
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Erik Trainer
University of California, Irvine
etrainer@uci.edu

David F. Redmiles
University of California, Irvine
redmiles@ics.uci.edu

A Survey of Visualization Tools that Promote
Awareness of Software Development Activities

December 2009

ISR Technical Report # UCI-ISR-09-5

Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Page 1 of 55

A Survey of Visualization Tools that Promote
Awareness of Software Development Activities

Erik H. Trainer and David F. Redmiles

Institute for Software Research

University of California, Irvine

Irvine, CA 92697-3425

{etrainer, redmiles}@ics.uci.edu

ISR Technical Report #UCI-ISR-09-05

December 2009

Abstract:

In recent years, research attention in the software engineering community has shifted from

process management and workflow tools that aim to plan for all coordination activity and
eventualities before development begins to a new generation of more flexible tools that saturate

the developer's workspace with information at varying degrees of granularity and in different

visual, and often interactive, representations. The common thread that runs through these tools is
the objective of supporting awareness of software developers‘ activities, in order to put one‘s own

activities in context. Despite the glut of such tools, little work has been done to assess to what

extent they address well-understood coordination needs.

This survey symbolizes a critical first step in that process. Its primary goal is to study the
relationship between coordination and awareness as empirically explored in the software

engineering literature, identify important aspects of awareness from that same body of literature,

and, with respect to these aspects, compare tools representative of those used in academia and
industry that are built to support awareness of development activities. An analysis of the tools

was performed and a table was constructed that maps the tools to important dimensions of

awareness.
This table is the central contribution of this survey. It is a mechanism through which

researchers can perform careful comparisons of each tool as well as develop a more critical

understanding of how each addresses components of awareness as identified in the literature.

Therefore, this survey crucially links two bodies of literature in software engineering: empirical
and theoretical findings on how developers maintain awareness and tools that visualize human

activities over the course of software development projects.

Page 2 of 55

A Survey of Visualization Tools that

Promote Awareness of Software

Development Activities

Erik H. Trainer
University of California, Irvine

etrainer@ics.uci.edu

Introduction

Professional software development is, and has always been, a human-driven

activity. Even small-scale software projects require the coordination of multiple

individuals, typically grouped into teams, working in parallel on different components of

the system for up to many weeks, months, or years (Brooks 1995). Software design and

development activities typically produce a ―project memory,‖ (Cubranic and Murphy

2003) of archival artifacts such as source-code, e-mail lists, design documentation,

problem reports and change histories of all this information that developers use as a

means toward coordinating the smooth flow of work. Successful coordination often

requires not only an understanding of the tasks to be performed but also of the internal

components of the system under development, their interactions, and dynamic behavior

over the course of the project (Parnas 1972; Curtis et al. 1988; de Souza et al. 2004;

Cataldo et al. 2006; de Souza et al. 2007).

Yet the inherent complexities of software make design and development a

difficult undertaking for the individuals (and teams) involved for a number of reasons

(Brooks 1995). Although it has an architecture (Perry and Wolf 1992; Shaw and Garlan

1996), software is not a physical entity like a building or monument, but rather an

abstract encapsulation of functionality that serves to fit a set of stakeholders‘

requirements. It has no visible representation in the real world. As such, a natural

management task like identifying ―progress‖ is difficult to perform. Software is not built

once-and-for-all, but emerges incrementally from changing requirements and is

constantly subjected to rigorous verification and validation. It is not possible for the

casual observer to gauge the ―size‖ of a software system in situ. Rather, the metric for

the size of a system requires a source-code perspective and is often measured in lines-of-

code (LOC). Even then, a line-of-code measurement fails to take into account other

important measures of complexity such as the coupling between components or the

number of possible paths through a program‘s source-code (McCabe 1976). No single

measurement can, in of itself, describe the complexity of a software system.

Dealing with this complexity requires careful management of human resources

and their allocation to development tasks over the course of the project. It is extremely

difficult, if not impossible, for an individual or groups of individuals to comprehend

systems in their entirety (Soloway and Ehrlich 1984). As such, assigning enough

developers to cover all of the implementation work is an important management decision.

Page 3 of 55

While having sufficient human resources is a fundamental requirement for completing

development work, it does not follow that adding more personnel will get the work done

faster. In Brooks‘ seminal work (Brooks 1995), he empirically observed that merely

adding more people to a project will not speed up development time, but delay it instead.

The extra time required derives from the additional effort (and thus time) required to

understand the software and coordinate activities with other developers. In general,

software development organizations take more careful and structured approaches toward

assigning work. The research literature has shown that organizations carry out complex

tasks by dividing them up into smaller, interdependent work items and assigning them to

teams. Coordination needs arise from the interdependencies between these tasks (Malone

and Crowston 1994) and change as progress is made on the system under construction

(Cataldo et al. 2006).

In response to these technical and organizational issues, software development

researchers and practitioners have developed techniques and tools for coordinating work.

The most common way to cope with this complexity is to adopt and follow a software

process (Fuggetta 2000). Software processes frame and organize the technical and social

aspects of developing software. More specifically, a software process can be described

as a ―coherent set of policies, organizational structures, technologies, procedures, and

artifacts that are needed to conceive, develop, deploy, and maintain a software product‖

(Fuggetta 2000, pp. 28). Fuggetta identifies four aspects of software development

processes:

1. Software development technology—tool support such as infrastructures,

environments, and visualizations

2. Software development methods and techniques—guidelines and rules-of-

thumb on how to use technology to complete tasks

3. Organizational behavior—the science of organizing people, coordinating and

managing work activities

4. Marketing and economy—being able to address customer needs in specific

market situations, understanding the context in which software is developed

and sold

All four aspects have been subject to much attention in the context of software

development by both researchers and practitioners. Studies of software development

projects have revealed organizational behavior and structure is largely influenced by

interdependencies between software modules and run-time components (Parnas 1972;

Curtis et al. 1998; Morelli and Eppinger 1995; Sosa and Eppinger 2002; de Souza et al.

2004; de Souza et al. 2007; Valetto et al. 2007; Avritzer et al. 2008). Much of the work

related to coordinating the implementation of those components requires an

understanding of the ongoing activities of others and how those activities might impact

shared tasks. Yet the increase in global software development (Carmel 1999; Sangwan et

al. 2006) poses many difficulties for developers and managers who wish to manage these

aspects of the software development process. As a result, particular methods and

techniques such as architecting systems to require less communication overhead,

outlining principles of awareness, and identifying awareness networks have been

developed to cope with these difficulties. In turn, researchers have engineered a host of

Page 4 of 55

software development tools to minimize communication requirements and enhance

developers‘ understanding of the activities being performed over the lifecycle of the

project.

Due to limitations of scope and space, this survey will address the first aspect of

software processes identified above: software development technology. The primary

objective of this survey is to study the relationship between coordination and awareness

as empirically explored in the software engineering literature, identify important aspects

of awareness from that same body of literature, and, with respect to these aspects,

compare tools representative of those used in academia and industry that are built to

support awareness. Because surveying all existing tools and technologies is impractical,

this survey addresses a subset of these tools. The systems were primarily selected on the

frequency of their appearance in the literature, both as standalone publications and as

references that lend support to and motivate work done by other researchers in the field.

This survey was performed according to the following process: first the existing

scientific literature on empirical studies of software development coordination and

awareness activities was searched. Literature was selected from premier peer-reviewed

research conferences and journals in the areas of: software tools and environments,

empirical software engineering, computer-supported cooperative work, awareness, and

visualization (e.g., at the ICSE, CSCW, ECSCW, SOFTVIS, AVI, and VL/HCC venues).

Careful attention was devoted to identifying common themes in the information

developers need and the strategies they use to stay aware of each others‘ activities. In

general, these papers describe, analyze, or theorize about problems, but do not mention a

specific tool. As such, forward citation searches of this research were conducted to

identify software tools with the purpose of promoting awareness for a variety of software

development activities. Backward citation searches of the tool literature were performed

to identify other principles of awareness and empirical work not revealed by original

searches, yet relevant to the topic, from which these tools were created. Finally, these

publications were combined with the first set of literature describing awareness needs to

identify crucial principles of awareness, providing a context in which to evaluate the

tools.

When tools could not be found using backward and forward citation searches,

searches were made via the web using the keywords ―software development,‖

―awareness,‖ and ―visualization.‖ These searches yielded tools that addressed broad

usage scenarios instead of specific tasks, such as ―showing evolution,‖ for example. In

general, the tools identified addressed one or more tasks, such as making a change to a

portion of source-code or identifying who to contact about some technical issue. Despite

the fact that these tools were directly or indirectly motivated by awareness needs, the

publications rarely discussed the extent to which they addressed awareness as it relates to

the tasks they were built to support.

Knowing how well these tools encompass the aspects of awareness they are

designed to support is an important step in gauging their usefulness, understanding their

positive and negative qualities for the purpose of improving them, and facilitating their

adoption by users. As such, analysis of the tools was performed and a table was

constructed that maps the tools to crucial aspects of awareness. The table allows the

visualization and comparison of the characteristics of each tool and explains how each

addresses components of awareness. Therefore, this survey crucially links two bodies of

Page 5 of 55

literature in software engineering: empirical and theoretical findings on how developers

maintain awareness and tools that visualize human activities over the course of software

development projects.

In the next sections, the role of awareness and different aspects of awareness

relevant to software development activities are discussed, framing the content of this

survey. Several fundamental themes in the awareness literature that are relevant, yet not

fully explored by visual tools for promoting awareness, are identified. In the remainder

of the paper existing gaps in the current tool support available are exposed with respect to

these themes and implications for future iterations of these tools as well as novel research

avenues are discussed.

The Role of Awareness in Software Development

Coordinating work activities is easiest done in environments where individuals

are co-located (Olson and Olson 2000). Members of projects who are co-located have

opportunities for more informal interactions, including overhearing (Heath and Luff

1992) and unplanned discussions over meals or in hallways (Whittaker et al. 1994). In an

empirical study on time management by software developers, Perry and colleagues (Perry

et al. 1994) were struck by the fact that developers spent an average of 75 minutes per

day in unplanned personal interactions. In general, co-located individuals have a common

view of the way work should unfold, either because of an in-place software development

process (Fuggetta 2000; Nutt 1996), or a shared vocabulary or perspective about the work

to be done and how that work is assigned among individuals and project teams.

While co-location may be the ideal configuration of software developers from an

organizational perspective, the reality is that software development at a distance is

increasingly becoming commonplace. This is due to a number of reasons beyond the

scope of this survey, including the globalization of markets and production, cost

concerns, and the desire for mixed expertise and skills.

People at a distance typically communicate infrequently and less effectively

(Herbsleb and Grinter 1999). Thus it is often difficult to know what colleagues are doing

day to day and thus whether they are available to work on dependent tasks. The research

literature has referred to this sense of other people‘s availability and their activities as

―awareness.‖ More precisely, ―awareness‖ has been described as ―an understanding of

the activities of others, which provides a context for (one‘s) own activity‖ (Dourish and

Bellotti 1992). Yet awareness is not only about understanding others‘ actions, but

knowing how one‘s own action may impact others as well (de Souza and Redmiles

2007).

 Awareness might answer questions such as ―Who is doing what,‖ ―Who‘s who,‖

and ―Who do I talk to about issue x?‖ In a study of open-source software developers,

Gutwin and colleagues identify two types of awareness: general awareness (e.g. who is

doing what) and specific awareness (e.g. who do I talk to?) (Gutwin et al. 2004).

Similarly, in an empirical study of distributed software development teams, de Souza

found that despite the fact developers had a general idea of whose code affected whom,

they still had questions of the form ―Who do I talk to about problems with this

component?‖ ―Is my code being called?‖ and ―Who is implementing this interface?‖ (de

Page 6 of 55

Souza et al. 2007).

 Thus awareness involves a perspective, or information space of the people

involved, the activities they must perform, and the resources with which they work.

However, awareness information must also be managed over time. Although technical

strategies such as decoupling the system and designing stable APIs can limit the

coordination required upfront, even they fail to hold up against the many changes that

occur over the development cycle (de Souza et al. 2004).

Aspects of Awareness

Content—Artifacts

 Promoting ―awareness‖ necessarily implies the action of delivering contextually

relevant information to interested parties. Before that information can be passed along,

however, the content of that information must first be identified. In general, typical data

sources of awareness information include change management/version control systems,

defect and issue (i.e. bug) trackers, program source-code, documentation, and informal

communication channels such as IM and chat.

 Coordination requirements, and thus the content of awareness information,

change over time due to the dynamic and iterative nature of dependencies between

software development tasks (Cataldo et al. 2006). There are many reasons for these

changes. For example, it is not uncommon for clients to request more features than

originally communicated. As a consequence, parts of the design and thus the

implementation might well change. The new requirements create additional

implementation tasks to which management must allocate developer resources. As

developers implement features and check them in to a versioning repository, bugs

invariably emerge. As a result, developers create and file bug reports, creating work to

which bug fixers must attend. Newly written code is subject to the same rigorous testing

and verification as the original code it replaces. In short, changes imply other activities

that must be performed downstream.

 Artifacts of the development process such as code are subject to constant change

and different versions must be maintained by developers. Awareness of changes may

need to be communicated daily as new code is checked into a repository. Dependencies

in source-code emerge over time by their nature; one component may have no

dependencies for a day or weeks and then suddenly, one day, a portion of source-code

may reference it. If a developer fails to know their code is being referenced, they may

change it and break the very code that depends on it. Failing to address the requirements

of consuming code can cause problems for the developers involved, especially if a project

deadline looms near (de Souza et al. 2007). Reverse engineering and maintenance tasks

may require information over a longer period of time such as monthly releases of the

software. Thus, awareness information should reveal information about activities that

occurred in the recent past, activities that are currently happening, or activities that

occurred over the history of the whole project.

 The above scenarios are by no means exhaustive, but serve simply to illustrate the

dynamic nature of coordination requirements. Software development is an incremental,

Page 7 of 55

iterative process so this is not unexpected. Artifacts of the software development process

are not the only resources in flux. As explained in the following section, the individuals

with whom one must coordinate change as well.

Content—People

 In addition to development artifacts, people use each other as resources to

maintain an awareness of what is going on. In software development, awareness and

information-seeking go hand in hand. Coworkers are the most frequent sources of

information about design artifacts and developer expertise (Ko et al. 2007). Developers

prefer to pick the brains of others and find what they need by utilizing their personal

networks, often going outside of their assigned teams to do so (LaToza et al. 2006;

Ehrlich and Chang 2006). Documentation is often not kept up to date and design

knowledge is often distributed across teams by the very nature of modular decomposition

(Parnas 1972) and the assignment of teams to different aspects and components of the

system. In an empirical study of software developers, Ko and colleagues (Ko et al. 2007)

identified the types of knowledge sought over several different work tasks: writing code,

submitting changes, triaging bugs, reproducing failures, understanding execution

behavior, and reasoning about design. They found that co-worker awareness, i.e. what

people were doing, was among the top information needs over these categories.

Individuals often deferred searches about implementation choices, program behavior, and

impacts of changes to code until they could find the right co-worker to talk to about a

particular problem.

 Numerous researchers have tried to characterize the dynamic nature of people‘s

relationships over time. de Souza proposes a social network (Wasserman and Faust

1994)-oriented view with the term ―awareness network,‖ which refers to the set of people

who need to be aware of one‘s actions as well as the set of people whose actions one

needs to monitor (de Souza and Redmiles 2007). The network expands and constricts

over time as tasks evolve and require individuals to coordinate. Similarly, Nardi and

colleagues refer to ―intentional networks,‖ collections of contacts that an individual

constructs, maintains and activates as the work requires (Nardi et al. 2002). Awareness

networks may be the prerequisite for constructing intentional networks.

 Before one can maintain a network of those of whom they need to be aware,

individuals must first identify what set of people should actually be in the network itself.

Empirical studies have shown that, in some cases, at least 80% of all coordination and

communication activities can be predicted in advance by analyzing dependencies in the

system architecture (Morelli and Eppinger 1995; Sosa and Eppinger 2002). In general,

however, much of the coordination work individuals do is in response to needs that

emerge from changing code, tasks, and availabilities of co-workers. These needs cannot

be known before development work begins. Empirical studies (Cataldo et al. 2006) have

validated this observation.

 In an effort to support the process of being aware of others‘ activity and finding

expertise, software researchers have developed tools that show the relationships between

people based on dependent tasks they share as well as the artifacts they use. For

example, using a matrix-multiplication method derived from the PCANS model (Carley

and Krackhardt 1998), de Souza and colleagues showed how dependencies in source-

Page 8 of 55

code create dependencies between people working on the code. They describe how, at

any release or snapshot of a project, a social call-graph, or sociogram, visualizing

connections between individuals based on the code they write, can keep developers aware

of how changes to that code may affect them or others (de Souza et al. 2007). The graphs

can also help developers identify multiple people to talk to about portions of the code

based on their usage of it. TESNA, a tool developed by Amrit (Amrit 2008), also uses

sociograms to show links between developers based on dependencies in the code but

combines the graphs with social network analysis (SNA) metrics (Wasserman and Faust

1994) to assign developers relative measures of prominence and reputation (e.g.

developer ownership, involvement in knowledge exchange). Recommender systems

(Mockus and Herbsleb 2002; McDonald and Ackerman 2000; Ackerman and McDonald

1996) are a set of tools that address this problem by automatically suggesting people with

whom to talk based on the history of their interactions with the source-code. The

common feature of these tools is that they show individuals with whom they might

coordinate based on the history of their interactions with the code. They identify the

―who‖ dimension of awareness.

 When individuals use awareness information to get help or ask a question, that

information should give an indicator of that individual‘s willingness to respond.

Availability/Willingness to Help

 Awareness information is often used to identify individuals with whom to talk (de

Souza et al. 2007). Yet identifying the person to talk does not necessarily mean they will

provide the information the asker needs. Unlike design artifacts such as architecture

diagrams, code, and design documents, people only become resources when they consent

to do so, often under conditions of their choosing (Illich 1971). In order for an individual

to get help, the information-provider must be willing to cooperate. This willingness

might depend on the helper‘s demeanor, their history of interactions with the

information-seeker, and any perceived benefits as a result of helping. Asking someone

for help usually comes at a cost: the disruption of flow and continuity of ongoing work,

which reduces the productivity of the helper (Szóstek and Markopoulos 2006). As such,

helping may require precious time for little reward, aside from a possible increase in

social reputation. Yet appearing unwilling by responding ―no‖ can degrade the helper‘s

relationship with their peers because declining to help violates social norms, especially if

the culture of the workplace promotes sharing. Ultimately, knowing whether someone is

reachable is not enough; the seeker must rely on social context for when and where to

make contact. To the author‘s knowledge, this issue commands further attention and

exploration in the literature.

 It is not enough to know whose actions one needs to watch. Software

development is an information-intensive process already and any additional awareness

information that becomes available may distract developers. As such, awareness

information should facilitate decision-making related to tasks at hand within some larger

task and corresponding phase of the software development process.

Mapping Content to Tasks

 Awareness content needs to be directly tuned to a developer‘s current task

Page 9 of 55

because, in the interest of time, a developer is often only seeking information that is

required to complete that task (Kersten and Murphy 2006). If information acquisition

requires use of a stand-alone system, it increases the cognitive cost of that information,

requiring the developer to switch between different workspaces, lose short-term memory,

and perform less efficiently and productively as a result. Gutwin and Greenberg also

made this observation in their framework for workspace awareness (Gutwin and

Greenberg 1999). They articulate a ―what‖ dimension of awareness (e.g. ―What are

people doing?‖ ―What goal is that action part of?‖ What object are they working on?‖

etc.).

 Thus for awareness information to be considered as relevant and useful as

possible, it should directly relate to the task or subsets of tasks at hand. De-

contextualized information, such as Microsoft‘s ―Tip of the Day,‖ is more annoying to

users than it is helpful (Fischer 2001). Software developers spend much of their time

using popular development environments, or IDEs, such as Eclipse and Jazz for example.

These IDEs have reached a critical mass of users engaged in both software development

research and practice. As such, many tools for awareness have been designed as plug-ins

to these environments as to not distract from the flow of work (Sarma et al. 2003; Hupfer

et al. 2004; DeLine et al. 2005). These tools aggregate resources and events already in

the environment, but usually time consuming to access, in order to makes sense of the

work currently being done. For example, some tools inspect deltas from versioned files

to show timeline views of activity that convey change and evolution. Others identify

parallel workspace events generated by multiple developers to detect conflicts in order to

determine who will be impacted by, and should be notified of, changes. Information that

other developers are doing parallel work on the same files is most useful, for example,

when the target user is working on those files concurrently, not after they have checked

the files in to a CM system (Conradi and Westfechtel 1998). Thus identifying the task a

particular piece of awareness should support and delivering that awareness in a timely

manner are fundamental requirements for displaying information.

 In turn, the task that the awareness information is designed to support should be

representative of some real-world task as identified by some phase of the software

development process. Examples include fixing bugs, understanding source-code, adding

features in the maintenance phase of software development, and implementing a

component or submitting a change in the implementation phase of software development.

Many of the tools designed for supporting awareness focus on activities in the

maintenance phase of software development, such as program comprehension and

reverse engineering.

 When awareness content is intended to support decision-making involved in

completing a task, a measure of the confidence of the accuracy of the information

provided is crucial. To effectively use awareness content in order to complete a task, the

individual must understand its relevance and trust its accuracy.

The ―Interpretive Gap‖

 In general, there is a gap between providing awareness information and actually

being able to express confidence in the validity of the information and its usefulness

toward completing a task. A similar gap exists in the field of information visualization,

Page 10 of 55

the ―use of computer-supported, interactive, visual representations of data to amplify

cognition‖ (Card et al. 1999). The tension rests in what is being shown in the

visualization compared with what needs to be shown to make a straightforward decision

(Amar and Stasko 2004). Most approaches toward providing awareness rely on the user

to unquestioningly unpack the awareness information and put it to use. There is usually

no indication of the validity of the information or the data from which it came. As a

result, decision-making is often informed by individual user experience and incomplete

information rather than a rich set of cues the developer can use to tradeoff the

consequences of certain courses of action.

 In his discussion of the user activities involved in carrying out a task via a

computer, Don Norman (Norman 1986), a distinguished researcher in the field of

usability, observes the tension between the user‘s psychological perception of the

system‘s state and the system‘s actual state. When a user performs a task, they specify a

list of action sequences, or interactions with the software, needed to achieve some result.

After the user executes the actions, they perceive a visual result (e.g. a blinking status

update). In response, the user goes through with what Norman terms a phase of

―interpretation.‖ Interpretation involves the cognitive process of giving meaning to the

perceived information and subsequently comparing it to what was expected when the

action sequence was initially specified.

 Yet perceptions are subjective and can lead to incorrect interpretations.

Awareness support can only be as good as the source of the awareness information itself.

For example, Ariadne (Trainer et al. 2008), a visual software tool that shows connections

between developers based on the shared dependent code they use shows varying levels of

activity of different developers in the project based on the number of calls they make.

The more thick the connections are, the more calls to the code developers are making

One could potentially use this visualization to get a sense of certain people‘s ―expertise,‖

the argument being that the more connections from a developer to the code with which

they work, the more knowledge that individual has about the code. However, it could

also be the case that that developer is only using a small set of features (e.g. instance

variables or helper methods) and thus would not be very helpful answering questions

relating to the majority of the implementation. This information is not clearly available

via the interface, so relying on the information provided is not adequate for forming a

complete and correct interpretation. To more correctly evaluate the possibility of

someone being an expert on a code module, the user would need more information, such

as a view of the code being called juxtaposed with the total size of the module and other

related code.

 Borrowing from Norman, the mismatch between the user‘s interpretation of the

awareness content and the meaning implicitly assigned to the content by the process

through which it was derived will be referred to hereafter as the ―interpretive gap.‖

 Thus awareness content should include various forms of evidence to support its

correct interpretation and meaning, including strengths and certainties of relationships,

support for user hypothesis testing (Shneiderman 2002), and alternate views of that

awareness should be conveyed in awareness delivery mechanisms. For example, a

system that displays connections to individuals with particular source-code expertise

should provide rationale for and trade-offs between asking different individuals such as

their history of responding to questions (indicating their willingness to help), their actual

Page 11 of 55

experience using the code, their preferred method of contact, their location (which might

determine their response speed), and so on and so forth.

Temporal Unit of Analysis

 As software artifacts are produced as a result of the development process, they are

typically automatically archived in versioning repositories. These repositories typically

contain all versions of items and associated meta-information such as who created them,

when they were created, and textual descriptions summarizing the items. Some tools

even log real time user interactions with items in the development workspace, such as

editing or checking in source-code. As a result, information about items can potentially

be extracted at any point in time over the trajectory of the project to reveal insights into

the activities that occurred at that point. For example, the entire history of a project

might be needed to complete reverse engineering or maintenance activities while only the

recent project history like daily code commits might be needed to assess the impact on

others‘ dependent code. Real time awareness information like ongoing parallel changes to

the same artifact by multiple developers would be needed to detect code commit

conflicts. Awareness information, then, can be expressed in several temporal

granularities: the entire project history, recent project history, and real time project

activities.

Visual Representations

 Another characteristic of awareness is the visual form through which it is

conveyed. In general, most systems to support awareness deliver it in three forms:

textual, graphical, or both. Fitzpatrick et al. found that something as simple as a

lightweight tickertape mechanism was sufficient for conveying changes made to a

software system (Fitzpatrick et al. 2006). In a study of open-source software

development, Gutwin and colleagues found that by using mailing lists and chat systems,

developers could actively maintain awareness of what their colleagues were doing

(Gutwin et al. 2004).

 Much of the work on supporting awareness, however, focuses on the use of

graphics. Tool designers use graphical representations of people and artifacts like source-

code and design diagrams to convey structure and overall patterns in development

activity. Software is by its nature (Brooks 1995) complex and invisible. Graphical

representations, or visualizations, have been used extensively to give visibility to

software and make the process of understanding software easier as a result. It is

generally accepted that the advantages of successful visualizations over textual

representations include allowing users to process more data in parallel, facilitating

identification of significant recurring patterns, and identifying the high-level relationships

among data critical to decision-making (Bertin 1982; Ball and Eick 1996; MacKinlay and

Shneiderman 2000).

 Tool designers use several common visual representations of design artifacts and

people involved in software development activities. One widely-used representation is a

simple network graph composed of nodes and edges. In software development graphs are

often used to represent relationships between different system components, and thus their

Page 12 of 55

structure (Herman et al. 2000). For example, a task like finding a particular file is most

usually performed by navigating a hierarchical tree (a type of graph). Developers use call

graphs to understand dependencies in the code. Nodes represent source-code artifacts

and edges represent calls between source-code.

 Alternatively, small visual cues or decorators can be used to augment existing

visualizations and displays in the environment in unobtrusive and lightweight ways.

These icons are typically too small to convey much information themselves.

As such they are often used to convey a single property, such as the status of an item (e.g.

buggy, conflict, valid, etc.). Yet their small size means many can be viewed in the same

window or dialog box at once, giving a sense of the ―overall‖ status of the information

they annotate. Typical examples in software development practice include the red

squiggly underlines in the code editor that indicate typographical errors, red boxes next to

lines of code that indicate compile problems, or green lights next to a test case indicating

it passed.

 Researchers have used decorators for the purpose of conveying awareness as well.

Sarma et al. use colored arrows and text to annotate source-code in the Eclipse editor,

indicating the potential for conflicting code check-ins and measurements of the code‘s

impact on other code in the system (Sarma et al. 2003). In the Team Tracks

visualization, DeLine and colleagues use a textual list view combined with decorators to

indicate development artifacts related to the current source-code displayed in the editor

(DeLine et al. 2005). The lengths of horizontal bars next to the related items indicate the

strength of the relation while small arrow icons represent directionality of dependencies.

In other visualizations, user avatars or icons are also typically used to represent

developers, managers, or other stakeholders involved in the development process (Hupfer

et al. 2004).

 Such visual representations are typically, but not necessarily, integrated into the

development environment along with standard views such as hierarchical source-code

trees, the source-code itself, and UML diagrams. On the other hand, visualizations that

exist as stand-alone systems increase the cognitive cost of using them because of constant

task-switching users must perform. Some awareness visualizations try to visualize whole

systems (Eick et al. 1992; Froehlich and Dourish 2004). In these cases, such

visualizations may require more screen real-estate than one monitor can provide.

Allocating stand-alone visualizations to a second monitor adjacent to the developer‘s

primary monitor represents one promising approach to this problem (Speier et al. 1997;

da Silva et al. 2006).

 The following table summarizes the different aspects of awareness covered up to

this point:

Page 13 of 55

Awareness Aspects Description

1. Content:

 Artifacts

 People

--Data sources and associated awareness

information (e.g., CM repository and

change history, IDE and real time activity)

2. Mapping Content to Tasks --Relating awareness content to practical

tasks and phases of software development

3. Interpretive Gaps --Uncertainty in interpretations of

awareness content needed to make

decisions (e.g. recommendations)

4. Temporal Unit of Analysis --Granularity of time: entire project history,

recent project history, real time

5. Visual Representations --How awareness is conveyed through the

interface: graphics, text, or both
Table 1—Aspects of awareness used to support software development activities.

Summary

 As the previous sections have illustrated, organizing the interactions involved in

software development is a complex problem due to the coordination effort required.

Software managers and developers use a software process to manage this complexity.

Within it, designers and architects use a variety of organizational and technical strategies

to reduce coordination needs. These strategies work more effectively when developers

are co-located than when they are distributed in time and space. Yet global software

development is increasingly becoming the rule, not the exception. As system knowledge

and developer expertise become spread out over different time zones, distances and

individuals with different cultural backgrounds, it becomes increasingly difficult to

maintain the same awareness to which co-located groups have access.

 To address the problem of staying aware, the research community has developed

a host of visualization tools to either augment existing views in development

environments or provide specialized views of individual activity combined with

information about software artifacts. The vast majority of these tools use the project

versioning repository as a project memory to uncover what individuals have done and

what changes to artifacts have been made. There are literally dozens of examples of such

tools. Despite this fact, there is still relatively little known about how the vast majority of

these tools differ, with the exceptions of the broad categories of information they display,

their visual representations, whether they have been evaluated or not, and the types of

interactions they support (Storey et al. 2005). Identifying similarities and differences in

these tools can lead to an understanding of their best and worst aspects as well as how

they may be combined to better support awareness.

Existing Visual Tools for Supporting Awareness

 In this section, forty (40) tools in total are introduced and surveyed. From them, a

Page 14 of 55

subset was chosen and subsequently analyzed using the aspects of awareness reported in

the previous section. In an effort to categorize and analyze the tools, classifications

describing the broad tasks (i.e. tasks to be completed by developers) the tools support

were chosen:

 Understanding change management and evolution

 Recommending people and artifacts

 Avoiding conflicts

 Determining individual availability

 Understanding developer activities

 A direct link was found between these classifications and the tasks developers

perform as identified in the surveyed research literature on empirical software

engineering and awareness (e.g. determining individual availability and recommending

people and artifacts). Within categories, tools were selected based on their research

merits. This process resulted in twelve (12) tools.

 One way to measure the merit of a concept or tool is the extent to which it

appears—as a publication itself or as a reference in another publication—in the research

literature. The more a piece of work has been published, the more it has been peer

reviewed and refined to address various issues raised by scientists in the same research

community. As the ideas are refined, the more rigorous they become and the more firmly

they hold up to scientific critique. Thus number of publications—everything from

workshop papers to book chapters—was used as one metric to quantify research value.

The value of theories, frameworks, tools, and empirical results can also be assessed by

the number of citations to that work, an indicator of its relevance to and influence on

ongoing related, but different, research in the field. As such, citation count was also

considered a measure of a tool‘s worth. Table 2 below lists the tools and their paper and

citation counts, respectively.

Tool Name Paper

Count

Citation

Count
1

ELVIN/Tickertape (Fitzpatrick et al. 2006) 4 69

Command Console (O‘Reilly et al. 2005) 2 29

softCHANGE (German et al. 2004) 2 102

Expertise Recommender (McDonald and Ackerman 2000) 3 120

Hipikat
2
 (Cubranic and Murphy 2003) 4 106

Team Tracks (DeLine et al. 2005) 2 39

Palantír (Sarma et al. 2003) 5 45

TUKAN (Schummer and Haak 2001) 2 10

Awarenex (Begole et al. 2002) 3 139

Community Bar (Tee et al. 2006) 3 11

FASTDash (Biehl et al. 2007) 2 16

1 From portal.acm.org--when citation counts were not available they were counted manually using Google scholar search results.
2 Hipikat became Mylar (Kersten and Murphy 2006) and is now Mylyn (http://eclipse.org/mylyn/start/)

Page 15 of 55

Jazz
3
 (Hupfer et al. 2004) 3 37

Table 2—Tools chosen for analysis, the number of published papers, and the number of times the papers

have been cited.

The table below lists the tools categorized according to the five aspects of awareness

summarized in Table 1. The tools ultimately chosen for analysis appear in bold. Some

tools appear in more than one category because they support multiple tasks. The list is by

no means exhaustive, but at the same time covers tools that support a range of tasks

empirically identified as central to software development processes.

3 The version of Jazz surveyed here is the older (and only published) version, as described by Hupfer and colleagues (Hupfer et al.

2004). A newer version can be downloaded at http://www.jazz.net.

Page 16 of 55

Tool Name Content Task and Corresponding

Phase of Lifecycle

Interpretive

Gaps

Temporal

Unit of

Analysis

Visual

Representations

Understanding Change Management and Evolution
VRCS (Koike and Chu

1997)

Visual

representations of

files and versions

Version control and

module management;

building a system

Implementation-

Maintenance

N/A Whole state of

repository—not real

time

2-D network graphs laid out

in 3-d, explicitly model files,

versions, and releases; edges

indicate which versions

should be compiled together

ADVIZOR (Eick et al.

2002)

Software changes,

authors, issue

requests

Version control,

module management

Maintenance N/A Whole state of

repository—not real

time

Matrix displays, 2-D and 3-D

bar charts, pie charts, line

oriented displays, network

graphs

XIA/CREOLE (Wu et al.

2004a)

Architecture/source

-code changes and

associated time,

location and

authorship

Version control,

module management

Implementation-

Maintenance

N/A Current state of

repository—not real

time

Architecture diagram, call

graphs, and data flow views

softCHANGE Metadata from CVS

and BugZilla

(versions and

bugs)—Files, bugs,

authors

Version control,

module management

Maintenance Method for categorizing

issues based on changes

is not transparent

Whole state of

repository – not real

time

Network graphs, histograms

showing files, authors,

author-file relationships

EVOLUTION MATRIX

(Lanza 2001)

Software releases

and versions,

number of

additions/removals

of modules over

time

Show software

evolution

Maintenance N/A Whole state of

repository – not real

time

2-D Matrix view with classes

on y-axis and time ordered

releases on x-axis

BEAGLE (Tu and

Godfrey 2002)

Software releases

and modules,

evolution metrics

Understand evolution:

structural changes

Maintenance N/A Whole state of

repository – not real

time

Call graphs, tree views and

scatter plots

SPECTOGRAPH (Wu et

al. 2004b)

Software

releases/revisions,

authorship

Punctuation—sudden

and discontinuous

change; which parts of

system were frequently

modified; Identify

developer coding

behavior

Maintenance N/A Whole state of

repository—not real

time

―Spectograph‖ with time

ordered releases on x-axis,

files authors or directories on

y -axis

REVISION TOWERS

(Taylor and Munro 2002)

Change history:

revision information

and authorship

Change management Maintenance N/A Whole state of

repository—not real

time

―Tower‖ metaphor compares

revisions of two files with

width attribute indicating size

of change; map towers to

timeline

Page 17 of 55

WORKSPACE

ACTIVITY VIEWER

(WAV) (Ripley et al.

2007)

Real time

workspace changes,

types of changes

and who made them

Detect workspace

changes--Project

management

Implementation-

Maintenance

N/A Whole state of

workspace and

repository—real

time

3-D towers, developers or

artifacts, with attributes

representing change size,

type, age

COMMAND

CONSOLE

Change history,

structure of source-

code, ongoing

changes

Project management—

identifying ongoing

change and reduce

conflicts

Implementation-

Maintenance

Conflicts are color-

coded by the likelihood

they will occur;

rationale behind the

likelihoods is not

conveyed through the

interface.

Current state of

repository/workspac

e; real time

8 linked screens; complexity

thumbprint, hierarchical

files/folders view, stacked

layout showing relative size

and ongoing changes to

artifacts

GEVOL (Collberg et al.

2003)

Source-code,

developers, change

history

Change management,

understanding

evolution

Maintenance N/A Whole state of

repository—not real

time

Novel graph format showing

control flow, inheritance, and

call graphs annotated with

author colors showing

authorship

CODE CRAWLER

(Lanza 2003)(Lanza et al.

2005)

Source-code

metrics, change

history

Reverse engineering Maintenance N/A Whole state of

repository—not real

time

Hierarchical graphs, attributes

like width and height indicate

number of methods/fields

RelVIS (Pinzger et al.

2005)

Change history,

evolution metrics

across releases,

module

dependencies

Change management,

understanding

evolution

Maintenance N/A Whole state of

repository—not real

time

Kiviat diagrams that show

multiple releases of software

per diagram and different

metrics for each release

ELVIN/TICKERTAPE CM commits,

source-code and

authors involved,

developer

discussion

Coordinate around

changes to the system

Implementation N/A Current state of

repository—real

time

Scrolling text-based ticker

tape at top of development

environment, link to chat

window

CODESAW (Gilbert and

Karahalios 2007)

Change history,

source-code,

newsgroup

discussion lists

Reveal group

dynamics, compare

work and discussion

done by multiple

developers

Implementation-

Maintenance

N/A One year‘s time of

repository—not real

time

Stacked timeline view of

commits by author (above

timeline) and corresponding

discussions (below timeline)

annotated with developer

―post-it‖ notes

Recommending People and Artifacts
TUKAN Related artifacts

(e.g., variables,

classes, etc.),

developers, and

potential conflicts

Find developers who

are knowledgeable

about code/avoid

parallel conflicts

Implementation-

Maintenance

Weather symbols

indicate potential for

conflict but no

quantifiable measure

Current state of

repository as well as

concurrent changes

Graph of artifacts and

relationships (e.g. inheritance,

composition, etc.)

SIJ (STeP-IN Java) (Ye

et al. 2007)

Source-code,

documentation,

discussion archives,

Support information-

seeking during

development

Implementation-

Maintenance

If question is answered,

asker can see the

helper‘s technical

Current state of

repository—real

time

Web interface, standard

menus, code browser

Page 18 of 55

developer and code

profiles

profile/expertise and

helping history

EXPERTISE

BROWSER (Mockus

and Herbsleb 2002)

Developers and their

code commits/bug

reports for particular

artifacts

Find expert on aspect

of software system

Implementation-

Maintenance

Asker can see

distribution of helper‘s

code commits and

activity on files

Whole state of

repository—not real

time

List view of individuals from

organizational chart,

horizontal box representing

code; width/height attributes

indicate magnitude of

commits

EXPERTISE

RECOMMENDER

Individuals and their

contact information

Find expert on aspect

of software system

Maintenance Asker can specify what

groups should get a

request, but the process

of recommending is

done on the server; not

transparent, only details

provided are contact

information

Whole state of

repositories—near

real time

List of individuals by

department/social network

and general problem topic

ANSWER GARDEN 2

(Ackerman and

McDonald 1996)

Individuals and their

contact information

Find expert on aspect

of software system

Implementation-

Maintenance

N/A Current state of

repository—not real

time

Web interface, standard

menus in web browser

HIPIKAT Relevant source-code

artifacts, bugs,

documentation,

reasons for

recommending the

artifact

Information-seeking;

finding artifacts related

to task; software

change task for

example

Maintenance Textual description of

why the artifact is

related and confidence

measure from 0-1

Whole state of

repository—not real

time

Tabular list view integrated

into Eclipse window

CODEBROKER (Ye

and Fischer 2002)

Relevant source-code

examples,

documentation

Information-seeking;

finding reusable

components

Implementation-

Maintenance

Description of

component received,

and confidence measure

from 0-1

Current state of

repository—real

time

Editor windows for code

examples, HTML pages for

documentation, list tabular

view for recommended

components

TEAM TRACKS Source-code Information-seeking,

code navigation and

understanding

Implementation-

Maintenance

Arrows indicate

dependency

relationships as a

surrogate for explicit

rationale; horizontal

bars predict relative

ranking of results in

conjunction with rank-

ordered list

Current state of

repository—not real

time

Tabular list view integrated

into Eclipse Window,

decorators indicate

dependency directionality,

favorites window shows most

visited code, related code

window should code related

to the selected code in the

editor

Avoiding Conflicts
PALANTÍR Annotations on

source-code

indicating potential

conflicts resulting

Reduce check-in

conflicts

Implementation Text in-line with

decorators indicate

impact severity and

types and sizes of

Current state of

repository as well as

concurrent changes

Visual cues and textual

indications of severity in code

editor, hierarchical view

shows pairwise conflicts

Page 19 of 55

from ongoing

changes

conflicts

STATE TREEMAP

(Molli et al. 2004)

Real time workspace

changes; what

artifacts are being

changed by whom

Detect ongoing

parallel work

Implementation No quantifiable measure

of divergence

Current state of

workspace—real

time

Treemap of workspace

indicates different state (e.g.

checked out and modified,

checked out and newly

committed) of artifacts by

shading

COMMAND

CONSOLE (O‘Reilly et

al. 2005)

Change history,

structure of source-

code, ongoing

changes

Project management—

identifying ongoing

change and reduce

conflicts

Implementation-

maintenance

Conflicts are color-

coded by the likelihood

they will occur;

rationale behind the

likelihoods is not

conveyed through the

interface.

Current state of

repository/workspac

e—real time

8 linked screens; complexity

thumbprint, hierarchical

files/folders view, stacked

layout showing relative size

and ongoing changes to

artifacts

COLLABVS (Dewan

and Hegde 2007)

Change history,

ongoing changes

Reduce check-in

conflicts

Implementation-

Maintenance

Details of conflict in

inbox

Current state of

repository; ongoing

changes—real time

Conflict inbox, visual

cues/notifications, chat

window

TUKAN Related artifacts

(e.g., variables,

classes, etc.),

developers, and

potential conflicts

Find developers who

are knowledgeable

about code/avoid

parallel conflicts

Implementation-

Maintenance

Weather symbols

indicate potential for

conflict but no

quantifiable measure

Current state of

repository as well as

ongoing changes—

real time

Graph of artifacts and

relationships (e.g. inheritance,

composition, etc.)

FASTDash (Biehl et al.

2007)

Documentation,

source-code, files and

modules people are

editing in real time

Who has file checked

out, what files are

being viewed and

edited by who, detect

conflicts

Implementation-

Maintenance

N/A Current state of

repository—real

time

Integrated window with

sections for source-code,

documentation, annotated

with user avatars of who is

working on what; runs on

shared display

MIRAMAR (Hancock et

al. 2006)

Users‘ workspace

and the artifacts with

which they are

working

Detect conflict and

divergence with 3-D

feedback

Implementation-

Maintenance

N/A Current state of

repository—real

time

3-D visualization of different

users‘ workspaces and

―stretchy‖ connections

between them when there are

conflicts due to modifying

shared resources

Determining Individual Availability
ACTIVE MAP

(McCarthy 1999)

Location and

movement of people

Locating people and

their movement

Whole process Only as good as location

sensors

Real time; last

updated

Map background, user avatars

overlaid on buildings

AWARENEX Computer activity,

appointments,

computer activity

with appointments,

and gaps with no

activity at all

Identify rhythms in

people‘s availability to

form a shared sense of

time

Whole process N/A History of all

activity in 3 week

intervals

―Actogram‖ 12 hr timeline

view on horizontal axis and 3

week timeline on vertical

axis; availability blocks

within a 12 hr span laid out

horizontally; also an

Page 20 of 55

aggregate view over 10

months

JAZZ (Hupfer et al.

2004)

Source-code, change

history, developers,

chat mechanisms,

workspace activity

Reveal activities of

team members

Implementation-

Maintenance

N/A Whole state of

repository; ongoing

changes—real time

Jazz band links developer

avatars to resources they are

working on, decorators

indicate file and resource

status (e.g. checked out, being

modified, checked in, etc.),

chat windows anchored in

code

COMMUNITY BAR Artifacts/documents

people are working

on

Determining

availability,

monitoring and

coordinating,

opportunistic

collaboration

Whole process Only as good as screen

sharing app; privacy

controls restrict view of

artifact content

Real time; last

updated

Vertical bar with chat

windows, screen sharing

FRACTAL FIGURES

(D‘ambros et al. 2005)

Change history,

magnitude of

changes, authorship

information

Project management–

Understand

development effort and

distribution of effort

over developers

Implementation-

Maintenance

―Fractal values‖ from 0-

1 note how distributed

the module is over a set

of developers; can

correlate bugs with

fractal value for

example

Whole state of

repository—not real

time

Fractals/tree maps

characterizing extent of

developer effort

TEAM-SCOPE (Jang et

al. 2000)

Team documents,

emails, files, events,

repositories

General team

communication and

awareness

Implementation-

Maintenance

N/A Current state of

repository, not real

time

Web-interface, calendar view

with events, standard

hierarchical file layout

Understanding Developer Activities
FASTDash Documentation,

source-code, files and

modules people are

editing in real time

Who has file checked

out, what files are

being viewed and

edited by who, detect

conflicts

Implementation-

Maintenance

N/A Current state of

repository—real

time

Integrated window with

sections for source-code,

documentation, annotated

with user avatars of who is

working on what; runs on

shared display

TESNA (Amrit 2008) Source-code

dependencies,

developer

dependencies, chat

log communications

Project management–

Identify gaps in

coordination

Implementation-

Maintenance

N/A Current state of

repository—not real

time

Social network diagrams

depicting dependencies

between code and developers,

chat log correspondence

ShriMP VIEWS (Storey

et al. 2001) (Storey et al.

1997)

Software module

structure,

documentation,

source-code

Program

comprehension

Maintenance N/A Current state of

repository—not real

time

Integrated views of call

graphs, java documentation,

and source-code

TARANTULA (Jones et

al. 2001) (Jones and

Test cases and lines

of code that execute

Fault localization Testing Color code portions of

code that may be

Current state of

repository—real

Line-oriented view illustrates

involvement of each line in

Page 21 of 55

Harrold 2005) during those test

cases

responsible for faults time failure/passing of test cases

SHO (Ellis et al.

2007)((Halverson et al.

2006)

Change requests,

developers assigned

to and resolving

them, classifications

of bugs

Coordinate bug

tracking reporting,

assignment and

resolution

Maintenance N/A Whole state of

repository—not real

time

Novel visualization: change

requests laid out horizontally

by component, color-coded

by assignee, tool tips for

description of change request

ELVIN/TICKERTAPE

(Fitzpatrick et al. 2006)

CM commits,

source-code and

authors involved,

developer

discussion

Coordinate around

changes to the system

Implementation N/A Current state of

repository—real

time

Scrolling text-based ticker

tape at top of development

environment, link to chat

window

AUGUR (Froehlich and

Dourish 2004)

Source-code, CM

comment logs,

authorship, change

history

Monitoring activity,

Understanding

activities over time

Implementation-

Maintenance

N/A Whole state of

repository—not real

time

Line-oriented view of source-

code colored by author,

network graphs and line

charts

CODESAW (Gilbert

and Karahalios 2007)

Change history,

source-code,

newsgroup

discussion lists

Reveal group

dynamics, compare

work and discussion

done by multiple

developers

Implementation-

Maintenance

N/A One year‘s time of

repository—not real

time

Stacked timeline view of

commits by author (above

timeline) and corresponding

discussions (below timeline)

annotated with developer

―post-it‖ notes

JAZZ Source-code, change

history, developers,

chat mechanisms,

workspace activity

Reveal activities of

team members

Implementation-

Maintenance

N/A Whole state of

repository—real

time

Jazz band links developer

avatars to resources they are

working on, decorators

indicate file and resource

status (e.g. checked out, being

modified, checked in, etc.),

chat windows anchored in

code

SEESOFT (Eick et al.

1992) (Ball and Eick

1996)

Source-code change

history, authorship,

software metrics

Program management Implementation-

Maintenance

N/A Whole state of

repository—not real

time

Line-oriented view of source-

code with authorship

information and associated

software metrics, call-graphs,

control flow

Table 3—List of visualization tools for awareness and their mappings to different aspects of awareness from Table 1.

Page 22 of 55

Understanding Change Management and Evolution

ELVIN/Tickertape

 ELVIN/Tickertape is a lightweight chat mechanism and publish/subscribe

notification tickertape integrated into CVS, the popular control versioning software

(Fitzpatrick et al. 2006). Developers subscribe to groups (e.g. structured by software

component) and messages are generated and sent by the system to the tickertapes

belonging to each individual in the group whenever code is committed to the repository

(see Figure 1a). Developers can compose custom messages and send them to members of

their group or others‘. Developers use the messages sent to their tickertape to initiate

chat dialogs with other developers in response to the CVS message (Figure 1b).

ELVIN/Tickertape was evaluated using quantitative statistical analysis of the CVS logs

combined with a qualitative analysis of chat logs and interviews. There was evidence of

the tool supporting stimulated focused discussion around the changes and supplementing

log information with contextual pieces of information such as significance of the changes

and corresponding developer discussions. The tool plays an important role in supporting

coordination by combining changes to the code and dialog around those changes.

Figure 1a—Tickertape message of the form: group: CVS committer: file modified: comment.

Page 23 of 55

Figure 1b—Threaded chat message around an ELVIN/Tickertape commit message service.

Content: The tickertape displays a message every time a developer commits code to the

repository noting the developer who made the change, the source-code artifact that was

changed, and the commit comment. Users can also open a dialog box to start a threaded

conversation related to the content of the tickertape message. The dialog box serves as a

mechanism to associate individuals with the source-code they are working on.

Dependencies between people and between source-code must be inferred by the user.

Mapping Content to Tasks: The tool was built to support developer-developer

interactions and coordination of development activities around committed changes made

to a software system. Code commits are representative of real tasks in software

development and happen on a daily basis. The tool is for use by—and was subsequently

tested with—developers in the software implementation phase.

Interpretive Gaps: There is no uncertainty in the information displayed. It comes

directly from CVS logs and recorded chat transcripts.

Temporal Unit of Analysis ELVIN/Tickertape displays messages in real time as

developers make commits to the repository. Notifications and chat logs can be archived

using the client interface. However there is no timeline view presenting the changes and

the individuals who worked on them so it is difficult to relate the two over a non-trivial

length of time.

Visual Representations: ELVIN uses text and simple dialog boxes only. It displays a

scrolling ―ticker‖ window with messages and a threaded chat messaging log showing

conversations relating to the commits. The representations are light-weight and the

tickertape metaphor is well-suited toward displaying abbreviated notifications of all types

(e.g., stock prices and sports scores). The representations do not distract greatly from

Page 24 of 55

developer work because reading CVS commit messages and project mailing lists are

familiar activities.

Command Console

 Command Console is a set of linked visualizations on eight consoles designed to

help gauge project progress, reveal conflicts, and build a shared understanding of

software development activities (O‘Reilly et al. 2005). The consoles update in real time

in accordance with developers‘ activities. The system was evaluated during a 5-week

long study of an industrial-sized software project. Project managers said that it gave a

good high-level view of where action happens in the code and that it helped bring new

developers up to speed. Command Console also helped project managers ―understand

the impact that changes were making.‖ (O‘Reilly et al. 2005).

Figure 2a—The Command Console Display.

Figure 2b—The ―Complexity Thumbprint,‖ a visualization that displays source-code size and structure.

Content: The linked displays show attributes of source-code revisions, including size and

structure, using ―complexity thumbprints‖ (Figure 2b). One display shows groups of

complexity thumbprints organized by the modules and system-level components they

belong to while another displays the ongoing changes to artifacts and warnings of any

Page 25 of 55

potential conflicts as a result. It is possible to color the complexity thumbprints by

authorship and relate developers to portions of the code they implement, yet

dependencies must be inferred from the visualizations.

Mapping Content to Tasks: Command Console was engineered to help project

managers and developers gauge the progress of a system under development, understand

its complexity and size, and alert them to conflicting development efforts. These are

activities that generally occur during implementation and maintenance phases of software

development.

Interpretive Gaps: There is slight uncertainty in the information displayed. It comes

directly from CVS repositories and events generated from developer workspaces.

Conflicts are color-coded by the likelihood they will occur (potential vs. certain) although

the rationale behind the likelihoods is not conveyed through the interface.

Temporal Unit of Analysis Command Console shows activities in real time as they

occur. There are no views of activities and developers involved in those activities over

the course of the software project.

Visual Representations: Command Console uses graphics and text to convey awareness

information. It lays out artifacts in familiar hierarchical list views but makes use of

unconventional display setups and representations of source-code developers do not

typically use. The tool uses a ―war room‖ shared display, best-suited for co-located

teams, yet today‘s teams are increasingly becoming distributed. It is not clear how or

even, if, the Command Console could work in such configurations of teams. Assigning a

Command Console unit to each location would be costly. One solution might be to

broadcast the large image from a central location to computers that can simply project the

image on shared walls or projector screens belonging to remote team members. On the

other hand the decrease in resolution associated with most projectors might make it

difficult to see and interpret important details in the visualization.

The ―complexity thumbprints‖ convey size, structure, and ongoing changes in

developers‘ workspaces. They are novel representations and require some initial

learning. However when aggregated, they, crucially, show important patterns in structure

at the system-level in concert with tasks color-coded with the source-code that references

them.

SoftCHANGE

 SoftCHANGE (German et al. 2004) extracts metadata from a CVS repository and

a team‘s corresponding issue tracking system and correlates both. It analyzes different

revisions of the same files to determine the exact nature of the changes made and

attempts to classify changes based on the issues they address (e.g. new features, code

defects). The tool provides graphical views of source-code, authors, and their

relationships, such as what source-code was modified together and who modified what

files when.

Page 26 of 55

Figure 3a—A hypertext view of the details of a change request.

Figure 3b—A network graph of authors and the files they modified, color-coded by module.

Content: SoftCHANGE displays changes from CVS along with issues managed by a

project issue tracker and the developers involved. The tool displays relationships

between them, such as relationships between number of files and number of open issues,

numbers of functions added versus number and types of change issues, and developer

activity compared with the number of change issues. The graphs can also be used to

show who is working on what code, but not who depends on whose code.

Mapping Content to Tasks: SoftCHANGE was built to support project managers,

developers, and researchers as they try to reason about the evolution of a software project

in terms of changes made and issues introduced. These are tasks that typically occur in

the maintenance phase of software development.

Page 27 of 55

Interpretive Gaps: There is slight uncertainty in the validity of the information

presented, particularly the association of bugs with change requests. The process of

categorizing issues based on changes is not transparent to the end-user.

Temporal Unit of Analysis The tool allows extraction of data over the course of the

whole project. Some of the views present time-ordered scatter plots of relationships

between source-code, individuals, and bugs. However the views do not update in real

time.

Visual Representations: SoftCHANGE uses a combination of textual descriptions and

graphical charts to convey information. It uses a hypertext view to show details related to

specific change requests, including when and why a change was made, the type of

change, and if it was fixed. Graphical views such as scatter plots of time ordered

information allow users to inspect relationships between bug rates and attributes of files

changed. Color-coded network diagrams are used to show relationships between

developers and the files they have modified. It is not clear whether these visualizations

are linked together or how they are used in concert to reason about changes made to the

system.

Recommending People and Artifacts

Expertise Recommender

 Expertise Recommender is a tool for locating expertise needed to solve difficult

technical problems (McDonald and Ackerman 2000). Development of the tool was

preceded by a field study that resulted in analytical guidelines for locating expertise:

expertise identification, expertise selection, and escalation. Expertise Recommender

provides support for this model of expertise. A user specifies a knowledge request via a

client interface (Figure 4a) and sends it to a server that processes the request and makes

recommends of individuals with matching expertise. Before sending the request, the user

selects a location heuristic (e.g. ―change management,‖ ―tech support‖) to define the

repository that should be searched (CM system or tech support database respectively) and

a filter (e.g. ―social network,‖ or by department) to filter out people not associated with

particular groups in the organization. If results returned by the tool are not sufficient, the

expertise-seeker can ―escalate‖ the request to other contacts in different departments who

have higher authority or access to more resources.

Figure 4a – An expertise request dialog window.

Page 28 of 55

Figure 4b – Recommendation results returned by Expertise Recommender with the option to escalate the

request.

Content: Expertise Recommender links people and the extent with which they have

worked on technical artifacts to offer recommendations of people who are best-suited to

address problems and requests defined by the expertise-seeker. Recommendations are

based on data contained in CM repositories and technical support databases as well as

individuals‘ social networks. The recommendations returned by the tool include contact

information for each individual and their location yet no description of the work they

have performed relative to the technical issue. It also gives no indication of whether or

not that person may be currently available.

Mapping Content to Tasks: The tool was developed in response to field studies that

elicited analytical steps in the process of expertise location: expertise identification,

expertise location, and escalation. It supports each activity individually through the use

of a client interface. The problem of finding expertise is framed in the context of

resolving bugs found in the source-code and solving technical support issues. These

activities are representative of tasks in the maintenance phase of software development

after a version of the software has been deployed.

Interpretive Gaps: There is minor uncertainty in the information displayed. There is

flexibility in the request process: users can direct the requests to specific groups and

classify the requests. Results are returned in ranked order, but the ranking process is not

transparent and no description of it is provided on the interface. There are no indications

of whether or not individuals still have particular expertise, in spite of the fact that

projects end and technical knowledge erodes over time.

Temporal Unit of Analysis The Expertise Recommender client interface maintains a

history of all requests and makes recommendations based off the entire history of the CM

repository and technical support database.

Visual Representations: The tool‘s UI makes very little use of graphics, displaying

small dialog windows with the familiar ―look and feel‖ (text fields and buttons) for filling

out and sending expertise requests. It returns recommendations via another dialog

window in a scrollable list with textual descriptions of experts and their contact

information. It is a stand-alone system instead of integrated into the tools used by

technical support representatives or the development environments used by developers.

On the other hand, it is relatively lightweight as well. No usability issues are reported by

the authors.

Page 29 of 55

Hipikat

 Hipikat is an awareness tool that leverages project archives to make

recommendations of related artifacts related to developer tasks, such as changing a piece

of source-code, to support developer productivity (Cubranic and Murphy 2003). Given a

change request, a developer queries the Hipikat interface for related artifacts and is

returned a list of related source-code and bug reports (Figure 5). Upon inspecting the

results and their relevance criteria, the developer drills down to each recommendation to

find the information of interest.

Figure 5—Hipikat UI integrated into Eclipse displaying the change task (a) and a list of related artifacts (b)

Content: Hipikat crawls CM repositories and issue tracking systems and recommends

related artifacts (e.g. source-code, change requests) based on the task the user (i.e.

developer) is currently performing. It explicitly models relationships between versions of

source-code and bugs but source-code authorship and bug assignment information is not

shown. These relationships must be inferred.

Mapping Content to Tasks: Broadly, the tool supports developers who wish to learn

about a code base by recommending artifacts relevant to common development tasks like

resolving bugs and making change modifications. In particular, the authors describe a

scenario of Hipikat‘s use for addressing change requests contained in an issue-tracking

system. These are activities typically performed in the maintenance phase.

Interpretive Gaps: There is some uncertainty in the recommendations made by the tool.

It displays evidence using confidence intervals from 0-1 in addition to textual

descriptions (e.g. text similarity in the change request and the source-code itself). Yet

researchers have shown that numeric values of confidence make little sense to users

(Herlocker et al. 2000). The authors try to make up for this shortcoming by using textual

Page 30 of 55

descriptions as much as possible but even their usefulness is uncertain (Cubranic and

Murphy 2003).

Temporal Unit of Analysis The recommender searches all versions of artifacts and

displays all versions seemingly relevant to the current task. There are no timeline views

that might assist developers by displaying who else used artifacts and for how long to

complete the same tasks. It might then be possible to gauge relevant sets of artifacts

based on their length of use.

Visual Representations: Hipikat primarily uses textual decorators within the

development environment to convey recommendations. It uses lists and windows fully

integrated into the Eclipse development environment, thus the interface has the same

―look and feel.‖ Queries are performed by right-clicking on artifacts in the familiar

hierarchical source-code view and entering search terms into Eclipse dialog boxes.

Results and confidence are expressed via textual descriptions in the same list dialogs used

by Eclipse. Because of this design, context-switching is noticeably reduced and no

substantial time spent ―learning‖ the interface is required.

Team Tracks

 Team Tracks is a visualization that unveils developers‘ patterns of navigation

through source-code in an effort to support comprehension of that code by users who are

new to the code (DeLine et al. 2005). The visualizations are integrated into Microsoft

Visual Studio dialogs much in the same way Hipikat is integrated with Eclipse. Team

Tracks is based on two assumptions: 1) parts of the code developers visit more frequently

are more important to someone new to the code and 2) the more two snippets of code

visited are visited in succession, the more likely they are to be related. As such, the

visualization is composed of two displays within the development environment: ―Code

favorites‖ (e.g. frequently visited code) and ―Related Items.‖ The tool was evaluated

quantitatively through a program comprehension quiz and user satisfaction ratings as well

as qualitatively through interviews with developers who used it to complete typical

development tasks such as change requests.

Page 31 of 55

Figure 6—Team Tracks interface in Visual Studio displaying A) A standard directory/file view, B) Code

Favorites and C) Related Items to source-code selected in the development editor.

Content: Team Tracks uses windows integrated into Visual Studio to display the source-

code most viewed by developers and rank-ordered related methods to the source-code

currently in focus in the development editor. The tool uses icons to show whether the

methods have incoming or outgoing dependencies to the source-code in the editor but the

call graph for a method is not displayed. This could make traversing the call path easier

for the user. No authorship information is shown by the tool so it is not possible to

determine who navigated dependent code without querying a CM repository. Navigation

data from a senior architect, for example, would possibly be more revealing than a

programmer.

Mapping Content to Tasks: The tool supports the broad activity of understanding

source-code based on the navigation patterns of other developers so the user can

complete implementation tasks such as changing code or maintenance activities such as

adding features or resolving bugs.

Interpretive Gaps: There is some uncertainty in the recommendations made by the tool.

Although horizontal bars and ordering of items in the list convey rankings of relatedness,

evidence for ranking one suggestion over the other is not explicitly provided. Instead, the

basis for interpretation is team navigation patterns, which is not a reason for related code

the same way dependencies, author ownership, or inheritance relationships are, for

example. As a substitution for explicit rationale, the authors use arrow icons indicating

incoming or outgoing dependencies from the related code to the code selected in the

editor.

Temporal Unit of Analysis Team Tracks uses navigation patterns from the most current

snapshot of the CM repository and provides recommendations based off those navigation

patterns. The navigation data is not collected and used to assist the user in real time. It is

not clear how often the navigation data should be collected.

Visual Representations: Team Tracks uses a combination of textual decorators and

visual icons to convey awareness information. Like Hipikat, Team Tracks‘ visualizations

Page 32 of 55

are integrated into familiar windows part of the everyday implementation work of

software developers. The views are anchored around where developers spend most of

their time in the editor: the source-code. The ―Class Favorites‖ window displays favorite

code items the same way in which the Visual Studio environment hierarchically displays

directory structures. The ―Related Items‖ view uses list structures also found in the

environment interface. In addition, the interface uses good information presentation

principles: small horizontal bars appear next to source-code items indicate relative

ranking, inviting direct comparisons and contrasts to other ranked items (Tufte 1990;

Tufte 2006).

Avoiding Conflicts

Palantír

Palantír is an Eclipse plug-in that supports developers in identifying and avoiding

conflicts that arise from committing different versions of the same file to a CM repository

(Sarma et al. 2003). The tool increases awareness by continuously sharing information

regarding other developers‘ actions on files in the workspace, for example the potential

for conflicts and the severity and impact of changes to those files. The tool was

empirically evaluated using a lab experiment (Sarma et al. 2008b). The results indicate

that Palantír increased self-coordination among users and, as such, led to fewer conflicts.

Figure 7—Palantír-enhanced Eclipse workspace with annotations to files in conflict (left) and description

of impacts of changes (bottom).

Content: Palantír extracts information from a number of control versioning repositories

and monitors activities in the workspace for changes to the local and repository versions

of source-code. It analyzes the differences between files in order to compare the number

Page 33 of 55

of lines changed and calculate a measure indicating the severity of the changes. The tool

then translates these activities to events that it subsequently shares with all affected user

workspaces. Palantír shows textual descriptions of these events, including who is

changing what, whose code will be impacted by the change, and when the change

happened or is currently in progress. These events describe dependencies of the type

―impacted by‖ rather than dependencies of the type ―is called by.‖

Mapping Content to Tasks: The tool supports developers as they implement source-

code and make changes to a versioning repository, a standard daily task in software

development. It supports coding activities by passively annotating the files in the

workspace as potential conflicts emerge in real time. These activities constitute the

implementation and maintenance phases of software development.

Interpretive Gaps: Palantír displays various pieces of evidence for potentially

troublesome parallel work. It displays three measurements: the potential for and sizes of

conflicts, and the impact the changes will have on dependent code. Small, blue triangles

next to files in the resource view indicate parallel changes to the same artifact in different

workspaces, signifying a direct conflict. Red triangles indicate parallel changes to

another artifact in another workspace that will affect the current artifact. The sizes of the

triangles indicate the magnitude of the change. Arrows (>> or <<) indicate whether the

artifact affects or is affected by other changes. Finally, a percentage value indicates the

severity of the changes in terms of the lines-of-code affected. Users can quickly view

differences in source-code if they desire to see the actual impacts of the changes.

Temporal Unit of Analysis Palantír focuses on activities occurring in developer

workspaces in real time. It continually extracts information from previous revisions of

files and logs events as they occur over time to provide ongoing awareness. Over time,

patterns emerge as activities continue and developers can use these patterns to self-

coordinate their work and avoid running into conflicts. Thus it supports activities

occurring in the present and in the past.

Visual Representations: Like Hipikat and Team Tracks, Palantír‘s interface is integrated

with the development environment so as not to distract from current tasks. The source-

code editor anchors interactions with Palantír because much of the work involved in

analyzing conflicts revolves around looking at source-code. It uses visual decorators in

the resource view of Eclipse to indicate types and sizes of emerging conflicts and textual

representations to indicate impact severity and give details about who is involved, what

code was affected, and when the changes occurred.

TUKAN

TUKAN is a collaborative development tool with the broad goal of orienting

developers around code and promoting awareness of other developers‘ activities

(Schummer and Haake 2001). It displays graphs of artifacts that are semantically related

and extracts versioning information from a CM repository to determine the severity of

potential conflicts (Figure 8).

Page 34 of 55

Figure 8—Graph of related source-code with weighted relationships signifying ―use‖ relationships and

weather icons indicating potential conflicts.

Content: TUKAN connects to a source-code repository and semantically analyzes

source-code artifacts and determine which ones are related due to dependencies, use, and

inheritance relationships. It collects information from developers‘ Smalltalk workspaces

to identify who is working on what files and whether conflicts will emerge. It annotates

the graphs of source-code artifacts with icons signifying active developers and weather

icons corresponding to the severity of parallel work on those same artifacts. Developers

can get a feel for who will be impacted to changes to their code and whether they will be

affected by changes to others‘ code.

Mapping Content to Tasks: TUKAN supports the broad goal of orienting developers

around code, being aware of who is working on what, and identifying conflicts—all

important parts to development work within both the implementation and maintenance

phases of software development.

Interpretive Gaps: There is some ambiguity in the mechanism that calculates potential

conflicts. Although weather symbols can show the severity of conflicts relative to one

another (lightening vs. clouds and sunshine vs. lightning), they do not map to absolute,

quantifiable measures of conflict or combined with other metrics like impact severity and

conflict type (indirect or direct), as in Palantír.

Temporal Unit of Analysis Notifications of ongoing changes and potential conflict are

in real time. Users use synchronized editors to make changes to the system and can view

multiple versions of source-code from the code repository. Thus, like Palantír, TUKAN

supports exploration of current and past activities.

Visual Representations: TUKAN primarily uses graphics to convey awareness

information. It is integrated with an online SmallTalk development editor so as not to

distract from development activities by way of context-switching. The tool uses

notations familiar to software developers like dependency graphs and graphs showing use

and inheritance relationships. The graphs are annotated with intuitive visual decorators

like ―people‖ icons showing developers who are working on source-code as well as

weather metaphors that convey ―sunny‖ (and thus positive) or ―stormy‖ (and thus

negative) states with respect to potential conflicts.

Page 35 of 55

Determining Individual Availability

Awarenex

 Awarenex (Begole et al. 2002) is a visual awareness tool that reveals patterns in

people‘s work schedules such as: where they are during times of the day, what times of

the day they are available, when they are busy with appointments, what times they arrive

and depart for work, what time zones they are working in, and when they break for lunch.

The tool logs input received by the user‘s keyboard to determine when they are active

and available for contact and inactive. It collects data from online calendars to infer

when users are in appointments. The visualizations show activity over a 12 hour day

during the 10 months the data were collected.

Figure 9—Visual interface showing a) 3 weeks of activity with active periods in black, b) another 3 weeks

with white indicating appointments, and c) an aggregate view over 10 months of daily activity. Arrivals and

departures can be seen in a) and b).

Content: Awarenex uses input from the keyboard to determine when users are active or

inactive. It logs whether the user is reading or sending e-mails and analyzes their online

calendar to determine when the user is in an appointment and unreachable. Location data

is also collected (e.g. office, home, lab). People can be mapped to their general work

activities as well as when and where they do work. Thus their availabilities can be

inferred from the visualizations.

Mapping Content to Tasks: The tool supports locating patterns in people‘s availability

such as when they are switching offices, on lunch breaks, working to meet appointment

deadlines, or leaving for the day. These patterns can be used, for example, to suggest

when someone will return from being active. Although the visualization is not

representative of typical visualizations used by software developers, it nicely structures

the data. It reveals insights into the work patterns of groups working in any domain,

contributing to a shared sense of time and the availability of workers. Awarenex can

seemingly be used at any phase of the development process.

Page 36 of 55

Interpretive Gaps: There is uncertainty in determining whether someone is available.

Just because someone is reachable does not mean they will be receptive to interruption.

That depends on their current tasks, history of interaction with the asker, and their

perception that helping will benefit them in some way. At the same time, established,

long-term patterns of availability are good predictors of future availability.

Temporal Unit of Analysis Awarenex retrospectively visualizes snapshots of daily

computer interactions over a 10 month period, not as they occur in real time. Use of the

timeline is critical because it is only over an extended period of time, by their definition,

that patterns can be identified. Developers could use changes in the rhythms as a result

of project deadlines, for example, in concert with a social dependency graph (de Souza et

al. 2007) to suggest times to meet with other developers to coordinate dependent work up

to a release of the software.

Visual Representations: Awarenex uses graphics and minimal text to visualize activity

using a time-ordered x-y axis. The x axis shows a 12 hour day while the y axis shows

days increasing from top to bottom (Figure 9). Activity is graphically represented by

horizontal bars with length representing time and different colors indicating certain types

of activity (e.g. appointments, reading e-mail, etc.). Reading downward, the horizontal

bars invite direct comparisons and contrasts (Tufte 1990; Tufte 2006) in availability and

types of activity day-to-day.

Community Bar

Figure 10—Community Bar content is composed of places, presence information, chat dialogs, sticky

notes, photo items, and web items (e.g. webpages)

Page 37 of 55

 Community Bar (Tee et al. 2006) is an application that allows users to share their

screens with one another, engage in real time chat messaging, share video information

about where they are, and post digital objects with which they are working. The tool

supports progressive visibility of information users choose to reveal. Users can control

the visibility of their information by blurring sensitive parts of content. Feedback from

usage of the tool suggested that it was useful for opportunistic interactions, monitoring

when people could be interrupted, and to measure progress on collaborative tasks.

Content: Community Bar allows the sharing of multiple types of artifacts such as video

frames, images, web resources and even the users‘ screens (see Figure 10). It shows

individuals and the artifacts they choose to share but not who is monitoring, and thus

dependent on, the availability of whose artifacts. Shared content is visible to everyone

connected to Community Bar except when privacy controls are used to selectively

display the content. For example, someone might want to share an unfinished draft of a

document only with their collaborator(s) and then release it with full visibility once it is

completed. One‘s availability can be determined by looking at their desktop screen to

determine what they are working on, their status message, or their webcam.

Mapping Content to Tasks: The tool gives insight into the artifacts with which people

are currently working and thus a basis from which to initiate spontaneous interactions and

coordinate shared activities such as working on documents and gauging work progress.

The tool could be used at any phase of the software process.

Interpretive Gaps: One‘s knowledge of the artifacts with which one is working is only

as good as the artifacts the latter decides to display. If a user forgets to update what they

are currently working on, another user‘s perception of that work may be irrelevant since

it came from older data. Privacy controls restrict content displayed, clouding others‘

knowledge of their availability.

Temporal Unit of Analysis Community Bar displays artifacts users have most recently

posted. There is no time ordered view of shared postings.

Visual Representations: Community Bar‘s interface consists of one long vertical

window that lays out posted artifacts from top to bottom. It uses graphics and when

applicable, text corresponding to peoples‘ status, short announcements to others in the

group, and chat logs.

Understanding Developer Activities

FASTDash

 FASTDash (Biehl et al. 2007) is a visual ―dashboard‖ widget embedded on a single

monitor or large, shared screen that allows software developers and their teams to

monitor all ongoing activities including what files are checked out, what is being changed

and by whom, what files are being viewed, and what files are undergoing debugging.

The tool‘s requirements were gathered from interviews with 13 developers. In response

to these interviews the tool was built and qualitatively and quantitatively evaluated using

6 of the original 13 programmers as users. It was shown to improve team awareness,

reduce reliance on shared artifacts, and increase team communication.

Page 38 of 55

Figure 11—The dashboard interface shows active files grouped by module and activities performed on

them by active developers.

Content: FASTDash displays a software project‘s files organized by module and

graphical annotations to the files corresponding to activities being performed on them by

developers, such as making changes, viewing the file, debugging it, adding

documentation, etc. The interface alerts the user to who is working on what but gives no

evidence of whether that work will affect the former‘s own work. The user must infer

that themselves.

Mapping Content to Tasks: The tool supports developer understanding of activities

being performed by their peers on the code base. Potential check-in conflicts can be

inferred by monitoring changes to the same file by multiple developers. Developers

working with the same sets of files can initiate conversation and coordinate

implementation work on those files. Such activities are characteristic of the

implementation and even maintenance phases of software development.

Interpretive Gaps: The tool shows such low-level actions (e.g. a file being in focus, a

file being viewed) that it is difficult to second-guess the accuracy of information being

presented. However, from these scattered observations alone it is hard to paint a picture

of the tasks actually being accomplished because no details are provided (e.g. through

tool tips). FASTDash does not provide guidance on how to organize and combine

observations described in the interface over time to reveal broad detail of what

individuals are working on and the sequence they have followed. It was not tested

Page 39 of 55

between teams so there is no evidence for the scalability of its usage and how multiple

items of information might compete to reveal insights into meaningful developer activity.

Temporal Unit of Analysis The tool displays real time ongoing changes but no history

of those changes over time. It is only possible to know the most recent activity. Thus it

is difficult to get a sense of others‘ patterns of work over time but it is easy to initiate

conversation around source-code that is currently being modified. The awareness gained

from knowing who is working on what at any point relieves developers of having to

explain the context of their dependent work to one another as they coordinate to complete

tasks.

Visual Representations: FASTDash uses a combination of graphics and text, but mostly

graphics, to show awareness information. Unlike other visualizations such as Palantír,

Team Tracks, or Hipikat, FASTDash exists as a standalone application. It uses familiar

file icons for resources in the workspace (e.g. photos, .source-code files, authors).

However a problematic aspect of the interface design is that it uses inconsistent forms of

visual cues to indicate the different states of files: hashed highlighting to indicate files

checked out by multiple developers and thus potential sources of conflict, yellow

highlighting to indicate files that are open and being edited, gold borders to indicate files

that are in focus in the editor, and checkmarks superimposed on files to indicate files that

are checked out. The variety in different graphical annotations for related states of

activity makes it difficult to remember the meaning of each. This is an interface that will

require time to learn before it can be used efficiently by teams, yet this observation was

omitted from the authors‘ field study of the tool.

Jazz

 Jazz is a collaborative development environment (Booch and Brown 2003) that

enhances the existing Eclipse platform with collaboration mechanisms for use in small-

team settings (Hupfer et al. 2004). It extracts activities from user interactions with the

interface and the local history of source-code and work items (i.e. reports that detail work

to be accomplished) to 1) monitor what and how source-code is being changed and 2)

push this information to other developers in the workspace who have subscribed to be

notified of these ongoing changes. The Jazz Band (bottom of Figure 12) is a shared

buddy-list from which users can initiate interactions with others (e.g. screen sharing, chat

sessions) without the overhead of leaving the IDE and launching other applications.

Page 40 of 55

Figure 12—The Jazz environment showing a) team members, b) communication options for interacting

with a team member, c) workspace files and resources annotating their current states and who is changing

them, d) an anchor for a chat transcript pertaining to the opened code, e) a recently modified portion of

code, and f) a team member‘s status/location.

Content: Jazz displays ongoing activities performed by team members within the

development environment, including the changes they make to source-code, comments

and documentation relevant to the code, and focused group discussion. By structuring

activities around team mates, Jazz enhances developer awareness of others‘ contextually

relevant interactions with the code and each other. When a developer selects a snippet of

source-code, for example, and initiates a chat everyone else immediately knows broadly

what will be discussed. No one needs to direct them to another area in the code. Jazz can

also be used to gauge developer availability through the use of Jazz Band buddy list

status messages and tooltips in the hierarchical source-code window describing who is

changing what files.

Mapping Content to Tasks: Jazz enhances Eclipse‘s standard source-code editing

capabilities by providing mechanisms for tracking development activities directly in the

user-interface (e.g. embedded instant messaging, group chat, comments, and milestone

progress indicators). As such, it eliminates much of the overhead involved in setting up

communication mechanisms (e.g. chat and e-mail servers) and bringing people‘s

perspectives into alignment in order to engage in collaborative tasks. The authors

describe use of the tool in the implementation phase, but Jazz appears to be useful in

maintenance phases as well, such as when developers use work items and other

developers as resources for changing bugs and adding features.

Interpretive Gaps: Jazz thoroughly annotates the development environment with

notifications corresponding to developer activity, prompting developers to initiate

collaborative tasks. The notifications persist, allowing developers to visit them at times

they deem suitable and relevant. Any ambiguity in updates or annotations can be

Page 41 of 55

resolved by using the communication features embedded into the editor to check for the

responsible developer‘s availability and subsequently contact them.

Temporal Unit of Analysis Jazz allows real time monitoring of activity, but provides no

time ordered views of actions and collaboration corresponding to resources in the

environment. As such, it is difficult to identify patterns of work and availability (see

Awarenex) in order to improve team practices and productivity.

Visual Representations: Like Palantír, Team Tracks, and Hipikat, Jazz visualizes

awareness data in the context of current development activities unraveling in the

development environment. FASTDash and Jazz are similar in their goals and

motivations yet FASTDash uses novel visualizations in place of visualization that have

the same ―look and feel‖ as the environment. Jazz, on the other hand, makes use of easily

identifiable visual cues and annotations to source-code in the editor (as in Palantír) to

signify the status of files, chat logs around the code, and documentation. The biggest

enhancement to the existing editor is the Jazz Band (Figure 12a), which features avatars

of team members augmented with mechanisms for different forms communication. The

Jazz Band gives users a choice for what communication medium to use (e.g. chat, phone

(VOIP), or e-mail). Providing different options is critical—yet not addressed in the

majority of the tools surveyed in this paper—since it has been shown that different users

prefer to be contacted different ways (Herbsleb and Grinter 1999). For example, non-

native speakers prefer e-mail because it gives them time to compose their thoughts and

responses. Responding in real time can become time consuming and frustrating.

Discussion

From the detailed analysis of visualization tools that support awareness in

software development, numerous observations follow. They are presented below

according to the principles of awareness identified previously in this survey and suggest

possible areas for future research.

Content: Need for common data models. Current visualizations for awareness during

software development extract information from a common set of repositories, including

version control systems, issue trackers, and data from developer workspaces. More

rarely, they use input from the keyboard to detect real time activities, and developer

availability and location. Extracted data from the CM systems include the revisions

themselves, their structural properties and relationships with other module revisions, the

changes that were made in each revision, and by whom the changes were made. The

acquisition of workspace data requires more detail to link individuals to source-code they

are working on at that moment as well as what they have opened in the background.

Despite the commonalities of the types of data collected by these tools, to the author‘s

knowledge, no common data model or collections of APIs exist to provide a standardized

way to extract awareness data at different details and levels of abstraction. Researching a

common data model would promote more detailed inspections of these tools and

eventually lead to the development of flexible, reusable components for extracting

awareness information.

Page 42 of 55

Need to support individual preference. Some of the tools that use real time data can

prompt immediate communication opportunities which are more difficult in distributed

software development settings. Yet aspects of communication preferences, the

conditions under which people choose to make themselves responsive (Illich 1971), were

only addressed in one tool, Jazz. Despite being flagged as available in tools like

Awarenex, TUKAN, softCHANGE, FASTDash, ELVIN and Community Bar, people

may have numerous reasons for choosing to make themselves available to communicate.

People have different preferences for the ways in which they would like to be contacted

(Herbsleb and Grinter 1999; Nardi et al. 2002). For example, some people prefer the

persistency of e-mail since it can act as a receipt or documentation that can be referred to

later. Others prefer e-mail because it gives them time to coherently construct their

thoughts. Some tools like ELVIN and FASTDash facilitate opportunistic real time chat

interactions yet do not offer the asynchronous support necessary for interactions across

time zones that e-mail does. In order to appeal to a more diverse range of users, these

tools should support multiple communication channels such as IM, e-mail, video, and

chat.

Need to leverage personal relationships and history of helping. Tools that identify

who to talk to, such as Expertise Recommender, and who is actually available like

Awarenex and Community Bar rely on the receptiveness of the helper to be thoroughly

effective. Yet helping comes at the cost of being interrupted, bringing a temporary halt to

the flow of work. One way to determine one‘s receptiveness toward helping might be to

build in a ―helping history‖ to tools that can be used to prompt developer-developer

interactions. The visualizations could be augmented with developers‘ history of and

preferences for helping each other. For instance, developers who have a good rapport

and history of sharing expertise are more likely to help one another than two developers

who never see each other yet need to coordinate despite being on the same team or on

different teams working on interdependent system components. Additionally, developers

are more likely to respond to their superiors than their peers since they could be

reprimanded for not doing so. For a recommender that relies on previous interactions to

be useful, however, developers would have to initially provide a critical mass of

interaction history. One way would be to have a profile filled out by each developer that

showcases their skills and expertise. Every other developer might have a version of that

profile on their client application and could rate developers based on their past personal

interactions with them. Given this initial data as a baseline, communications could be

logged by the tool and suggestions made based on that interaction history.

Mapping Content to Tasks: Need to map features to tasks. Despite the utility of

supporting general awareness, of the ―Change Management and Evolution‖ tools

surveyed, very few mapped tasks representative of ―change management‖ to features in

the tools themselves. Of the 14 change management tools surveyed, only one (Wu et al.

2004b) defined and showed specific change activity for which the tool could be used to

monitor: ―Punctuation,‖ moments of sudden and discontinuous change that could be used

to spot buggy/inefficient code that needs refactoring. For example, Codesaw was built

with the intentions of ―revealing group dynamics around changes,‖ but this is a broad

statement and reveals no insight into how the tool would be used to do so. In addition, no

specific group dynamics relevant to software development are defined by the authors.

Page 43 of 55

 Command Console helped project managers reveal ―where the action is‖ but that

too is a high-level observation. Writing code may constitute ―action,‖ but so may writing

documentation or communicating with developers responsible for part of the source-

code. These are ―invisible‖ yet crucial aspects of work that often go undetected and thus

unrewarded by managers. Specific patterns of action and what they mean for project

managers and developers are unclear.

Insights that emerge from tools like CodeSaw, including VRCS and

softCHANGE do so more by individual user experience and intuition rather than from a

process or defined method of use. In general, all of the surveyed tools identified

awareness data that could be used to support tasks. This is an important first step for very

few change management tools were evaluated with respect to specific tasks. As

researchers improve their tools, their focus should not remain on ―what‖ information can

be revealed but instead turn to how the tool can be used to reveal information central to

completing expected activities defined in software development projects—in other words,

the process of using the tool itself to reveal useful information.

One interesting observation is that availability is the least supported, yet

development projects are increasingly becoming globally distributed. This suggests that

new technologies that promote awareness should include mechanisms that facilitate

opportunistic interaction and focus less on analysis of past work, relatively speaking.

Three tools, Community Bar, Awarenex, and Active Map support finding people

across the whole software development process. One tool, Tarantula, (Jones et al. 2001;

Jones and Harrold 2005) addresses fault localization, an activity characteristic of the

testing phase of software development (see Figure 13). That is not to say that awareness

visualizations do not exist for other phases of development such as gathering

requirements or creating high-level architectures.

Identifying the tasks and phases of development for which tools are appropriate is

an important step in describing their intended usage and considering their deployment.

Of the awareness visualizations for software development surveyed, most of them

support tasks in the maintenance phase; the rest support activities representative of the

implementation, phase.

One explanation for the gap across development phases might be that these tools

resulted from a selection bias in the software engineering literature surveyed. To the

contrary, the most integral venues in the field were selected and searched with respect to

awareness needs identified in the very same venues. Few tools were found to address

awareness in the context of testing, requirements, and design because requirements for

awareness in these phases have not been defined or described greatly in detail in the

software engineering literature. Thus, it is likely that if there is a selection bias, it is in the

interests of researchers and the peer review processes adopted by the organizers of these

venues, not this survey.

A more intuitive interpretation is that most artifacts are generated in the

implementation phase(s) of software development, and thus, more tools are developed to

provide support for activities that fall into those phases. One of the benefits of a well-

designed visualization is the ability to see relationships in complex and large streams of

input data (Bertin 1982). The artifacts stored in team repositories can themselves be seen

as input to these tools. Artifacts—especially source-code, since it is the ultimate

representation of the system--accrue quickly and in parallel (the very reason why conflict

Page 44 of 55

detection mechanisms are developed) after the work is divided up. Visualizations are also

used to compare activities to expected activities, implementation to design; design to

requirements, and so on. For the most part, source-code implementation is strictly a

human behavior, and humans make mistakes. Take bugs for example—they are

deviations in the expected behavior of the implemented system, linked to the design, and

back to the requirements. These deviations in expectations are what programmers and

managers care about in the real world because the required work to ―correct‖ the

deviations costs time and money. This may help explain why the locus of study has been

the implementation and maintenance phases of software development.

Page 45 of 55

Figure 13—Number of tools surveyed in each phase of software development broken down (i.e. color

coded) by category as identified in Table 3. Some tools appear in more than one category.

Interpretive Gaps: Need for multivariate and transparent evidence of rationale.

When applicable, tools that give a recommendation or suggest the potential for

coordination breakdowns should provide multiple forms of evidence to assist the user in

making a correct interpretation of the content and an actionable decision. Interpretive

gaps showed up the most often in the ―Recommending People and Artifacts‖ and

―Avoiding Conflicts‖ categories. Systems like Hipikat that give a confidence rating from

0-1, for example, are of little use to users because no rationale for the rating is provided.

Similarly, systems like Expert Recommender simply list individuals‘ contact information

without providing transparency into the history of their expertise.

Yet Palantír and Team Tracks, for example, helped with interpretation by

providing multiple forms of evidence: Palantír uses relative size of graphics and colors to

indicate size and types of conflicts, left-and-right arrows to indicate local or remote code

affected by changes, and percentages to indicate the amount of code affected. While

percentages are relative to the code size, users can see a visualization of the size of

affected code to help them determine the severity of impacts. Along the same lines,

although team navigation patterns are not an indicator of code relatedness, Team Tracks

uses a combination of cues to strengthen the confidence of its recommendations: rank-

ordered lists of related source-code combined with graphics depicting relative relatedness

of the items and icons showing dependency relationships between the suggested items

and the source-code in focus. In the evaluations of both these systems, the rationale was

shown to assist users in taking appropriate action: avoiding conflicts and understanding

the code well enough to implement change requests, respectively.

Thus Hipikat, and similar systems, might be improved by adding additional units

of rationale to support the end-user process of interpretation. One approach might be to

also show the percentage of people who also used artifacts based on similar tasks or the

percentage of people who found a similar recommendation to be less useful than another

one. The recommendation might group the people by team or assigned components so

that the user can put their work in the perspective of others‘ and make better-informed

Software Process Phases

N
u
m

b
er

 o
f

T
o
o
ls

Page 46 of 55

decisions (Cartwright et al. 2002). When using an interface is not part of the normal flow

of work as in Expertise Recommender for example, details from the original work may

be lost in the recommendation process. A developer who wishes to know about why a

certain implementation was chosen over another for example might wish to include

detailed comparisons and running times of different algorithms. Yet if the recommended

individual worked on significant portions of that code (the reason for the

recommendation) but has since moved on to other projects, it is unlikely they will have

remembered much and time that could have been spent addressing the problem will need

to be spent bringing the helper up to speed.

Temporal Unit of Analysis: Need to support understanding dependencies over time.

In the earlier sections of this survey it was made clear that, dependencies, or relationships

between developers and the artifacts with which they work, change over time. Designing

clean APIs is one solution to managing dependencies between artifacts but not between

people. One way to show how developer and artifact dependencies change over time is

by quantifying them. Tools like Palantír and TUKAN make it possible to associate

authors and artifacts at any one point in time for the purpose of coordinating and

resolving potential conflicts, yet they fail to quantify associations when the dependencies

are not explicitly determined at the time of conflict. The metrics used to calculate socio-

technical congruence (Cataldo et al. 2006) and dependencies (Carley and Krackhardt

1998) could be used to provide additional information, like a weighted measure to

dependencies between artifacts and people that might be relevant to a particular task at

any time. For example, a dynamic buddy list augmented with the buddy list in Jazz could

update every time a specific part of the code (e.g. defined by the user) is changed. This

buddy list would act as an ―awareness network‖ (de Souza et al. 2007). In this way, the

developer could more easily track how their network evolves without the use of a large

and distracting separate visualization application.

Of the tools surveyed here, especially the change management and evolution

tools, no tools except Workspace Activity Viewer (see Table 3) used animation to show

changes to a software system over time. Similarly, in their survey (Storey et al. 2005),

Storey and colleagues found that no tool used animation to play back activity. Some

obvious uses of animation are to show flurries and stagnation in activity as well as

continuous changes in authorship and artifacts (can signal potential unstable and buggy

source-code (Wu et al. 2004b)). This information could help managers identify when

task assignments are unclear or when parallel work (and thus a possible conflict) occurs.

Visual Representations: Map visualizations to the tasks they should support. In Jazz,

Team Tracks, and Palantír, all awareness visualizations are integrated with the existing

editor. Current resources in the environment are annotated with graphics that show status

as it pertains to a specific activity, such as conflict avoidance (e.g. shown with colored

arrows) and communication (e.g. clicking on an individual‘s avatar to launch a chat

dialog). They enhance standard features in a manageable way that does not involve a lot

of context switching. On the other hand, FASTDash, described to support the same kind

of tasks (i.e. conflict avoidance) is a stand-alone application that requires use outside of

the editor. The unique visualizations it provides are not based on any pre-existing

standards and there is no clear way to orient or relate the activities of others to one‘s own

work. Conflicts emerge as developers are focused on writing code. As such, warnings

that appear should do so where developers are likely to see them (i.e. in the code), not on

Page 47 of 55

a separate screen or wall. Doing so puts an unnecessary burden on the developer,

requiring them to periodically interrupt themselves and work less efficiently as a result.

Use scalable representations that can be used to identify patterns. Despite the

context-switching issues associated with using large amounts of screen real-estate to

convey awareness information, such techniques better convey patterns over time using

visualization techniques, novel or otherwise, that scale, such as those implemented in

Awarenex and Command Console. By their very nature, these tools visualize massive

amounts of data in order to identify meaningful patterns of activity. As such, they utilize

significant portions of the developer‘s workspace and can be a distraction. As a side

effect however, patterns such as who modified what, what parts of code are affected, and

who is available at what times of the day become easily recognizable. These patterns are

seen in the work rhythms of individuals displayed by Awarenex and the complexity

thumbprint visualizations in Command Console. They increase the extent to which one

can predict future activity and thus make better-informed decisions as a result.

Organizational Strategies

While they are certainly an important part of enhancing coordination, tools are not

the only strategies for promoting awareness. The guidelines proposed above serve to

improve the tools‘ abilities to augment awareness and therefore enhance coordination

activities during software development. Yet using tools is but one part of a larger

strategy aimed at increasing the awareness needed to improve the ability to coordinate, or

to achieve what some might call an ideal state of coordination, or ―congruence.‖

Congruence is defined by Cataldo et al. (Cataldo et al. 2006) as ―a state in which an

organization has sufficiently aligned their coordination capabilities to meet the

coordination demands of the technical products under its development:‖ in other words,

what the organization can do versus what it needs to do. Crucially, congruence implies

not only the use of technology but also organizational strategies like restructuring teams,

providing training, and even allocating conflict resolution engineers and liaisons

(McCord et al. 1993) to resolve technical issues and provide continuous, intensive

information exchange between and among teams.

Assessing an organization‘s compliance with congruence assumes its capability to

measure or quantify actual and corresponding required levels of coordination. Sarma and

colleagues (Sarma et al. 2008a) outline the objectives of measuring congruence: 1)

knowing what information to collect, 2) finding the best approach to collecting this

information, directly or indirectly, and 3) understanding appropriate ways of computing

congruence measures. The tools surveyed here collect a variety of information in order

to gauge collaboration and coordination activities, among them: direct communication

from e-mails and chat logs, indirect collaboration from change logs, and artifacts of the

system under development itself including source-code and bug reports. They obtain

important historical information by mining repositories for explicit and derived (e.g.

finding experts) data as well as contextually relevant real time data through

instrumentation of project workspaces (e.g. to detect conflicts). However, less is known

about how congruence can be measured and thus recognized in practice, especially since

there are so many ways to coordinate work. Sarma and colleagues hypothesize that

innovative visualizations that summarize vast amounts of information can facilitate the

Page 48 of 55

emergence of distillable and recognizable patterns that researchers and practitioners can

use to create benchmarks for assessing congruence. This observation is in line with the

conclusions of this survey, yet more research remains to be conducted.

Although the rhetoric of congruence is coordination-centric, the absence of

collaboration as reported by tools does not necessarily imply an undesirable state of

congruence if no coordination is required. Thus, project managers or even other

developers should not be automatically alarmed or surprised if no data is being reported

by tools or no activity is being reported in visualizations. Violations in expectations of

development activity based solely on information reported in tools may result in

unjustified, negative performance evaluations of personnel. Moreover, developers may

well regard the transparency revealed by the tools as a violation of their privacy. These

situations highlight that tools, while crucial, are not an awareness panacea; they are

situated within an organizational context of expectations, norms, and both horizontal and

vertical dimensions of authority.

Conclusion

The objective of this survey was to: 1) motivate the need for tools that promote

awareness in the face of the rise in global software development projects and associated

coordination challenges, 2) identify important principles and requirements for awareness

in the software engineering literature, and 3) to identify and compare existing awareness

tools with respect to the identified principles.

The contributions of this work are four-fold. First, this survey extrapolates

important principles of awareness based on existing empirical work yet left out in the

implementation of current tools designed to promote awareness. Second, it crucially

identifies a considerable subset of these tools that are representative of those used in

academic and professional settings. Third, this work provides a novel categorization of

the tools which acts as a basis from which to analyze them with respect to the awareness

principles. Fourth, based on this analysis, it shows how the visualizations might be

improved to support various aspects of awareness. The categorization proposed here is

not meant to constitute a normative framework to which all other tools should be

compared. Moreover, it has not been evaluated and used by other researchers. Instead it

raises several important questions to ask about them. The analysis builds on established

research and empirical findings from the awareness, coordination and tool research

communities—rather than considering any one in isolation—to provide a structured and

holistic approach toward understanding the similarities and differences in, as well as the

advantages and limitations of, current tool support. As such it serves as a starting point

for researchers also interested in the intersections between these communities and

implications for coordination technologies.

Acknowledgements

This research is supported by the U.S. National Science Foundation under grants

0534775 and 0205724, and by an IBM Eclipse Technology Exchange grant. The author

Page 49 of 55

gratefully acknowledges past and present collaboration with Cleidson de Souza and

feedback from members of the CRADL research group.

Page 50 of 55

References

Ackerman, M. S. and Malone, T. W. (1990): ‗Answer Garden: a tool for growing organizational memory‘,

ACM SIGOIS and IEEE CS TC-OA Conference on Office Information Systems, April 1990, pp. 31-39.

Ackerman, M. S. and McDonald, D. W. (1996): ‗Answer Garden 2: merging organizational memory with

collaborative help‘, ACM Conference on Computer Supported Cooperative Work (CSCW), November

1996, pp. 97-105.

Amar, R. and Stasko, J. (2004): ‗A Knowledge Task-Based Framework for Design and Evaluation of

Information Visualizations‘, IEEE Symposium on Information Visualization (INFOVIS), October

2004, pp. 143-150.

Amrit, C. (2008): ‗Improving Coordination in Software Development through Social and Technical

Network Analysis‘, University of Twente, Enschede, The Netherlands , Ph.D. dissertation.

Avritzer, A., Paulish, D., and Cai, Y. (2008): ‗Coordination Implications of Software Architecture in a

Global Software Development Projects‘, IEEE/IFIP Conference on Software Architecture, February

2008, pp. 107-116.

Ball, T. and Eick, S. G. (1996): ‗Software Visualization in the Large‘, Computer, April 1996, pp. 33-43.

Begole, J., Tang, J. C., Smith, R. B., and Yankelovich, N. (2002): ‗Work rhythms: analyzing visualizations

of awareness histories of distributed groups‘, ACM Conference on Computer Supported Cooperative

Work, November 2002, pp. 334-343.

Bertin, J. (1982): Graphics and Graphic Information-Processing, Walter de Gruyter, Berlin, Germany.

Biehl, J. T., Czerwinski, M., Smith, G., and Robertson, G. G. (2007): ‗FASTDash: a visual dashboard for

fostering awareness in software teams‘, SIGCHI Conference on Human Factors in Computing

Systems, April 2007, pp. 1313-1322.

Booch, G. and Brown, A. W. (2003): ‗Collaborative Development Environments‘, Advances in Computers,

, vol. 59, 2003, pp. 2-29.

Brooks, F. P. (1995): The Mythical Man-Month: Essays on Software Engineering, Addison-Wesley,

Boston, MA.

Card, S., Mackinlay, J. and Shneiderman, B. (1999): Readings in Information Visualization: Using Vision

to Think, Morgan Kaufmann, San Francisco, CA.

Carley, K. and Krackhardt, D. (1998): ‗A PCANS Model of Structure in Organizations‘, Symposium on

Command and Control Research and Technology, June 1998, pp. 113-119.

Carmel, E. (1999): Global Software Teams, Prentice-Hall, Upper Saddle River, NJ.

Cartwright, W., Crampton, J., Gartner, G., Miller, S., Mitchell, K., Siekierska, E. and Wood, J. (2001):

‗Geospatial Information Visualization User Interface Issues‘, Special Issue on Research Challenges

in Geovisualization, Cartography and Geographic Information Science, vol. 28, no. 1, January 2001.

Cataldo, M., Wagstrom, P. A., Herbsleb, J. D., and Carley, K. M. (2006): ‗Identification of coordination

requirements: implications for the Design of collaboration and awareness tools‘, ACM Conference on

Computer Supported Cooperative Work (CSCW), November 2006, pp. 353-362.

Collberg, C., Kobourov, S., Nagra, J., Pitts, J., and Wampler, K. (2003): ‗A system for graph-based

visualization of the evolution of software‘, ACM Symposium on Software Visualization, June 2003,

pp. 77-86.

Conradi, R. and Westfechtel, B. (1998): ‗Version models for software configuration management‘, ACM

Computing Surveys, June 1998, pp. 232-282.

Cubranic, D. and Murphy, G. C. (2003): ‗Hipikat: recommending pertinent software development

artifacts‘, International Conference on Software Engineering (ICSE), May 2003, pp. 408-418.

Page 51 of 55

Curtis, B., Krasner, H., and Iscoe, N. (1988): ‗A Field Study of the Software Design Process for Large

Systems‘, CACM, vol. 31, no. 11, November 1988, pp. 1268-1287.

D'Ambros, M., Lanza, M., and Gall, H. (2005): ‗Fractal Figures: Visualizing Development Effort for CVS

Entities‘, IEEE international Workshop on Visualizing Software For Understanding and Analysis,

September 2005, pp 16.

DeLine, R., Czerwinski, M., and Robertson, G. (2005): ‗Easing Program Comprehension by Sharing

Navigation Data‘, IEEE Symposium on Visual Languages and Human-Centric Computing, September

2005, pp. 241-248.

de Souza, C. R., Redmiles, D., Cheng, L., Millen, D., and Patterson, J. (2004): ‗How a good software

practice thwarts collaboration: the multiple roles of APIs in software development‘, ACM SIGSOFT

Symposium on Foundations of Software Engineering, November 2004, pp. 221-230.

de Souza, C. R., Quirk, S., Trainer, E., and Redmiles, D. F. (2007): ‗Supporting collaborative software

development through the visualization of socio-technical dependencies‘, ACM Conference on

Supporting Group Work, November 2007, pp. 147-156.

de Souza, Redmiles, D.F. (2007): ‗The awareness network: To whom should I display my actions? And,

whose actions should I monitor?‘, European Conference on Computer-Supported Cooperative Work

(ECSCW), September 2007, pp. 99-118.

Dewan, P. and R. Hegde. (2007): ‗Semi-Synchronous Conflict Detection and Resolution in Asynchronous

Software Development‘, European Conference on Computer-Supported Cooperative Work (ECSCW),

September 2007, pp. 159-178.

Dourish, P. and Bellotti, V. (1992): ‗Awareness and coordination in shared workspaces‘, ACM Conference

on Computer-Supported Cooperative Work (CSCW), November 1992, pp. 107-114.

Ehrlich, K. and Chang, K. (2006): ‗Leveraging expertise in global software teams: Going outside

boundaries‘, IEEE International Conference on Global Software Engineering, October 2006, pp. 149-

158.

Eick, S. G., Steffen, J. L., and Sumner, E. E. (1992): ‗Seesoft-A Tool for Visualizing Line Oriented

Software Statistics‘, IEEE Transactions on Software Engineering, vol. 18, no. 11, November 1992,

pp. 957-968.

Eick, S. G., Graves, T. L., Karr, A. F., Mockus, A., and Schuster, P. (2002): ‗Visualizing Software

Changes‘, IEEE Transactions on Software Engineering, vol. 28, no. 4, April 2002, pp. 396-412.

Ellis, J. B., Wahid, S., Danis, C., and Kellogg, W. A. (2007): ‗Task and social visualization in software

development: evaluation of a prototype‘, ACM SIGCHI Conference on Human Factors in Computing

Systems, April-May 2007, pp. 577-586.

Fischer, G. (2001): ‗User Modeling in Human–Computer Interaction‘, User Modeling and User-Adapted

Interaction, vol. 11, no. 1-2, March 2001, pp. 65-86.

Fitzpatrick, G., Marshall, P., and Phillips, A. (2006): ‗CVS integration with notification and chat:

lightweight software team collaboration‘, ACM Conference on Computer Supported Cooperative

Work (CSCW), November 2006, pp. 49-58.

Froehlich, J. and Dourish, P. (2004): ‗Unifying Artifacts and Activities in a Visual Tool for Distributed

Software Development Teams‘. International Conference on Software Engineering (ICSE), May

2004, pp. 387-396.

Fuggetta, A. (2000): ‗Software process: a roadmap‘, Conference on the Future of Software Engineering,

June 2000, pp. 25-34.

German, D., Hindle, A. , and Jordan N. (2004): ‗Visualizing the evolution of software using softChange‘,

International Conference on Software Engineering and Knowledge Engineering, 2004, pp. 336–341.

Gilbert, E. and Karahalios, K. (2007): ‗CodeSaw: A Social Visualization of Distributed Software

Development‘, INTERACT, 2007, pp. 303-316.

Page 52 of 55

Gutwin, C. and Greenberg, S. (1999): ‗The effects of workspace awareness support on the usability of real

time distributed groupware‘, ACM Transactions on Computer-Human Interaction, vol. 6, no. 3,

September 1999, pp. 243-281.

Gutwin, C., Penner, R., and Schneider, K. (2004): ‗Group awareness in distributed software development‘,

ACM Conference on Computer Supported Cooperative Work (CSCW), November 2004, pp. 72-81.

Halverson, C. A., Ellis, J. B., Danis, C., and Kellogg, W. A. (2006): ‗Designing task visualizations to

support the coordination of work in software development‘, ACM Conference on Computer

Supported Cooperative Work, November 2006, pp. 39-48.

Hancock, M. S., Miller, J. D., Greenberg, S., and Carpendale, S. (2006): ‗Exploring visual feedback of

change conflict in a distributed 3D environment‘, Working Conference on Advanced Visual

Interfaces, May 2006, pp. 209-216.

Handel, M. and Herbsleb, J. D. (2002): ‗What is chat doing in the workplace?‘, ACM Conference on

Computer Supported Cooperative Work, November 2002, pp. 1-10.

Herbsleb, J. D. and Grinter, R. E. (1999): ‗Splitting the organization and integrating the code: Conway's

law revisited‘, International Conference on Software Engineering (ICSE), May 1999, pp. 85-95.

Herlocker, J.L., Konstan, J.A., and Riedl, J. (2000): ‗Explaining collaborative filtering recommendations‘,

ACM Conference on Computer-Supported Cooperative Work (CSCW), December 2000, pp. 241-250.

Herman, I., Melancon, G., Marshall, M.S. (2000): ‗Graph visualization and navigation in information

visualization: A survey‘, IEE Transactions on Visualization and Computer Graphics, vol. 6, no. 1,

January-March 2000, pp. 24-43.

Hupfer, S., Cheng, L., Ross, S., and Patterson, J. (2004): ‗Introducing collaboration into an application

development environment‘, ACM Conference on Computer Supported Cooperative Work, November

2004, pp. 21-24.

Illich, I. (1971): Deschooling Society, Harper and Row, New York, NY.

Jang, C.Y., Steinfield, C. and Pfaff, B. (2000): ‗Supporting awareness in a web-based collaborative system:

The Team-SCOPE System‘, Workshop on Awareness and the WWW, ACM Conference on Computer

Supported Cooperative Work (CSCW ‘00), December 2000.

Jones, J. A., Harrold, M. J., and Stasko, J. T. (2001): ‗Visualization for Fault Localization‘, Workshop on

Software Visualization, International Conference on Software Engineering (ICSE), May 2001, pp.

71-75.

Jones, J. A. and Harrold, M. J. (2005): ‗Empirical evaluation of the tarantula automatic fault-localization

technique‘, IEEE/ACM international Conference on Automated Software Engineering, November

2005, pp. 273-282.

Kersten, M. and Murphy, G. C. (2006): ‗Using task context to improve programmer productivity‘, ACM

SIGSOFT International Symposium on Foundations of Software Engineering (FSE), November 2006,

pp 1-11.

Ko, A. J., DeLine, R., and Venolia, G. (2007): ‗Information Needs in Collocated Software Development

Teams‘, International Conference on Software Engineering (ICSE), May 2007, pp. 344-353.

Koike, H., and Chu, H.-C. (1997): ‗VRCS: Integrating version control and module management using

interactive three- dimensional graphics‘, IEEE Conference on Visual Languages, September 1997,

pp. 170-175.

Lanza, M. (2001): ‗The Evolution Matrix: recovering software evolution using software visualization

techniques‘, Workshop on Principles of Software Evolution, International Conference on Software

Engineering (ICSE), May 2001, pp. 37–42.

Lanza, M. (2003): ‗CodeCrawler - Lessons Learned in Building a Software Visualization Tool‘, European

Conference on Software Maintenance and Reengineering, March 2003, pp. 409.

Page 53 of 55

Lanza, M., Ducasse, S., Gall, H., and Pinzger, M. (2005): ‗CodeCrawler: an information visualization tool

for program comprehension‘, International Conference on Software Engineering (ICSE), May 2005,

pp. 672-673.

LaToza, T. D., Venolia, G., and DeLine, R. (2006): ‗Maintaining mental models: a study of developer work

habits‘, International Conference on Software Engineering (ICSE), May 2006, pp. 492-501.

Malone, T. W. and Crowston, K. (1994): ‗The interdisciplinary study of coordination‘, ACM Computing

Surveys, vol. 26, no. 1, March 1994, pp. 87-119.

McCabe, T. J. (1976): ‗A complexity measure‘, IEEE Transactions on Software Engineering, vol. 2, no. 4,

December 1976, pp. 308-320.

McCarthy, JF. (1999): ‗ACTIVE MAP: A visualization tool for location awareness to support informal

interactions‘, Lecture notes in computer science, International Symposium on Handheld and

Ubiquitous Computing , 1999, pp. 158-170.

McCord, Kent R. (1993): ‗Managing the integration problem in concurrent engineering‘, Massachusetts

Institute of Technology, USA, M.S. thesis.

McDonald, D. W. and Ackerman, M. S. (2000): ‗Expertise recommender: a flexible recommendation

system and architecture‘, ACM Conference on Computer Supported Cooperative Work (CSCW),

December 2000, pp. 231-240.

Mockus, A. and Herbsleb, J. D. (2002): ‗Expertise browser: a quantitative approach to identifying

expertise‘, International Conference on Software Engineering (ICSE), May 2002, pp. 503-512.

Molli, P., Skaf-Molli, H., Bouthier, C. (2001): ‗State Treemap: an awareness widget for multi-synchronous

groupware‘, International Workshop on Groupware, September 2001, pp. 106-114.

Morelli, M. D., Eppinger, S.D., and Gulati, R. K. (1995): ‗Predicting technical communication in product

development organizations‘, Working papers 3602-95, February 1995.

Nardi, B. A., Whittaker, S., and Schwarz, H. (2002): ‗NetWORKers and their Activity in Intensional

Networks‘, Computer-Supported Cooperative Work, vol. 11, no. 1-2, April 2002, pp. 205-242.

Norman, D. A. (1986): ‘Cognitive Engineering’, in D. Norman and S. Draper (eds.): User Centered System

Design: New Perspectives on Human–Computer Interaction, Lawrence Erlbaum and Associates,

Hillsdale, NJ, 1986, pp. 31-61.

Nutt, G. J. (1996): ‗The evolution toward flexible workflow systems‘, Distributed Systems Engineering,

vol. 3, December 1996, pp. 276-294.

O'Reilly, C., Bustard, D., and Morrow, P. (2005): ‗The war room command console: shared visualizations

for inclusive team coordination‘, ACM Symposium on Software Visualization, May 2005, pp. 57-65.

Olson, G.M. and Olson, J.S. (2000): ‗Distance Matters‘, Human- Computer Interaction, vol. 15, no. 2-3,

2000, pp. 139-178.

Parnas, D.L. (1972): ‗On the Criteria to be Used in Decomposing Systems into Modules‘, Communications

of the ACM, vol. 15, no. 12, December 1972, pp. 1053-1058.

Perry, D.E. and Wolf, A.L. (1992): ‗Foundations for the study of software architecture‘, ACM SIGSOFT

Software Engineering Notes, vol. 17, no. 4, October 1992, pp. 40-52.

Perry, D.E., Staudenmaye, N.A., and Votta, L.G. (1994): ‗People, Organizations, and Process

Improvement‘, IEEE Software, vol. 11, no. 4, July 1994, pp. 36-45.

Pinzger, M., Gall, H., Fischer, M., and Lanza, M. (2005): ‗Visualizing multiple evolution metrics‘, ACM

Symposium on Software Visualization, May 2005, pp. 67-75.

Ripley, R.M.; Sarma, A.; van der Hoek, A. (2007): ‗A Visualization for Software Project Awareness and

Evolution‘, International Workshop on Visualizing Software for Understanding and Analysis,

VISSOFT, June 2007, pp. 137-144.

Sangwan, R., et al. (2006): Global Software Development Handbook, Auerbach Publications, Boca Raton,

FL.

Page 54 of 55

Sarma, A., Noroozi, Z., and van der Hoek, A. (2003): ‗Palantír: raising awareness among configuration

management workspaces‘, International Conference on Software Engineering (ICSE), May 2003, pp.

444–454.

Sarma, A., Herbsleb, J. and van der Hoek, A. (2008a): ‗Challenges in Measuring, Understanding, and

Achieving Social-Technical Congruence‘, Technical Report CMU-ISR-08-106, Carnegie Mellon

University, Institute for Software Research International, April 2008.

Sarma, A., Redmiles, D.F., and van der Hoek, A. (2008b): ‗Empirical evidence of the benefits of

workspace awareness in software configuration management‘ ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE), November 2008, pp. 113-123.

Schummer, T., and Haake, J.M. (2001): ‗Supporting distributed software development by modes of

collaboration‘, European Conference on Computer Supported Cooperative Work (ECSCW),

September 2001, pp. 79–98.

Shaw, M. and Garlan, D. (1996): Software Architecture: Perspectives on an Emerging Discipline, Prentice-

Hall, Upper Saddle River, NJ.

Shneiderman, B. (2002): ‗Inventing discovery tools: combining information visualization with data

mining‘, Information Visualization, vol. 1, no. 1, March 2002, pp. 5-12.

Soloway, E. and Ehrlich, K. (1984): ‗Empirical studies of programming knowledge‘, IEEE Transactions on

Software Engineering, vol. 10, no. 5, September 1984, pp. 595-609.

Sosa, M. (2008): ‗A structured approach to predicting and managing technical interactions in software

development‘, Research in Engineering Design, vol. 19, no. 1, March 2008, pp. 47-70.

Sosa, M.E., Eppinger, S.D., Pich, M., McKendrick, D.G., and Stout, S.K. (2002): ‗Factors that influence

Technical Communication in Distributed Product Development: An Empirical Study in the

Telecommunications Industry‘, IEEE Transactions on Engineering Management, vol. 49, no. 1,

February, 2002, pp. 45-58.

Speier, C., Valacich, J. S., and Vessey, I. (1997): ‗The effects of task interruption and information

presentation on individual decision making‘ International Conference on Information Systems, 1997,

pp. 21-36.

Storey, M. D., Wong, K., Fracchia, F. D., and Mueller, H. A. (1997): ‗On Integrating Visualization

Techniques for Effective Software Exploration‘, IEEE Symposium on Information Visualization

(INFOVIS), October 1997, pp. 38.

Storey, M. D., Best, C., and Michaud, J. (2001): ‗SHriMP Views: An Interactive Environment for

Exploring Java Programs‘, International Workshop on Program Comprehension, May 2001, pp. 111-

112.

Storey, M. D., Cubranic, D., and German, D. M. (2005): ‗On the use of visualization to support awareness

of human activities in software development: a survey and a framework‘, ACM Symposium on

Software Visualization, May 2005, pp. 192-202.

Szóstek, A. M. and Markopoulos, P. (2006): ‗Factors defining face-to-face interruptions in the office

environment‘, Conference on Human Factors in Computing Systems, April 2006, pp. 1379-1384.

Taylor, C.M.B. and Munro, M. (2002): ‗Revision towers‘, International Workshop on Visualizing Software

for Understanding and Analysis, VISSOFT, June 2002, pp. 43-50.

Tee, K., Greenberg, S., and Gutwin, C. (2006): ‗Providing artifact awareness to a distributed group through

screen sharing‘, ACM Conference on Computer-Supported Cooperative Work (CSCW), November

2006, pp. 99-108.

Trainer, E., Quirk, S., de Souza, C.R.B., and Redmiles, D.F. (2008): ‗Analyzing a Socio-Technical

Visualization Tool Using Usability Inspection Methods‘, IEEE Symposium on Visual Languages and

Human Centric Computing, September 2008, pp. 78-81.

Tu, Q., and Godfrey, M. W. (2002): ‗An integrated approach for studying architectural evolution‘,

International Workshop on Program Comprehension, July 2002, pp. 127–136.

Page 55 of 55

Tufte, E. (1990): Envisioning Information, Graphics Press, Cheshire, CT.

Tufte, E. (2006): Beautiful Evidence, Graphics Press, Cheshire, CT.

Valetto, G., Helander, M., Ehrlich, K., Chulani, S., Wegman, M., and Williams, C. (2007): ‗Using Software

Repositories to Investigate Socio-technical Congruence in Development Projects‘, International

Workshop on Mining Software Repositories, International Conference on Software Engineering

(ICSE), May 2007, pp. 25.

Wasserman, S. and K. Faust: (1994): Social Network Analysis: Methods and Applications. Structural

Analysis in the Social Sciences, Cambridge University Press, Cambridge, UK.

Whittaker, S., Frohlich, D., and Daly-Jones, O. (1994): ‗Informal workplace communication: what is it like

and how might we support it?‘, SIGCHI Conference on Human Factors in Computing Systems, April

1994, pp. 131-137.

Wu, J., Holt, R. C., and Hassan, A. E. (2004a): ‗Exploring software evolution using spectrographs‘,

Conference on Reverse Engineering, November 2004, pp. 80–89.

Wu, X., Murray, A., Storey, M. A., and Lintern, R. (2004b): ‗A reverse engineering approach to support

software maintenance: Version control knowledge extraction‘, Conference on Reverse Engineering,

November 2004, pp. 90–99.

Ye, Y., Yamamoto, Y., and Nakakoji, K. (2007): ‗A socio-technical framework for supporting

programmers‘, ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE),

September 2007, pp. 351-360.

