the Jazz

infrastructure itself. Querying work items for important attributes is done one-at-a time

in an incremental fashion by chaining SQL-like statements together (Figure 9).

Figure 9. Example Query: “Find all unresolved work items in your team area that

are planned for the current iteration and depend on another unresolved work item.”

Figure 10. Results returned from a Work Item Query.

Page 14 of 17

This search results in a visualization in the style of a JTreeViewer that lists the

matching work items and relationships indicated by nesting in the tree (Figure 10).

While this simple visualization scales to the number of objects one wants returned (by

scrolling down the list), it is limited to displaying the results for one query within a

limited space, instead of being able to answer or support the exploration of several

queries at once, highlighted by the “overview first, zoom and filter, then details-on-

demand” information mantra developed for information visualization (Shneiderman

1996). Therefore, while it scales to results returned, it does not scale to more than one

query at a time.

Moreover, this visualization is limited in the variety of information it displays: it

only shows work item dependencies represented by nesting within the tree. One cannot

compare or see relationships between developers through the work items with which they

work. The visualization does not display the source-code associated with the work items.

It relies on the data explicitly entered by developers, omitting dependencies that can be

automated using approaches like Ariadne‟s dependency generation method. Last, the

results are not returned in any pre-determined order, so the same query may generate a

different nested tree layout each time.

Stepping Outside the Infrastructure

In response to problems of scalability and variability of existing representations

and layouts, we experimented with a novel visualization using Prefuse, another third-

party visualization toolkit. It gave us more freedom in coming up with different visual

representations for dependency data, provided fast and powerful mechanisms and data

indexing, and required little overhead in terms of learning. The lack of constraints on

representations allowed us to create a constant layout and scalable view of the modules

and authors at the project level by ordering modules on the horizontal axis while

preserving the ease of identifying connections of varying intensities to nodes in a social

network graph (Figure 11).

Figure 11. A Table View of dependencies between developers (y-axis) of the Jazz

SCM subsystem based on called code (x-axis) dependencies they share.

However, integrating the visualization into Eclipse became problematic, partially

because of cross-platform issues with SWT and Swing, but more importantly, because

although the visualization scales to the project level, it does so at the cost of available

screen real-estate. This resulted in having to display the visualization outside the

workspace or on a second monitor, or on a set of monitors. Indeed, the example figure

above shows the visualization on three 30” cinema displays. Moreover, navigating

Page 15 of 17

abstract representations such as these come at a learning cost, in contrast to the familiar

nested lists and row-column views that have traditionally been part and parcel of

development environments.

Discussion

Software development, as practiced in industry, is often comprised of teams of

developers and managers who are committed to a development process with rigorous

procedures and rules. As such, many dependencies arise between developers based on

dependencies in the source-code with which they work. Using Eclipse and Jazz, we were

able to reuse critical mechanisms such as the dependency analysis and configuration

management resources to develop an infrastructure and visual interface for analyzing and

viewing dependencies.

Despite the ability to reuse the back-end storage mechanisms of the infrastructure,

our quest for sufficiently scalable and variable representations of socio-technical

relationships at the project level required us to go outside the infrastructure. To this end,

the traditional views such as lists and trees were not sufficient. Although JUNG provided

data structures that adequately modeled our artifacts, developers, and dependencies in a

form suitable for visualization, the available renderings were too variable in their layout

and did not scale to the project level to be useful for analysis. On the other hand, while

Prefuse provided more variety in representations, and thus the ability to create

representations that can scale to the whole project, it came at a cost of screen real-estate,

leading us to launch the visualization outside the workspace itself.

One possibly more revealing interpretation of our work described so far is one

that puts into question our assumption that socio-technical relationships should be viewed

at the project level. The simplistic user interface elements in Eclipse and Jazz such as the

Work Item Query wizard allow for more incremental and progressive exploration of

dependencies in situations where developers prefer a bottom-up approach toward

navigating socio-technical space in which they work (Ye et al. 2007).

Our work, however, has always been motivated by the observation that

developers are interested in socio-technical relationships of which they are generally, but

not always, aware. This is due in large part to the complexity of the entire system.

Understanding the system at larger level allows one to put their own work in the context

of others‟ and stay aware of activities occurring “off the radar” that may affect the

developer down the line. Visualizing the system in its entirety is a way of accomplishing

this goal.

We describe our experiences as indicative, to some extent, of a larger problem:

trying to reconcile a platform for software development and project visualization at the

same time. Socio-technical visualizations that scale up to a project are not part of typical

development processes and workflows. In contrast, the visualizations available in

environments such as Jazz are too limited in their expressiveness and their scalability.

We propose a visualization editor in Eclipse that can be used to rapidly prototype

visualizations over workspace data that scale to the whole project. One possible way

might be to provide a visualization abstraction layer between back-end Eclipse services

and third party visualization frameworks. This way, researchers using the visualization

Page 16 of 17

editor would have access to all the same types of services, i.e. the plug-in mechanisms,

the interfaces and APIs, and the collaborative traces provided by Eclipse and Jazz, as well

as a way to experiment with visualizations they know can be cleanly integrated into the

workspace. The abstraction layer would allow developers to address scalability of

representations, the variability of representations and layouts, and continue to use the

plug-in model to facilitate deployment of the functionality. Ariadne‟s federated plug-in

dependency management mechanism represents a first step in this process.

Conclusion

In our work to date, we have built Ariadne, a dependency infrastructure for the

Eclipse and Jazz development environment. The plug-in paradigm used by the

infrastructure allowed us to hook into many key services provided by the environment via

APIs, but required us to implement some of our own services as well. This is not

surprising.

The limitations of the infrastructure turned out to be more revealing than the

advantages. Our experiences led us to move beyond the infrastructure, but we ran into

limitations with the compatibility of third party tools. Yet these tools provide more

variable and potentially scalable visualizations not offered by graphics libraries native to

the collaboration platform. In contrast to the visualizations in the infrastructure that rely

on manual bookkeeping and incremental querying to make sense of a project‟s socio-

technical network, our visualizations aggregate collaborative traces such as source-code

and tasks in conjunction with developer relationships to those traces in order to create

more complete representations of the dependencies developers share.

Reflecting on these limitations led us to observe a gap between the scope of

graphical support available in the APIs of a development platform‟s infrastructure and

abstract visualization toolkits. We suggested that a bridging mechanism such as an

abstraction layer might serve to better integrate an infrastructure‟s data models with a

large variety of visualization representations that either scale or do not scale to the project

level.

Our work serves as a stepping stone for researchers wishing to integrate their

novel visualizations with the state-of-the art. Moreover, they can improve upon the

suggestions and tradeoffs with respect to visualizations for development environments

discussed here.

Acknowledgements

This research is supported by the U.S. National Science Foundation under grants

0943262 and 0808783, and by an IBM Jazz Innovation Award. The authors gratefully

acknowledge past and present collaboration with Cleidson de Souza and feedback from

our research group member, Roberto Silveira Silva Filho.

Page 17 of 17

References

Booch, G. and Brown, A.W. (2003): „Collaborative Development Environments‟, Advances in Computers,

vol. 59, pp.1-27.

Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Carley, K. M. (2006): „Identification of coordination

requirements: implications for the Design of collaboration and awareness tools‟, ACM Conference on

Computer Supported Cooperative Work (CSCW), November 2006, pp. 353-362.

de Souza, C. R. B., Redmiles, D. F., Dourish, J. P. (2003): „Breaking the Code”, Moving between Private

and Public Work in Collaborative Software Development‟, ACM International Conference on

Supporting Group Work, November 2003, pp. 105-114.

de Souza, C. R., Redmiles, D., Cheng, L., Millen, D., and Patterson, J. (2004): „How a good software

practice thwarts collaboration: the multiple roles of APIs in software development‟, ACM SIGSOFT

Symposium on Foundations of Software Engineering, November 2004, pp. 221-230.

de Souza, C. R., Quirk, S., Trainer, E., and Redmiles, D. F. (2007): „Supporting collaborative software

development through the visualization of socio-technical dependencies‟, ACM Conference on

Supporting Group Work, November 2007, pp. 147-156.

Fruchterman, T.M.J. and Reingold, E.M. (1991): „Graph Drawing by Force-directed Placement‟, Software -

Practice and Experience, vol. 21, no. 11, November 1991, pp. 1129-1164.

Grinter, R. E. (1995): „Using a Configuration Management Tool to Coordinate Software

Development‟, ACM Conference on Organizational Computing Systems

(COOCS '95), August 1995, pp. 168-177.

Grinter, R. E. (2003): „Recomposition: Coordinating a Web of Software Dependencies‟, Journal of

Computer Supported Cooperative Work, vol. 12, no. 3, pp. 297-327.

Kamada, T. and Kawai, S. (1989): „An algorithm for drawing general undirected graphs‟, Information

Processing Letters, vol. 31, no. 1, April 1989, pp. 7-15.

Mockus, A. and Herbsleb, J. D. (2002): „Expertise browser: a quantitative approach to identifying

expertise‟, International Conference on Software Engineering (ICSE), May 2002, pp. 503-512.

Morelli, M. D., S. D. Eppinger, et al. (1995): „Predicting Technical Communication in Product

Development Organizations‟, IEEE Transactions on Engineering Management, vol. 42, no. 3,

February 1995, pp. 215-222.

Shneiderman B. (1996): „The eyes have it: A task by data type taxonomy for information visualization‟,

Proceedings of IEEE Workshop on Visual Language, September 1996, pp. 336–343.

Trainer, E., Quirk, S., de Souza, C. R. B., Redmiles, D.F (2005): „Bridging the Gap between Technical and

Social Dependencies with Ariadne‟, Proceedings of the 2005 OOPSLA Workshop on Eclipse

Technology Exchange, pp. 26-30.

Trainer, E., Quirk, S., de Souza, C.R.B., and Redmiles, D.F. (2008): „Analyzing a Socio-Technical

Visualization Tool Using Usability Inspection Methods‟, IEEE Symposium on Visual Languages and

Human Centric Computing, September 2008, pp. 78-81.

Trainer, E. and Redmiles, D.F. (2009): „A Survey of Visualization Tools that Promote Awareness of

Software Development Activities‟, UCI ISR Technical Report #UCI-ISR-09-05, December 2009.

Ye, Y., Yamamoto, Y., and Nakakoji, K. (2007): „A socio-technical framework for supporting

programmers‟, ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE),

September 2007, pp. 351-360.

