
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Kristina Winbladh
University of California, Irvine
awinblad@ics.uci.edu

Thomas A. Alspaugh
University of California, Irvine
alspaugh@ics.uci.edu

Debra J. Richardson
University of California, Irvine
djr@ics.uci.edu

Meeting the Requirements and
Living Up to Expectations

January 2007

ISR Technical Report # UCI-ISR-07-1

Institute for Software Research
ICS2 110

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

Rand Waltzman
Royal Institute of Technology
rand@nada.kth.se

Meeting the Requirements and
Living Up to Expectations

Kristina Winbladh, Thomas A. Alspaugh, Debra J. Richardson
Institute for Software Research

Department of Informatics
Donald Bren School of Information and Computer Sciences

University of California, Irvine
{awinblad,alspaugh,djr}@ics.uci.edu

Rand Waltzman
Department of Computer Science

Royal Institute of Technology
rand@nada.kth.se

ISR Technical Report UCI-ISR-07-1
January 30, 2007

Abstract: To produce better quality software at reasonable cost, we propose
requirements-based testing, in which testing is driven directly from the require-
ments and faults that prevent the product from meeting its requirements are
detected. Our approach makes use of requirements in the form of goals and
scenarios. From these we generate test scenarios that drive the system under
test through particular paths of the scenarios, and a test harness that verifies
the system follows the particular path and meets its conditions. Because our
test scenarios are derived directly from the requirements, a major benefit of
the process of writing test scenarios is the identification of poorly formulated
requirements. We applied our approach to a sample software system and to
mutants of it generated by MuJava. Our approach was effective at finding im-
plementation faults that caused the system to diverge from the requirements.

1

Meeting the Requirements and
Living Up to Expectations

Kristina Winbladh, Thomas A. Alspaugh, Debra J. Richardson
Institute for Software Research

Department of Informatics
Donald Bren School of Information and Computer Sciences

University of California, Irvine
{awinblad,alspaugh,djr}@ics.uci.edu

Rand Waltzman
Department of Computer Science

Royal Institute of Technology
rand@nada.kth.se

ISR Technical Report UCI-ISR-07-1
January 30, 2007

Abstract

To produce better quality software at reasonable cost, we propose
requirements-based testing, in which testing is driven directly from the
requirements and faults that prevent the product from meeting its re-
quirements are detected. Our approach makes use of requirements in the
form of goals and scenarios. From these we generate test scenarios that
drive the system under test through particular paths of the scenarios, and
a test harness that verifies the system follows the particular path and
meets its conditions. Because our test scenarios are derived directly from
the requirements, a major benefit of the process of writing test scenarios
is the identification of poorly formulated requirements. We applied our
approach to a sample software system and to mutants of it generated by
MuJava. Our approach was effective at finding implementation faults that
caused the system to diverge from the requirements.

1 Introduction

The goal of software testing is to assess the quality of a software product by
finding faults in it. The effectiveness and efficiency of a testing approach can
be characterized in terms of tradeoffs between the effort of using the approach
and its ability to find faults. Specification-based testing is effective and efficient

1

in the sense that testing resources are focused on the most important behav-
ior of the system and in addition to code faults it can also reveal faults in the
specification early. When specification faults are revealed early, we can prevent
these from propagating into the final product. We believe that requirements-
based testing is a particularly effective specification-based testing approach. In
requirements-based testing, the requirements serve as the basis of (1) the val-
idation of the system under test and (2) the scenarios that drive the system
while it is tested. In addition to the benefits of specification-based testing,
requirements-based testing tests against the requirements most important to
stakeholders and assesses quality of the system under test in terms stakeholders
understand.

The objective of our work is to utilize the natural symbiotic relation between
requirements and testing to produce systems that better satisfy stakeholder
needs. We do this by using the testing process to validate the requirements,
and using test results to demonstrate the quality of the software in the extent
that it meets the requirements. The relation is depicted in Fig. 1 as a three-way
exchange of benefits. The first benefit is that results of tests generated from
the requirements provide meaningful insights about the quality of the system
under test, in terms of how well it meets its requirements. The second benefit
is that early test design helps to build quality into the product by validating
the requirements and inhibiting defect multiplication. Testing against a spec-
ification generates questions about that specification and challenges it. If test
design is considered early and driven by requirements, the requirements receive
additional validation before requirements problems can cause costly misunder-
standings later in the development process [7]. The third benefit is that tests
generated from requirements, as opposed to later specifications and models of
code, offer substantial opportunities for testing efficiency and allow the gener-
ated test cases to be directly traced back to high-level requirements [17].

Testing
generate meaningful tests

Requirements
traceability

validate requirements

Figure 1: Symbiotic relation between requirements and testing

In this paper we will describe a requirements-based testing approach in which
tests are directly driven by and checked against requirements in the form of sce-
narios. We applied our approach to a sample system, AquaLush [6], a project
developed elsewhere with a full range of artifacts. AquaLush is an automatic
irrigation system that controls irrigation based on soil moisture levels rather
than timing. We will use AquaLush artifacts and concepts to demonstrate our
approach throughout the paper and validate our approach. In section 2, we
summarize related work, and in section 3 we describe the requirements specifi-
cation format that our approach uses. We present the details of our approach
in section 4. In section 5 we describe the results of our validation study and we

2

conclude the paper with lessons learned and future work in section 6.

2 Related Work

All too often, testing is cut short when budgets or resources are short, does
not correspond to the original requirements, and is generally inadequate, ineffi-
cient, and ineffective. Software engineering researchers have long warned of and
pointed out the enormous risks associated with neglecting software testing [15].
Prudent cost management therefore requires that software testing also be effi-
cient. Testing research has focused mainly on code-based testing, in which tests
are developed and chosen in order to achieve coverage of the implementation
code. Although code-based testing can successfully detect faults in the code, it
might not detect faults that produce behavior that is plausible but fails to meet
the system’s requirements.

Specification-based testing, on the other hand, is a testing technique whose
purpose is to confirm the extent to which a system under development meets
its specifications. Whereas code-based testing strives to exercise as much of
the implementation as possible in order to reveal faults in the implementa-
tion, specification-based testing strives to examine whether the implementation
meets as much of its specification as possible, in order to reveal faults that
prevent the implementation from doing so. Most specification-based testing ap-
proaches have focused on lower-level specifications that are typically expressed
in the form of Labeled Transition Systems, Finite State Machines (FSM), state
charts, or message sequence charts (depending on the approach). It is possible
to automatically generate test suites from these that can determine how well the
system conforms to its specification [11]. Since high-level requirements typically
are less formal and more abstract than component specifications, specification-
based testing has not been successfully applied to them before now.

There has been work on test case generation from requirements, particu-
larly from UML use cases [4, 12]. These approaches however, seem to depend
on design information. Our approach differs from these in that it is purely
requirements-based, i.e. we do not make use of design or implementation infor-
mation when creating test cases or test oracles. More than one set of design
choices and implementations can therefore be valid, and be tested against one
set of requirements. Although high-level goals and scenarios are not as formal as
FSMs, we believe that testing against requirements expressed in these terms ad-
dresses many of the commonly recognized problems in creating quality software
under acceptable budget and time constraints.

The mechanism to evaluate whether the output of a test scenario is correct
is known as a test oracle, and the belief that the tester is able to determine
whether the test output is correct is known as the oracle assumption [16]. A test
oracle consists of two main parts: (1) expected output from the system under
test, and (2) a procedure that compares the expected output with the actual
output [13]. Oracles can either be human (i.e., manual checking of output) or
automated (e.g., software), and although they seem essential to testing, they

3

are often not easy to come by. For all intents and purposes, software oracles
do not exist in common industrial practice, while the quality of human oracles
and their time and effort is almost never taken into account in the evaluation
of testing methods even though human testers are frequently unsure of the
correctness of test output and must repeat their work every time the tests are
run. This indicates, as recent work also shows, that test oracles can have a
significant impact on test effectiveness and efficiency [20]. We propose a more
automated approach in which we test the system against test oracles derived
from requirements, so that results can be automatically and reliably checked.
In prior work we manually constructed these oracles from the pre- and post-
conditions of goals in the plans, so that the oracles could answer whether the
system’s state changed from a goal’s pre-condition to its post-condition. Since
pre- and post-conditions are expressed formally in predicate logic, there is good
reason to believe that test oracles for them can be automatically generated.

Work on relationships between goals and refinement of goals into opera-
tionalizable requirements has been carried out for at least a decade. This work
includes the reduction of goals to functional and non-functional requirements.
Of particular interest is the work on goal refinement by Lamsweerde et al. [9],
Mylopoulos, Chung, Yu, et al. [5], and Rolland et al. [14], specifically the work
on mapping goals to requirements scenarios.

Preliminary results of our previous work indicated that testing against goals
and plans can successfully distinguish false positive test results and domain
knowledge errors [19]. Our previous work also indicated that we can infer the
achievement of high-level stakeholder goals from the achievement of goals at
the implementation level [18]. We found evidence that stakeholders prefer Sce-
narioML scenarios over use cases and message sequence charts [2]. Although
our preliminary results are promising, we detected some drawbacks using goal-
annotations in the source code and not providing support for test generation.
We now feel encouraged to explore the development of a requirements-based
testing framework that addresses these issues.

3 Goals and Scenarios

Goals describe stakeholders’ intentions for the system and state objectives that
the system should meet. High-level stakeholder goals are step-wise refined in
an AND/OR goal-graph into lower-level functional goals. At some point in the
refinement process, the order of sub-goals can become relevant. We therefore
introduce the concept of plans. A plan is an abstract description of how to satisfy
some goal by satisfying its sub-goals in some sequence. We use GoalML, an
XML-based language, to express goals and plans [19, 18]. XML-based languages
are particularly useful for supporting test automation and production of human
readable versions of scenarios and goal models.

At an even lower level of abstraction, goals can be refined by scenarios. A
scenario describes a use of a system in terms of situations, interactions be-
tween agents, and events unfolding over time. ScenarioML is an XML lan-

4

guage for scenarios [2, 3]. ScenarioML expresses scenarios with a combination
of events, ontologies, references, and scenario parameters. The events are re-
cursively structured, starting from simple text events as a basis, and including
compound events grouping several events in a particular order (total or partial),
event schemas such as iterated events and sets of alternative events, and episodes
that specify another scenario as an event. Allen’s interval algebra relations [1]
express the temporal relationships among the parts of a compound event. This
approach to events supports automated recognition of scenarios happening in
a domain, derivation of one scenario from another (such as one or more test
scenarios, or paths through a requirements scenario), and other automated pro-
cessing. Ontologies give a way to describe the kinds of entities that can exist
in a domain, define specific entities, and express the relationships among them.
We use ontologies to help give the context of scenarios and (through scenario
parameters) specify the range of entities that can appear in a specific scenario.
We have seen that without ontologies and scenario parameters, it is difficult
to derive adequate tests from requirements scenarios because there is no infor-
mation with which to make them concrete, and there is little opportunity for
automation of the process.

Figure 2 shows a partial goal graph. The figure illustrates the refinement of
a top-level stakeholder goal “Create a high-quality maintainable product” through
various lower level goals such as “AquaLush must irrigate only until the critical
moisture level is achieved” and “AquaLush must allow operation in either manual
or automatic mode” down to the “IrrigateScenario”. The “IrrigateScenario” is a
refinement of the goals, because if the system does what the scenario specifies,
there is confidence that the corresponding stakeholder goals are met. Figure 3
shows a small snippet of the “IrrigateScenario”. The scenario shows that the
system should try to read each sensor three times, if it fails after three times
the sensor is marked as failed. The next sequence in the scenario (Sequence 2)
has a pre-condition based on the result of the sensor reads in the top of the
scenario.

4 Requirements-Based Testing

Testing is typically be divided into four major activities: test design, test gen-
eration, test execution, and test evaluation. In the following sections we will
describe our testing approach through these activities and illustrate it with a
running example from AquaLush.

5

Create a high-quality
maintainable

product

It is quick and easy to
tell when the product

is not working
properly

It is quick and easy to
track down problems

It is quick and easy to
fix problems

AquaLush must be
able to detect valve
and sensor failures

AquaLush must
report on whether the

system has failed
components

AquaLush must
report what is wrong
with the system when

it does not work

AquaLush must
report all persistent

store failures

AquaLush must allow
operation in either

manual or automatic
mode

Def:
manual,

automatic

AutomaticManual:

AquaLush must
irrigate only until the
water allocation is

achieved

AquaLush must
irrigate only until the
set critical moisture

level is achieved

AquaLush must
irrigate only during

irrigation times

Irrigation must occur
at specified times

IrrigateScenario

Figure 2: Partial goal-graph

4.1 Test Design

We believe the testing process should begin as early as possible. We therefore
suggest that test design should begin as soon as there are requirements. Fig-
ure 4 shows a diagram of the test design tasks in our approach. The goal of
our testing approach is to drive the system through a variety of paths through
the scenarios, compare events output from the system to events in the require-
ments scenario, and evaluate whether or not they match. The events can be
divided into three kinds of events: internal, boundary, and external. Internal
events are events inside the system under test, and are not checkable through
specification-based testing. An example of such an event is “AquaLush places
the zone on an active zone list”. This event is internal to the AquaLush system,
and cannot be detected by monitoring the system from the outside. Internal
events are typically not requirements-level events because they deal with design
level issues. Boundary events are events that involve both the system under
test and the testing environment. An example of such an event is “AquaLush
failed to read the sensor”. This event is an output from the system under test
to an external function, which means that we can monitor the occurrence of
the event from outside the system under test. Most of the events in our re-
quirements scenarios are of this type. External events are events that happen

6

Figure 3: Scenario snippet

outside the system under test. An example of such an event is “It is raining”.
This is an event that does impact the moisture level of the soil that AquaLush
irrigates. Although we do not have any requirements scenarios that contain
external events in AquaLush, we can design tests to simulate such occurrences
and oracles to verify correct system behavior under such circumstances.

From each requirements scenario we map the scenario events to input and
output functions that will connect the system under test and the test harness.
We then use the requirements scenario and the mapping to create several test
scenarios, with each test scenario tracing a particular path through the require-
ments scenario. In figure 4 this corresponds to following the top arrow ‘generate’
from goals, plans, and scenarios to test scenario. For example, in the scenario
snippet of figure 3, the alternatives present five different paths. However, since
the iteration specifies for each sensor, five sensors allow one test scenario to
cover all paths, three to four sensors allow two test scenarios, and so forth.

When mapping the requirements scenario events to test harness functions,
we look at the events for system output and input. The requirements scenario
event “Failed to read sensor”, for example, is divided into a system output part,
which the test harness should be monitoring occurrences of, and a system input
part. The system input part is the result of the event, or input to “drive” the
system in cases where this is needed. In our example, the system output is
“Read sensor”, and maps to test harness function SimSensorDevice.read(),
and the system input is “fail”, which maps to the return statement of the test
harness function SimSensorDevice.read()

The process of mapping scenario events to input and output functions can
reveal whether or not the events in the scenario are testable. In section 5 we will
describe instances of non-testable events (internal events) that we discovered in
AquaLush’s use cases. Since each event is evaluated for testability, this process

7

Test Harness API

Test Scenarios

Scenario
Recognizer

used to construct

instantiate
tests with datadefine test

harness API

define return
functions

Driver

generate

used to construct

used to construct

Oracle

Test Harness

Test Case

validate

Figure 4: Test Design Flow

serves as one validation of the requirements.
The mapping of scenario events to system input and output allows us to

define the test harness API (such as the functions mentioned above), which the
system can hook in to later. A simulated environment is often needed when
testing software systems. A simulated environment for AquaLush was one of
the artifacts provide by [6], but for most projects such an environment would
have to be built. We made AquaLush’s simulation a part of the test harness by
altering it to provide the capability of monitoring calls and providing input. The
SimSensorDevice class for example, contains instances of the SensorDevice class
which AquaLush will communicate with when reading moisture levels from its
sensors. Although we cannot add any monitoring code to SensorDevice, because
it is part of the system under test, we are able to monitor the calls to the sensors
through SimSensorDevice instead.

Figure 5 shows a runtime view of the test harness. Once the different com-
ponents are constructed and integrated, events flow from the system into the
test harness where they are matched against the expected events given by the
current test case. When an event is matched against the test case, the test case
provides the next input needed to drive the system along the chosen path. The
oracles use the runtime information along with requirements knowledge to com-
pute correct results, and the runtime pre- and post-conditions in the scenario
are checked against these results for correctness.

8

System

Test Harness API

Test Case

Oracles

Scenario
Recognizer

runtime monitoring
of events

provide input
to the system

match and
move on

Driverdecide
outcome

Checks whether
scenario is followed

Checks whether event
conditions are met

Figure 5: Runtime Flow

During test design we can also construct the rest of the test harness since
it is independent of the development of the system under test. The scenario
recognizer matches events coming into the test harness from the system under
test to expected events in the test case. The scenario recognizer is constructed
using the structure and information in the requirements scenario. Each test
case is a piece of code that contains an ordered list of event-responses. These
event-responses contain information about the type of event, particular event
parameters, and a particular response to the event. The test cases are spe-
cializations of the test scenarios created by adding concrete input data for the
system under test. The driver is a piece of code that uses the information
from the event-response to drive the system by providing it input. The driver
is constructed by using information in the requirements scenarios and the test
harness API. The oracles are pieces of code that compute expected results based
on the test case and test case information available at runtime, and compares
this to actual results of the running system. We construct the oracles manually
using the information in the requirements scenarios. For our sample system,
we constructed the test harness API from the AquaLush simulation in Java,
and implemented the scenario recognizer, driver, test cases, and oracles in the
rule-based language JESS (Java Expert System Shell) [8].

Figure 6 shows a sample JESS rule for the driver. The left hand side of
the rule states that there has to be a task for activating a zone and an event

9

for reading a sensor in that zone that was matched by the scenario recognizer;
the number of times this sensor has been attempted to read must be below the
maximum number allowed (three according to the requirements scenario); and
there exists an event-response in the test case for the event and the zone which
has not yet been processed, and whose outcome has the value of ‘fail’. The right
hand side of the rule states that if the left hand side of the rule is true, then the
number of times this sensor was read will be incremented by one, the result of
the sensor read will be set to -1, the status of the event will be set to processed,
and the status of the event-response will be set to ‘done’.

(defrule process-read-sensor-request-2
;System made read sensor request and sensor failed.
(task (name activate-zone) (object ?zone))
?e <- (event (text "Read sensor") (parameter ?zone) (status matched))
?nsrwm <- (num-sensor-reads (value ?nsr&:(< ?nsr ?*max-sensor-reads*)))
(zone (name ?zone))
?er <- (event-response (event-type "Read sensor") (parameter ?zone)

(outcome fail) (status wait))
=>

(modify ?nsrwm (value (+ ?nsr 1)))
(bind ?*sensor-read-result* -1)
(modify ?e (status processed))
(modify ?er (status done))

)

Figure 6: JESS rule

An important part of test design is to test the test harness itself. We can
do this by providing the test harness with streams of expected and unexpected
events (simulating the system). This evaluation will both provide useful infor-
mation about the requirements, such as whether they make sense, as well as
help make the test harness robust and ready for testing.

4.2 Test Generation

Another preparatory step is to generate the test cases that give specific data
for each of the test scenarios. The test scenarios correspond to particular paths
through the requirements scenario, and provide information about event re-
sponses along those paths. The test scenario is basically an abstract description
of the test case. For example, in the requirements scenario in Figure 3 a par-
ticular path could be chosen if the moisture level is below the critical moisture
level (see precondition for Sequence 2). The test scenario corresponding to that
particular path contains that information without deciding concretely what the
moisture level is. A test case for this test scenario is a further specialization and
has concrete input data, such as a particular instance of a sensor and a moisture
level of 10% when the critical moisture level is 50%. An event-response element

10

in a particular test case for this test scenario would therefore look like this:
(event-response (event-type “Read sensor”) (parameter S1) (outcome 10)), where
event-type is the output event from the system to the test harness, and outcome
is the input data from the harness to the system. Particular objects such as
sensor S1 are instantiated instances of the ScenarioML ontology instanceTypes.
The order of event-responses is derived from the sequence of events in the test
scenario. There could for example, be two “Failed to read sensor” events followed
by one “Success to read sensor” event; the driver keeps track of appropriate re-
sponses to each event. Figure 7 shows a test case for the the scenario snippet
in figure 3 that uses four sensors and therefore covers four of the five paths of
the scenario. Although test generation was manual in our study, we believe it
is possible in general to automate the generation of both test scenarios and test
cases.

(event-response (event-type "Read sensor") (parameter S1) (outcome fail))
(event-response (event-type "Read sensor") (parameter S1) (outcome fail))
(event-response (event-type "Read sensor") (parameter S1) (outcome 20))
(event-response (event-type "Read sensor") (parameter S2) (outcome fail))
(event-response (event-type "Read sensor") (parameter S2) (outcome fail))
(event-response (event-type "Read sensor") (parameter S2) (outcome fail))
(event-response (event-type "Read sensor") (parameter S3) (outcome 60))
(event-response (event-type "Read sensor") (parameter S4) (outcome 40))
(event-response (event-type "Read sensor") (parameter S4) (outcome fail))
...

Figure 7: Test case snippet

4.3 Test Execution

When we execute a test, the test harness provides input to the system, when
the system produces output (results or function calls to external functions)
the test harness monitors these and responds. In figure 8 we demonstrate test
execution by following an external call from the system to a hardware device
(a sensor) through the test harness and back to the system. The test harness
acts as a simulated hardware device by “picking up” the function call from the
system and registering this as an event (“Read sensor”). The scenario recognizer
checks with the test case whether or not this event was expected. The driver
will respond to the call once the scenario recognizer has decided that the event
was matched. In our example, the test case specifies a branch of the scenario
that corresponds to a failed sensor read and the driver therefore returns a -1,
instead of a moisture level, that the system will interpret as a failed read.

If there are mismatches between the expected and received events, the sce-
nario recognizer will find out and alert the tester of the particular mismatch.

11

:System

:Test Harness API

:Test Case

:Scenario
Recognizer :Driver

sensor.read();

event:
read sensor (s)

return:
sensor failed

read result: -1

return -1

received event
=

expected event

Figure 8: Test execution flow

This testing approach allows us to verify whether or not the scenarios are being
followed. If they are not being followed, it helps us determine how and why.

4.4 Test Evaluation

Our testing approach evaluates whether or not the system passes test cases
that are derived from the requirements. We can detect two distinct types of
mismatches between the actual system behavior and the requirements. First,
the scenario recognizer detects mismatches between individual pairs of system
events and events expected according to the requirements scenarios. Second, we
use oracles for evaluating mismatches that cannot be deduced from the event
stream alone. An example of such a requirement is: “AquaLush’s water usage
does not exceed the zone allocation for any zone”. This requirement shows up as
a precondition for a sequence of events in IrrigateScenario. We cannot verify this
by a single instance of an event, but we can verify that this condition is true
eventually by comparing the amount of water that our test case expects each
zone to use with the actual amount of water used.

4.5 Automation

From ScenarioML we will (ultimately) be able to generate both test cases that
cover all branches of a scenario (reducing each iteration to a specific number
of repetitions) and JESS rules for driving and evaluating the tests. The rules
necessary to perform and drive the tests are independent of any particular test
case, and the test case is in the form of a list of event-response elements which
would be easy to generate from a more simply structured artifact, such as a test
scenario. What makes the JESS rules particularly interesting (and gives hope
for automation) is that there is a direct relation between the rules and require-
ments. That is where the power lies in terms of directly exposing requirements
violations.

12

5 Validation Study

In the following sections we will describe our experience constructing the test
harness, generating tests, and running the tests on a sample software system,
AquaLush [6].

5.1 About AquaLush

AquaLush is an automatic irrigation system that controls irrigation based on soil
moisture levels rather than timing. The project and its artifacts are available
in [6], which provides material such as requirements, use cases, various design
models, and approximately 10KLOC of Java code (including the simulator). We
chose AquaLush for several reasons; it is an adequate size system with a fair
amount of complexity; it was published with a full range of requirements and
design artifacts, and it was developed elsewhere for a different purpose than
ours.

5.2 Procedure

We constructed a goal graph from the project mission statement, stakeholder-
goals list, and the needs list, and we used the requirements and use cases to
produce ScenarioML scenarios. We created seven different scenarios based on
seven of the eight existing use cases and related these scenarios to goals in the
goal graph. We selected all the use cases except for the one that describes the
simulation of the system. We excluded this use case because it does not describe
the functionality of the system under test, and in fact we will use the simulation
as part of our test harness. We will use one of these scenarios, IrrigateScenario,
to describe our work. We chose this scenario because it describes the main func-
tionality of the system and relates it to several stakeholder goals. It is therefore
essential that this requirement is implemented correctly and tested sufficiently.
IrrigateScenario contains two major event sequences where the second one itself
consists of three event sequences. The first event sequence describes reading all
the sensors. The system will try to read each sensor at most three times. If it
cannot get a successful read within those three tries the system will report that
the sensor has failed. This is the event sequence described in figure 3. In the
second event sequence the system will (1) open all valves in a zone that needs
irrigation, (2) read the zone’s sensor once every minute until irrigation must
stop (either the zone reached its critical moisture level, used up its zone alloca-
tion, or the sensor failed to get a read within three tries), and (3) close all of the
zone’s valves. After that, the system will open the valves in another zone that
needs irrigation, if one exists. Each valve can be manipulated unsuccessfully at
most three times, after which the valve is reported to have failed.

To make the existing AquaLush simulator part of the test harness, we modi-
fied its code to monitor event occurrences and provide the system with test case
input rather than the input that the original simulator used. We also added

13

code to connect the simulator to the rest of the test harness. We then con-
structed test scenarios, test cases, driver, scenario recognizer, and oracles, as
described in the previous section.

We ran our test cases against the released version of the system as well as
several mutants with seeded faults created by MuJava [10]. A compatibility
problem between MuJava and Java 1.5 forced us to convert the AquaLush sys-
tem to Java 1.4. We changed each occurrence of the new enhanced for loop to
the regular for loop, each occurrence of an enumerated type to a collection of a
general type, and typecasts to access these objects. These were the only changes
in the source code of the system under test. The results from the different test-
ing activities (test design, test generation, test execution, and test evaluation)
are reported below.

5.3 Test Design

Our testing approach relies on requirements in the form of ScenarioML scenarios.
In general, we do the translation from use cases to ScenarioML scenarios in two
steps. In the first step, the use cases are directly translated into ScenarioML. We
will refer to these as the original scenarios. In the second step, the ScenarioML
scenarios are refined by improving the requirements. We will refer to these as
the refined scenarios. The second step was part of the test design.

When attempting to map scenario events from the original scenarios to out-
put from the system, we found that several of the events in the scenario were
not testable in their original form. One such event is “AquaLush places the zone
on an active zone list”, with the condition that the sensor of the zone was able
to successfully read the moisture level and that the moisture level was below
the critical moisture level (meaning that the zone needs watering). The condi-
tion plus the scenario event represent one of the original requirements. At first
glance this requirement seemed appropriate. However, as we were trying to map
the scenario event to an event measurable from the boundary of the system, we
realized that this requirement is actually more of a design choice than a require-
ment. After some discussion, we concluded that the deeper requirement behind
this design choice is that only zones with working sensors and moisture levels
below the critical level should be irrigated. We therefore refined the scenario
by deleting the non-testable internal event and replacing it with a check of the
sensor and moisture level conditions as preconditions of the irrigation sequence
of the scenario. This refinement of the scenario represents the true requirement
that states what the system should do, rather than how it should do it. Thus
we managed to clarify the original stated requirement and, at the same time,
identify a requirement that is testable with our black-box approach.

Since we had access to AquaLush and its simulator, we knew that adding
an item to the active zone list was not a testable event from the boundary
of the system. However, when analyzing the requirement from a requirements
perspective, it was clear that it should not be a requirement because it is, in fact,
a design choice. In the cases where the scenario events and conditions represent
true requirements, we define the test harness API to specify what should be

14

testable from the boundary of the system. The designers of the system should
thus look at the requirements to design the system to be testable.

Another non-testable event in one of the original scenarios is “AquaLush
counts the number of working valves in all active zones and adds them to the total
number of working valves”. This is also a description of how to do something
rather that what it should do. The requirement behind this design choice is,
we believe, that AquaLush does not use up more water than its zone allocation
for any zone, and that the zone allocation is computed by the valve allocation
multiplied by the number of working valves in the zone to be irrigated. The
valve allocation is computed by the water allocation for the irrigation cycle
divided by the number of working valves in the entire system. This form of
the requirement states what the system should do, not how, and provides us
something to test. There could be several different ways of designing the system
to meet this requirement. One design choice is to use the non-testable event
we described above and count the number of working valves in all active zones
and add them to the total number of working valves. Another design choice
could be to keep a counter of all the working valves and update this counter
every time a valve fails or gets repaired. We concluded that the requirement in
its original form was a premature design decision and replaced the event in the
refined version of the scenario with conditions on the irrigation sequence as well
as ontology definitions of water allocation, zone allocation, and valve allocation.

There is another peculiarity relating to the original scenario and the event
“AquaLush counts the number of working valves in all active zones and adds them
to the total number of working valves”. The event was placed before the event of
opening the valves in the zone to irrigate. Since the zone allocation is dependent
on the number of working valves and the valves have not yet been opened, the
zone allocation computed by the system could turn out to be based on faulty
assumptions. In our refined scenario, since the calculation of the zone allocation
is no longer an event but a condition, it is performed in terms of the current
state of the world. As we will describe in section 5.6, our oracles will catch
mismatches between the zone allocation used by the system and the expected
zone allocation according to our interpretation of the requirements. There are
several other original scenario events that turned out to be non-testable. In
each case we evaluated whether or not the associated requirement really made
sense as a requirement. In every instance where we judged the requirement to
be badly formed, we were able to rewrite the requirement so that previously
associated non-testable scenario events could be eliminated. The result was a
better requirement (describing a what instead of a how) that would be testable
with a black-box approach.

Checking requirements for testability is one way of validating the require-
ments through test design, but creating tests from the requirements could also
reveal other potential problems with the requirements. The sequence of events
in the original scenario failed to address what happens if all valves in a zone
fail to open. We interpreted the requirement to be that the system should not
attempt to irrigate a zone in which no valves opened. However, when we ran
such a test case against our requirements we found a mismatch. It turns out

15

that the system does attempt to read the sensor in the zone at least once before
moving on to open the valves in the next zone to be irrigated. This mismatch
is either an implementation fault or a requirements problem. In any case, the
requirement as stated by the original scenario did not offer an unambiguous
interpretation. There were also several other concepts that were not well ex-
plained in the original scenarios. It is, for example, unclear what an open valve
in AquaLush means. If open means that water is flowing out of the valve, what
happens if the valve fails to close? The original use case says that the failure
is reported to Persistent Store and that the use case then continues. But if the
water is flowing, wouldn’t the zone eventually flood? If it means that water
might or might not be flowing when the valve is open, how come there is no
information about how the system controls the water flow? There are other sim-
ilar ambiguities, that are not necessarily problems, but which have the potential
to be problems. Had we been testers using our requirements-based testing ap-
proach in this project, during the project development, we would have had a
chance to clarify these requirements before designers, developers, and testers
make their own assumptions of what they mean.

5.4 Test Generation

From IrrigateScenario we derived 6 test scenarios. We set the initial parameters
of the tests to use four zones. Each zone has exactly one sensor (given in the
requirements for AquaLush), and we instantiated each zone to have four valves
(a zone can have from 1 to 32 valves). We set the critical moisture level to
50% and the maximum water allocation to 10000 gallons. With these settings,
the 6 test scenarios were sufficient to cover all 20 branches of the requirements
scenario. In the case of branch pre-conditions expressing alternative conditions,
our test scenarios cover each alternative condition. For example, in the case of
closing the valves after irrigation, the system can choose the branch either by
reaching critical moisture level, by using up the zone allocation, or by failing to
read the sensor three times.

We created 6 test cases out of the test scenarios, each instantiated with
different concrete input data, for the system under test to follow (see sample
test case in figure 7).

Even before running the test cases, in this situation we know that our test
scenarios cover 100% of the paths in the requirements scenario. We also know
that we are exercising several parts of the ScenarioML ontology. Once we have
run the test cases we will also be able to report on successes or failures of
particular paths, and provide an estimate of how well the system meets its
requirements.

5.5 Test Execution

During test execution, we intercept system output and use this to infer occur-
rences of events. Once an event has occurred it is matched against the expected
event in the test case. If the event is matched, the test harness will mark off

16

this event from the test case, provide input data to the system if necessary,
and then mark the next event to be expected. If the system event does not
match the expected event in the test harness, the test harness will alert us of
the mismatch.

We ran the six test cases on the released system and recorded the data. We
then ran the six test cases on eight different mutants that we generated by using
MuJava [10]. Although we generated and tried many more mutants, we chose
to report only these eight mutants because of the types of errors they contain.
We do not report results from any mutants that caused the system to crash.
Examples of such mutants are ones that manipulate loop counters that cause
nullPointerExceptions, such as

for (int i = 0; ++i < storedString.length(); i++)

instead of

for (int i = 0; i < storedString.length(); i++)

We also decided to exclude the many mutants in which the mutation affected
code that our test scenarios do not, and should not, exercise and could therefore
not detect. Another type of mutant we decided to exclude from the report is
one that manipulates water allocation and water usage, because we had already
found a fault in the calculated zone allocation in the released system. Mutants of
that sort would, therefore, not provide any new knowledge of the types of faults
that our testing approach can find. Furthermore, most of those mutants were
acceptable according to our requirements anyway. Since the original scenario
for irrigation does not specify clearly when irrigation stops with regard to a
sensor read, we allow one minute more or less from what our oracle expects.
The mutants that manipulated water usage and water allocation mostly altered
these values by one (+1, -1 gallon), which made the mutants uninteresting in
any case.

The eight mutants we chose are shown in figure 9.

AutoCycle.start()-
AOIS_7 for (int k = 0; k < zones.size(); k++) for (int k = 0; k++ < zones.size(); k++) skips a zone when beginning irrigation

Mutation name Original code Mutated code Consequence

Sensor.isFailed()-
COI_3 return isFailed; return !isFailed; switches failed and working sensors

AutoCycle.assignZone
Allocations()-AOIS_59 for (int m = 0; m < zones.size(); m++) for (int m = 0; m++ < zones.size(); m++) skips to assign zone allocation to

some zone

Zone.isIrrigated()-
ROR_14 if (criticalLevel <= sensor.read()) if (criticalLevel > sensor.read()) sets zone to be irrigated prematurely

Sensor.setIsFailed()-
COI_9 isFailed = newValue; isFailed = !newValue; switches failed and working sensors

Zone.openAllValves()-
COD_7 if (!v.isFailed()) if (v.isFailed()) attempts to open non-working valves

Zone.closeAllValves()-
COD_8 if (!v.isFailed()) if (v.isFailed()) attempts to close non-working valves

Zone.setCriticalMoistur
eLevel()-AOIS_42 criticalLevel = theLevel; criticalLevel = --theLevel; reduces the critical level by one

1

2

3

4

5

6

7

8

Figure 9: Mutations

17

5.6 Test evaluation

The test harness has several components for evaluating the test results. The
scenario recognizer will reveal mismatches between expected and actual behavior
in the form of monitoring system events and comparing these to test scenario
events. The oracles exist to check things that individual system events do not
reveal.

It is also worth noting that some mismatches can occur because the require-
ments are wrong, or because of faults in the test harness. We hope that these
types of faults would be minimal when using this approach, because the ap-
proach validates the requirements early and because the test harness can be
constructed without access to the system under test. We can simulate the use
of the test harness by giving it event sequences and hopefully flush out most
test harness faults before testing of the system.

5.6.1 Testing Released Version

We detected a system event mismatch when we ran our first test case on the
released version of the system (see test output below). For this test case, the
test harness made the system think that sensor S1 failed to read three times in
the first event sequence of the scenario. The system read the other sensors and
then moved on to open the valves in the zone with sensor S3. Once the valves
were open, the system should have started reading sensor S3 every minute until
irrigation stopped. What happened instead was that after the valves opened in
the zone with sensor S3, the system attempted to read sensor S1, even though
this sensor was not in the zone that was being irrigating at the time and had
actually been reported as not working. The second test case we ran showed the
same mismatch and it had also been determined that sensor S1 was not working
during the first event sequence of the test case. This mismatch showed that the
system did something it should not have done.

...

An open valve event for V10 was received as
expected.

An unexpected request to read the sensor
from zone S1 was received. It was unexpected
since the system is currently irrigating zone S3.

A read sensor event for zone S3 was received as
expected while irrigating.

...

We also need to detect other forms of mismatches with our oracles. In
the ScenarioML ontology, we defined the water allocation to be the maximum

18

amount of water that can be used in an irrigation cycle (over all zones). We
defined the valve allocation to be the water allocation divided by the number of
working valves and the zone allocation to be the valve allocation multiplied by
the number of working valves in a particular zone. We know that we need to
calculate the zone allocation before a zone begins to get irrigated, because we
use reaching the zone allocation as one of the possible conditions for stopping
the irrigation of a zone. We therefore implemented an oracle that computes
these values based on the number of working valves and the number of zones
needing to be irrigated at any given time during the test. We also know that the
water usage in a zone is the amount of time that the zone has been irrigating
multiplied by the flow rate in the zone. Using this information our oracle could
infer whether or not the system had calculated the zone allocation correctly.
From looking at the original scenario, we already have several indications that
this calculation might be faulty, since it was expressed as an event before the
sequence of opening valves in a zone. Also, the previous mismatch of trying
to read a sensor in a zone whose sensor was reported to be out of order, could
potentially lead to an incorrect calculation of the zone allocation if that zone’s
valves were used in the calculation for the valve allocation. When we ran the
third test case, a test case that uses up the entire zone allocation because the
moisture level never reaches the critical moisture level in two of the four zones,
the oracle detected a mismatch in the amount of water used and the amount of
water the oracle expected the system to use (see test output below). The water
allocation is set to 10000 gallons, and there are four zones. The system started
to irrigate the second zone, in which one of the valves failed to open. The oracle
calculates the valve allocation to be 10000 gallons divided by 15 working valves,
then calculates the zone allocation to be the valve allocation multiplied by 3,
which is the number of working valves in the zone. The zone allocation for the
first zone to be irrigated is therefore 2000 gallons. The system continues to read
the sensor until it has used up 3312 gallons of water, which is more than our
oracle expected. Later in the event trace, we detected that the system used up
less than the oracle was expecting (see second test output below). Another test
case showed that our interpretation of the zone allocation requirement makes
sense. In that test case, one zone is not irrigated because its sensor fails to read
and two other zones are not irrigated because their moisture levels are above the
critical moisture level. Our oracle correctly calculates that the last zone should
have the entire water allocation (10000 gallons). The other three test cases also
showed mismatches of attempting to read a failed sensor during irrigation of
another zone and not calculating the zone allocation correctly.

...

A read sensor event for zone S2 was received as
expected while irrigating.

Start closing valves in zone S2 because zone
used up its zone allocation.

19

zone used: 3312 gallons of water,
zone allocation: 2000.0.

A close valve event for V06 was received as
expected.

...

...

A read sensor event for zone S4 was received as
expected while irrigating.

Start closing valves in zone S4 because zone
used up its zone allocation.
zone used: 2256 gallons of water,
zone allocation: 3320.0.

A close valve event for V15 was received as
expected.

...

5.6.2 Testing Mutants

We found mismatches in all eight mutants that we are reporting on in this paper.
As described previously, the seeded faults that our approach did not find were
either faults that crashed the system, valid implementations according to the
requirements, already reported faults in the system, or not in the code that the
test scenarios exercise.

The first mutant skips some zones when beginning the irrigation scenario.
The mutation has altered the counter in the for loop from for (int k = 0;
k < zones.size(); k++) to for (int k = 0; k++ < zones.size(); k++).
We found this fault as a mismatch between our test cases and the system (see
test output below). The system output a “Read sensor” event for sensor S4
and the test case provided input that the read was successful on the first try.
The system then output a “Read sensor” event for sensor S3 and the test case
provided input that the attempt failed. The system then tried to read the same
sensor two more times and on the third attempt the read was successful. The
scenario recognizer then expected the system to try to read either sensor S1 or
S2, but instead the test harness received an “Open valve” event from the system.
The system had looped through what it believed to be the list of zones. However,
that did not correspond to the actual list. Thus, the scenario recognizer caught
a mismatch between the expected and actual sequence of events.

A read sensor event for S4 was received as
expected.

20

A read sensor event for S3 was received as
expected.
A read sensor event for S3 was received as
expected.
A read sensor event for S3 was received as
expected.

An unexpected Open valve event with parameter
V16 was detected.
This was unexpected because the system is
currently attempting to activate a zone which
means it is expecting a read sensor event.

The second mutant uses a similar loop fault to skip some zones when as-
signing zone allocations. Our scenario recognizer found this mismatch as can
be seen in the test output below. The system read the sensor and determined
that a zone needed irrigation. It then successfully opened the valves in that
zone. The scenario recognizer was expecting to receive a “Read sensor” event
next as part of the irrigation sequence, but the system output a “Close valve”
event instead. Apparently, the system could not check the zone allocation for
this zone and decided to close the valves and move on.

...

An open valve event for V09 was received as
expected.

A Read sensor event was expected but a
Close valve event occurred.

The third mutant switches working and non-working sensors. Our scenario
recognizer found this mismatch right after the initial sequence of reading the
sensors. The system output events to read the sensors and S1 failed to read
three times. The mutated system however thinks that this sensor is working and
therefore outputs an “Open valve” event for that zone. The scenario recognizer
detects this mismatch, because the test case has already determined that sensor
S1 does not work.

A read sensor event for S2 was received as
expected.
A read sensor event for S1 was received as
expected.
A read sensor event for S1 was received as
expected.
A read sensor event for S1 was received as
expected.
A read sensor event for S4 was received as

21

expected.
A read sensor event for S3 was received as
expected.

An unexpected Open valve event with
parameter V02 was detected.
This was unexpected because the system has
concluded that the zone is inactive.

We found similar types of mismatches for the rest of the eight mutants as
well.

5.7 Results

We have demonstrated the effectiveness of our approach to requirements-based
testing by identifying a number of ways in which the published version of the
Aqualush system does not satisfy its requirements. The traces produced by
the test harness comparing the actual system behavior with expected behavior
clearly indicate the nature of the requirements violations in each of our six
test cases. This means that the requirements scenario IrrigateScenario was not
achieved by the system and that the high-level stakeholder goals that depend
on this scenario were not satisfied.

We have further validated our approach by demonstrating that we can detect
errors that result from mutations of the system. Our test cases were able to
detect all the seeded errors.

Finally we have demonstrated that there is great potential benefit in the
process of creating requirements-based tests early on in the development cycle.
We have shown this by presenting several examples where what appeared to
be valid requirements at the start revealed themselves to be, in reality, design
choices. These disguised design choices were detected while trying to map the
ScenarioML descriptions of the requirements onto the observable behavior of
the system.

The strength of our approach is derived from the synergy of two complemen-
tary technologies. On the one hand, we have ScenarioML. It provides a semi-
formal language for describing requirements that is particularly well suited to
the mechanization of their manipulation. On the other hand we have pattern-
directed rule-based programming technology as embodied by Jess. What makes
the JESS rules particularly interesting is that there is a direct relation between
the rules and requirements. That is where the power lies in terms of directly
exposing requirements violations. The data structures used to drive our rule-
based programs are directly derived from the ScenarioML representations of the
requirements. At this early stage of the research, we derive them by hand. But
our experience so far has convinced us that the process of deriving JESS rules
from ScenarioML scenarios can be completely automated.

22

6 Conclusion

In this work we have proposed requirements-based testing as a particularly
effective specification-based testing approach. In our requirements-based testing
approach, tests are directly driven by and checked against requirements in the
form of scenarios. Requirements-based testing utilizes the natural symbiotic
relation that exists between requirements and testing to produce software that
better satisfies stakeholder requirements.

Our evaluation study has provided us with evidence that our approach is
effective in revealing both potential specification problems and implementation
faults. As stated in the introduction, a testing approach also needs to be effi-
cient. In order to make our approach both effective and efficient, we are currently
working on different ways to automate the process.

One substantial task in our process has been to manually write the Scenari-
oML scenarios. Our group is currently implementing an Eclipse plugin that will
ease this task by providing a graphical interface for editing scenarios. We are
also investigating ways to automatically generate test scenarios that cover all
branches of a ScenarioML scenario. We will use instantiations of instanceType
elements in the scenario ontology and pre- and postconditions as constraints and
search through the scenario paths with those constraints until we have enough
test scenarios to cover all branches. As explained previously the number of par-
ticular instances of an instance type can impact the number of test scenarios
needed to cover all branches. We will auto-generate test cases in the form of
JESS event-responses from the test scenarios by either randomly selecting input
data that satisfies the path, or by manually selecting data. We are also looking
into ways of automating the production of test driving code, event recognizing
code, and oracles from ScenarioML scenarios. We are aware that we might need
to extend the ScenarioML language to be able to express information needed
for testing but which would not be necessary for the requirements themselves.
We are also working on improvements for executing tests and collections of tests
automatically.

Once automation is in place, we will perform a more substantial validation
study to evaluate the effectiveness of test cases that are auto-generated from
ScenarioML, We also want to evaluate the efficiency of using our approach with
automation in place compared to other testing approaches. In order for such
an evaluation to be convincing we need to develop a framework for evaluating
different testing approaches with regard to effectiveness and efficiency. It is
generally known that faults that stem from requirements misunderstandings are
expensive to fix late in the development cycle. Time spent on specifying and
validating the requirements for the system could therefore be gained by a lower
number of severe faults later in the cycle. We intend to develop a framework
that classifies the different types of faults an approach can find and measures
time spent on specification development and testing all activities.

23

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. CACM,
26(11):832–843, 1983.

[2] T. A. Alspaugh, S. E. Sim, K. Winbladh, M. Diallo, H. Ziv, and D. J.
Richardson. The importance of clarity in usable requirements specification
formats. Technical Report UCI-ISR-06-14, Inst. for Softw. Res., Univ. of
Cal., Irvine, 2006.

[3] T. A. Alspaugh, B. Tomlinson, and E. Baumer. Using social agents to
visualize software scenarios. In SoftVis’06, pages 87–94, 2006.

[4] L. C. Briand and Y. Labiche. A UML-based approach to system testing.
Software and System Modeling, 1(1):10–42, 2002.

[5] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Re-
quirements in Software Engineering. Springer, 2000.

[6] C. Fox. Introduction to Software Engineering Design: Processes, Principles
and Patterns with UML2. Addison Wesley, 2006.

[7] D. Graham. Requirements and testing: Seven missing-link myths. IEEE
Software, 19(5):15–17, 2002.

[8] JESS (Java Expert System Shell). http://herzberg.ca.sandia.gov/
jess/.

[9] A. v. Lamsweerde and L. Willemet. Inferring declarative requirements
specifications from operational scenarios. IEEE Trans. on Softw. Eng,
24(12):1089–1114, 1998.

[10] Y.-S. Ma, J. Offutt, and Y. R. Kwon. Mujava: an automated class mutation
system. Softw. Test, Verif. Reliab, 15(2):97–133, 2005.

[11] H. Muccini, M. S. Dias, and D. J. Richardson. Systematic testing of soft-
ware architectures in the C2 style. In FASE’04, volume 2984 of Lecture
Notes in Computer Science, pages 295–309. Springer, 2004.

[12] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jézéquel. Automatic test gen-
eration: A use case driven approach. IEEE Trans. Softw. Eng., 32(3):140–
155, 2006.

[13] T. O. O’Malley, D. J. Richardson, and L. K. Dillon. Efficient specification-
based oracles for critical systems. In Second California Software Symposium
(CSS’96), Apr. 1996.

[14] C. Rolland, C. Souveyet, and C. Ben Achour. Guiding goal modeling using
scenarios. IEEE Trans. on Softw. Engineering., 24(12):1055–1071, 1998.

24

[15] A. S. Tanenbaum. In defense of program testing or correctness proofs
considered harmful. SIGPLAN Not., 11(5):64–68, 1976.

[16] E. J. Weyuker. On testing non-testable programs. The Computer Journal,
25(4):465–470, 1982.

[17] M. W. Whalen, A. Rajan, M. P. Heimdahl, and S. P. Miller. Coverage
metrics for requirements-based testing. In International Symposium on
Software Testing and Analysis (ISSTA ’06), 2006.

[18] K. Winbladh, T. A. Alspaugh, H. Ziv, and D. J. Richardson. Architecture-
based testing using goals and plans. In ROSATEA’06, 2006.

[19] K. Winbladh, T. A. Alspaugh, H. Ziv, and D. J. Richardson. An automated
approach for goal-driven, specification-based testing. In 21st International
Conference on Automated Software Engineering (ASE 2006), pages 289–
292, 2006.

[20] Q. Xie and A. Memon. Designing and comparing automated test oracles for
GUI-based software applications. ACM Trans. on Softw. Eng. and Method.,
2006.

25

	UCI-ISR-07-1-cvr
	UCI-ISR-07-1
	UCI-ISR-07-1-cvr.indd.pdf
	uci-isr-07-1.abstract.pdf
	uci-isr-07-1.pdf

