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Abstract: 

 

In recent years, research attention in the software engineering community has shifted from 

process management and workflow tools that aim to plan for all coordination activity and 
eventualities before development begins to a new generation of more flexible tools that saturate 

the developer's workspace with information at varying degrees of granularity and in different 

visual, and often interactive, representations.  The common thread that runs through these tools is 
the objective of supporting awareness of software developers‘ activities, in order to put one‘s own 

activities in context.  Despite the glut of such tools, little work has been done to assess to what 

extent they address well-understood coordination needs. 

This survey symbolizes a critical first step in that process.  Its primary goal is to study the 
relationship between coordination and awareness as empirically explored in the software 

engineering literature, identify important aspects of awareness from that same body of literature, 

and, with respect to these aspects, compare tools representative of those used in academia and 
industry that are built to support awareness of development activities. An analysis of the tools 

was performed and a table was constructed that maps the tools to important dimensions of 

awareness.   
This table is the central contribution of this survey.  It is a mechanism through which 

researchers can perform careful comparisons of each tool as well as develop a more critical 

understanding of how each addresses components of awareness as identified in the literature.  

Therefore, this survey crucially links two bodies of literature in software engineering: empirical 
and theoretical findings on how developers maintain awareness and tools that visualize human 

activities over the course of software development projects.
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Introduction 

Professional software development is, and has always been, a human-driven 

activity.  Even small-scale software projects require the coordination of multiple 

individuals, typically grouped into teams, working in parallel on different components of 

the system for up to many weeks, months, or years (Brooks 1995).  Software design and 

development activities typically produce a ―project memory,‖ (Cubranic and Murphy 

2003) of archival artifacts such as source-code, e-mail lists, design documentation, 

problem reports and change histories of all this information that developers use as a 

means toward coordinating the smooth flow of work.  Successful coordination often 

requires not only an understanding of the tasks to be performed but also of the internal 

components of the system under development, their interactions, and dynamic behavior 

over the course of the project (Parnas 1972; Curtis et al. 1988; de Souza et al. 2004; 

Cataldo et al. 2006; de Souza et al. 2007).   

Yet the inherent complexities of software make design and development a 

difficult undertaking for the individuals (and teams) involved for a number of reasons 

(Brooks 1995).  Although it has an architecture (Perry and Wolf 1992; Shaw and Garlan 

1996), software is not a physical entity like a building or monument, but rather an 

abstract encapsulation of functionality that serves to fit a set of stakeholders‘ 

requirements.  It has no visible representation in the real world.  As such, a natural 

management task like identifying ―progress‖ is difficult to perform.  Software is not built 

once-and-for-all, but emerges incrementally from changing requirements and is 

constantly subjected to rigorous verification and validation.  It is not possible for the 

casual observer to gauge the ―size‖ of a software system in situ.  Rather, the metric for 

the size of a system requires a source-code perspective and is often measured in lines-of-

code (LOC).  Even then, a line-of-code measurement fails to take into account other 

important measures of complexity such as the coupling between components or the 

number of possible paths through a program‘s source-code (McCabe 1976).  No single 

measurement can, in of itself, describe the complexity of a software system.   

Dealing with this complexity requires careful management of human resources 

and their allocation to development tasks over the course of the project. It is extremely 

difficult, if not impossible, for an individual or groups of individuals to comprehend 

systems in their entirety (Soloway and Ehrlich 1984).  As such, assigning enough 

developers to cover all of the implementation work is an important management decision.  
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While having sufficient human resources is a fundamental requirement for completing 

development work, it does not follow that adding more personnel will get the work done 

faster.  In Brooks‘ seminal work (Brooks 1995), he empirically observed that merely 

adding more people to a project will not speed up development time, but delay it instead.  

The extra time required derives from the additional effort (and thus time) required to 

understand the software and coordinate activities with other developers.  In general, 

software development organizations take more careful and structured approaches toward 

assigning work.  The research literature has shown that organizations carry out complex 

tasks by dividing them up into smaller, interdependent work items and assigning them to 

teams.  Coordination needs arise from the interdependencies between these tasks (Malone 

and Crowston 1994) and change as progress is made on the system under construction 

(Cataldo et al. 2006).  

In response to these technical and organizational issues, software development 

researchers and practitioners have developed techniques and tools for coordinating work.  

The most common way to cope with this complexity is to adopt and follow a software 

process (Fuggetta 2000).  Software processes frame and organize the technical and social 

aspects of developing software.  More specifically, a software process can be described 

as a ―coherent set of policies, organizational structures, technologies, procedures, and 

artifacts that are needed to conceive, develop, deploy, and maintain a software product‖ 

(Fuggetta 2000, pp. 28).  Fuggetta identifies four aspects of software development 

processes: 

  

1. Software development technology—tool support such as infrastructures, 

environments, and visualizations 

2. Software development methods and techniques—guidelines and rules-of-

thumb on how to use technology to complete tasks 

3. Organizational behavior—the science of organizing people, coordinating and 

managing work activities 

4. Marketing and economy—being able to address customer needs in specific 

market situations, understanding the context in which software is developed 

and sold 

 

All four aspects have been subject to much attention in the context of software 

development by both researchers and practitioners.  Studies of software development 

projects have revealed organizational behavior and structure is largely influenced by 

interdependencies between software modules and run-time components (Parnas 1972; 

Curtis et al. 1998; Morelli and Eppinger 1995; Sosa and Eppinger 2002; de Souza et al. 

2004; de Souza et al. 2007; Valetto et al. 2007; Avritzer et al. 2008).  Much of the work 

related to coordinating the implementation of those components requires an 

understanding of the ongoing activities of others and how those activities might impact 

shared tasks.  Yet the increase in global software development (Carmel 1999; Sangwan et 

al. 2006) poses many difficulties for developers and managers who wish to manage these 

aspects of the software development process.  As a result, particular methods and 

techniques such as architecting systems to require less communication overhead, 

outlining principles of awareness, and identifying awareness networks have been 

developed to cope with these difficulties.  In turn, researchers have engineered a host of 
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software development tools to minimize communication requirements and enhance 

developers‘ understanding of the activities being performed over the lifecycle of the 

project. 

Due to limitations of scope and space, this survey will address the first aspect of 

software processes identified above: software development technology.  The primary 

objective of this survey is to study the relationship between coordination and awareness 

as empirically explored in the software engineering literature, identify important aspects 

of awareness from that same body of literature, and, with respect to these aspects, 

compare tools representative of those used in academia and industry that are built to 

support awareness.  Because surveying all existing tools and technologies is impractical, 

this survey addresses a subset of these tools.  The systems were primarily selected on the 

frequency of their appearance in the literature, both as standalone publications and as 

references that lend support to and motivate work done by other researchers in the field.  

This survey was performed according to the following process: first the existing 

scientific literature on empirical studies of software development coordination and 

awareness activities was searched.  Literature was selected from premier peer-reviewed 

research conferences and journals in the areas of: software tools and environments, 

empirical software engineering, computer-supported cooperative work, awareness, and 

visualization (e.g., at the ICSE, CSCW, ECSCW, SOFTVIS, AVI, and VL/HCC venues). 

Careful attention was devoted to identifying common themes in the information 

developers need and the strategies they use to stay aware of each others‘ activities.  In 

general, these papers describe, analyze, or theorize about problems, but do not mention a 

specific tool.  As such, forward citation searches of this research were conducted to 

identify software tools with the purpose of promoting awareness for a variety of software 

development activities.  Backward citation searches of the tool literature were performed 

to identify other principles of awareness and empirical work not revealed by original 

searches, yet relevant to the topic, from which these tools were created.  Finally, these 

publications were combined with the first set of literature describing awareness needs to 

identify crucial principles of awareness, providing a context in which to evaluate the 

tools. 

When tools could not be found using backward and forward citation searches, 

searches were made via the web using the keywords ―software development,‖ 

―awareness,‖ and ―visualization.‖  These searches yielded tools that addressed broad 

usage scenarios instead of specific tasks, such as ―showing evolution,‖ for example.  In 

general, the tools identified addressed one or more tasks, such as making a change to a 

portion of source-code or identifying who to contact about some technical issue.  Despite 

the fact that these tools were directly or indirectly motivated by awareness needs, the 

publications rarely discussed the extent to which they addressed awareness as it relates to 

the tasks they were built to support.   

Knowing how well these tools encompass the aspects of awareness they are 

designed to support is an important step in gauging their usefulness, understanding their 

positive and negative qualities for the purpose of improving them, and facilitating their 

adoption by users.  As such, analysis of the tools was performed and a table was 

constructed that maps the tools to crucial aspects of awareness.  The table allows the 

visualization and comparison of the characteristics of each tool and explains how each 

addresses components of awareness.  Therefore, this survey crucially links two bodies of 
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literature in software engineering: empirical and theoretical findings on how developers 

maintain awareness and tools that visualize human activities over the course of software 

development projects. 

In the next sections, the role of awareness and different aspects of awareness 

relevant to software development activities are discussed, framing the content of this 

survey.  Several fundamental themes in the awareness literature that are relevant, yet not 

fully explored by visual tools for promoting awareness, are identified.  In the remainder 

of the paper existing gaps in the current tool support available are exposed with respect to 

these themes and implications for future iterations of these tools as well as novel research 

avenues are discussed. 

The Role of Awareness in Software Development 

Coordinating work activities is easiest done in environments where individuals 

are co-located (Olson and Olson 2000). Members of projects who are co-located have 

opportunities for more informal interactions, including overhearing (Heath and Luff 

1992) and unplanned discussions over meals or in hallways (Whittaker et al. 1994).  In an 

empirical study on time management by software developers, Perry and colleagues (Perry 

et al. 1994) were struck by the fact that developers spent an average of 75 minutes per 

day in unplanned personal interactions. In general, co-located individuals have a common 

view of the way work should unfold, either because of an in-place software development 

process (Fuggetta 2000; Nutt 1996), or a shared vocabulary or perspective about the work 

to be done and how that work is assigned among individuals and project teams.   

While co-location may be the ideal configuration of software developers from an 

organizational perspective, the reality is that software development at a distance is 

increasingly becoming commonplace.  This is due to a number of reasons beyond the 

scope of this survey, including the globalization of markets and production, cost 

concerns, and the desire for mixed expertise and skills.   

People at a distance typically communicate infrequently and less effectively 

(Herbsleb and Grinter 1999).  Thus it is often difficult to know what colleagues are doing 

day to day and thus whether they are available to work on dependent tasks.  The research 

literature has referred to this sense of other people‘s availability and their activities as 

―awareness.‖ More precisely, ―awareness‖ has been described as ―an understanding of 

the activities of others, which provides a context for (one‘s) own activity‖ (Dourish and 

Bellotti 1992).  Yet awareness is not only about understanding others‘ actions, but 

knowing how one‘s own action may impact others as well (de Souza and Redmiles 

2007). 

 Awareness might answer questions such as ―Who is doing what,‖ ―Who‘s who,‖ 

and ―Who do I talk to about issue x?‖  In a study of open-source software developers, 

Gutwin and colleagues identify two types of awareness: general awareness (e.g. who is 

doing what) and specific awareness (e.g. who do I talk to?) (Gutwin et al. 2004). 

Similarly, in an empirical study of distributed software development teams, de Souza 

found that despite the fact developers had a general idea of whose code affected whom, 

they still had questions of the form ―Who do I talk to about problems with this 

component?‖ ―Is my code being called?‖ and ―Who is implementing this interface?‖ (de 
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Souza et al. 2007). 

 Thus awareness involves a perspective, or information space of the people 

involved, the activities they must perform, and the resources with which they work.  

However, awareness information must also be managed over time.  Although technical 

strategies such as decoupling the system and designing stable APIs can limit the 

coordination required upfront, even they fail to hold up against the many changes that 

occur over the development cycle (de Souza et al. 2004).   

Aspects of Awareness 

Content—Artifacts 

 Promoting ―awareness‖ necessarily implies the action of delivering contextually 

relevant information to interested parties.  Before that information can be passed along, 

however, the content of that information must first be identified.  In general, typical data 

sources of awareness information include change management/version control systems, 

defect and issue (i.e. bug) trackers, program source-code, documentation, and informal 

communication channels such as IM and chat. 

 Coordination requirements, and thus the content of awareness information, 

change over time due to the dynamic and iterative nature of dependencies between 

software development tasks (Cataldo et al. 2006). There are many reasons for these 

changes.  For example, it is not uncommon for clients to request more features than 

originally communicated.  As a consequence, parts of the design and thus the 

implementation might well change.  The new requirements create additional 

implementation tasks to which management must allocate developer resources.  As 

developers implement features and check them in to a versioning repository, bugs 

invariably emerge.  As a result, developers create and file bug reports, creating work to 

which bug fixers must attend.  Newly written code is subject to the same rigorous testing 

and verification as the original code it replaces.  In short, changes imply other activities 

that must be performed downstream.  

 Artifacts of the development process such as code are subject to constant change 

and different versions must be maintained by developers.  Awareness of changes may 

need to be communicated daily as new code is checked into a repository.  Dependencies 

in source-code emerge over time by their nature; one component may have no 

dependencies for a day or weeks and then suddenly, one day, a portion of source-code 

may reference it.  If a developer fails to know their code is being referenced, they may 

change it and break the very code that depends on it.  Failing to address the requirements 

of consuming code can cause problems for the developers involved, especially if a project 

deadline looms near (de Souza et al. 2007).  Reverse engineering and maintenance tasks 

may require information over a longer period of time such as monthly releases of the 

software.  Thus, awareness information should reveal information about activities that 

occurred in the recent past, activities that are currently happening, or activities that 

occurred over the history of the whole project. 

 The above scenarios are by no means exhaustive, but serve simply to illustrate the 

dynamic nature of coordination requirements.  Software development is an incremental, 
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iterative process so this is not unexpected.  Artifacts of the software development process 

are not the only resources in flux.  As explained in the following section, the individuals 

with whom one must coordinate change as well. 

Content—People 

 In addition to development artifacts, people use each other as resources to 

maintain an awareness of what is going on.  In software development, awareness and 

information-seeking go hand in hand. Coworkers are the most frequent sources of 

information about design artifacts and developer expertise (Ko et al. 2007).  Developers 

prefer to pick the brains of others and find what they need by utilizing their personal 

networks, often going outside of their assigned teams to do so (LaToza et al. 2006; 

Ehrlich and Chang 2006).  Documentation is often not kept up to date and design 

knowledge is often distributed across teams by the very nature of modular decomposition 

(Parnas 1972) and the assignment of teams to different aspects and components of the 

system. In an empirical study of software developers, Ko and colleagues (Ko et al. 2007) 

identified the types of knowledge sought over several different work tasks: writing code, 

submitting changes, triaging bugs, reproducing failures, understanding execution 

behavior, and reasoning about design.  They found that co-worker awareness, i.e. what 

people were doing, was among the top information needs over these categories.  

Individuals often deferred searches about implementation choices, program behavior, and 

impacts of changes to code until they could find the right co-worker to talk to about a 

particular problem. 

 Numerous researchers have tried to characterize the dynamic nature of people‘s 

relationships over time.  de Souza proposes a social network (Wasserman and Faust 

1994)-oriented view with the term ―awareness network,‖ which refers to the set of people 

who need to be aware of one‘s actions as well as the set of people whose actions one 

needs to monitor (de Souza and Redmiles 2007).  The network expands and constricts 

over time as tasks evolve and require individuals to coordinate.  Similarly, Nardi and 

colleagues refer to ―intentional networks,‖ collections of contacts that an individual 

constructs, maintains and activates as the work requires (Nardi et al. 2002).  Awareness 

networks may be the prerequisite for constructing intentional networks. 

 Before one can maintain a network of those of whom they need to be aware, 

individuals must first identify what set of people should actually be in the network itself. 

Empirical studies have shown that, in some cases, at least 80% of all coordination and 

communication activities can be predicted in advance by analyzing dependencies in the 

system architecture (Morelli and Eppinger 1995; Sosa and Eppinger 2002).  In general, 

however, much of the coordination work individuals do is in response to needs that 

emerge from changing code, tasks, and availabilities of co-workers.  These needs cannot 

be known before development work begins.  Empirical studies (Cataldo et al. 2006) have 

validated this observation. 

 In an effort to support the process of being aware of others‘ activity and finding 

expertise, software researchers have developed tools that show the relationships between 

people based on dependent tasks they share as well as the artifacts they use.  For 

example, using a matrix-multiplication method derived from the PCANS model (Carley 

and Krackhardt 1998), de Souza and colleagues showed how dependencies in source-
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code create dependencies between people working on the code.  They describe how, at 

any release or snapshot of a project, a social call-graph, or sociogram, visualizing 

connections between individuals based on the code they write, can keep developers aware 

of how changes to that code may affect them or others (de Souza et al. 2007).  The graphs 

can also help developers identify multiple people to talk to about portions of the code 

based on their usage of it.  TESNA, a tool developed by Amrit (Amrit 2008), also uses 

sociograms to show links between developers based on dependencies in the code but 

combines the graphs with social network analysis (SNA) metrics (Wasserman and Faust 

1994) to assign developers relative measures of prominence and reputation (e.g. 

developer ownership, involvement in knowledge exchange).  Recommender systems 

(Mockus and Herbsleb 2002; McDonald and Ackerman 2000; Ackerman and McDonald 

1996) are a set of tools that address this problem by automatically suggesting people with 

whom to talk based on the history of their interactions with the source-code. The 

common feature of these tools is that they show individuals with whom they might 

coordinate based on the history of their interactions with the code.  They identify the 

―who‖ dimension of awareness. 

 When individuals use awareness information to get help or ask a question, that 

information should give an indicator of that individual‘s willingness to respond. 

Availability/Willingness to Help 

 Awareness information is often used to identify individuals with whom to talk (de 

Souza et al. 2007).  Yet identifying the person to talk does not necessarily mean they will 

provide the information the asker needs.  Unlike design artifacts such as architecture 

diagrams, code, and design documents, people only become resources when they consent 

to do so, often under conditions of their choosing (Illich 1971). In order for an individual 

to get help, the information-provider must be willing to cooperate.  This willingness 

might depend on the helper‘s demeanor, their history of interactions with the 

information-seeker, and any perceived benefits as a result of helping.  Asking someone 

for help usually comes at a cost: the disruption of flow and continuity of ongoing work, 

which reduces the productivity of the helper (Szóstek and Markopoulos 2006).  As such, 

helping may require precious time for little reward, aside from a possible increase in 

social reputation.  Yet appearing unwilling by responding ―no‖ can degrade the helper‘s 

relationship with their peers because declining to help violates social norms, especially if 

the culture of the workplace promotes sharing. Ultimately, knowing whether someone is 

reachable is not enough; the seeker must rely on social context for when and where to 

make contact.  To the author‘s knowledge, this issue commands further attention and 

exploration in the literature. 

 It is not enough to know whose actions one needs to watch.  Software 

development is an information-intensive process already and any additional awareness 

information that becomes available may distract developers.  As such, awareness 

information should facilitate decision-making related to tasks at hand within some larger 

task and corresponding phase of the software development process.   

Mapping Content to Tasks  

 Awareness content needs to be directly tuned to a developer‘s current task 
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because, in the interest of time, a developer is often only seeking information that is 

required to complete that task (Kersten and Murphy 2006).  If information acquisition 

requires use of a stand-alone system, it increases the cognitive cost of that information, 

requiring the developer to switch between different workspaces, lose short-term memory, 

and perform less efficiently and productively as a result. Gutwin and Greenberg also 

made this observation in their framework for workspace awareness (Gutwin and 

Greenberg 1999).  They articulate a ―what‖ dimension of awareness (e.g. ―What are 

people doing?‖ ―What goal is that action part of?‖ What object are they working on?‖ 

etc.).   

 Thus for awareness information to be considered as relevant and useful as 

possible, it should directly relate to the task or subsets of tasks at hand.  De-

contextualized information, such as Microsoft‘s ―Tip of the Day,‖ is more annoying to 

users than it is helpful (Fischer 2001).  Software developers spend much of their time 

using popular development environments, or IDEs, such as Eclipse and Jazz for example.  

These IDEs have reached a critical mass of users engaged in both software development 

research and practice.  As such, many tools for awareness have been designed as plug-ins 

to these environments as to not distract from the flow of work (Sarma et al. 2003; Hupfer 

et al. 2004; DeLine et al. 2005).  These tools aggregate resources and events already in 

the environment, but usually time consuming to access, in order to makes sense of the 

work currently being done.  For example, some tools inspect deltas from versioned files 

to show timeline views of activity that convey change and evolution.  Others identify 

parallel workspace events generated by multiple developers to detect conflicts in order to 

determine who will be impacted by, and should be notified of, changes.  Information that 

other developers are doing parallel work on the same files is most useful, for example, 

when the target user is working on those files concurrently, not after they have checked 

the files in to a CM system (Conradi and Westfechtel 1998).  Thus identifying the task a 

particular piece of awareness should support and delivering that awareness in a timely 

manner are fundamental requirements for displaying information. 

 In turn, the task that the awareness information is designed to support should be 

representative of some real-world task as identified by some phase of the software 

development process.  Examples include fixing bugs, understanding source-code, adding 

features in the maintenance phase of software development, and implementing a 

component or submitting a change in the implementation phase of software development.  

Many of the tools designed for supporting awareness focus on activities in the 

maintenance phase of software development, such as program comprehension and 

reverse engineering. 

 When awareness content is intended to support decision-making involved in 

completing a task, a measure of the confidence of the accuracy of the information 

provided is crucial.  To effectively use awareness content in order to complete a task, the 

individual must understand its relevance and trust its accuracy.   

The ―Interpretive Gap‖ 

 In general, there is a gap between providing awareness information and actually 

being able to express confidence in the validity of the information and its usefulness 

toward completing a task.  A similar gap exists in the field of information visualization, 
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the ―use of computer-supported, interactive, visual representations of data to amplify 

cognition‖ (Card et al. 1999).  The tension rests in what is being shown in the 

visualization compared with what needs to be shown to make a straightforward decision 

(Amar and Stasko 2004).  Most approaches toward providing awareness rely on the user 

to unquestioningly unpack the awareness information and put it to use.  There is usually 

no indication of the validity of the information or the data from which it came.  As a 

result, decision-making is often informed by individual user experience and incomplete 

information rather than a rich set of cues the developer can use to tradeoff the 

consequences of certain courses of action. 

 In his discussion of the user activities involved in carrying out a task via a 

computer, Don Norman (Norman 1986), a distinguished researcher in the field of 

usability, observes the tension between the user‘s psychological perception of the 

system‘s state and the system‘s actual state.  When a user performs a task, they specify a 

list of action sequences, or interactions with the software, needed to achieve some result.  

After the user executes the actions, they perceive a visual result (e.g. a blinking status 

update).  In response, the user goes through with what Norman terms a phase of 

―interpretation.‖  Interpretation involves the cognitive process of giving meaning to the 

perceived information and subsequently comparing it to what was expected when the 

action sequence was initially specified.   

 Yet perceptions are subjective and can lead to incorrect interpretations.  

Awareness support can only be as good as the source of the awareness information itself.  

For example, Ariadne (Trainer et al. 2008), a visual software tool that shows connections 

between developers based on the shared dependent code they use shows varying levels of 

activity of different developers in the project based on the number of calls they make.  

The more thick the connections are, the more calls to the code developers are making  

One could potentially use this visualization to get a sense of certain people‘s ―expertise,‖ 

the argument being that the more connections from a developer to the code with which 

they work, the more knowledge that individual has about the code.  However, it could 

also be the case that that developer is only using a small set of features (e.g. instance 

variables or helper methods) and thus would not be very helpful answering questions 

relating to the majority of the implementation.  This information is not clearly available 

via the interface, so relying on the information provided is not adequate for forming a 

complete and correct interpretation.  To more correctly evaluate the possibility of 

someone being an expert on a code module, the user would need more information, such 

as a view of the code being called juxtaposed with the total size of the module and other 

related code. 

 Borrowing from Norman, the mismatch between the user‘s interpretation of the 

awareness content and the meaning implicitly assigned to the content by the process 

through which it was derived will be referred to hereafter as the ―interpretive gap.‖ 

 Thus awareness content should include various forms of evidence to support its 

correct interpretation and meaning, including strengths and certainties of relationships, 

support for user hypothesis testing (Shneiderman 2002), and alternate views of that 

awareness should be conveyed in awareness delivery mechanisms.  For example, a 

system that displays connections to individuals with particular source-code expertise 

should provide rationale for and trade-offs between asking different individuals such as 

their history of responding to questions (indicating their willingness to help), their actual 



Page 11 of 55 

 

experience using the code, their preferred method of contact, their location (which might 

determine their response speed), and so on and so forth.  

Temporal Unit of Analysis 

 As software artifacts are produced as a result of the development process, they are 

typically automatically archived in versioning repositories.  These repositories typically 

contain all versions of items and associated meta-information such as who created them, 

when they were created, and textual descriptions summarizing the items.  Some tools 

even log real time user interactions with items in the development workspace, such as 

editing or checking in source-code.  As a result, information about items can potentially 

be extracted at any point in time over the trajectory of the project to reveal insights into 

the activities that occurred at that point.  For example, the entire history of a project 

might be needed to complete reverse engineering or maintenance activities while only the 

recent project history like daily code commits might be needed to assess the impact on 

others‘ dependent code. Real time awareness information like ongoing parallel changes to 

the same artifact by multiple developers would be needed to detect code commit 

conflicts.  Awareness information, then, can be expressed in several temporal 

granularities: the entire project history, recent project history, and real time project 

activities. 

Visual Representations 

 Another characteristic of awareness is the visual form through which it is 

conveyed.  In general, most systems to support awareness deliver it in three forms: 

textual, graphical, or both.  Fitzpatrick et al. found that something as simple as a 

lightweight tickertape mechanism was sufficient for conveying changes made to a 

software system (Fitzpatrick et al. 2006).  In a study of open-source software 

development, Gutwin and colleagues found that by using mailing lists and chat systems, 

developers could actively maintain awareness of what their colleagues were doing 

(Gutwin et al. 2004).   

 Much of the work on supporting awareness, however, focuses on the use of 

graphics. Tool designers use graphical representations of people and artifacts like source-

code and design diagrams to convey structure and overall patterns in development 

activity.  Software is by its nature (Brooks 1995) complex and invisible. Graphical 

representations, or visualizations, have been used extensively to give visibility to 

software and make the process of understanding software easier as a result.  It is 

generally accepted that the advantages of successful visualizations over textual 

representations include allowing users to process more data in parallel, facilitating 

identification of significant recurring patterns, and identifying the high-level relationships 

among data critical to decision-making (Bertin 1982; Ball and Eick 1996; MacKinlay and 

Shneiderman 2000).   

 Tool designers use several common visual representations of design artifacts and 

people involved in software development activities.  One widely-used representation is a 

simple network graph composed of nodes and edges.  In software development graphs are 

often used to represent relationships between different system components, and thus their 
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structure (Herman et al. 2000).  For example, a task like finding a particular file is most 

usually performed by navigating a hierarchical tree (a type of graph).  Developers use call 

graphs to understand dependencies in the code.  Nodes represent source-code artifacts 

and edges represent calls between source-code.   

 Alternatively, small visual cues or decorators can be used to augment existing 

visualizations and displays in the environment in unobtrusive and lightweight ways.  

These icons are typically too small to convey much information themselves.  

As such they are often used to convey a single property, such as the status of an item (e.g. 

buggy, conflict, valid, etc.).  Yet their small size means many can be viewed in the same 

window or dialog box at once, giving a sense of the ―overall‖ status of the information 

they annotate.  Typical examples in software development practice include the red 

squiggly underlines in the code editor that indicate typographical errors, red boxes next to 

lines of code that indicate compile problems, or green lights next to a test case indicating 

it passed.  

 Researchers have used decorators for the purpose of conveying awareness as well.  

Sarma et al. use colored arrows and text to annotate source-code in the Eclipse editor, 

indicating the potential for conflicting code check-ins and measurements of the code‘s 

impact on other code in the system (Sarma et al. 2003).  In the Team Tracks 

visualization, DeLine and colleagues use a textual list view combined with decorators to 

indicate development artifacts related to the current source-code displayed in the editor 

(DeLine et al. 2005).  The lengths of horizontal bars next to the related items indicate the 

strength of the relation while small arrow icons represent directionality of dependencies.  

In other visualizations, user avatars or icons are also typically used to represent 

developers, managers, or other stakeholders involved in the development process (Hupfer 

et al. 2004).   

 Such visual representations are typically, but not necessarily, integrated into the 

development environment along with standard views such as hierarchical source-code 

trees, the source-code itself, and UML diagrams.  On the other hand, visualizations that 

exist as stand-alone systems increase the cognitive cost of using them because of constant 

task-switching users must perform.  Some awareness visualizations try to visualize whole 

systems (Eick et al. 1992; Froehlich and Dourish 2004). In these cases, such 

visualizations may require more screen real-estate than one monitor can provide.  

Allocating stand-alone visualizations to a second monitor adjacent to the developer‘s 

primary monitor represents one promising approach to this problem (Speier et al. 1997; 

da Silva et al. 2006). 

 The following table summarizes the different aspects of awareness covered up to 

this point: 
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Awareness Aspects Description 

1. Content:  

 Artifacts 

 People 

--Data sources and associated awareness 

information (e.g., CM repository and 

change history, IDE and real time activity)  

2. Mapping Content to Tasks --Relating awareness content to practical 

tasks and phases of software development 

3. Interpretive Gaps --Uncertainty in interpretations of 

awareness content needed to make 

decisions (e.g. recommendations) 

4. Temporal Unit of Analysis --Granularity of time: entire project history, 

recent project history, real time 

5. Visual Representations --How awareness is conveyed through the 

interface: graphics, text, or both 
Table 1—Aspects of awareness used to support software development activities. 

Summary 

 As the previous sections have illustrated, organizing the interactions involved in 

software development is a complex problem due to the coordination effort required.  

Software managers and developers use a software process to manage this complexity.  

Within it, designers and architects use a variety of organizational and technical strategies 

to reduce coordination needs.  These strategies work more effectively when developers 

are co-located than when they are distributed in time and space.  Yet global software 

development is increasingly becoming the rule, not the exception.  As system knowledge 

and developer expertise become spread out over different time zones, distances and 

individuals with different cultural backgrounds, it becomes increasingly difficult to 

maintain the same awareness to which co-located groups have access.  

 To address the problem of staying aware, the research community has developed 

a host of visualization tools to either augment existing views in development 

environments or provide specialized views of individual activity combined with 

information about software artifacts.  The vast majority of these tools use the project 

versioning repository as a project memory to uncover what individuals have done and 

what changes to artifacts have been made.  There are literally dozens of examples of such 

tools.  Despite this fact, there is still relatively little known about how the vast majority of 

these tools differ, with the exceptions of the broad categories of information they display, 

their visual representations, whether they have been evaluated or not, and the types of 

interactions they support (Storey et al. 2005).  Identifying similarities and differences in 

these tools can lead to an understanding of their best and worst aspects as well as how 

they may be combined to better support awareness.  

Existing Visual Tools for Supporting Awareness 

 In this section, forty (40) tools in total are introduced and surveyed.  From them, a 
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subset was chosen and subsequently analyzed using the aspects of awareness reported in 

the previous section.  In an effort to categorize and analyze the tools, classifications 

describing the broad tasks (i.e. tasks to be completed by developers) the tools support 

were chosen:  

 

 Understanding change management and evolution 

 Recommending people and artifacts 

 Avoiding conflicts 

 Determining individual availability  

 Understanding developer activities   

 

 A direct link was found between these classifications and the tasks developers 

perform as identified in the surveyed research literature on empirical software 

engineering and awareness (e.g. determining individual availability and recommending 

people and artifacts).  Within categories, tools were selected based on their research 

merits.  This process resulted in twelve (12) tools. 

 One way to measure the merit of a concept or tool is the extent to which it 

appears—as a publication itself or as a reference in another publication—in the research 

literature.  The more a piece of work has been published, the more it has been peer 

reviewed and refined to address various issues raised by scientists in the same research 

community.  As the ideas are refined, the more rigorous they become and the more firmly 

they hold up to scientific critique. Thus number of publications—everything from 

workshop papers to book chapters—was used as one metric to quantify research value.  

The value of theories, frameworks, tools, and empirical results can also be assessed by 

the number of citations to that work, an indicator of its relevance to and influence on 

ongoing related, but different, research in the field.  As such, citation count was also 

considered a measure of a tool‘s worth. Table 2 below lists the tools and their paper and 

citation counts, respectively. 

 

 

Tool Name Paper 

Count 

Citation 

Count
1
 

ELVIN/Tickertape (Fitzpatrick et al. 2006) 4 69 

Command Console  (O‘Reilly et al. 2005) 2 29 

softCHANGE (German et al. 2004) 2 102 

Expertise Recommender (McDonald and Ackerman 2000) 3 120 

Hipikat
2
 (Cubranic and Murphy 2003) 4 106 

Team Tracks (DeLine et al. 2005) 2 39 

Palantír (Sarma et al. 2003) 5 45 

TUKAN (Schummer and Haak 2001) 2 10 

Awarenex (Begole et al. 2002) 3 139 

Community Bar (Tee et al. 2006) 3 11 

FASTDash (Biehl et al. 2007) 2 16 

                                                
1 From portal.acm.org--when citation counts were not available they were counted manually using Google scholar search results. 
2 Hipikat became Mylar (Kersten and Murphy 2006) and is now Mylyn (http://eclipse.org/mylyn/start/) 
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Jazz
3
 (Hupfer et al. 2004) 3 37 

Table 2—Tools chosen for analysis, the number of published papers, and the number of times the papers 

have been cited. 
 

 

The table below lists the tools categorized according to the five aspects of awareness 

summarized in Table 1. The tools ultimately chosen for analysis appear in bold.  Some 

tools appear in more than one category because they support multiple tasks.  The list is by 

no means exhaustive, but at the same time covers tools that support a range of tasks 

empirically identified as central to software development processes.   
 

                                                
3 The version of Jazz surveyed here is the older (and only published) version, as described by Hupfer and colleagues (Hupfer et al. 

2004).  A newer version can be downloaded at http://www.jazz.net. 
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Tool Name Content Task and Corresponding 

Phase of Lifecycle 

Interpretive 

Gaps 

Temporal 

Unit of 

Analysis 

Visual 

Representations 

Understanding Change Management and Evolution 
VRCS (Koike and Chu 

1997) 

Visual 

representations of 

files and versions 

Version control and 

module management; 

building a system 

Implementation-

Maintenance 

N/A Whole state of 

repository—not real 

time 

2-D network graphs laid out 

in 3-d, explicitly model files, 

versions, and releases; edges 

indicate which versions 

should be compiled together 

ADVIZOR (Eick et al. 

2002) 

Software changes, 

authors, issue 

requests 

Version control, 

module management 

Maintenance N/A Whole state of 

repository—not real 

time 

Matrix displays, 2-D and 3-D 

bar charts, pie charts, line 

oriented displays, network 

graphs 

XIA/CREOLE (Wu et al. 

2004a) 

Architecture/source

-code changes and 

associated time, 

location and 

authorship 

Version control, 

module management 

Implementation-

Maintenance 

N/A Current state of 

repository—not real 

time 

Architecture diagram, call 

graphs, and data flow views 

softCHANGE  Metadata from CVS 

and BugZilla 

(versions and 

bugs)—Files, bugs, 

authors 

Version control, 

module management 

Maintenance Method for categorizing 

issues based on changes 

is not transparent 

Whole state of 

repository – not real 

time 

Network graphs, histograms 

showing files, authors, 

author-file relationships 

EVOLUTION MATRIX 

(Lanza 2001) 

Software releases 

and versions, 

number of 

additions/removals 

of modules over 

time 

Show software 

evolution 

Maintenance N/A Whole state of 

repository – not real 

time 

2-D Matrix view with classes 

on y-axis and time ordered 

releases on x-axis 

BEAGLE (Tu and 

Godfrey 2002) 

Software releases 

and modules, 

evolution metrics 

Understand evolution: 

structural changes 

Maintenance N/A Whole state of 

repository – not real 

time 

Call graphs, tree views and 

scatter plots 

SPECTOGRAPH (Wu et 

al. 2004b) 

Software 

releases/revisions, 

authorship 

Punctuation—sudden 

and discontinuous 

change; which parts of 

system were frequently 

modified; Identify 

developer coding 

behavior 

Maintenance N/A Whole state of 

repository—not real 

time 

―Spectograph‖ with time 

ordered releases on x-axis, 

files authors or directories on 

y -axis 

REVISION TOWERS 

(Taylor and Munro 2002) 

Change history: 

revision information 

and authorship 

Change management Maintenance N/A Whole state of 

repository—not real 

time 

―Tower‖ metaphor compares 

revisions of two files with 

width attribute indicating size 

of change; map towers to 

timeline 
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WORKSPACE 

ACTIVITY VIEWER 

(WAV) (Ripley et al. 

2007) 

Real time 

workspace changes, 

types of changes 

and who made them 

Detect workspace 

changes--Project 

management 

Implementation-

Maintenance 

N/A Whole state of 

workspace and 

repository—real 

time 

3-D towers, developers or 

artifacts, with attributes 

representing change size, 

type, age 

COMMAND 

CONSOLE 

Change history, 

structure of source-

code, ongoing 

changes 

Project management—

identifying ongoing 

change and reduce 

conflicts 

Implementation-

Maintenance 

Conflicts are color-

coded by the likelihood 

they will occur; 

rationale behind the 

likelihoods is not 

conveyed through the 

interface. 

Current state of 

repository/workspac

e; real time  

8 linked screens; complexity 

thumbprint, hierarchical 

files/folders view, stacked 

layout showing relative size 

and ongoing changes to 

artifacts 

GEVOL (Collberg et al. 

2003) 

Source-code, 

developers, change 

history 

Change management, 

understanding 

evolution 

Maintenance N/A Whole state of 

repository—not real 

time 

Novel graph format showing 

control flow, inheritance, and 

call graphs annotated with 

author colors showing 

authorship 

CODE CRAWLER 

(Lanza 2003)(Lanza et al. 

2005) 

Source-code 

metrics, change 

history 

Reverse engineering Maintenance N/A Whole state of 

repository—not real 

time 

Hierarchical graphs, attributes 

like width and height indicate 

number of methods/fields 

RelVIS (Pinzger et al. 

2005) 

Change history, 

evolution metrics 

across releases, 

module 

dependencies 

Change management, 

understanding 

evolution 

Maintenance N/A Whole state of 

repository—not real 

time 

Kiviat diagrams that show 

multiple releases of software 

per diagram and different 

metrics for each release 

ELVIN/TICKERTAPE  CM commits, 

source-code and 

authors involved, 

developer 

discussion 

Coordinate around 

changes to the system 

Implementation N/A Current state of 

repository—real 

time 

Scrolling text-based ticker 

tape at top of development 

environment, link to chat 

window 

CODESAW (Gilbert and 

Karahalios 2007) 

Change history, 

source-code, 

newsgroup 

discussion lists 

Reveal group 

dynamics, compare 

work and discussion 

done by multiple 

developers 

Implementation-

Maintenance 

N/A One year‘s time of 

repository—not real 

time 

Stacked timeline view of 

commits by author (above 

timeline) and corresponding 

discussions (below timeline) 

annotated with developer  

―post-it‖ notes 

 

Recommending People and Artifacts 
TUKAN  Related artifacts 

(e.g., variables, 

classes, etc.), 

developers, and 

potential conflicts 

Find developers who 

are knowledgeable 

about code/avoid 

parallel conflicts 

Implementation-

Maintenance 

Weather symbols 

indicate potential for 

conflict but no 

quantifiable measure 

Current state of 

repository as well as 

concurrent changes 

Graph of artifacts and 

relationships (e.g. inheritance, 

composition, etc.) 

SIJ (STeP-IN Java) (Ye 

et al. 2007) 

Source-code, 

documentation, 

discussion archives, 

Support information-

seeking during 

development 

Implementation-

Maintenance 

If question is answered, 

asker can see the 

helper‘s technical 

Current state of 

repository—real 

time 

Web interface, standard 

menus, code browser 
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developer and code 

profiles 

profile/expertise and 

helping history 

EXPERTISE 

BROWSER (Mockus 

and Herbsleb 2002) 

Developers and their 

code commits/bug 

reports for particular 

artifacts 

Find expert on aspect 

of software system 

Implementation-

Maintenance 

Asker can see 

distribution of helper‘s 

code commits and 

activity on files 

Whole state of 

repository—not real 

time 

List view of individuals from 

organizational chart, 

horizontal box representing 

code; width/height attributes 

indicate magnitude of 

commits 

EXPERTISE 

RECOMMENDER  

Individuals and their 

contact information 

Find expert on aspect 

of software system 

Maintenance Asker can specify what 

groups should get a 

request, but the process 

of recommending is 

done on the server; not 

transparent, only details 

provided are contact 

information 

Whole state of 

repositories—near 

real time 

List of individuals by 

department/social network 

and general problem topic 

ANSWER GARDEN 2 

(Ackerman and 

McDonald 1996) 

Individuals and their 

contact information 

Find expert on aspect 

of software system 

Implementation-

Maintenance 

N/A Current state of 

repository—not real 

time 

Web interface, standard 

menus in web browser 

HIPIKAT  Relevant source-code 

artifacts, bugs, 

documentation, 

reasons for 

recommending the 

artifact 

Information-seeking; 

finding artifacts related 

to task; software 

change task for 

example 

Maintenance Textual description of 

why the artifact is 

related and confidence 

measure from 0-1 

Whole state of 

repository—not real 

time 

Tabular list view integrated 

into Eclipse window 

CODEBROKER (Ye 

and Fischer 2002) 

Relevant source-code 

examples, 

documentation 

Information-seeking; 

finding reusable 

components 

Implementation-

Maintenance 

Description of 

component received, 

and confidence measure 

from 0-1 

Current state of 

repository—real 

time 

Editor windows for code 

examples, HTML pages for 

documentation, list tabular 

view for recommended 

components 

TEAM TRACKS  Source-code Information-seeking, 

code navigation and 

understanding 

Implementation-

Maintenance 

Arrows indicate 

dependency 

relationships as a 

surrogate for explicit 

rationale; horizontal 

bars predict relative 

ranking of results in 

conjunction with rank-

ordered list 

Current state of 

repository—not real 

time 

Tabular list view integrated 

into Eclipse Window, 

decorators indicate 

dependency directionality, 

favorites window shows most 

visited code, related code 

window should code related 

to the selected code in the 

editor 

 

Avoiding Conflicts 
PALANTÍR Annotations on 

source-code 

indicating potential 

conflicts resulting 

Reduce check-in 

conflicts 

Implementation Text in-line with 

decorators indicate 

impact severity and 

types and sizes of 

Current state of 

repository as well as 

concurrent changes 

Visual cues and textual 

indications of severity in code 

editor, hierarchical view 

shows pairwise conflicts 
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from ongoing 

changes 

conflicts 

STATE TREEMAP 

(Molli et al. 2004) 

Real time workspace 

changes; what 

artifacts are being 

changed by whom 

Detect ongoing 

parallel work 

Implementation No quantifiable measure 

of divergence 

Current state of 

workspace—real 

time 

Treemap of workspace 

indicates different state (e.g. 

checked out and modified, 

checked out and newly 

committed) of artifacts by 

shading 

COMMAND 

CONSOLE (O‘Reilly et 

al. 2005) 

Change history, 

structure of source-

code, ongoing 

changes 

Project management—

identifying ongoing 

change and reduce 

conflicts 

Implementation-

maintenance 

Conflicts are color-

coded by the likelihood 

they will occur; 

rationale behind the 

likelihoods is not 

conveyed through the 

interface. 

Current state of 

repository/workspac

e—real time 

8 linked screens; complexity 

thumbprint, hierarchical 

files/folders view, stacked 

layout showing relative size 

and ongoing changes to 

artifacts 

COLLABVS (Dewan 

and Hegde 2007) 

Change history, 

ongoing changes 

Reduce check-in 

conflicts 

Implementation-

Maintenance 

Details of conflict in 

inbox 

Current state of 

repository; ongoing 

changes—real time 

Conflict inbox, visual 

cues/notifications, chat 

window 

TUKAN  Related artifacts 

(e.g., variables, 

classes, etc.), 

developers, and 

potential conflicts 

Find developers who 

are knowledgeable 

about code/avoid 

parallel conflicts 

Implementation-

Maintenance 

Weather symbols 

indicate potential for 

conflict but no 

quantifiable measure 

Current state of 

repository as well as 

ongoing changes—

real time 

Graph of artifacts and 

relationships (e.g. inheritance, 

composition, etc.) 

FASTDash (Biehl et al. 

2007) 

Documentation, 

source-code, files and 

modules people are 

editing in real time 

Who has file checked 

out, what files are 

being viewed and 

edited by who, detect 

conflicts 

Implementation-

Maintenance 

N/A Current state of 

repository—real 

time 

Integrated window with 

sections for source-code, 

documentation, annotated 

with user avatars of who is 

working on what; runs on 

shared display 

MIRAMAR (Hancock et 

al. 2006) 

Users‘ workspace 

and the artifacts with 

which they are 

working 

Detect conflict and 

divergence with 3-D 

feedback 

Implementation-

Maintenance 

N/A Current state of 

repository—real 

time 

3-D visualization of different 

users‘ workspaces and 

―stretchy‖ connections 

between them when there are 

conflicts due to modifying 

shared resources 

 

Determining Individual Availability 
ACTIVE MAP 

(McCarthy 1999) 

Location and 

movement of people 

Locating people and 

their movement 

Whole process Only as good as location 

sensors 

Real time; last 

updated 

Map background, user avatars 

overlaid on buildings 

AWARENEX  Computer activity, 

appointments, 

computer activity 

with appointments, 

and gaps with no 

activity at all 

Identify rhythms in 

people‘s availability to 

form a shared sense of 

time 

Whole process N/A History of all 

activity in 3 week 

intervals 

―Actogram‖ 12 hr timeline 

view on horizontal axis and 3 

week timeline on vertical 

axis; availability blocks 

within a 12 hr span laid out 

horizontally; also an 
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aggregate view over 10 

months 

JAZZ (Hupfer et al. 

2004) 

Source-code, change 

history, developers, 

chat mechanisms, 

workspace activity 

Reveal activities of 

team members 

Implementation-

Maintenance 

N/A Whole state of 

repository; ongoing 

changes—real time 

Jazz band links developer 

avatars to resources they are 

working on, decorators 

indicate file and resource 

status (e.g. checked out, being 

modified, checked in, etc.), 

chat windows anchored in 

code 

COMMUNITY BAR  Artifacts/documents 

people are working 

on 

Determining 

availability, 

monitoring and 

coordinating, 

opportunistic 

collaboration 

Whole process Only as good as screen 

sharing app; privacy 

controls restrict view of 

artifact content 

Real time; last 

updated 

Vertical bar with chat 

windows, screen sharing 

FRACTAL FIGURES 

(D‘ambros et al. 2005) 

Change history, 

magnitude of 

changes, authorship 

information 

Project management–

Understand 

development effort and 

distribution of effort 

over developers 

Implementation-

Maintenance 

―Fractal values‖ from 0-

1 note how distributed 

the module is over a set 

of developers; can 

correlate bugs with 

fractal value for 

example 

Whole state of 

repository—not real 

time 

Fractals/tree maps 

characterizing extent of 

developer effort  

TEAM-SCOPE (Jang et 

al. 2000) 

Team documents, 

emails, files, events, 

repositories 

General team 

communication and 

awareness 

Implementation-

Maintenance 

N/A Current state of 

repository, not real 

time 

Web-interface, calendar view 

with events, standard 

hierarchical file layout 

 

Understanding Developer Activities 
FASTDash  Documentation, 

source-code, files and 

modules people are 

editing in real time 

Who has file checked 

out, what files are 

being viewed and 

edited by who, detect 

conflicts 

Implementation-

Maintenance 

N/A Current state of 

repository—real 

time 

Integrated window with 

sections for source-code, 

documentation, annotated 

with user avatars of who is 

working on what; runs on 

shared display 

TESNA (Amrit 2008) Source-code 

dependencies, 

developer 

dependencies, chat 

log communications 

Project management–

Identify gaps in 

coordination 

Implementation-

Maintenance 

N/A Current state of 

repository—not real 

time 

Social network diagrams 

depicting dependencies 

between code and developers, 

chat log correspondence 

ShriMP VIEWS (Storey 

et al. 2001) (Storey et al. 

1997) 

Software module 

structure, 

documentation, 

source-code 

Program 

comprehension 

Maintenance N/A Current state of 

repository—not real 

time 

Integrated views of call 

graphs, java documentation, 

and source-code 

TARANTULA (Jones et 

al. 2001) (Jones and 

Test cases and lines 

of code that execute 

Fault localization Testing Color code portions of 

code that may be 

Current state of 

repository—real 

Line-oriented view illustrates 

involvement of each line in 
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Harrold 2005) during those test 

cases 

responsible for faults time failure/passing of test cases 

SHO (Ellis et al. 

2007)((Halverson et al. 

2006) 

Change requests, 

developers assigned 

to and resolving 

them, classifications 

of bugs 

Coordinate bug 

tracking reporting, 

assignment and 

resolution 

Maintenance N/A Whole state of 

repository—not real 

time 

Novel visualization: change 

requests laid out horizontally 

by component, color-coded 

by assignee, tool tips for 

description of change request 

ELVIN/TICKERTAPE 

(Fitzpatrick et al. 2006) 

CM commits, 

source-code and 

authors involved, 

developer 

discussion 

Coordinate around 

changes to the system 

Implementation N/A Current state of 

repository—real 

time 

Scrolling text-based ticker 

tape at top of development 

environment, link to chat 

window 

AUGUR (Froehlich and 

Dourish 2004) 

Source-code, CM 

comment logs, 

authorship, change 

history 

Monitoring activity, 

Understanding 

activities over time 

Implementation-

Maintenance 

N/A Whole state of 

repository—not real 

time 

Line-oriented view of source-

code colored by author, 

network graphs and line 

charts 

CODESAW (Gilbert 

and Karahalios 2007) 

Change history, 

source-code, 

newsgroup 

discussion lists 

Reveal group 

dynamics, compare 

work and discussion 

done by multiple 

developers 

Implementation-

Maintenance 

N/A One year‘s time of 

repository—not real 

time 

Stacked timeline view of 

commits by author (above 

timeline) and corresponding 

discussions (below timeline) 

annotated with developer  

―post-it‖ notes 

JAZZ   Source-code, change 

history, developers, 

chat mechanisms, 

workspace activity 

Reveal activities of 

team members 

Implementation-

Maintenance 

N/A Whole state of 

repository—real 

time 

Jazz band links developer 

avatars to resources they are 

working on, decorators 

indicate file and resource 

status (e.g. checked out, being 

modified, checked in, etc.), 

chat windows anchored in 

code 

SEESOFT (Eick et al. 

1992) (Ball and Eick 

1996) 

Source-code change 

history, authorship, 

software metrics 

Program management Implementation-

Maintenance 

N/A Whole state of 

repository—not real 

time 

Line-oriented view of source-

code with authorship 

information and associated 

software metrics, call-graphs, 

control flow 

Table 3—List of visualization tools for awareness and their mappings to different aspects of awareness from Table 1. 
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Understanding Change Management and Evolution 

ELVIN/Tickertape 

 ELVIN/Tickertape is a lightweight chat mechanism and publish/subscribe 

notification tickertape integrated into CVS, the popular control versioning software 

(Fitzpatrick et al. 2006).  Developers subscribe to groups (e.g. structured by software 

component) and messages are generated and sent by the system to the tickertapes 

belonging to each individual in the group whenever code is committed to the repository 

(see Figure 1a).  Developers can compose custom messages and send them to members of 

their group or others‘.  Developers use the messages sent to their tickertape to initiate 

chat dialogs with other developers in response to the CVS message (Figure 1b).  

ELVIN/Tickertape was evaluated using quantitative statistical analysis of the CVS logs 

combined with a qualitative analysis of chat logs and interviews.  There was evidence of 

the tool supporting stimulated focused discussion around the changes and supplementing 

log information with contextual pieces of information such as significance of the changes 

and corresponding developer discussions.  The tool plays an important role in supporting 

coordination by combining changes to the code and dialog around those changes. 

  

 
Figure 1a—Tickertape message of the form: group: CVS committer: file modified: comment. 
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Figure 1b—Threaded chat message around an ELVIN/Tickertape commit message service. 

 

Content: The tickertape displays a message every time a developer commits code to the 

repository noting the developer who made the change, the source-code artifact that was 

changed, and the commit comment.  Users can also open a dialog box to start a threaded 

conversation related to the content of the tickertape message.  The dialog box serves as a 

mechanism to associate individuals with the source-code they are working on.  

Dependencies between people and between source-code must be inferred by the user. 

Mapping Content to Tasks: The tool was built to support developer-developer 

interactions and coordination of development activities around committed changes made 

to a software system.  Code commits are representative of real tasks in software 

development and happen on a daily basis.  The tool is for use by—and was subsequently 

tested with—developers in the software implementation phase. 

Interpretive Gaps: There is no uncertainty in the information displayed.  It comes 

directly from CVS logs and recorded chat transcripts. 

Temporal Unit of Analysis ELVIN/Tickertape displays messages in real time as 

developers make commits to the repository.  Notifications and chat logs can be archived 

using the client interface.  However there is no timeline view presenting the changes and 

the individuals who worked on them so it is difficult to relate the two over a non-trivial 

length of time. 

Visual Representations: ELVIN uses text and simple dialog boxes only.  It displays a 

scrolling ―ticker‖ window with messages and a threaded chat messaging log showing 

conversations relating to the commits.  The representations are light-weight and the 

tickertape metaphor is well-suited toward displaying abbreviated notifications of all types 

(e.g., stock prices and sports scores).  The representations do not distract greatly from 
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developer work because reading CVS commit messages and project mailing lists are 

familiar activities. 

Command Console 

 Command Console is a set of linked visualizations on eight consoles designed to 

help gauge project progress, reveal conflicts, and build a shared understanding of 

software development activities (O‘Reilly et al. 2005).  The consoles update in real time 

in accordance with developers‘ activities.  The system was evaluated during a 5-week 

long study of an industrial-sized software project.  Project managers said that it gave a 

good high-level view of where action happens in the code and that it helped bring new 

developers up to speed.  Command Console also helped project managers ―understand 

the impact that changes were making.‖ (O‘Reilly et al. 2005).  

 

 
Figure 2a—The Command Console Display. 

 
 

 
Figure 2b—The ―Complexity Thumbprint,‖ a visualization that displays source-code size and structure. 

 

Content: The linked displays show attributes of source-code revisions, including size and 

structure, using ―complexity thumbprints‖ (Figure 2b).  One display shows groups of 

complexity thumbprints organized by the modules and system-level components they 

belong to while another displays the ongoing changes to artifacts and warnings of any 
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potential conflicts as a result.  It is possible to color the complexity thumbprints by 

authorship and relate developers to portions of the code they implement, yet 

dependencies must be inferred from the visualizations. 

Mapping Content to Tasks: Command Console was engineered to help project 

managers and developers gauge the progress of a system under development, understand 

its complexity and size, and alert them to conflicting development efforts.  These are 

activities that generally occur during implementation and maintenance phases of software 

development. 

Interpretive Gaps: There is slight uncertainty in the information displayed.  It comes 

directly from CVS repositories and events generated from developer workspaces.  

Conflicts are color-coded by the likelihood they will occur (potential vs. certain) although 

the rationale behind the likelihoods is not conveyed through the interface. 

Temporal Unit of Analysis Command Console shows activities in real time as they 

occur.  There are no views of activities and developers involved in those activities over 

the course of the software project. 

Visual Representations: Command Console uses graphics and text to convey awareness 

information.  It lays out artifacts in familiar hierarchical list views but makes use of 

unconventional display setups and representations of source-code developers do not 

typically use.  The tool uses a ―war room‖ shared display, best-suited for co-located 

teams, yet today‘s teams are increasingly becoming distributed.  It is not clear how or 

even, if, the Command Console could work in such configurations of teams.  Assigning a 

Command Console unit to each location would be costly.  One solution might be to 

broadcast the large image from a central location to computers that can simply project the 

image on shared walls or projector screens belonging to remote team members.  On the 

other hand the decrease in resolution associated with most projectors might make it 

difficult to see and interpret important details in the visualization. 

The ―complexity thumbprints‖ convey size, structure, and ongoing changes in 

developers‘ workspaces.  They are novel representations and require some initial 

learning.  However when aggregated, they, crucially, show important patterns in structure 

at the system-level in concert with tasks color-coded with the source-code that references 

them. 

SoftCHANGE 

 SoftCHANGE (German et al. 2004) extracts metadata from a CVS repository and 

a team‘s corresponding issue tracking system and correlates both.  It analyzes different 

revisions of the same files to determine the exact nature of the changes made and 

attempts to classify changes based on the issues they address (e.g. new features, code 

defects).  The tool provides graphical views of source-code, authors, and their 

relationships, such as what source-code was modified together and who modified what 

files when.   
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Figure 3a—A hypertext view of the details of a change request. 

 

 

 
Figure 3b—A network graph of authors and the files they modified, color-coded by module. 

 

Content: SoftCHANGE displays changes from CVS along with issues managed by a 

project issue tracker and the developers involved.  The tool displays relationships 

between them, such as relationships between number of files and number of open issues, 

numbers of functions added versus number and types of change issues, and developer 

activity compared with the number of change issues.  The graphs can also be used to 

show who is working on what code, but not who depends on whose code. 

Mapping Content to Tasks: SoftCHANGE was built to support project managers, 

developers, and researchers as they try to reason about the evolution of a software project 

in terms of changes made and issues introduced.  These are tasks that typically occur in 

the maintenance phase of software development. 
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Interpretive Gaps: There is slight uncertainty in the validity of the information 

presented, particularly the association of bugs with change requests.  The process of 

categorizing issues based on changes is not transparent to the end-user. 

Temporal Unit of Analysis The tool allows extraction of data over the course of the 

whole project.  Some of the views present time-ordered scatter plots of relationships 

between source-code, individuals, and bugs.  However the views do not update in real 

time.  

Visual Representations: SoftCHANGE uses a combination of textual descriptions and 

graphical charts to convey information.  It uses a hypertext view to show details related to 

specific change requests, including when and why a change was made, the type of 

change, and if it was fixed.  Graphical views such as scatter plots of time ordered 

information allow users to inspect relationships between bug rates and attributes of files 

changed.  Color-coded network diagrams are used to show relationships between 

developers and the files they have modified.  It is not clear whether these visualizations 

are linked together or how they are used in concert to reason about changes made to the 

system. 

Recommending People and Artifacts 

Expertise Recommender 

 Expertise Recommender is a tool for locating expertise needed to solve difficult 

technical problems (McDonald and Ackerman 2000).  Development of the tool was 

preceded by a field study that resulted in analytical guidelines for locating expertise: 

expertise identification, expertise selection, and escalation.  Expertise Recommender 

provides support for this model of expertise.  A user specifies a knowledge request via a 

client interface (Figure 4a) and sends it to a server that processes the request and makes 

recommends of individuals with matching expertise.  Before sending the request, the user 

selects a location heuristic (e.g. ―change management,‖ ―tech support‖) to define the 

repository that should be searched (CM system or tech support database respectively) and 

a filter (e.g. ―social network,‖ or by department) to filter out people not associated with 

particular groups in the organization.  If results returned by the tool are not sufficient, the 

expertise-seeker can ―escalate‖ the request to other contacts in different departments who 

have higher authority or access to more resources. 

 

 
Figure 4a – An expertise request dialog window. 
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Figure 4b – Recommendation results returned by Expertise Recommender with the option to escalate the 

request. 

 

Content: Expertise Recommender links people and the extent with which they have 

worked on technical artifacts to offer recommendations of people who are best-suited to 

address problems and requests defined by the expertise-seeker.  Recommendations are 

based on data contained in CM repositories and technical support databases as well as 

individuals‘ social networks.  The recommendations returned by the tool include contact 

information for each individual and their location yet no description of the work they 

have performed relative to the technical issue.  It also gives no indication of whether or 

not that person may be currently available. 

Mapping Content to Tasks: The tool was developed in response to field studies that 

elicited analytical steps in the process of expertise location: expertise identification, 

expertise location, and escalation.  It supports each activity individually through the use 

of a client interface.  The problem of finding expertise is framed in the context of 

resolving bugs found in the source-code and solving technical support issues.  These 

activities are representative of tasks in the maintenance phase of software development 

after a version of the software has been deployed. 

Interpretive Gaps: There is minor uncertainty in the information displayed.  There is 

flexibility in the request process: users can direct the requests to specific groups and 

classify the requests.  Results are returned in ranked order, but the ranking process is not 

transparent and no description of it is provided on the interface.  There are no indications 

of whether or not individuals still have particular expertise, in spite of the fact that 

projects end and technical knowledge erodes over time. 

Temporal Unit of Analysis The Expertise Recommender client interface maintains a 

history of all requests and makes recommendations based off the entire history of the CM 

repository and technical support database.  

Visual Representations: The tool‘s UI makes very little use of graphics, displaying 

small dialog windows with the familiar ―look and feel‖ (text fields and buttons) for filling 

out and sending expertise requests.  It returns recommendations via another dialog 

window in a scrollable list with textual descriptions of experts and their contact 

information.  It is a stand-alone system instead of integrated into the tools used by 

technical support representatives or the development environments used by developers.  

On the other hand, it is relatively lightweight as well.  No usability issues are reported by 

the authors. 
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Hipikat 

 Hipikat is an awareness tool that leverages project archives to make 

recommendations of related artifacts related to developer tasks, such as changing a piece 

of source-code, to support developer productivity (Cubranic and Murphy 2003).  Given a 

change request, a developer queries the Hipikat interface for related artifacts and is 

returned a list of related source-code and bug reports (Figure 5).  Upon inspecting the 

results and their relevance criteria, the developer drills down to each recommendation to 

find the information of interest. 

 

 

 
Figure 5—Hipikat UI integrated into Eclipse displaying the change task (a) and a list of related artifacts (b) 

 

Content: Hipikat crawls CM repositories and issue tracking systems and recommends 

related artifacts (e.g. source-code, change requests) based on the task the user (i.e. 

developer) is currently performing.  It explicitly models relationships between versions of 

source-code and bugs but source-code authorship and bug assignment information is not 

shown.  These relationships must be inferred. 

Mapping Content to Tasks: Broadly, the tool supports developers who wish to learn 

about a code base by recommending artifacts relevant to common development tasks like 

resolving bugs and making change modifications.  In particular, the authors describe a 

scenario of Hipikat‘s use for addressing change requests contained in an issue-tracking 

system.  These are activities typically performed in the maintenance phase. 

Interpretive Gaps: There is some uncertainty in the recommendations made by the tool.  

It displays evidence using confidence intervals from 0-1 in addition to textual 

descriptions (e.g. text similarity in the change request and the source-code itself).  Yet 

researchers have shown that numeric values of confidence make little sense to users 

(Herlocker et al. 2000).  The authors try to make up for this shortcoming by using textual 
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descriptions as much as possible but even their usefulness is uncertain (Cubranic and 

Murphy 2003).  

Temporal Unit of Analysis The recommender searches all versions of artifacts and 

displays all versions seemingly relevant to the current task.  There are no timeline views 

that might assist developers by displaying who else used artifacts and for how long to 

complete the same tasks.  It might then be possible to gauge relevant sets of artifacts 

based on their length of use.   

Visual Representations: Hipikat primarily uses textual decorators within the 

development environment to convey recommendations.  It uses lists and windows fully 

integrated into the Eclipse development environment, thus the interface has the same 

―look and feel.‖  Queries are performed by right-clicking on artifacts in the familiar 

hierarchical source-code view and entering search terms into Eclipse dialog boxes.  

Results and confidence are expressed via textual descriptions in the same list dialogs used 

by Eclipse.  Because of this design, context-switching is noticeably reduced and no 

substantial time spent ―learning‖ the interface is required. 
 

Team Tracks 

 Team Tracks is a visualization that unveils developers‘ patterns of navigation 

through source-code in an effort to support comprehension of that code by users who are 

new to the code (DeLine et al. 2005).  The visualizations are integrated into Microsoft 

Visual Studio dialogs much in the same way Hipikat is integrated with Eclipse.  Team 

Tracks is based on two assumptions: 1) parts of the code developers visit more frequently 

are more important to someone new to the code and 2) the more two snippets of code 

visited are visited in succession, the more likely they are to be related.  As such, the 

visualization is composed of two displays within the development environment: ―Code 

favorites‖ (e.g. frequently visited code) and ―Related Items.‖  The tool was evaluated 

quantitatively through a program comprehension quiz and user satisfaction ratings as well 

as qualitatively through interviews with developers who used it to complete typical 

development tasks such as change requests. 

 



Page 31 of 55 

 

 
Figure 6—Team Tracks interface in Visual Studio displaying A) A standard directory/file view, B) Code 

Favorites and C) Related Items to source-code selected in the development editor. 

 

Content: Team Tracks uses windows integrated into Visual Studio to display the source-

code most viewed by developers and rank-ordered related methods to the source-code 

currently in focus in the development editor.  The tool uses icons to show whether the 

methods have incoming or outgoing dependencies to the source-code in the editor but the 

call graph for a method is not displayed.  This could make traversing the call path easier 

for the user.  No authorship information is shown by the tool so it is not possible to 

determine who navigated dependent code without querying a CM repository.  Navigation 

data from a senior architect, for example, would possibly be more revealing than a 

programmer. 

Mapping Content to Tasks: The tool supports the broad activity of understanding 

source-code based on the navigation patterns of other developers so the user can 

complete implementation tasks such as changing code or maintenance activities such as 

adding features or resolving bugs. 

Interpretive Gaps: There is some uncertainty in the recommendations made by the tool.  

Although horizontal bars and ordering of items in the list convey rankings of relatedness, 

evidence for ranking one suggestion over the other is not explicitly provided.  Instead, the 

basis for interpretation is team navigation patterns, which is not a reason for related code 

the same way dependencies, author ownership, or inheritance relationships are, for 

example.  As a substitution for explicit rationale, the authors use arrow icons indicating 

incoming or outgoing dependencies from the related code to the code selected in the 

editor.  

Temporal Unit of Analysis Team Tracks uses navigation patterns from the most current 

snapshot of the CM repository and provides recommendations based off those navigation 

patterns.  The navigation data is not collected and used to assist the user in real time.  It is 

not clear how often the navigation data should be collected.   

Visual Representations: Team Tracks uses a combination of textual decorators and 

visual icons to convey awareness information.  Like Hipikat, Team Tracks‘ visualizations 
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are integrated into familiar windows part of the everyday implementation work of 

software developers. The views are anchored around where developers spend most of 

their time in the editor:  the source-code.  The ―Class Favorites‖ window displays favorite 

code items the same way in which the Visual Studio environment hierarchically displays 

directory structures.  The ―Related Items‖ view uses list structures also found in the 

environment interface.  In addition, the interface uses good information presentation 

principles: small horizontal bars appear next to source-code items indicate relative 

ranking, inviting direct comparisons and contrasts to other ranked items (Tufte 1990; 

Tufte 2006). 

Avoiding Conflicts 

Palantír 

Palantír is an Eclipse plug-in that supports developers in identifying and avoiding 

conflicts that arise from committing different versions of the same file to a CM repository 

(Sarma et al. 2003).  The tool increases awareness by continuously sharing information 

regarding other developers‘ actions on files in the workspace, for example the potential 

for conflicts and the severity and impact of changes to those files.  The tool was 

empirically evaluated using a lab experiment (Sarma et al. 2008b).  The results indicate 

that Palantír increased self-coordination among users and, as such, led to fewer conflicts. 

 

 
Figure 7—Palantír-enhanced Eclipse workspace with annotations to files in conflict (left) and description 

of impacts of changes (bottom). 

 

Content: Palantír extracts information from a number of control versioning repositories 

and monitors activities in the workspace for changes to the local and repository versions 

of source-code.  It analyzes the differences between files in order to compare the number 
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of lines changed and calculate a measure indicating the severity of the changes.  The tool 

then translates these activities to events that it subsequently shares with all affected user 

workspaces.  Palantír shows textual descriptions of these events, including who is 

changing what, whose code will be impacted by the change, and when the change 

happened or is currently in progress.  These events describe dependencies of the type 

―impacted by‖ rather than dependencies of the type ―is called by.‖ 

Mapping Content to Tasks: The tool supports developers as they implement source-

code and make changes to a versioning repository, a standard daily task in software 

development.  It supports coding activities by passively annotating the files in the 

workspace as potential conflicts emerge in real time.  These activities constitute the 

implementation and maintenance phases of software development. 

Interpretive Gaps: Palantír displays various pieces of evidence for potentially 

troublesome parallel work.  It displays three measurements: the potential for and sizes of 

conflicts, and the impact the changes will have on dependent code.  Small, blue triangles 

next to files in the resource view indicate parallel changes to the same artifact in different 

workspaces, signifying a direct conflict.  Red triangles indicate parallel changes to 

another artifact in another workspace that will affect the current artifact.  The sizes of the 

triangles indicate the magnitude of the change.  Arrows (>> or <<) indicate whether the 

artifact affects or is affected by other changes.  Finally, a percentage value indicates the 

severity of the changes in terms of the lines-of-code affected.  Users can quickly view 

differences in source-code if they desire to see the actual impacts of the changes. 

Temporal Unit of Analysis Palantír focuses on activities occurring in developer 

workspaces in real time.  It continually extracts information from previous revisions of 

files and logs events as they occur over time to provide ongoing awareness. Over time, 

patterns emerge as activities continue and developers can use these patterns to self-

coordinate their work and avoid running into conflicts.  Thus it supports activities 

occurring in the present and in the past. 

Visual Representations: Like Hipikat and Team Tracks, Palantír‘s interface is integrated 

with the development environment so as not to distract from current tasks.  The source-

code editor anchors interactions with Palantír because much of the work involved in 

analyzing conflicts revolves around looking at source-code.   It uses visual decorators in 

the resource view of Eclipse to indicate types and sizes of emerging conflicts and textual 

representations to indicate impact severity and give details about who is involved, what 

code was affected, and when the changes occurred. 

TUKAN 

TUKAN is a collaborative development tool with the broad goal of orienting 

developers around code and promoting awareness of other developers‘ activities 

(Schummer and Haake 2001).  It displays graphs of artifacts that are semantically related 

and extracts versioning information from a CM repository to determine the severity of 

potential conflicts (Figure 8). 
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Figure 8—Graph of related source-code with weighted relationships signifying ―use‖ relationships and 

weather icons indicating potential conflicts.  

 

Content: TUKAN connects to a source-code repository and semantically analyzes 

source-code artifacts and determine which ones are related due to dependencies, use, and 

inheritance relationships.  It collects information from developers‘ Smalltalk workspaces 

to identify who is working on what files and whether conflicts will emerge.  It annotates 

the graphs of source-code artifacts with icons signifying active developers and weather 

icons corresponding to the severity of parallel work on those same artifacts.  Developers 

can get a feel for who will be impacted to changes to their code and whether they will be 

affected by changes to others‘ code. 

Mapping Content to Tasks: TUKAN supports the broad goal of orienting developers 

around code, being aware of who is working on what, and identifying conflicts—all 

important parts to development work within both the implementation and maintenance 

phases of software development. 

Interpretive Gaps: There is some ambiguity in the mechanism that calculates potential 

conflicts.  Although weather symbols can show the severity of conflicts relative to one 

another (lightening vs. clouds and sunshine vs. lightning), they do not map to absolute, 

quantifiable measures of conflict or combined with other metrics like impact severity and 

conflict type (indirect or direct), as in Palantír.  

Temporal Unit of Analysis Notifications of ongoing changes and potential conflict are 

in real time.  Users use synchronized editors to make changes to the system and can view 

multiple versions of source-code from the code repository.  Thus, like Palantír, TUKAN 

supports exploration of current and past activities.  

Visual Representations: TUKAN primarily uses graphics to convey awareness 

information.  It is integrated with an online SmallTalk development editor so as not to 

distract from development activities by way of context-switching.  The tool uses 

notations familiar to software developers like dependency graphs and graphs showing use 

and inheritance relationships.  The graphs are annotated with intuitive visual decorators 

like ―people‖ icons showing developers who are working on source-code as well as 

weather metaphors that convey ―sunny‖ (and thus positive) or ―stormy‖ (and thus 

negative) states with respect to potential conflicts. 
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Determining Individual Availability 

Awarenex 

 Awarenex (Begole et al. 2002) is a visual awareness tool that reveals patterns in 

people‘s work schedules such as: where they are during times of the day, what times of 

the day they are available, when they are busy with appointments, what times they arrive 

and depart for work, what time zones they are working in, and when they break for lunch.  

The tool logs input received by the user‘s keyboard to determine when they are active 

and available for contact and inactive.  It collects data from online calendars to infer 

when users are in appointments.  The visualizations show activity over a 12 hour day 

during the 10 months the data were collected. 

 

 
Figure 9—Visual interface showing a) 3 weeks of activity with active periods in black, b) another 3 weeks 

with white indicating appointments, and c) an aggregate view over 10 months of daily activity. Arrivals and 

departures can be seen in a) and b). 

 
Content: Awarenex uses input from the keyboard to determine when users are active or 

inactive.  It logs whether the user is reading or sending e-mails and analyzes their online 

calendar to determine when the user is in an appointment and unreachable.  Location data 

is also collected (e.g. office, home, lab).  People can be mapped to their general work 

activities as well as when and where they do work.  Thus their availabilities can be 

inferred from the visualizations. 

Mapping Content to Tasks: The tool supports locating patterns in people‘s availability 

such as when they are switching offices, on lunch breaks, working to meet appointment 

deadlines, or leaving for the day.  These patterns can be used, for example, to suggest 

when someone will return from being active. Although the visualization is not 

representative of typical visualizations used by software developers, it nicely structures 

the data.  It reveals insights into the work patterns of groups working in any domain, 

contributing to a shared sense of time and the availability of workers.  Awarenex can 

seemingly be used at any phase of the development process. 
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Interpretive Gaps: There is uncertainty in determining whether someone is available.  

Just because someone is reachable does not mean they will be receptive to interruption.  

That depends on their current tasks, history of interaction with the asker, and their 

perception that helping will benefit them in some way.  At the same time, established, 

long-term patterns of availability are good predictors of future availability. 

Temporal Unit of Analysis Awarenex retrospectively visualizes snapshots of daily 

computer interactions over a 10 month period, not as they occur in real time.  Use of the 

timeline is critical because it is only over an extended period of time, by their definition, 

that patterns can be identified.  Developers could use changes in the rhythms as a result 

of project deadlines, for example, in concert with a social dependency graph (de Souza et 

al. 2007) to suggest times to meet with other developers to coordinate dependent work up 

to a release of the software. 

Visual Representations: Awarenex uses graphics and minimal text to visualize activity 

using a time-ordered x-y axis.  The x axis shows a 12 hour day while the y axis shows 

days increasing from top to bottom (Figure 9).  Activity is graphically represented by 

horizontal bars with length representing time and different colors indicating certain types 

of activity (e.g. appointments, reading e-mail, etc.).  Reading downward, the horizontal 

bars invite direct comparisons and contrasts (Tufte 1990; Tufte 2006) in availability and 

types of activity day-to-day. 

Community Bar 

 
Figure 10—Community Bar content is composed of places, presence information, chat dialogs, sticky 

notes, photo items, and web items (e.g. webpages) 
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 Community Bar (Tee et al. 2006) is an application that allows users to share their 

screens with one another, engage in real time chat messaging, share video information 

about where they are, and post digital objects with which they are working.  The tool 

supports progressive visibility of information users choose to reveal.  Users can control 

the visibility of their information by blurring sensitive parts of content.  Feedback from 

usage of the tool suggested that it was useful for opportunistic interactions, monitoring 

when people could be interrupted, and to measure progress on collaborative tasks. 

 

Content: Community Bar allows the sharing of multiple types of artifacts such as video 

frames, images, web resources and even the users‘ screens (see Figure 10).  It shows 

individuals and the artifacts they choose to share but not who is monitoring, and thus 

dependent on, the availability of whose artifacts.  Shared content is visible to everyone 

connected to Community Bar except when privacy controls are used to selectively 

display the content.  For example, someone might want to share an unfinished draft of a 

document only with their collaborator(s) and then release it with full visibility once it is 

completed.  One‘s availability can be determined by looking at their desktop screen to 

determine what they are working on, their status message, or their webcam. 

Mapping Content to Tasks: The tool gives insight into the artifacts with which people 

are currently working and thus a basis from which to initiate spontaneous interactions and 

coordinate shared activities such as working on documents and gauging work progress.  

The tool could be used at any phase of the software process. 

Interpretive Gaps: One‘s knowledge of the artifacts with which one is working is only 

as good as the artifacts the latter decides to display.  If a user forgets to update what they 

are currently working on, another user‘s perception of that work may be irrelevant since 

it came from older data.  Privacy controls restrict content displayed, clouding others‘ 

knowledge of their availability. 

Temporal Unit of Analysis Community Bar displays artifacts users have most recently 

posted.  There is no time ordered view of shared postings.   

Visual Representations: Community Bar‘s interface consists of one long vertical 

window that lays out posted artifacts from top to bottom. It uses graphics and when 

applicable, text corresponding to peoples‘ status, short announcements to others in the 

group, and chat logs. 

Understanding Developer Activities 

FASTDash 

 FASTDash (Biehl et al. 2007) is a visual ―dashboard‖ widget embedded on a single 

monitor or large, shared screen that allows software developers and their teams to 

monitor all ongoing activities including what files are checked out, what is being changed 

and by whom, what files are being viewed, and what files are undergoing debugging.  

The tool‘s requirements were gathered from interviews with 13 developers.  In response 

to these interviews the tool was built and qualitatively and quantitatively evaluated using 

6 of the original 13 programmers as users.  It was shown to improve team awareness, 

reduce reliance on shared artifacts, and increase team communication. 
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Figure 11—The dashboard interface shows active files grouped by module and activities performed on 

them by active developers.  

 

Content: FASTDash displays a software project‘s files organized by module and 

graphical annotations to the files corresponding to activities being performed on them by 

developers, such as making changes, viewing the file, debugging it, adding 

documentation, etc.  The interface alerts the user to who is working on what but gives no 

evidence of whether that work will affect the former‘s own work.  The user must infer 

that themselves. 

Mapping Content to Tasks: The tool supports developer understanding of activities 

being performed by their peers on the code base.  Potential check-in conflicts can be 

inferred by monitoring changes to the same file by multiple developers.  Developers 

working with the same sets of files can initiate conversation and coordinate 

implementation work on those files.  Such activities are characteristic of the 

implementation and even maintenance phases of software development. 

Interpretive Gaps: The tool shows such low-level actions (e.g. a file being in focus, a 

file being viewed) that it is difficult to second-guess the accuracy of information being 

presented.  However, from these scattered observations alone it is hard to paint a picture 

of the tasks actually being accomplished because no details are provided (e.g. through 

tool tips).  FASTDash does not provide guidance on how to organize and combine 

observations described in the interface over time to reveal broad detail of what 

individuals are working on and the sequence they have followed.  It was not tested 
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between teams so there is no evidence for the scalability of its usage and how multiple 

items of information might compete to reveal insights into meaningful developer activity. 

Temporal Unit of Analysis The tool displays real time ongoing changes but no history 

of those changes over time.  It is only possible to know the most recent activity.  Thus it 

is difficult to get a sense of others‘ patterns of work over time but it is easy to initiate 

conversation around source-code that is currently being modified.  The awareness gained 

from knowing who is working on what at any point relieves developers of having to 

explain the context of their dependent work to one another as they coordinate to complete 

tasks. 

Visual Representations: FASTDash uses a combination of graphics and text, but mostly 

graphics, to show awareness information.  Unlike other visualizations such as Palantír, 

Team Tracks, or Hipikat, FASTDash exists as a standalone application.  It uses familiar 

file icons for resources in the workspace (e.g. photos, .source-code files, authors).  

However a problematic aspect of the interface design is that it uses inconsistent forms of 

visual cues to indicate the different states of files: hashed highlighting to indicate files 

checked out by multiple developers and thus potential sources of conflict, yellow 

highlighting to indicate files that are open and being edited, gold borders to indicate files 

that are in focus in the editor, and checkmarks superimposed on files to indicate files that 

are checked out.  The variety in different graphical annotations for related states of 

activity makes it difficult to remember the meaning of each.  This is an interface that will 

require time to learn before it can be used efficiently by teams, yet this observation was 

omitted from the authors‘ field study of the tool. 

Jazz 

 Jazz is a collaborative development environment (Booch and Brown 2003) that 

enhances the existing Eclipse platform with collaboration mechanisms for use in small-

team settings (Hupfer et al. 2004).  It extracts activities from user interactions with the 

interface and the local history of source-code and work items (i.e. reports that detail work 

to be accomplished) to 1) monitor what and how source-code is being changed and 2) 

push this information to other developers in the workspace who have subscribed to be 

notified of these ongoing changes.  The Jazz Band (bottom of Figure 12) is a shared 

buddy-list from which users can initiate interactions with others (e.g. screen sharing, chat 

sessions) without the overhead of leaving the IDE and launching other applications.   
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Figure 12—The Jazz environment showing a) team members, b) communication options for interacting 

with a team member, c) workspace files and resources annotating their current states and who is changing 

them, d) an anchor for a chat transcript pertaining to the opened code, e) a recently modified portion of 

code, and f) a team member‘s status/location. 

 

Content: Jazz displays ongoing activities performed by team members within the 

development environment, including the changes they make to source-code, comments 

and documentation relevant to the code, and focused group discussion.  By structuring 

activities around team mates, Jazz enhances developer awareness of others‘ contextually 

relevant interactions with the code and each other.  When a developer selects a snippet of 

source-code, for example, and initiates a chat everyone else immediately knows broadly 

what will be discussed.  No one needs to direct them to another area in the code.  Jazz can 

also be used to gauge developer availability through the use of Jazz Band buddy list 

status messages and tooltips in the hierarchical source-code window describing who is 

changing what files. 

Mapping Content to Tasks: Jazz enhances Eclipse‘s standard source-code editing 

capabilities by providing mechanisms for tracking development activities directly in the 

user-interface (e.g. embedded instant messaging, group chat, comments, and milestone 

progress indicators).  As such, it eliminates much of the overhead involved in setting up 

communication mechanisms (e.g. chat and e-mail servers) and bringing people‘s 

perspectives into alignment in order to engage in collaborative tasks.  The authors 

describe use of the tool in the implementation phase, but Jazz appears to be useful in 

maintenance phases as well, such as when developers use work items and other 

developers as resources for changing bugs and adding features. 

Interpretive Gaps: Jazz thoroughly annotates the development environment with 

notifications corresponding to developer activity, prompting developers to initiate 

collaborative tasks.  The notifications persist, allowing developers to visit them at times 

they deem suitable and relevant.  Any ambiguity in updates or annotations can be 
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resolved by using the communication features embedded into the editor to check for the 

responsible developer‘s availability and subsequently contact them.   

Temporal Unit of Analysis Jazz allows real time monitoring of activity, but provides no 

time ordered views of actions and collaboration corresponding to resources in the 

environment.  As such, it is difficult to identify patterns of work and availability (see 

Awarenex) in order to improve team practices and productivity. 

Visual Representations: Like Palantír, Team Tracks, and Hipikat, Jazz visualizes 

awareness data in the context of current development activities unraveling in the 

development environment.  FASTDash and Jazz are similar in their goals and 

motivations yet FASTDash uses novel visualizations in place of visualization that have 

the same ―look and feel‖ as the environment.  Jazz, on the other hand, makes use of easily 

identifiable visual cues and annotations to source-code in the editor (as in Palantír) to 

signify the status of files, chat logs around the code, and documentation.  The biggest 

enhancement to the existing editor is the Jazz Band (Figure 12a), which features avatars 

of team members augmented with mechanisms for different forms communication.  The 

Jazz Band gives users a choice for what communication medium to use (e.g. chat, phone 

(VOIP), or e-mail).  Providing different options is critical—yet not addressed in the 

majority of the tools surveyed in this paper—since it has been shown that different users 

prefer to be contacted different ways (Herbsleb and Grinter 1999).  For example, non-

native speakers prefer e-mail because it gives them time to compose their thoughts and 

responses.  Responding in real time can become time consuming and frustrating. 

Discussion 

From the detailed analysis of visualization tools that support awareness in 

software development, numerous observations follow.  They are presented below 

according to the principles of awareness identified previously in this survey and suggest 

possible areas for future research. 

Content: Need for common data models. Current visualizations for awareness during 

software development extract information from a common set of repositories, including 

version control systems, issue trackers, and data from developer workspaces.  More 

rarely, they use input from the keyboard to detect real time activities, and developer 

availability and location. Extracted data from the CM systems include the revisions 

themselves, their structural properties and relationships with other module revisions, the 

changes that were made in each revision, and by whom the changes were made.  The 

acquisition of workspace data requires more detail to link individuals to source-code they 

are working on at that moment as well as what they have opened in the background.  

Despite the commonalities of the types of data collected by these tools, to the author‘s 

knowledge, no common data model or collections of APIs exist to provide a standardized 

way to extract awareness data at different details and levels of abstraction.  Researching a 

common data model would promote more detailed inspections of these tools and 

eventually lead to the development of flexible, reusable components for extracting 

awareness information. 
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Need to support individual preference. Some of the tools that use real time data can 

prompt immediate communication opportunities which are more difficult in distributed 

software development settings.  Yet aspects of communication preferences, the 

conditions under which people choose to make themselves responsive (Illich 1971), were 

only addressed in one tool, Jazz.  Despite being flagged as available in tools like 

Awarenex, TUKAN, softCHANGE, FASTDash, ELVIN and Community Bar, people 

may have numerous reasons for choosing to make themselves available to communicate.  

People have different preferences for the ways in which they would like to be contacted 

(Herbsleb and Grinter 1999; Nardi et al. 2002).  For example, some people prefer the 

persistency of e-mail since it can act as a receipt or documentation that can be referred to 

later.  Others prefer e-mail because it gives them time to coherently construct their 

thoughts.  Some tools like ELVIN and FASTDash facilitate opportunistic real time chat 

interactions yet do not offer the asynchronous support necessary for interactions across 

time zones that e-mail does.  In order to appeal to a more diverse range of users, these 

tools should support multiple communication channels such as IM, e-mail, video, and 

chat. 

Need to leverage personal relationships and history of helping. Tools that identify 

who to talk to, such as Expertise Recommender, and who is actually available like 

Awarenex and Community Bar rely on the receptiveness of the helper to be thoroughly 

effective.  Yet helping comes at the cost of being interrupted, bringing a temporary halt to 

the flow of work.  One way to determine one‘s receptiveness toward helping might be to 

build in a ―helping history‖ to tools that can be used to prompt developer-developer 

interactions.  The visualizations could be augmented with developers‘ history of and 

preferences for helping each other.  For instance, developers who have a good rapport 

and history of sharing expertise are more likely to help one another than two developers 

who never see each other yet need to coordinate despite being on the same team or on 

different teams working on interdependent system components.  Additionally, developers 

are more likely to respond to their superiors than their peers since they could be 

reprimanded for not doing so.  For a recommender that relies on previous interactions to 

be useful, however, developers would have to initially provide a critical mass of 

interaction history.  One way would be to have a profile filled out by each developer that 

showcases their skills and expertise.  Every other developer might have a version of that 

profile on their client application and could rate developers based on their past personal 

interactions with them.  Given this initial data as a baseline, communications could be 

logged by the tool and suggestions made based on that interaction history.  

Mapping Content to Tasks: Need to map features to tasks. Despite the utility of 

supporting general awareness, of the ―Change Management and Evolution‖ tools 

surveyed, very few mapped tasks representative of ―change management‖ to features in 

the tools themselves.  Of the 14 change management tools surveyed, only one (Wu et al. 

2004b) defined and showed specific change activity for which the tool could be used to 

monitor: ―Punctuation,‖ moments of sudden and discontinuous change that could be used 

to spot buggy/inefficient code that needs refactoring.  For example, Codesaw was built 

with the intentions of ―revealing group dynamics around changes,‖ but this is a broad 

statement and reveals no insight into how the tool would be used to do so. In addition, no 

specific group dynamics relevant to software development are defined by the authors.   
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 Command Console helped project managers reveal ―where the action is‖ but that 

too is a high-level observation.  Writing code may constitute ―action,‖ but so may writing 

documentation or communicating with developers responsible for part of the source-

code.  These are ―invisible‖ yet crucial aspects of work that often go undetected and thus 

unrewarded by managers.  Specific patterns of action and what they mean for project 

managers and developers are unclear.   

Insights that emerge from tools like CodeSaw, including VRCS and 

softCHANGE do so more by individual user experience and intuition rather than from a 

process or defined method of use.  In general, all of the surveyed tools identified 

awareness data that could be used to support tasks.  This is an important first step for very 

few change management tools were evaluated with respect to specific tasks.  As 

researchers improve their tools, their focus should not remain on ―what‖ information can 

be revealed but instead turn to how the tool can be used to reveal information central to 

completing expected activities defined in software development projects—in other words, 

the process of using the tool itself to reveal useful information. 

One interesting observation is that availability is the least supported, yet 

development projects are increasingly becoming globally distributed.  This suggests that 

new technologies that promote awareness should include mechanisms that facilitate 

opportunistic interaction and focus less on analysis of past work, relatively speaking. 

Three tools, Community Bar, Awarenex, and Active Map support finding people 

across the whole software development process.  One tool, Tarantula, (Jones et al. 2001; 

Jones and Harrold 2005) addresses fault localization, an activity characteristic of the 

testing phase of software development (see Figure 13).  That is not to say that awareness 

visualizations do not exist for other phases of development such as gathering 

requirements or creating high-level architectures.   

Identifying the tasks and phases of development for which tools are appropriate is 

an important step in describing their intended usage and considering their deployment.  

Of the awareness visualizations for software development surveyed, most of them 

support tasks in the maintenance phase; the rest support activities representative of the 

implementation, phase.   

One explanation for the gap across development phases might be that these tools 

resulted from a selection bias in the software engineering literature surveyed.  To the 

contrary, the most integral venues in the field were selected and searched with respect to 

awareness needs identified in the very same venues.  Few tools were found to address 

awareness in the context of testing, requirements, and design because requirements for 

awareness in these phases have not been defined or described greatly in detail in the 

software engineering literature. Thus, it is likely that if there is a selection bias, it is in the 

interests of researchers and the peer review processes adopted by the organizers of these 

venues, not this survey. 

A more intuitive interpretation is that most artifacts are generated in the 

implementation phase(s) of software development, and thus, more tools are developed to 

provide support for activities that fall into those phases.  One of the benefits of a well-

designed visualization is the ability to see relationships in complex and large streams of 

input data (Bertin 1982).  The artifacts stored in team repositories can themselves be seen 

as input to these tools.  Artifacts—especially source-code, since it is the ultimate 

representation of the system--accrue quickly and in parallel (the very reason why conflict 
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detection mechanisms are developed) after the work is divided up. Visualizations are also 

used to compare activities to expected activities, implementation to design; design to 

requirements, and so on.  For the most part, source-code implementation is strictly a 

human behavior, and humans make mistakes.  Take bugs for example—they are 

deviations in the expected behavior of the implemented system, linked to the design, and 

back to the requirements.  These deviations in expectations are what programmers and 

managers care about in the real world because the required work to ―correct‖ the 

deviations costs time and money.  This may help explain why the locus of study has been 

the implementation and maintenance phases of software development. 
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Figure 13—Number of tools surveyed in each phase of software development broken down (i.e. color 

coded) by category as identified in Table 3.  Some tools appear in more than one category. 

 

Interpretive Gaps: Need for multivariate and transparent evidence of rationale. 

When applicable, tools that give a recommendation or suggest the potential for 

coordination breakdowns should provide multiple forms of evidence to assist the user in 

making a correct interpretation of the content and an actionable decision.  Interpretive 

gaps showed up the most often in the ―Recommending People and Artifacts‖ and 

―Avoiding Conflicts‖ categories.  Systems like Hipikat that give a confidence rating from 

0-1, for example, are of little use to users because no rationale for the rating is provided.  

Similarly, systems like Expert Recommender simply list individuals‘ contact information 

without providing transparency into the history of their expertise.   

Yet Palantír and Team Tracks, for example, helped with interpretation by 

providing multiple forms of evidence: Palantír uses relative size of graphics and colors to 

indicate size and types of conflicts, left-and-right arrows to indicate local or remote code 

affected by changes, and percentages to indicate the amount of code affected.  While 

percentages are relative to the code size, users can see a visualization of the size of 

affected code to help them determine the severity of impacts.  Along the same lines, 

although team navigation patterns are not an indicator of code relatedness, Team Tracks 

uses a combination of cues to strengthen the confidence of its recommendations: rank-

ordered lists of related source-code combined with graphics depicting relative relatedness 

of the items and icons showing dependency relationships between the suggested items 

and the source-code in focus.  In the evaluations of both these systems, the rationale was 

shown to assist users in taking appropriate action: avoiding conflicts and understanding 

the code well enough to implement change requests, respectively. 

Thus Hipikat, and similar systems, might be improved by adding additional units 

of rationale to support the end-user process of interpretation.  One approach might be to 

also show the percentage of people who also used artifacts based on similar tasks or the 

percentage of people who found a similar recommendation to be less useful than another 

one.  The recommendation might group the people by team or assigned components so 

that the user can put their work in the perspective of others‘ and make better-informed 
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decisions (Cartwright et al. 2002).  When using an interface is not part of the normal flow 

of work as in Expertise Recommender for example, details from the original work may 

be lost in the recommendation process.  A developer who wishes to know about why a 

certain implementation was chosen over another for example might wish to include 

detailed comparisons and running times of different algorithms.  Yet if the recommended 

individual worked on significant portions of that code (the reason for the 

recommendation) but has since moved on to other projects, it is unlikely they will have 

remembered much and time that could have been spent addressing the problem will need 

to be spent bringing the helper up to speed. 

Temporal Unit of Analysis: Need to support understanding dependencies over time.  

In the earlier sections of this survey it was made clear that, dependencies, or relationships 

between developers and the artifacts with which they work, change over time.  Designing 

clean APIs is one solution to managing dependencies between artifacts but not between 

people.  One way to show how developer and artifact dependencies change over time is 

by quantifying them.  Tools like Palantír and TUKAN make it possible to associate 

authors and artifacts at any one point in time for the purpose of coordinating and 

resolving potential conflicts, yet they fail to quantify associations when the dependencies 

are not explicitly determined at the time of conflict.  The metrics used to calculate socio-

technical congruence (Cataldo et al. 2006) and dependencies (Carley and Krackhardt 

1998) could be used to provide additional information, like a weighted measure to 

dependencies between artifacts and people that might be relevant to a particular task at 

any time.  For example, a dynamic buddy list augmented with the buddy list in Jazz could 

update every time a specific part of the code (e.g. defined by the user) is changed.  This 

buddy list would act as an ―awareness network‖ (de Souza et al. 2007). In this way, the 

developer could more easily track how their network evolves without the use of a large 

and distracting separate visualization application. 

Of the tools surveyed here, especially the change management and evolution 

tools, no tools except Workspace Activity Viewer (see Table 3) used animation to show 

changes to a software system over time.  Similarly, in their survey (Storey et al. 2005), 

Storey and colleagues found that no tool used animation to play back activity.  Some 

obvious uses of animation are to show flurries and stagnation in activity as well as 

continuous changes in authorship and artifacts (can signal potential unstable and buggy 

source-code (Wu et al. 2004b)).  This information could help managers identify when 

task assignments are unclear or when parallel work (and thus a possible conflict) occurs. 

Visual Representations: Map visualizations to the tasks they should support. In Jazz, 

Team Tracks, and Palantír, all awareness visualizations are integrated with the existing 

editor.  Current resources in the environment are annotated with graphics that show status 

as it pertains to a specific activity, such as conflict avoidance (e.g. shown with colored 

arrows) and communication (e.g. clicking on an individual‘s avatar to launch a chat 

dialog).  They enhance standard features in a manageable way that does not involve a lot 

of context switching.  On the other hand, FASTDash, described to support the same kind 

of tasks (i.e. conflict avoidance) is a stand-alone application that requires use outside of 

the editor.  The unique visualizations it provides are not based on any pre-existing 

standards and there is no clear way to orient or relate the activities of others to one‘s own 

work. Conflicts emerge as developers are focused on writing code.  As such, warnings 

that appear should do so where developers are likely to see them (i.e. in the code), not on 
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a separate screen or wall.  Doing so puts an unnecessary burden on the developer, 

requiring them to periodically interrupt themselves and work less efficiently as a result. 

Use scalable representations that can be used to identify patterns. Despite the 

context-switching issues associated with using large amounts of screen real-estate to 

convey awareness information, such techniques better convey patterns over time using 

visualization techniques, novel or otherwise, that scale, such as those implemented in 

Awarenex and Command Console.  By their very nature, these tools visualize massive 

amounts of data in order to identify meaningful patterns of activity.  As such, they utilize 

significant portions of the developer‘s workspace and can be a distraction.  As a side 

effect however, patterns such as who modified what, what parts of code are affected, and 

who is available at what times of the day become easily recognizable.  These patterns are 

seen in the work rhythms of individuals displayed by Awarenex and the complexity 

thumbprint visualizations in Command Console.  They increase the extent to which one 

can predict future activity and thus make better-informed decisions as a result. 

Organizational Strategies 

While they are certainly an important part of enhancing coordination, tools are not 

the only strategies for promoting awareness.  The guidelines proposed above serve to 

improve the tools‘ abilities to augment awareness and therefore enhance coordination 

activities during software development.  Yet using tools is but one part of a larger 

strategy aimed at increasing the awareness needed to improve the ability to coordinate, or 

to achieve what some might call an ideal state of coordination, or ―congruence.‖  

Congruence is defined by Cataldo et al. (Cataldo et al. 2006) as ―a state in which an 

organization has sufficiently aligned their coordination capabilities to meet the 

coordination demands of the technical products under its development:‖ in other words, 

what the organization can do versus what it needs to do.  Crucially, congruence implies 

not only the use of technology but also organizational strategies like restructuring teams, 

providing training, and even allocating conflict resolution engineers and liaisons 

(McCord et al. 1993) to resolve technical issues and provide continuous, intensive 

information exchange between and among teams.  

Assessing an organization‘s compliance with congruence assumes its capability to 

measure or quantify actual and corresponding required levels of coordination.  Sarma and 

colleagues (Sarma et al. 2008a) outline the objectives of measuring congruence: 1) 

knowing what information to collect, 2) finding the best approach to collecting this 

information, directly or indirectly, and 3) understanding appropriate ways of computing 

congruence measures.  The tools surveyed here collect a variety of information in order 

to gauge collaboration and coordination activities, among them: direct communication 

from e-mails and chat logs, indirect collaboration from change logs, and artifacts of the 

system under development itself including source-code and bug reports.  They obtain 

important historical information by mining repositories for explicit and derived (e.g. 

finding experts) data as well as contextually relevant real time data through 

instrumentation of project workspaces (e.g. to detect conflicts).  However, less is known 

about how congruence can be measured and thus recognized in practice, especially since 

there are so many ways to coordinate work.  Sarma and colleagues hypothesize that 

innovative visualizations that summarize vast amounts of information can facilitate the 
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emergence of distillable and recognizable patterns that researchers and practitioners can 

use to create benchmarks for assessing congruence.  This observation is in line with the 

conclusions of this survey, yet more research remains to be conducted. 

Although the rhetoric of congruence is coordination-centric, the absence of 

collaboration as reported by tools does not necessarily imply an undesirable state of 

congruence if no coordination is required.  Thus, project managers or even other 

developers should not be automatically alarmed or surprised if no data is being reported 

by tools or no activity is being reported in visualizations.  Violations in expectations of 

development activity based solely on information reported in tools may result in 

unjustified, negative performance evaluations of personnel.  Moreover, developers may 

well regard the transparency revealed by the tools as a violation of their privacy.  These 

situations highlight that tools, while crucial, are not an awareness panacea; they are 

situated within an organizational context of expectations, norms, and both horizontal and 

vertical dimensions of authority.  

Conclusion 

The objective of this survey was to: 1) motivate the need for tools that promote 

awareness in the face of the rise in global software development projects and associated 

coordination challenges, 2) identify important principles and requirements for awareness 

in the software engineering literature, and 3) to identify and compare existing awareness 

tools with respect to the identified principles. 

The contributions of this work are four-fold. First, this survey extrapolates 

important principles of awareness based on existing empirical work yet left out in the 

implementation of current tools designed to promote awareness.  Second, it crucially 

identifies a considerable subset of these tools that are representative of those used in 

academic and professional settings.  Third, this work provides a novel categorization of 

the tools which acts as a basis from which to analyze them with respect to the awareness 

principles.  Fourth, based on this analysis, it shows how the visualizations might be 

improved to support various aspects of awareness.  The categorization proposed here is 

not meant to constitute a normative framework to which all other tools should be 

compared.  Moreover, it has not been evaluated and used by other researchers.  Instead it 

raises several important questions to ask about them.  The analysis builds on established 

research and empirical findings from the awareness, coordination and tool research 

communities—rather than considering any one in isolation—to provide a structured and 

holistic approach toward understanding the similarities and differences in, as well as the 

advantages and limitations of, current tool support.  As such it serves as a starting point 

for researchers also interested in the intersections between these communities and 

implications for coordination technologies. 
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