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Abstract: Open decentralized applications are susceptible to the attacks of malicious entities. In
such applications, each autonomous entity must adopt protective measures to safeguard itself.
One set of such countermeasures are reputation-based trust management systems. However,
designing these systems is arduous because the impact of factors introduced by decentralization
on such systems is largely unknown. There is a lack of knowledge in existing literature that can
guide the design of an appropriate trust solution. To address this shortcoming, we present a simu-
lation-based framework called SIFT that allows a designer to explore and analyze the interplay of
various trust and application settings. SIFT-based experiments with various trust and application
settings have not only helped expose the pros and cons of different trust settings but also revealed
several interesting insights that guide the selection and refinement of a set of trust settings for a
given operating condition.
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Abstract

Open decentralized applications are susceptible to the attacks of malicious entities. In such applications, each
autonomous entity must adopt protective measures to safeguard itself. One set of such countermeasures are reputa-
tion-based trust management systems. However, designing these systems is arduous because the impact of factors
introduced by decentralization on such systems is largely unknown. There is a lack of knowledge in existing literature
that can guide the design of an appropriate trust solution. To address this shortcoming, we present a simulation-
based framework called SIFT that allows a designer to explore and analyze the interplay of various trust and appli-
cation settings. SIFT-based experiments with various trust and application settings have not only helped expose the
pros and cons of different trust settings but also revealed several interesting insights that guide the selection and
refinement of a set of trust settings for a given operating condition.

1. Introduction

Consider a decentralized auctioning system where distributed entities buy and sell commodities. There is
no single centralized authority that controls and coordinates trade between individual entities. Instead, each
entity, also called a peer, is autonomous, interacts directly with other peers, and makes local independent
decisions towards its individual goals that may possibly conflict with those of other peers. In an open
decentralized auction, peers including those with malicious intentions can freely enter the system. These
peers may execute a variety of attacks such as impersonating other peers to leverage their privileges,
promising non-existent services, failing to fulfill promised obligations, and spreading false information
about other peers in the system. These attacks pose a significant threat to the integrity of the system and
therefore must be effectively countered.

In the absence of a centralized authority that can regulate the entry of malicious entities and help safeguard
the system against such malicious attacks, it becomes the responsibility of each decentralized entity to
adopt suitable measures to counter these attacks. Reputation-based trust management systems have been
found to serve as potential countermeasures against such attacks [25]. These systems rely upon a peer’s
reputation molded by its past interactions to determine its trustworthiness in the future.

Our previous work [21] proposed a novel architectural style, PACE, that guides the incorporation of
reputation-based systems within the architecture of a decentralized peer. PACE provides guidance on how
to build trust-centric decentralized applications, but does not specify what trust model should be chosen for
a given application. In order to realize a secure decentralized application, choosing an appropriate and
reliable trust model for that application is as important as building it right.



Our next focus, therefore, was to investigate how to select a trust model for a particular application. We,
however, discovered that researchers have devoted little attention towards this goal. Moreover, existing
reputation models are geared towards different needs and applications, and so it is rather difficult to decide
what model should be adopted for one’s use.

To address this need, we have built a simulation framework called the SImulation-based Framework for
Trust models (SIFT). SIFT uses scenarios based on the critical threats to a decentralized system to explore
and analyze the interplay of trust and application settings. Specifically, SIFT simulates how a trust model,
characterized using specific parameters, will behave when subjected to different types of attacks in a
particular application setting.

We have used SIFT to simulate numerous trust and application settings. Our experience with using SIFT
has highlighted its usefulness. SIFT enables the designer to quickly experiment with different trust and
application settings. SIFT simulation results expose the benefits and deficiencies of trust settings under
different operating conditions which provides much-needed guidance towards the selection of an
appropriate trust model for a given application and points at future refinements to those models.

The rest of the paper is structured as follows. Section 2 provides a brief background to trust and reputation.
Section 3 discusses relevant related work. Section 4 describes the approach and various aspects of SIFT.
SIFT design and implementation details are presented in Section 5 while Section 6 describes our
experiments with SIFT and presents several interesting insights based on our simulation results.
Limitations and future work are discussed in Section 7.

2. Background

The concept of trust is not only basic to society but also undoubtedly significant. Therefore, interest in it is
not limited to electronic communities but reaches across several research disciplines such as psychology,
sociology, computer science etc. [17]. We limit our discussion here to our definitions of trust and
reputation.

2.1 Trust

A number of definitions for trust exist in the literature. Some of the more popular ones include those
proposed by Deutsch [7], Marsh [17], Diego Gambetta [9], and Grandison and Sloman [10]. For our
purposes, we adopt the Gambetta’s definition of trust who defined trust as a particular level of the
subjective probability with which an agent assesses that another agent or group of agents will perform a
particular action, both before he can monitor such action (or independently of his capacity ever to be able
to monitor it) and in a context in which it affects his own action. Gambetta also introduced the concept of
using values for trust and defended the existence of competition among cooperating agents.

2.2 Reputation

The concept of reputation is closely related to trust and can be used to determine the trustworthiness of an
entity [25]. Abdul-Rahman [1] defines reputation as an expectation about an individual' s behavior based
on information about or observations of its past behavior. In online communities, where an individual may
have very little direct information to determine the trustworthiness of others, their reputation information is
typically used to determine the extent to which they can be trusted. An individual who is more “reputed” is
generally considered to be more trustworthy. Reputation can be determined in several ways. For example,



a person may either rely on his direct experiences, or rely on the experiences of other people, or existing
social relationships or a combination of the above to determine the reputation of another person.

3. Related Work

As previously mentioned, recognizing the significant role of reputation-based trust management in
decentralized applications, researchers have recently devoted increasing attention to the exploration of
such systems. Researchers have not only invented a number of decentralized reputation models [20] but
have typically also evaluated those models using custom-made simulators. The approach adopted in SIFT
draws from some of these existing custom-made simulators. We, therefore, examine these simulators and
where relevant point out similarities and differences in their approaches with that used in SIFT. We will
also discuss briefly four decentralized reputation models that have been used in our evaluation of SIFT.

3.1 Trust Model Simulators

Yu and Singh [24] present a weighted majority trust algorithm that assigns initial weights to recommenders
and after every successful or unsuccessful interaction fine-tunes these weights accordingly. The evaluation
of this algorithm consists of alternating phases of querying and trust evaluation in every simulation round.
A random number of peers are chosen to evaluate trust in the rest of the peers. However, the simulation
testbed assumes a ring-based topology for the peers which does not model the structure of real-world
decentralized applications.

Credence [22] is a reputation-based system that evaluates the reputation of objects in a peer-to-peer file-
sharing application. It uses a voter correlation scheme that weighs peer opinions and helps identify objects
that may be tainted. Credence has been evaluated in a custom-made Java-based discrete event simulator.
However, due to the nature of the trust model, the application context used in the simulations is strictly
limited to file-sharing. Additionally, the use of a simple randomized topology to model the underlying
peer-to-peer network does not help predict the behavior of the trust model under real-world application
settings.

The NICE platform [14] includes trust algorithms that enable good peers to form robust cooperative groups
with other good peers in order to counter the threat of false information reported by malicious peers. These
algorithms are evaluated through simulations. However, an in-depth description about the simulation setup
is lacking. Assumptions made about the underlying application topology are also missing.

PeerTrust [23] is a reputation-based trust model for eCommerce communities that uses P-Grid for
distributed data storage and retrieval. Like other trust models, it also focuses on incorporating the
credibility of recommenders in the evaluation of trust. But PeerTrust additionally includes the number of
transactions and transaction and community context to make trust evaluation more accurate. PeerTrust has
been evaluated using a simulator built in Mathematica 4.0. Simulations include an initial number of
interactions between random peers followed by the evaluation of trustworthiness of a fraction of the peers
by a fixed number of randomly selected peers. SIFT adopts a similar structure in its simulations. However,
similar to some of the above-described systems, the evaluation of PeerTrust does not clearly specify what
the application topology is and how close the assumed application structure is to real-world eCommerce
applications.

PET is a trust model that combines reputation and risk evaluation to determine trustworthiness in P2P
resource sharing applications [15]. Simulation for PET is thread-based and written in Perl. The objective of
the simulation is to assess the effect of PET components in the context of a P2P Web server sharing
application. In such an application, only the web servers form the P2P system. However, the evaluation



approach used in PET does not specify assumptions made about the underlying topology of this P2P
system and whether the simulation models a real-world scenario. Further, no simulation results are
presented for a case where malicious peers actively collude to subvert the system.

Marti and Garcia-Molina [18] propose a limited reputation sharing scheme to reduce the number of failed
interactions between peers. This scheme is evaluated using a custom P2P simulator that assumes a
Gnutella-like flat unstructured network topology in order to model real-world applications. The simulation
process consists of a set of timesteps with a query being generated at every timestep and being completely
evaluated before the next timestep. An interesting feature of this simulation testbed is that peer turnover is
modeled, albeit in a simplistic manner by having a peer leave the system and replace that peer’s place in
the network by another peer.

The EigenTrust reputation system [12] uses a distributed method based on Power iteration to compute
global trust values for all peers in P2P file-sharing applications. The simulation platform interconnects
networks in a power-law network fashion which models prevalent real-world P2P networks [19].
Simulations with different threat scenarios are executed to examine the behavior of EigenTrust in the face
of those threats. Each simulation cycle consists of a number of querying cycles at the end of which a peer
downloads the file from a selected node. At the end of each simulation cycle, global trust values for each
peer is computed. Though there are several similarities between approach used in EigenTrust simulation
and SIFT, one drawback of the EigenTrust simulation is that it seems to be limited to file-sharing
applications.

3.2 Decentralized Reputation-based Trust Models

We describe below four reputation-based trust models that are used in our evaluation of SIFT which is
discussed in Section 6.

3.2.1 Distributed Trust Model

In the Distributed Trust Model (DTM), a trust relationship is always between exactly two entities, is non-
symmetrical, and is conditionally transitive. Mutual trust is represented as two distinct trust relationships.
Two different types of trust relationships are distinguished. When one peer trusts another, it constitutes a
direct trust relationship. But if a peer trusts another peer to give recommendations about another peer's
trustworthiness, then there is a recommender trust relationship between the two [1]. Trust relationships
exist only within each peer’s own database and hence there is no global centralized map of trust
relationships. Corresponding to the two types of trust relationships, two types of data structures are
maintained by each peer - one for direct trust experiences and another for recommender trust experiences.
Recommender trust experiences are utilized for computing trust only when there are no direct trust
experiences with a particular peer.

Trust categories are used by peers to classify trust towards other peers depending upon which aspect of that
entity is under consideration. For example, a peer may trust another peer on a certain issue but may not
trust it in another context. Similarly, since a peer may trust a certain peer more than other peers,
comparable trust values are needed. A reputation is defined as a tuple consisting of a peer’s name, the trust
category, and the specific trust value. A recommendation is defined as communicated trust information
which contains reputation information. Discrete integral trust values are used to represent the
trustworthiness of peers with -1 indicating distrust, 0 indicating lack of knowledge, 1-3 indicating
increasing trust and 4 indicating complete trust.



Three types of messages are exchanged between peers in this trust model: Request for Recommendation,
Recommendation, and Refresh messages. When a peer needs a service offered by another peer for the first
time (no prior transactions between the two), the peer sends out a Request for Recommendation message to
the peers it trusts as recommenders. These recommender peers can respond by sending Recommendations
if they know the target peer, else they forward the request to other peers whom they trust as recommenders.
Since the opinion of peers may change over time, recommendations are valid only for a limited time. When
recommendations expire or the trust values associated with them change, they are updated using Refresh
messages. Refresh messages are also used to revoke Recommendations by sending Refresh messages with
trust values 0.

3.2.2 Complaint-based Model

A complaint-based reputation model relies on negative feedback or “complaints” to convey reputation
information. In such a model, peers do not store information about successful interactions or trustworthy
peers, but rather record their negative experience in the form of complaints against interacting peers. These
complaints are also forwarded to another peer or peers in the system in order to disseminate information
about the malicious peer. When a peer wants to evaluate the trustworthiness of a target peer, it first
searches its own history to locate any previous complaints registered by itself. It can also query other peers
for other existing complaints about the target peer. Complaints received from other peers are included in
the determination of the target peer’s trustworthiness. This kind of complaint-based scheme has been
adopted by trust management systems such as the one based on the P-Grid data structure [2].

3.2.3 XREP

XREP is a distributed protocol that allows these reputation values to be maintained and shared among the
servents. It consists of the following phases: resource searching, resource selection and vote polling, vote
evaluation, best servent check, and resource downloading. Resource searching is similar to that in Gnutella
and involves a servent broadcasting to all its neighbors a Query message containing search keywords.
When a servent receives a Query message, it responds with a QueryHit message. In the next phase, upon
receiving QueryHit messages, the originator selects the best matching resource among all possible
resources offered. At this point, the originator polls other peers using a Poll message to enquire their
opinion about the resource or the servent offering the resource. Upon receiving a Poll message, each peer
may respond by communicating its votes on the resource and servents using a PollReply message. These
messages help identify reliable resources from unreliable ones, and trustworthy servents from fraudulent
ones.

In the third phase, the originator collects a set of votes on the queried resources and their corresponding
servents. Then it begins a detailed checking process which includes verification of the authenticity of the
PollReply messages, guarding against the effect of a group of malicious peers acting in tandem (collusion)
by using cluster computation, and sending TrueVote messages to randomly selected peers suspected of
belonging to a cluster. The TrueVote messages request confirmation on the votes received from the
recipients. At the end of this checking process, based on the votes received through TrueVoteReply
messages, the peer may decide to download a particular resource.

Since multiple servents may be offering the same resource, the peer still needs to select a reliable servent.
This is done in the fourth phase where the servent with the best reputation based on the votes received from
other peers) is contacted using a AreYou message to check the fact that it exports the resource. Upon
receiving a reply from the servent in the form of a AreYouReply message, the originator downloads the
resource from that servent in the final phase. It also updates its repositories with its opinion on the
downloaded resource and the servent who offered it.



3.2.4 eBay Reputation Management System

eBay is an electronic marketplace where users sell and buy different kinds of goods [8]. Sellers advertise
items and buyers place bids for those items. After an auction ends, the winning bidder buys the advertised
item from the seller. Both buyers and sellers rate each other after the completion of a transaction. A
positive outcome results in a +1 rating and a negative outcome results in a -1 rating. These ratings form the
reputation of buyers and sellers.

This reputation information is stored and maintained by eBay which allows this to be viewed through user
profiles. A user can click on the profile of a buyer or seller to view their past interaction history and trust
information. The profile includes the number of total interactions a user has been involved in along with
his total trust score. This score is obtained by adding all the unique positive ratings and subtracting all the
unique negative ratings the user has received from other users. The profile also lists the total number of
positive, negative and neutral ratings the user has received. Further, the profile also displays the
aggregation of the most recent ratings received in the last one month, six months, and twelve months. A
user viewing a profile can also choose to read all the comments written about the particular buyer or seller.

The eBay reputation system does not include a trust computation mechanism. It only presents reputation
information about a user and does not provide an algorithm that computes a trust value for the user. The
eBay reputation system leaves the trust determination and decision-making to its users. While this
definitely gives the users flexibility to use the reputation information in their specific ways, it is quite
difficult for an average user to determine who can be trusted. A user may have several good comments and
may have a high rating but this does not mean that that particular user is the most trustworthy or that he
will not renege on the delivery of the promised service or items. This can potentially affect the reliability of
the eBay reputation system.

4. SIFT Approach

The main objective of SIFT is to be able to experiment with different trust and application settings under
specific threat conditions. Towards this objective, the SIFT approach identifies and utilizes three sets of
parameters: trust model parameters, application parameters, and simulation parameters. In order to be able
to quantify how well each trust setting fared against these threats, SIFT also uses suitable assessment
metrics. Figure 1 summarizes how these different parameters and metrics are used in SIFT. In the
following sections, we introduce each of these parameters and metrics and the symbols used to denote
them. An overview of all these parameters is also presented in Table 1.

4.1 Trust Model Parameters

In SIFT, a trust model is an instantiation of a specific set of values assigned to trust parameters. It should be
noted that this set of trust parameters is not exhaustive, but is so chosen because these parameters are
generally found in most reputation-based trust models. We, therefore, believe these parameters serve to
allow a generic representation of trust models for the purposes of their examination. These parameters are
described below.

4.1.1 Trust weight (alpha)

Trust models typically base trust decisions on two information sources - a peer’s personal experience and
recommendations received from other entities in the system. Depending upon the nature of the trust model,
these two information sources are assigned different weights and appropriately combined in a weighted-
average manner to give a resultant trust value. We model this aspect of trust models by assigning a trust
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Table 1. Overview of SIFT Parameters

Parameter Symbol Value Description
Trust
Trust Weight alpha 0-1 Weight assigned to personal experience. Influences trust computation
Trust Threshold thr 0.1-0.9 |Level above which a peer is trusted and vice versa.
Recent Interaction Weight val 0-1 Weight assigned to recent interactions during trust computation
Interaction Limit lim 1-100 Percent of interactions considered recent in trust computation
Degree of trust in unknowns deg 0-1,2 |Denotes how much an unknown peer is trusted.
Hop Count he 1-5 Determines the depth to which trust queries traverse
Application
Number of interactions int 0-100000 |Number of initial peer interactions in each simulation
Connection Density oe 1-5 Minimum number of peers each new peer must be connected to
Number of Peers peers 100 Total number of peers in the system
Malicious Peers mal 0-75 Number of malicious peers in the system
Malicious Probability malProb 0-1 Probability with which malicious peers exhibit fraudulent behavior in
their interactions
Simulation
Number of assessing peers aPeers 1-20 Number of peers that query and evaluate other peers
Number of assessments aCount 1-5 Number of times querying and evaluation is repeated in a simulation
Type of attack attack 0-3 Describes the attack scenario to be executed
Number of targeted peers target 1-10 Number of good peers targeted by colluding peers
Number of simulations simCount 50 Number of times each set of settings is simulated

weight, alpha, to the personal experience-based trust value. The recommendation-based trust value is
correspondingly assigned a trust weight equivalent to ‘1 - alpha’. The value of alpha determines the impact
that personal experience and received recommendations have on the final computed trust value. The trust
weight thus plays a significant role in determining the nature of the trust model.

4.1.2 Trust threshold (thr)

The trust threshold represents the trust value below which all entities are considered untrustworthy.
Correspondingly, any entity that has a trust value above the trust threshold value is considered trustworthy.



The trust threshold value used depends upon the nature and needs of the application. If peer interactions
are of a critical nature, such as in e-commerce applications, peers in the system would prefer to not interact
at all rather than face the risk of interacting with a malicious peer. In such a case, the trust threshold is
typically set a high value to reduce the risk of interacting with a malicious peer. However, if failed
interactions do not have significant repercussions and the focus is on encouraging a greater number of
interactions, the trust threshold can be set to a low value. In SIFT, we assume that trust is expressed as
continuous values between 0 and 1. The trust threshold value is therefore also a continuous value between
Oto 1.

4.1.3 Interaction Limit (lim)

Certain trust models specify with every trust value a trust expiration date that stipulates the time for which
that trust value is considered “good”. This is to ensure that data that is no longer considered valid is not
included in the evaluation. Instead of using a validity period for trust values, some trust models limit the
data used for trust evaluation by constraining it to a specific number of recent interactions. One example is
Ebay which provides information about the interaction behavior of a user over the past week, month, and
six months [3]. While this reputation information is certainly useful in gaining a better understanding of
the future behaviors, it is susceptible to the case where a malicious peer may behave well for six months
and then revert to fraudulent behavior. It is therefore important to model this aspect of trust models. In
SIFT, we model this aspect of trust models through the use of the interaction limit parameter that denotes
the number of recent interactions that only should be considered in the evaluation of trustworthiness.

4.1.4 Recent Interaction Weight (val)

Some trust models also adopt a time-based degradation of trust values. In such models, recently reported
trust values are given more importance during trust computation than those previously reported. We model
this in SIFT through the use of the recent interaction weight parameter. This parameter specifies the weight
that should be assigned to the recent interactions. Correspondingly, a weight of value (1-val) is assigned to
the old interactions while determining trustworthiness.

4.1.5 Hop count (hc)

For querying trust information, SIFT adopts a communication mechanism similar to that of a gnutella-
based system. Specifically, a peer sends out a query requesting trust data to its neighbors who in turn
forward the query to their neighbors and so on. The query flooding is limited by a hop count parameter that
is decremented at every peer that receives the query. If the hop count value is greater than 1, the query is
forwarded to each of the peer’s neighbors. Upon receiving a query, a peer checks whether it has the data
requested in the query. If so, the peer sends back a response message with the requested data back to the
query originator. The hop count parameter thus decides the extent to which the trust query traverses in the
system and therefore also indirectly influences the number of received responses. This in turn affects the
trust decision-making process at the query originator. While a higher hop count means a larger number of
entities are queried, it also leads to the possibility of query flooding that may lead to issues with scalability
[16]. Thus, depending upon the nature and needs of the application, a designer must evaluate this trade-off
and choose an appropriate hop count value.

4.1.6 Degree of trust in unknowns (deg)

Depending upon how critical peer interactions are, a trust model may decide to trust unknown peers to
varying degrees. A very liberal trust model that wants to encourage the participation of peers, may decide
to trust new unknown peers completely. On the other hand, a more conservative trust model may decide to



bestow little or no trust on such unknown peers. A trust model may also choose to just plainly report that it
has no information about the unknown peer. “Degree of trust in unknowns” parameter helps model this
aspect of trust models.

4.2 Application-specific Parameters

Similar to the trust parameters, we model an application through the use of application-specific parameters
that help capture the essential features of the application. The application-specific parameters described
below do not form an exhaustive list by any means. They have been so chosen because of their significant
role in the choice of a particular trust model, and serve as a good starting point for our experiments.

4.2.1 Number of initial interactions (int)

This parameter denotes the number of interactions that peers have with each other in every simulation
round before the trust querying and evaluation phases begin. Depending upon the nature of the application,
peers may engage in varying number of interactions. The number of interactions peers engage in with each
other impacts the amount of trust-related data that is available subsequently to make trust decisions. Thus,
the number of interactions can play a significant role in determining the effectiveness of the trust model
against malicious attacks.

4.2.2 Connection density (oe)

The connection density helps capture the overlay topology of the application. Peer-to-peer decentralized
applications have been observed to have a power law network topology with most nodes sparsely
connected and a few nodes that are densely connected [19]. Such a topology has also been commonly
observed across various systems including the internet and biological and sociological networks [4].
Therefore, in order to be able to simulate real-world application environments to provide results that would
match the real-world context, SIFT assumes a power law-based topology for all applications and
incorporates an algorithm that constructs a power law-based topology using the peer connection density
parameter. This parameter, represented by “oe”, denotes the minimum number of peers each new peer must
be connected to when it first joins the system.

4.2.3 Number of peers (peers)

This parameter denotes the total number of peers in the system.

4.2.4 Number of malicious peers (mal)

This parameter denotes the number of peers in the system that will engage in malicious activity.
4.2.5 Malicious Probability (malProb)

This parameter denotes the probability with which a malicious peer will engage in fraudulent interactions.
Typically, malicious peers in decentralized applications first build up a good reputation through successful
interactions with other peers and then leverage their good reputation to successfully engage in malicious
activity. How frequently a peer exhibits malicious behavior depends upon the nature of peers in the system.
The malicious probability parameter helps capture this frequency with which malicious behavior is
exhibited by peers. A higher value of the malicious probability indicates that peers in the system more
frequently engage in fraudulent interactions and vice versa.



4.3 Simulation Parameters

In addition to the trust model and application parameters, SIFT also includes the following simulation
parameters that help control the simulation setup in order to vary the conditions that are used to examine a
trust model’s behavior. In SIFT, each simulation round consists of a specified number of interactions
between randomly chosen peers followed by one or more rounds of querying and assessing the
trustworthiness of all peers in the system. A random set of peers are chosen for this querying and
assessment in every simulation round. Further details of the SIFT simulation setup are provided in section
5.

4.3.1 Number of peers that assess (aPeers)

This parameter represents the number of peers that originate queries, aggregate the responses, and combine
them along with their personal experiences to assess the trust level of all peers in the system. This
evaluation averaged over all assessing peers is used to determine how well the trust model helps identify
malicious peers.

4.3.2 Number of assessments (aCount)

This parameter denotes the number of rounds of querying and assessment that each assessing peer engages
in each simulation round.

4.3.3 Type of attack (attack)

SIFT subjects each trust model to four different types of attacks. These four types of attacks do not form an
exhaustive set, but are chosen to cover two critical but common threats to decentralized applications:
misrepresentation and collusion. Misrepresentation is when a peer lies about the trustworthiness of other
peers in the system. Collusion is when a group of peers collectively indulge in misrepresentation either to
boost their own trustworthiness or to reduce the trustworthiness of others. Each of these attacks is modeled
as a threat scenario in SIFT.

Type 0 - This attack is when a malicious peer misrepresents its trust in other peers including other
malicious peers. Specifically, if the target peer is trustworthy, the malicious peer reports otherwise and vice
versa.

Type 1 - In this case, a malicious peer misrepresents its trust in good peers but always reports complete
trust in other malicious peers.

Type 2 - Type 2 attack is a type of a collusion attack where malicious peers collectively target a particular
good peer and report a trust value of 0 for that target peer. However, unlike a type 1 attack, these malicious
peers do not report complete trust in each other.

Type 3 - Type 3 attack is a combination of type 1 and type 2 attack. Specifically, malicious peers
collectively misrepresent good peers as well as report complete trust in other malicious peers.

4.3.4 Number of peers being targeted (targets)

This parameter denotes the number of good peers that are targeted by colluding malicious peers in type 2
and type 3 attacks.



4.3.5 Number of simulations (simCount)

SIFT chooses malicious peers and assessing peers randomly at the start of each simulation. Further, in each
simulation round peers pick other peers randomly for interactions. If a simulation were to be carried out
only once, it would be hard to decide whether the simulation results obtained are indeed representative of
typical behavior. Repeating simulations a number of times with the same set of trust, application and
simulation settings increases confidence in the simulation results. The number of simulations parameter
denotes the number of times a simulation is repeated for each set of trust, application and simulation
parameters. The results obtained from all the simulations are averaged over the number of simulations to
arrive at a final set of values.

4.4 Assessment Metrics
In order to quantify and compare the behavior of trust models, SIFT identifies the following metrics.

4.4.1 Malicious peers identified correctly (M)

This metric describes how well the trust model identifies malicious peers in the system. Specifically, it
represents the number of malicious peers whose trust values are found to be below the specified trust
threshold value thus allowing the trust model to correctly identify them. A metric related to this is the
remaining number of malicious peers (N) that could not be identified by the trust model.

4.4.2 Peers incorrectly identified as malicious (F)

This metric denotes the number of false positives. Specifically, it represents the number of peers that are
not actually malicious but whose trust value is below the specified trust threshold value. While it may be
considered better to err on the side of caution and be suspicious about every peer, identifying a large
number of peers incorrectly as malicious may result in a significant reduction in the number of
interactions. A metric related to the number of false positives is the remaining number of good peers (G) in
the system that are correctly identified as trustworthy by the trust model.

4.4.3 Number of peers considered unknown (U)

This metric denotes the number of peers whose nature remains unknown to the assessing peers. This could
be because no information is found about these peers and the trust model decides to mark them as
unknown instead of considering them as trustworthy or untrustworthy.

5. SIFT Design

5.1 Peer model

In SIFT, each peer communicates directly with other peers to exchange information. Every peer is assumed
to have the necessary communication, information storage, and computing capabilities that enable it to be
an independent decentralized entity. Each peer maintains a list of neighboring peers that it is directly
connected to and through whom the peer communicates with other peers in the system. Also associated
with each peer is an attribute that reflects whether the peer is malicious or not.



5.2 Communication mechanism

Communication between peers is asynchronous and event-based. Similar to other decentralized peer-to-
peer applications, communication between peers occurs without the intervention of any central routing
authority. The communication relies on a broadcasting mechanism with a static hop count to spread queries
throughout the system. Specifically a peer broadcasts a query message with an initial specified hop count
value to all its neighbors. The query message also contains a sender list to store the path through which the
query is forwarded. Each neighboring peer, upon receiving the query message, decrements the hop count,
appends the sender’s name to the sender list, and forwards the message to all its neighbors except the
sender. This exclusion helps prevent unnecessary forwarding of messages to peers that have already
received the message. This process of rebroadcasting the query message is repeated as long as the hop
count value is greater than zero.

Each peer along the path that receives the query message also checks to see if it has the information
requested by the originator. If it does, the peer encapsulates the needed information within a response
message and sends the response message back along the path the query was received using the sender list.
A peer needs to know only its neighboring peers in order to communicate with peers in the system.
Communication and information exchange between peers is strictly restricted to messages exchanged
between peers. In other words, peers cannot use out-of-band communication to exchange information.

5.3 Simulation Algorithm

When the simulation first starts, each peer is created and randomly initialized with the relevant parameters
that determine whether the peer is malicious or an assessing peer and/ or one of the peers targeted by
malicious peers. Only peers that are not malicious are chosen as assessing peers. The network topology
with the specified peer connection density is then constructed and each peer is given a list of peers whom it
must connect to.

At the start of the simulation, peers interact with each other and build up some initial reputation history.
Depending upon the value of the malicious probability, malicious peers will engage in some fraudulent
interactions. If the malicious probability is 0, then the malicious peers will never engage in any fraudulent
interaction. Similarly, if the malicious probability is 1, malicious peers will always engage in fraudulent
interactions. The result of a fraudulent interaction is that the fraudulent peer is assigned a reputation value
of 0 by the other peer. If this other peer does not exhibit fraudulent behavior, the fraudulent peer assigns a
reputation value of 1 for that peer. If both peers engage in fraudulent actions, they both assign each a other
a reputation value of 0. However, if an interaction is successful, both peers assign each other a reputation
value of 1 for that interaction.

Next, the randomly selected assessing peers are asked to query and assess the trustworthiness of all peers
in the system. Two kinds of messages are used in the system - QueryMessage and ResponseMessage. Each
assessing peer broadcasts a QueryMessage to its neighbors. This message is spread in the system using the
broadcast mechanism specified in Section 5.2. The QueryMessage encloses the name of the originator, the
context for which the trust value is sought, and a sender list to which is appended the name of each peer
that forwards the message. For the simulation results presented in this report, SIFT assumes that trust is
uni-dimensional and all interactions are categorized under a single context.

Since the goal of the simulation is to help identify the nature of all peers in the system, each peer that
receives the QueryMessage computes its trust of all the peers in the system. The subjective trust for every
peer is computed as follows. First, the interaction limit (lim) specified by the trust model is used to break
up the interactions into recent and old interactions. If the number of recent interactions is zero, it means



that no interactions should be considered. In that case, a trust value corresponding to the degree of trust in
unknowns (deg) is assigned to that peer and returned to the originator. However, if this value indicates that
the peer being evaluated should be considered unknown then no value for that peer is returned. If the
number of old interactions is zero, then all interactions are considered recent. Then, as described below and
illustrated in equation (2), the interactions are combined to compute a trust value. If the number of recent
and old interactions is non-zero, then both recent and old interactions are combined separately using
equation (2) to arrive at two values. These values are then weighted using the recent interaction weight
(val) to compute the final trust value for that peer. Thus,

Equation I:

Trust Value Computed = (Trust value from recent interactions)*val + (Trust value from old
interactions)*(1-val)

Before combining data from interactions to compute a trust value, interactions to be included are further
filtered based on whether they match the context specified in the query. As described earlier, in the current
SIFT simulations, all interactions are categorized under a single context; thus, the resulting set of
interactions after context matching remains unchanged. Values from the resulting set of interactions are
then simply averaged to arrive at a single value.

Equation 2:

Trust Value from recent or old interactions = Summation of values from all considered recent or old
interactions / number of recent or old interactions

Once the trust value is computed, then depending upon whether the peer is malicious or not, a peer may
choose to lie or tell the truth about its perceptions. It should be noted that the malicious probability only
dictates how often malicious peers will indulge in fraudulent interactions. SIFT currently does not include
a parameter to model how often malicious peers lie about other peers; instead, it assumes that malicious
peers will always misrepresent their trust in others. The primary reason for this assumption is to limit the
further expansion of the huge design space that already exists currently due to the various trust and
application parameters in SIFT. However, as will be discussed in section 7, we anticipate that such a
parameter can be added to SIFT in the future.

If the computed trust value for a peer is 0 or 1, the malicious peer returns 1 or 0 respectively. This helps
model applications where binary reputation is used. Otherwise, if the computed trust value falls below the
trust threshold of the trust model, a malicious peer returns a random value greater than the trust threshold
and vice versa. This result is then encapsulated within a ResponseMessage which is then sent back to the
query originator. When the assessing peer that originally sent the QueryMessage receives a
ResponseMessage intended for it, it stores that information for future use.

After each assessing peer has completed the process of querying and has aggregated the received
responses, it evaluates the trustworthiness of all peers in the system. For this, it combines its personal
experience of every peer with the reputation reported by the recommending peers using the trust weight
(alpha) parameter of the trust model. Equation (3) describes how each peer’s final trust value is
determined.

Equation 3:

Final Trust Value = (Personal Trust)*alpha + (Recommender Trust)*(1 - alpha)



The Personal Trust is computed using equations (1) and (2) and follows the process described earlier. The
Recommender Trust is computed using the following mechanism. The value reported by each
recommending peer is first multiplied with the assessing peer’s subjective personal trust in the
recommending peer. Then these values are averaged over the number of recommending peers. Equation (4)
illustrates how the Recommender Trust for each peer is computed.

Equation 4:

Recommender Trust = (Summation over all recommenders (reported trust value * personal trust in
recommender)) / number of recommenders

Finally, at the end of the simulation, the final trust values from all assessing peers are combined to get an
average final trust value. This value is then compared against the trust model’s specified trust threshold
value to determine how many and which peers are trustworthy or malicious. Peers with trust values above
the trust threshold value are considered trustworthy, otherwise peers are considered malicious. Simulation
results are expressed using the assessment metrics described earlier. These metrics are then used to analyze
how well the trust model behaved in the face of threats.

5.4 SIFT Implementation

We implemented SIFT as a multi-threaded asynchronous application in Java. Each peer is modeled as a
separate thread to preserve the autonomy of each peer. This also prevents any form of implicit
synchronization between their interactions. No explicit synchronization is performed except when
transmitting and receiving messages.

6. SIFT Evaluation

The primary goal of SIFT is to investigate the interplay between different trust and application settings
towards providing guidance for the adoption of a suitable trust solution for a particular application. Hence,
our evaluation of SIFT was directed at examining the degree of usefulness of the simulation results.
Towards this objective, in this section, we pick some interesting simulation results and explain the
resulting insights. A detailed discussion of all simulation results is not possible due to space constraints.

Table 2 lists the typical values of the different trust, application, and simulation parameters that were used
in our experiments. Values different from those specified in these tables are explicitly specified as and
when they occur. As explained earlier, in SIFT a collection of trust parameters, each set to some value
represents a specific trust model. Thus, each point in the SIFT simulation results represents a unique trust
model.

Simulation results are presented through bar charts that present the evaluation of a trust model in terms of
the assessment metrics described in Section 4.4. ‘M’ denotes the number of malicious peers identified
correctly by the trust model. Ideally, the values of ‘mal’ and ‘M’ should be equal. ‘N’ denotes the number
of malicious peers that were not detected by the trust model and were instead considered trustworthy. ‘F’
denotes the number of false positives i.e. the number of peers that were not malicious but were considered
so by the trust model. Ideally, values of both ‘N’ and ‘F’ should be as low as possible.



Table 2. Typical values used for SIFT simulations

Parameter Symbol | Values
Trust
Trust Weight alpha 0.5
Trust Threshold thr 0.5
Recent Interaction Weight val 1
Interaction Limit lim 100
Degree of trust in unknowns deg 0
Hop Count hc 3
Application
Number of interactions int 5000
Connection Density oe 3
Number of Peers peers 100
Malicious Peers mal 50
Malicious Probability malProb 1
Simulation
Number of assessing peers aPeers 20
Number of assessments aCount
Type of attack attack
Number of targeted peers target 5
Number of simulations simCount 50

‘G’ represents the number of good peers identified correctly and should ideally have a higher value as this
would indicate that the trust model is also able to detect good peers correctly. Thus, in the charts below,
higher values of G and lower values of F and N will indicate a better trust solution. Finally, ‘U’ represents
the number of peers who are marked as unknown. The trustworthiness of such peers cannot be determined
and the trust model chooses to mark them as unknowns instead of choosing to trust or distrust them.
Ideally, the number of unknown peers should be as low as possible so peers can determine whether those
peers can be trusted or not. Table 3 summarizes these assessment metrics and includes their symbols and
ideal values for the set of simulations presented in this report. These symbols are used as legends in the bar

charts that are discussed in the rest of this section.

Table 3. SIFT Assessment Metrics

Assessment Metric Symbol Ideal Value
Number of malicious peers in the system M 50
that were identified
Number of malicious peers in the system N 0
that were not identified
Number of good peers in the system that
. . . F 0
were identified as malicious
Number of good peers in the system that
. . G 49
were correctly identified as good
Number of peers that were marked as
U 0
unknown peers




6.1 Effect of ‘number of interactions’
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Fig 2. Varying the number of interactions with deg=0.1

Figure 2 shows the effect of increasing the number of peer interactions in a system where malicious peers
always indulge in fraudulent interactions (malProb=1) and the trust model has a degree of trust in
unknowns value equal to 0.1. Since unknown peers are given a low initial trust value of 0.1 and the
threshold value is 0.5, it can be seen that at low interaction counts, a number of the peers are classified as
malicious. Increasing the number of interactions decreases the number of false positives and increases the
number of identified good peers while keeping the number of malicious peers identified correctly constant.
This is because the simulation assumes a malicious peer will always act in a fraudulent fashion. Thus,
increasing the number of interactions results in a greater number of failed interactions for a malicious peer
(which is why malicious peers are identified correctly) and also results in a greater number of successful
interactions for a good peer (which is why number of good peers identified correctly increases).

6.2 Effect of degree of trust in unknowns

Figure 2 showed the behavior of the trust model when the degree of trust in unknowns has a value equal to
0.1. Figures 3 to 7 show the effect as the degree of trust in unknowns is varied through the following
values: 0, 0.5, 0.75, 1, and 2. Value 0 for the degree of trust in unknowns represents an extremely
conservative trust model that completely mistrusts every unknown peer. Value 1 on the contrary represents
a very liberal trust model that completely trusts every unknown peer. Value 2, for the purposes of our
simulation studies, represents the case where the trust model reports no information about unknown peers
and simply considers them as “unknowns”. It should be pointed out that the simulation results presented in



this section are for an application with malicious probability value equal to 1. The effect of malicious
probability on the degree of trust in unknowns will be discussed later in this section.
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Figures 3 and 4 reveal that as the number of interactions increases, the number of good peers identified
increases and the number of false positives decreases. Figures 5 and 6 show the behavior of a liberal trust
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Fig 5. Varying the number of interactions for deg=0.75

model. It can be seen that when the number of interactions is low, a large number of malicious peers
remain unidentified and in fact are erroneously treated as trustworthy. However, as the number of
interactions increases, the number of malicious peers identified starts increasing until all such malicious
peers have been correctly discovered.
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Figure 7 shows the behavior of a trust model that reports unknown peers as “unknown” rather than
trustworthy or untrustworthy. When the number of interactions is low, a large number of peers remain
unknown to each other resulting in a significant number of unknown peers. However, as the number of
interactions is increased, more peers are known to each other resulting in the increasingly correct
identification of malicious and good peers.

Figure 8 presents the effect of varying the “degree of trust in unknowns” with 5000 interactions and shows
that for an application with 5000 interactions, it may be better to choose a trust model that has a “degree of
trust in unknowns” value of either 0.5 or 2. However, if the number of interactions is large, then, as



illustrated in Figures 2 to 7, it does not matter how conservative or liberal the trust model is because all
peers are correctly identified for large number of interactions.
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Fig 8. Varying the degree of trust in unknowns
6.2.1 Effect of ‘trust threshold’

This section discusses the interplay between the trust threshold and the number of interactions and degree
of trust in unknowns for a system with malicious probability value 1.
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Figure 9 shows that with threshold value equal to 0.1, the number of false positives is extremely high for
lower interaction count. This can be explained by the fact that at lower interaction counts, peers don’t have
enough information about each other and since deg value is 0, the trust model treats unknown peers as
malicious. However, as the number of interactions increases, more trust information is available and peers



are correctly and quickly identified. The low threshold value of 0.1 implies that as long as a peer has a trust
value above 0.1, it is considered trustworthy. However, since malicious peers are assumed to always act
maliciously, it can be seen that all peers are quickly and correctly identified in spite of the low threshold
value. Figure 10 illustrates how it requires a greater number of interactions to correctly identify peers as
the threshold value increases. Figure 11 presents the case where the threshold value is 1. Clearly, in such a
case where the trust model is the most conservative, all peers will be considered malicious.
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100000 RESSSRRSSNNNNNAGSSSN]
75000 \\\\\\\\\\\\\\\\\\\\\
50000 .\\\\\\\\\\\\\\\\\\\\‘
40000 B\\\\\\\\\\\\\\\\\\\‘i
20000 h\\\\\\\\\\\\\\\\\“
10000 \\\\\\\\\\\\\\\\\\\\\

5000 .\\\\\\\\\\\\\\\\\\\\‘

Number of interactions

500 EESSSNNNNNINSNNNNNNN

0 RRSSRRSRSSRRRRRSSSSN

20 40 60 80 100 120

o

SMENBF OG OU Number of peers

Fig 11. Varying the number of interactions with thr=1

Figure 12 summarizes the effect of varying threshold for a system with 5000 peer interactions. It reveals
that for a system subject to the above assumptions, if an application designer were to choose a trust model



that does not trust unknown peers (deg=0), an optimal behavior may be obtained if the trust threshold value
is set to a value below 0.25.
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Figure 13 shows that if the value of the degree of trust in unknowns were to be increased to 0.5, the ideal
trust threshold value for the same system is around 0.5. For a threshold value lower than 0.5, due to the
higher degree of trust in unknowns, a larger number of malicious peers may be considered trustworthy.



Figures 13 and 14 show that as the degree of trust in unknowns is increased, the trust threshold must also
be increased correspondingly to correctly identify the nature of peers.
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Finally, Figure 15 illustrates the case when the trust threshold is 0 and peers simply report unknown peers
as “unknown” (deg=2). The chart shows that for low interaction count, a larger number of peers remain
unknown to each other. However, this number decreases with increasing interaction count. This is further
aided by the liberal nature of the trust model (thr=0) implying that peers are completely trusted as long as
they have a non-zero trust value.



6.2.2 Effect of ‘trust weight’

Trust weight dictates the proportion in which personal perception and reported information are combined
to compute trustworthiness. All the results discussed in this section assume a malicious probability value
of 1. The relationship between the malicious probability and trust weight is discussed later in section 7.7.8.
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Figure 16 shows the behavior of a trust model with alpha=0 and deg=0 as the number of interactions is
varied. When the number of interactions is small, peers do not have complete information about each other
and report low values of trust as dictated by the degree of trust in unknowns (deg=0). Since trust is strictly
computed on the basis of reported values for alpha=0, most peers are treated as malicious. However, as the
number of interactions increases, trust data maintained by each peer rapidly increases and peers can be
correctly identified.
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Figures 17 and 18 illustrate the effect of varying interaction count as a trust model increasingly relies on its
personal perception to compute trustworthiness. It can be seen that the behavior of the trust model actually
worsens as the value of alpha is increased. This is because low interaction counts imply that each peer has
little trust information about other peers. A high value of alpha in such a case means that the trust
determination will be made mostly on the basis of the little personal information each assessing peer has.
Thus the trust determination will not be accurate. However, as the number of interactions increases, the
trust information available increases and thus, personal trust information maintained by each peer becomes
increasingly sufficient to compute trustworthiness correctly.

Figure 19 summarizes the effect of varying alpha with degree of trust in unknowns equal to 0 for an
application with 5000 peer interactions. This chart reveals that for lower interaction counts, it may be
better for the conservative (deg=0) trust model to rely on the trust information supplied by other peers in
the system.
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Figures 20 and 21 similarly illustrate the effect of varying alpha with higher degree of trust in unknowns
for a system with 5000 interactions. It can be seen that in such a system, peers still lack trust data about
some peers. Increasing the degree of trust in unknowns results in the trust model trusting a greater number
of unknown peers. Thus, it can be observed in Figure 20 that in spite of relying increasingly on personal
perception (increasing alpha), the number of false positives decreases considerably. However, at alpha=1,
the number of false positives increases because when alpha=1, reported trust information is not used in
trust computation. Instead trust determination is made strictly on the basis of personal perception which at
5000 interaction count is not enough to make correct trust determination.
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Similarly, Figure 21 shows that when the degree of trust in unknowns has a value equal to 1, the trust
model behavior worsens with increasing alpha. In fact, since the trust model now trusts all unknown peers
completely and moreover relies increasingly on its own limited personal perception, even malicious peers
are considered trustworthy.

Finally, Figure 22 shows the effect of increasing interaction count with trust weight value equal to 0.25,
degree of trust in unknowns equal to 2, and malicious probability value equal to 1. It can be seen that the



number of unknown peers is high for small number of interactions and reduces as more trust information is
available with increasing number of interactions. Simulations results have also shown that for a system
with 5000 or more interactions and with malicious probability 1, there is no visible effect of varying the
trust weight when the degree of trust in unknowns is 2.
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Fig 22. Varying the number of interactions for alpha=0.25 and deg=2
6.2.3 Effect of ‘interaction limit’

This section discusses the effect of interaction limit. Every application setting discussed here assumes that
malicious peers always indulge in fraudulent interactions (malProb=1).

Figure 23 shows the effect of increasing the number of interactions for a trust model with interaction limit
0.2%, weight of recent interactions equal to 1, degree of trust in unknowns equal to 0, and malicious



probability value equal to 1. It can be seen that it takes a large number of interactions for this trust model
setting to correctly identify the malicious and good peers.
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Fig 23. Varying the number of interactions with lim=0.2, val=1, deg=0
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Fig 24. Varying the number of interactions with lim=1, val=1, deg=0

However, as shown in Figure 24, when the interaction limit is increased to 1%, the same result can be
observed at a lower interaction count value. This can also be seen in Figure 25 which shows the effect of
increasing the interaction limit for a system with 5000 initial peer interactions. Since the interaction limit



restricts the interaction history that is used in trust computation, it is seen that as more interaction data is
used, the trust determination becomes more accurate and after a certain threshold achieves a steady state.
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Figures 26 to 28 show the interplay of interaction limit with the degree of trust in unknowns. Comparing
Figure 26 with 25 shows that as the degree of trust in unknowns is increased, the trust model behavior
improves at higher interaction limits. For a trust model that completely trusts unknown peers (deg=1), it
can be seen in Figure 27 that limiting the interaction history used in trust determination results in
incorrectly identifying malicious peers as good peers. However, as the interaction limit increases, a greater
number of malicious peers are identified correctly.
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Figure 28 depicts the case when the degree of trust in unknowns is 2 and shows that as the interaction limit
is increased, a greater number of peers are correctly identified.
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Fig 28. Varying interaction limit for val=1, deg=2
6.2.4 Effect of ‘hop count’

This section discusses the effect of hop count on the behavior of a trust model for applications that have a
malicious probability value equal to 1. Figures 29 and 30 illustrate the effect of varying the number of
interactions for increasing values of hop count with each peer connected to at least 1 other peer in the
system (represented by out edges) and degree of trust in unknowns equal to 0. In both figures, it can be
seen that the number of false positives is high for low interaction counts and decreases as the number of
interactions increases. It can also be seen that as the hop count value is increased, the trust model behavior
improves. This increase is because as the hop count is increased, more number of peers in the system are
queried for trust information. This results in more received responses and a possibly more accurate trust
evaluation. Further, this increase is more significant at lower interaction counts when every peer has less



trust information than at higher interaction counts. This explains why with increase in hop count values,
there is only a marginal improvement in the trust model behavior for a system with 5000 interactions.
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Fig 30. Varying the number of interactions with oe=1, hc=2, deg=0

Figures 31 to 34 show the effect of varying hop count for a system with 5000 peer interactions as the
degree of trust in unknowns is increased. Comparing Figure 32 with Figure 31 shows that as the degree of



trust in unknowns is increased, the behavior of the trust model also becomes better. In fact, there is a
marked reduction in the number of false positives as the hop count value is increased.
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However, when the degree of trust in unknowns is 1 (see Figure 33), the behavior of the trust model
appears to slightly worsen with increasing hop count. This is because since more peers are being queried,
there are more responses that tag unknown peers as trustworthy.
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Figure 34 shows the effect of varying hop count when the degree of trust in unknowns is 2 for an
application with 5000 peer interactions. It can be seen that at low hop counts, since there is not enough
trust data, the number of “unknown” peers is high. However, as the hop count is increased, more peers are

queried leading to more received responses which ultimately results in a more accurate identification of the
nature of peers.
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Fig 34. Varying hop count for oe=1, deg=2
6.2.5 Effect of ‘connection density’

This section discusses the effect of varying the connection density of applications with malicious
probability value 1. Figures 30 and 35 show the interplay of the number of interactions and the connection
density for a fixed hop count value of 2 and degree of trust in unknowns equal to 0. It can be seen in both
figures that at low interaction counts, there is a large number of false positives, and as the number of
interactions increases, the number of false positives reduces.

Figure 36 shows the effect of varying the number of out edges with a fixed hop count value equal to 2,
degree of trust in unknowns equal to 0, and 5000 peer interactions. It can be seen that as the number of out
edges increases, more peers are connected to each other and this increases the amount of trust information



that is reported. Consequently, the number of false positives decreases and the number of good peers
identified correctly increases.
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Fig 36. Varying the number of out edges for hc=2, deg=0

Figure 37 shows that as the degree of trust in unknowns is increased, the behavior of the trust model
becomes increasingly better for similar application settings. However, as Figure 38 shows, when the
degree of trust in unknowns is higher, the trust model tends to completely trust even malicious peers. As a



result, when the number of out edges is increased, peers report malicious peers as trustworthy and hence
the number of malicious peers considered trustworthy increases.
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Figure 39 portrays the effect of varying the number of out edges for a system with 5000 peer interactions
when the degree of trust in unknowns is 2. It can be seen that for low out edges value, there is a significant
number of “unknowns” due to limited availability of trust data. However, when the number of out edges



increases, each peer is connected to more peers which results in more trust data being reported. Thus, a
greater accuracy in identifying the true nature of peers can be seen as the number of out edges is increased.
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Fig 39. Varying number of out edges for hc=2, deg=2

6.2.6 Effect of ‘malicious probability’

So far, the discussion of the various trust and application parameters has been focused on applications
where malicious peers always consistently indulge in fraudulent actions i.e. malProb=1. This section now
discusses the effect of varying malicious probability on the behavior of a trust model. Figure 40 shows the
effect of varying the number of interactions with degree of trust in unknowns equal to 0 and malicious
probability equal to 0.1. It can be seen that as the number of interactions increases, both the number of
malicious peers successfully detected and the number of false positives decreases.

The reason for this difference in behavior from what was studied in section 7.7.1 is the value of the
malicious probability. When peers always engage in fraudulent actions (malProb=1), it becomes easy to
detect them, as described in section 7.7.1. However, in this case, since the malicious probability has a very
low value implying that malicious peers only engage in fraudulent actions once in a while, both the
assessing peers and the other peers in the system have a relatively high opinion about these malicious
peers. Hence, though the information reported by these malicious peers is always untrue, their good
reputation built through several successful interactions is believed by the assessing peers. The good
behavior observed at lower number of interactions is because there is not enough trust data and peers
completely mistrust unknown peers due to 0 degree of trust in unknown peers.

Figure 41 similarly shows the effect of varying the number of interactions for degree of trust in unknowns
equal to 0 and a malicious probability equal to 0.3. Figure 42 shows that as the value of malicious



probability increases, the trust model behavior becomes better as it becomes easier to correctly detect
malicious peers.
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Figure 43 and 44 show the effect of varying malicious probability when the degree of trust in unknowns is
equal to 1 and 2 respectively. Again, in both figures it can be seen that with increasing malicious

P W N o Do o | |
AN ST | ]
T e ] |

e ] |
P e L T L ]
NN T | |

N e o e ] |
N s | |
N NN TN NN NN | |
RN SSESOOSOOEGOESONA00] ]

0 20 40 60 80 100 120

o
©

e
N

e
o

o
w

Malicious probability

e
—

oM =N mF OG gu Number of peers

Fig 43. Varying malicious probability for deg=1

probability, the trust model detects a larger number of malicious peers correctly. It can also be seen that
when the degree of trust in unknowns is 2, the trust model performs better than when the degree of trust in
unknowns is 1.
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Simulation results show that the effect of low malicious probability can be countered by selecting suitable
values for the trust threshold and trust weights. For example, consider Figure 40 which shows the effect of
varying number of interactions for malicious probability equal to 0.1 and degree of trust in unknowns
equal to 0. Figure 45 illustrates how the behavior of a trust model changes when all other parameters retain
the same value as in Figure 40 except for the trust threshold which is now increased to 0.8. It can be seen
that compared to Figure 40 there is a significant increase in the number of malicious peers detected
correctly as well as the number of false positives.

Figure 46 shows the effect of reducing the trust weight on a trust model in the case where all the other trust
and application parameters are the same as in Figure 40. Figure 46 shows that when the trust weight is
reduced to 0.1, other than a slight increase in the number of malicious peers detected correctly and some
slight alterations in the number of false positives and good peers at lower interaction counts, the behavior



of the trust model remains similar. A further discussion of the relationship between trust weight and
malicious probability is included in section 7.8.3.
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Fig 46. Varying number of interactions for malProb=0.1, deg=0, alpha=0.1

6.2.7 Effect of varying the number of malicious peers

Figures 47 and 48 illustrate how change in the number of malicious peers affects the behavior of the trust
model for attack types 0 and 1 respectively. In both cases, the application has 5000 peer interactions with
malicious probability value equal to 0.3, and the trust model has a trust threshold value of 0.8 and degree of
trust in unknowns is equal to 0.
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Fig 47. Varying number of malicious peers for malProb=0.3, deg=0, thr=0.8, attack=0
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It can be seen that for attack type O, the trust model manages to detect almost all of the malicious peers
correctly. For attack type 1, the trust model manages to detect all the malicious peers correctly when the
number of malicious peers is low. However, as the number of malicious peers increases, the number of
malicious peers detected correctly by the peer starts to reduce significantly.

This difference in the behavior of the trust model in the two attack scenarios can be explained as follows.
In attack type 0, malicious peers misrepresent all other peers, including malicious ones, randomly.
However, in attack type 1, in addition to misrepresenting good peers, all malicious peers recommend
complete trust (i.e. value 1) in other malicious peers. Hence, as the number of malicious peers increases, it
becomes more difficult for the trust model to correctly identify the malicious peers from the good peers.
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Fig 49. Varying number of malicious peers for malProb=0.3, deg=1, thr=0.8, attack=0

Figure 49 shows the effect of varying the number of malicious peers when the degree of trust in unknowns
has a value equal to 1. The trust model and application settings for Figure 49 is identical to that of Figure
48 except for the different value of degree of trust in unknowns. It can be seen from Figure 49 that the trust
model fails to identify all the malicious peers when there are only a few malicious peers in the system. This
is primarily because the assessing peers completely trust unknown peers. A comparison of the two figures



indicates that a trust model with a degree of trust in unknowns value equal to 0 may be better suited for a
system that has a lower fraction of malicious peers.

6.3 Discussion

Results from the above simulations strongly underline the relationship between the choice of a trust model
and the application settings. The results also reveal substantial insights into the various trust model
parameters and highlight the interplay between these parameters. This section summarizes the interplay of
these various parameters and discusses the impact of these simulation results in the context of some trust
models.

6.3.1 Effect of application settings on trust model

Results from the above simulations show that application settings significantly impact the choice of a trust
model. We draw upon the following specific cases to illustrate this.

First, since the accuracy of trust evaluation depends upon the availability of trust information, it is
important to realize the effect of connection density on the hop count value of the trust model. If the nature
of the application is such that the connection density is low, then the hop count must be set to a higher
value in order to ensure that queries for trust data still reach an enough number of peers so that relevant
trust data can be procured.

However, it should be pointed out that just selecting appropriate values for the connection density and hop
count is not enough. Other trust parameters also need to be similarly assigned suitable values to optimize
trust model behavior under the specified application conditions. This is important because these other
parameters may significantly affect the behavior of the trust model. For instance, consider an application
that wants to encourage peer interaction and participation. If such an application has a densely connected
network of peers, choosing a trust model with a high hop count value may result in the availability of more
trust data. However, if the trust model were to employ an extremely high trust threshold value, it could
generate a large number of false positives. Thus, instead of identifying a large number of good peers and
encouraging interactions as specified by the application requirements, the trust model would discourage
interactions by identifying most peers as malicious. Thus, it is important for the trust model to be designed
in accordance with the system’s requirements.

Second, my simulation results have also shown that the number of peer interactions has a significant
impact on the trust model’s ability to correctly identify malicious peers from good ones. A greater number
of peer interactions implies a larger pool of available experience that typically enables better trust
determination. These results seem to suggest that if the application has fewer peer interactions, then there
may not be sufficient trust data for a decentralized reputation model to correctly identify good and bad
peers. In such a case, we believe a centralized reputation system will provide a better trust management
solution. If, however, peer interactions are voluminous, a decentralized reputation system may be well-
suited for the system.

Third, results presented in section 6.2.4 point towards a strong relation between the number of interactions
and the trust weight. If the number of interactions is small, it would be advisable to have a trust model with
a lower trust weight. This would enable the information reported by other peers in the system to be
assigned more weight than the peer’s own personal perception which is limited due to the low interaction
count.



Fourth, results presented in section 6.2.8 reveal how the malicious probability affects trust settings. It is
seen that at low values of malicious probability, it is quite hard for the assessing peers to determine the
malicious peers correctly. One way to increase the number of malicious peers detected correctly is to
increase the trust threshold value; however, this will lead to an increase in the number of false positives
(see Figure 45).

Finally, the results discussed in section 6.2.9 indicate that the number of malicious peers can significantly
affect the behavior of the trust model under certain attack conditions. Simulation results have also shown
how the number of malicious peers in the system can affect the choice of the degree of trust in unknowns.
It is, therefore, extremely important for a trust model designer to properly understand the nature of an
application so that he can then accordingly choose appropriate values for the various trust parameters and
create a trust model that can better guard peers against attacks in that particular application.

6.3.2 Interplay of trust model parameters

In addition to throwing light on the relationship between trust and application parameters, simulation
results have also revealed some interesting insights into the interplay of the various trust model parameters.
For example, simulation results have highlighted the relationship between the degree of trust in unknowns
and other trust model parameters. One such relationship is between the trust threshold and the degree of
trust in unknowns described in section 6.2.3. Both these parameters strongly influence the extent to which
the trust model is liberal or conservative. One of the specific insights that can be drawn based on these
results is that as the degree of trust in unknowns is increased in a system where the malicious probability
has a value equal to 1, the trust threshold should also be increased to obtain an optimal trust model
behavior.

Another relationship revealed is between the trust weight and the degree of trust in unknowns. Section
6.2.4 shows that for a system with malicious probability value equal to 1 and 5000 interactions, a trust
model with degree of trust in unknowns value equal to 1 or 0 performs best at trust weight value equal to 0.
However, if the degree of trust in unknowns has a value equal to 0.5, a trust weight value of 0.5 is better
suited.

6.3.3 Impact on trust models

This section discusses the impact of the simulation results and the subsequent insights gained from the
study of the interplay between the various trust and application parameters on the trust models that were
discussed earlier in the related work section.

Distributed Trust Model. As described in Section 3.2.1, in the Distributed Trust Model (DTM), peers
treat unknown peers as unknown instead of trusting or mistrusting them. Thus, in the case of DTM, the
value of degree of trust in unknowns is 2. Further, in DTM, each peer only relies on its personal
perceptions to determine trustworthiness. A peer seeks recommendations from other peers in the system

only when it has no prior experience with a peer. Thus, in the case of DTM, the value of trust weight
(alpha) is 1.

Section 6.2.4 discusses that for a system with 5000 or more interactions and malicious probability value 1,
there is no effect of varying the trust weight when the degree of trust in unknowns has a value equal to 2.
Thus, it would seem that having a trust weight value of 1, as in the case of DTM, would not affect the
detection of malicious peers. However, the malicious probability has a strong influence on the trust weight.



Figures 50 and 51 show the effect of varying the number of interactions for a system with low malicious
probability (malProb=0.1) for a trust model with degree of trust in unknowns value 2. DTM is represented
by Figure 50 which shows the effect when the value of trust weight is 1. Figure 51 shows the case when the
trust weight is 0.
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Fig 50. Varying number of interactions for malProb=0.1, deg=2, alpha=1

It can be seen from these two figures that for applications where the number of peer interactions are not
high and the malicious probability is low i.e. malicious peers do not always engage in fraudulent actions, a
trust model that treats unknown peers as unknown (deg=2) may be better able to detect malicious peers if it
has a low trust weight i.e. peers rely less on their personal perceptions. However, this may come at the
expense of significant increase in the number of false positives as indicated in Figure 51.
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Fig 51. Varying number of interactions for malProb=0.1, deg=2, alpha=0

Complaint-based Model. The Complaint-based model introduced in Section 3.2.2 is a negative
reputation-based system. Specifically, peers only store negative reputation information about other peers in
the form of complaints. Before a peer interacts with another peer, it searches for complaints about that peer.
If it does not receive any complaints from other peers in the system, the peer assumes that the other peer is
trustworthy. Thus, this is a model where the degree of trust in unknowns has a value equal to 1.

Simulation results presented in Figure 6 indicate that the Complaint-based model would be suitable for in a
system that has more than 20000 peer interactions and the remaining system characteristics match the
application settings of Figure 6. However, in an application with fewer interactions between peers, it would
be better for a model that has a degree of trust in unknowns value equal to 1 to rely more on the complaints
reported by other peers and less on its own perception. This is true when the malicious probability is high
(see Figure 21 where malProb=1) as well as when the malicious probability is low (see Figure 52 where
malProb=0.1).

Though the Complaint-based model seeks complaints from other peers in the system, it does not precisely
specify how these different complaints are combined to compute trustworthiness. In other words, there is
no trust weight specified in the Complaint-based model. Therefore, it is important for an application



designer who is planning to use the complaint-based model or any other negative reputation-based model,
to realize the significant role of trust weight and specify it clearly.
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Fig 52. Varying number of interactions for malProb=0.1, deg=1

XREP. Another trust model that can benefit from an appropriate choice of trust weight is XREP [6]. As
mentioned previously in Section 3.2.3, XREP in phase 4 chooses to download needed resources from the
servent with the best reputation. The reputations of the servents, in this case, are based solely on the votes
received from recommenders in the system. It may be possible that recommendations are more reliable
than personal experiences in computing trustworthiness; however, XREP does not present any results that
indicate such a case. XREP does not clearly specify if and how the personal experience of a peer is
combined with these recommendations to compute the reputation.

Further, simulation results discussed earlier in this report show that there is a definite relationship between
the trust weight and the degree of trust in unknowns. In other words, depending upon the value of the
degree of trust in unknowns, a peer’s personal experience can positively or adversely affect the accuracy of
trust determination. XREP does not clearly specify to what extent it trusts unknown peers. SIFT simulation
results can help a trust model designer intending to use XREP to make appropriate choices for the trust
weight and degree of trust in unknowns.

eBay-like Reputation System. As discussed in Section 3.2.4, the eBay reputation system [8] provides
only a simplistic aggregation of a user’s ratings as reported by other users of eBay. eBay adds up all the
unique positive ratings and subtracts all the unique negative ratings received by a user and displays the net
value as the score of that user. While computing this net score, eBay does not take into account whether the
ratings reported by a user are actually truthful or not. While eBay does enable access to the past interaction
profiles of each of these recommending users, it is rather cumbersome for a user to combine all this
extensive reputation information to make a correct and rapid decision about whether or not to transact with
a particular user.

Specifically, there are a number of relevant questions that need to be answered to facilitate trust
determination. Should a user rely only on his own past experience? Or, should a user rely on both past
experience and information reported by other users, and if so, what should be the optimal way of
combining those two types of information? How can a user decide if a reporting peer is lying?



The SIFT simulator can serve as an effective platform for designing a suitable reputation model that will
address these questions. To illustrate this, let us assume that a trust model designer has to design a
reputation model for an eBay-like system. The first step would be to characterize the system in terms of the
SIFT application parameters. Let us assume that estimations by domain experts indicate that about one-
fourth of peers in this eBay-like system will be likely malicious and indulge in fraudulent interactions 3
times out of every 10 interactions. This means that if the system has 100 peers, 25 of them are malicious
with a malicious probability of 0.3. Let us further assume that the domain experts are not sure how popular
this system will be and so estimate that each peer could on an average engage in 50 to 100 interactions.
This implies that the total number of initial interactions for the SIFT simulations would be anywhere
between 5000 to 10000.

Since this system, like eBay, is centralized in terms of storing reputation information, peers have access to
all the trust information. In order to model this in SIFT, the connection density is assigned a high value
(equal to 6) and the trust model being designed is assumed to have a high hop count value (equal to 5).
Since eBay presents the entire transaction history of a peer in the peer’s profile, it means that the entire
information can be used in the determination of trustworthiness. Thus, the interaction limit for the trust
model is set to 100%. Further, let us assume that users in this system do not form an impression or report
reputation information about another user without ever having interacted with that user. This implies that
the degree of trust in unknowns for the trust model is set to value 2.

Let us also assume that the trust model designer has some previous experience and realizes that when the
malicious probability is low, it is better to have a higher trust threshold value. Based on this knowledge, the
trust model designer sets the trust threshold value to 0.8. However, he has no idea about how the personal
perception of peers must be combined with the information reported by other peers. In other words, he
needs to decide the value of the trust weight.

A trust model designer can now use SIFT to rapidly experiment with different values of the trust weight for
different number of initial interactions. He can then use the simulation results to decide what value of trust
weight would best fit a particular type of application. Figures 53 and 54 indicate the effect of varying trust
weights for the eBay-like system with 5000 and 10000 interactions respectively for attack type 0. Both
figures show that as the trust weight is increased, the trust model fails to detect malicious peers correctly.
However, the number of good peers correctly identified increases significantly at low trust weights and
becomes roughly constant at higher trust weights.

Let us assume that the stakeholders for this eBay-like system consider it more important for the candidate
trust model to correctly detect malicious users rather than good users. In other words, it is more important
for the stakeholders that users of the system be aware of malicious users and refuse to interact with them
even though this may prevent interaction with good users that have been wrongly tagged as malicious.
Thus, increasing the number of malicious peers identified correctly is more important than reducing the
number of false positives. With this in mind, the trust model designer sees that for the case where there are
5000 interactions, there is a small fraction of malicious users that have not been identified correctly. At this



point, he can decide to continue the simulations with trust weight values lower than 0.25 until he reaches
the point where all malicious peers have been detected correctly.
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Fig 53. Varying alpha for malProb=0.3, deg=2, int=5000
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Fig 54. Varying alpha for malProb=0.3, deg=2, int=10000

Figure 54, on the other hand, shows that all the malicious peers have been correctly detected for trust
weight value equal to 0.25. Since the primary goal of being able to identify all the malicious peers has been
attained, the trust model designer can choose to explore whether increasing trust weight values beyond
0.25 can further reduce the number of false positives without affecting the number of malicious peers

detected correctly. However, he does recognize that the upper limit for this is a trust weight value of 0.5
from Figure 54.

7. Limitations and Future Work

Using the current set of parameters for characterizing trust models and decentralized applications results in
a huge design space for exploration. As can be seen from the discussion of simulation results, there exist
rich and complex relationships between these parameters. The simulation results presented in this report



only explore a small part of this vast design space and are not exhaustive by any means. Even so, the
results presented here have provided several insights into the relationship between the nature of an
application and the choice of a suitable trust model for that application. Using SIFT to investigate these
parameters further has the potential to reveal significant variation points and important insights in the
future.

While the current simulation results provide several interesting insights, it should be pointed out that the
sets of parameters used to characterize trust models and decentralized applications are not exhaustive in
any way. These parameters have been so chosen as to capture the dominant attributes of trust models and
applications. Additionally, these parameters help provide a sound initial basis to reason about the
relationship between the nature of the application and the trust model that is chosen to provide trust
management for that application. Finally, it should also be pointed out that the number of parameters used
to characterize trust models and applications has been purposely limited in order to constrain the extensive
design space for trust models. We envision that these parameters can be added to the existing set of trust
and application parameters in the future to provide a richer characterization of trust models and
decentralized applications. This can potentially result in a more elaborate set of simulation results and
insights. We discuss a few of these additional parameters below.

As mentioned previously, the malicious probability parameter in SIFT currently only dictates how often
malicious peers engage in fraudulent interactions. There is no similar parameter in the SIFT simulator to
model how often malicious peers misrepresent their trust in other peers; instead, currently in SIFT,
depending upon the type of attack, all malicious peers always misrepresent their trust in others. Thus, there
is a need for an application parameter that would indicate the frequency with which malicious peers
misrepresent trust.

Simulation results presented in this report are based on only one round of querying and assessment since
SIFT currently assumes that malicious peers always misrepresent their trust. However, the number of
assessments can start to play a significant effect when malicious peers inconsistently misrepresent trust.
Specifically, in this case, by aggregating trust evaluations at the end of each querying and assessment
round and comparing them with the evaluations of the previous round will enable peers to gradually gain a
better idea of the true nature of peers.

Further, SIFT currently includes only one round of interactions followed by a round of querying and
evaluation. The results of peer evaluations are not used to guide subsequent rounds of interactions and
evaluations that can potentially help expose faster the nature of peers. Extending SIFT to support this could
be very useful especially in scenarios where the malicious probability has a low value and it is difficult to
decide whom to trust. In such cases, SIFT could be used to determine how many rounds of interactions and
evaluations will be required before the trust model eventually identifies all the malicious peers correctly.

Another parameter that can be added to the set of application parameters is the degree of maliciousness.
This parameter would indicate how strongly malicious peers misrepresent other peers. This parameter is
important because it helps model the extent to which malicious peers disguise their misrepresentation of
trust in others. For example, while misrepresenting a peer, a malicious peer may choose to propagate either
extremely low or high trust values, or slightly lower or higher trust values so that they are not easily
detected.

Trust is context-based and so it is important to consider the context while evaluating the reputation of a
peer. Similarly, in social reputation-based systems, group reputations and group relationships play an
important role in determining trust. We envision SIFT can be extended in the future to derive and match
context relationships as well as use group reputations to better capture trust relationships. We also envision



that in the future SIFT can incorporate recent research concepts and approaches including risk-based and
incentive-based trust evaluation mechanisms [5, 11, 13].
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