
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Hazeline Asuncion
University of California, Irvine
hasuncion@ics.uci.edu

Frédéric François
Wonderware Corp.
Frederic.Francois@wonderware.com

Richard N. Taylor
University of California, Irvine
taylor@ics.uci.edu

An End-To-End Software Traceability Tool in an
Industrial Context

October 2006

ISR Technical Report # UCI-ISR-06-16

Institute for Software Research
ICS2 110

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

An End-To-End Software Traceability Tool
in an Industrial Context

Hazeline Asuncion, Frédéric François, Richard N. Taylor

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
hasuncion@ics.uci.edu

ISR Technical Report # UCI-ISR-06-16

October 2006

Abstract:

Traceability is a critically important aspect of software development that is often
required by various professional standards and government agencies. Yet, current
approaches do not adequately address end-toend traceability. Consequently, many
industry projects become entangled in process overhead and fail to derive much benefit
from current traceability solutions. This paper presents a successful end-to-end software
traceability tool developed at Wonderware, a software development company and a
business unit of Invensys Systems, Inc. Our process-oriented approach achieves
comprehensive traceability and supports the entire software development life cycle by
focusing on both requirements traceability and process traceability. This paper offers
general traceability guidelines that have emerged from the experience of implementing
and deploying this traceability tool within actual company constraints. We discuss
encouraging preliminary results and point to the advantages gained in using our
approach.

An End-To-End Software Traceability Tool in an Industrial Context

Hazeline Asuncion

Institute of Software Research
UC Irvine

hasuncion@ics.uci.edu

Frédéric François

Wonderware Corporation
Frederic.Francois
@wonderware.com

Richard N. Taylor

Institute of Software Research
UC Irvine

taylor@ics.uci.edu

ISR Technical Report # UCI-ISR-06-16

October 2006

Abstract

Traceability is a critically important aspect of
software development that is often required by various
professional standards and government agencies. Yet,
current approaches do not adequately address end-to-
end traceability. Consequently, many industry projects
become entangled in process overhead and fail to
derive much benefit from current traceability
solutions. This paper presents a successful end-to-end
software traceability tool developed at Wonderware, a
software development company and a business unit of
Invensys Systems, Inc. Our process-oriented approach
achieves comprehensive traceability and supports the
entire software development life cycle by focusing on
both requirements traceability and process
traceability. This paper offers general traceability
guidelines that have emerged from the experience of
implementing and deploying this traceability tool
within actual company constraints. We discuss
encouraging preliminary results and point to the
advantages gained in using our approach.

1. Software Traceability

While traceability is recognized as a “critical

success factor” in software development [6], the lack

of effective software traceability continues to be a

perennial problem in industry projects [10]. The sheer

number of artifacts produced in a project, the differing

levels of formality and specificity between various

artifact types, and the complex interrelationships

between artifacts [23][24][2] combine to form the heart

of the traceability problem. Finding a comprehensive

traceability solution yields many benefits. Traceability

aids in system comprehension, impact analysis, system

debugging, and communication between the

development team and stakeholders [21][6][13][17].

 While traceability is encouraged or even mandated

by various standards and government agencies [22]
[14][15], high costs [13][19] make it infeasible for

many organizations to incorporate traceability [2].

Even in companies where a specialized traceability

tool is adopted, the traceability problem still exists

[10], due to the tool’s rigidity, narrow focus, and lack

of interoperability with other tools. Various

techniques have been proposed to reduce overhead and

enhance traceability [1][2][7][5][23]. Yet, these

approaches fall short of providing a comprehensive

approach to traceability that supports the entire

software development life cycle. Current techniques

usually only attempt to link artifacts within one phase

or between two adjacent phases in the life cycle. For

instance, although tracing the life of a requirement is

essential to the success of a software product, most

approaches emphasize performing requirements

traceability within one phase of software development:

the requirements phase.

We therefore define the concept of end-to-end

traceability as an overarching traceability that extends

throughout the entire life of a project, from the

requirements phase to the test phase. End-to-end

traceability weaves artifacts together in a sequential

fashion in tandem with the various phases of the life

cycle. For instance, end-to-end requirements

traceability is satisfied when different phase-specific

manifestations of the same requirement are linked

together across the life cycle.

We also emphasize process traceability as an

important facet of an effective traceability approach.

Relationships between artifacts can be intertwined with

the underlying software processes. This view can be

represented as a graph with nodes representing

artifacts and links between the nodes representing the

process. Raising the visibility of actual software

processes enables users to accurately compare actual

practices to stated company procedures. Not only does

process traceability improve the actual software

process, but it also captures the rationale behind a

specific artifact and fosters system comprehension.

In this paper, we attempt to combine end-to-end

requirements traceability and process traceability. We

present our insights in designing a software traceability

tool at Wonderware, a mid-sized software

development company known for producing industrial

automation software. We adopt a process-oriented

approach to achieve comprehensive traceability that

supports the whole development life cycle.

Note that we limit our scope to post-RS traceability

[10]. In addition, the paper does not concentrate on

configuration management, which is concerned with

tracing linkages between different versions of the same

artifact. Configuration management is orthogonal and

complementary to both end-to-end requirements and

process traceability. Finally, our approach mainly

applies to tracing text-based artifacts.

The next section provides a brief discussion of the

traceability problem at Wonderware. Section 3

presents an overview of the traceability tool we have

implemented, the preliminary results after deploying

the tool, and an overview of traceability guidelines.

We present our guidelines in depth in Sections 4 – 11.

In each of these sections, we first present the guideline

along with the rationale for including it. We then

present our method of implementing the guideline.

Each section wraps up by discussing the guideline in

the context of related research. Section 12 concludes

the paper with a discussion and future work.

2. Traceability Problem at Wonderware

We present a brief background of Wonderware in

order to introduce the company’s traceability problem.

A business unit of Invensys, Wonderware is a mid-

sized software sales and development company with

distributed development centers across the globe.

Wonderware is a leading supplier of industrial

automation and information software, with software

deployed to approximately a hundred thousand plants

worldwide [25]. The company is based in Lake Forest

with development centers in the United States,

Australia, EMEA, and India. There are about 250

development employees. Projects run in parallel, with

40 projects currently in development.

As a company that deploys its software products to

a hundred thousand plants worldwide, the problem of

traceability takes center stage. Many of

Wonderware’s customers are food and pharmaceutical

manufacturing companies that have internal

regulations or external obligations to adopt products

that follow government standards. Consequently,

software products that run the plants of Wonderware’s

customers must pass FDA approval. Not only does

Wonderware need to demonstrate traceability to

comply with various standards, but a lack of

traceability equates to inability to win new customers

and new business partners, leading to missed revenues.

In addition, existing customers require traceability

audits on Wonderware’s software development

process. Wonderware fits the classification of a high-

end traceability user [18] since traceability is viewed

as a benefit to the company. Wonderware is actually

ahead of most organizations in addressing

requirements traceability. They recognize the need to

identify problem artifacts and improve their process.

Even though Wonderware has an advanced notion

of traceability, it is still difficult for the company to

effectively trace requirements and processes. The

problems are many, complex, and subtle. We

introduce both the requirements traceability problem

and the process traceability problem in the upcoming

sections.

2.1. Requirements Traceability Problem

The commercial traceability tool that the company

originally used is expensive in terms of both licensing

costs and labor hours expended to maintain

traceability. Yet, despite the high costs, the

requirements traceability problem still existed at

Wonderware. The most glaring manifestation of the

problem is in the inconsistencies between different

representations of the same artifact. One particular

example of this is in document obsolescence. An

artifact X is stored in a database (accessed via the

commercial traceability tool) and in multiple

documents outside the tool. Each representation

achieves a specific purpose. The artifact in the

documents enables shared understanding among a

project team, while the artifact in the database enables

collective organizational knowledge and reporting

across multiple projects. However, when artifact X is

modified in a document, the same artifact stored in the

traceability tool database and in other documents

becomes obsolete. This problem is intensified by the

thousands of documents and the numerous individual

artifacts within each document that Wonderware

manages.

Another major problem is the lack of demonstrable

end-to-end traceability. Different groups within

Wonderware own different artifact types that are keys

in establishing the traceability chain. Not only are the

different artifact types owned by different groups, but

they are also stored in different tools lacking

interoperability between them. These conditions

prevent end-to-end traceability from occurring.

Other problems include the inability to manipulate

artifacts in bulk, the limited functionality of the

commercial traceability tool, the inability to scale, and

the lack of effective artifact visualization.

2.2. Process Traceability Problem

At Wonderware, many individuals adopt ad-hoc

workarounds to accomplish their development process

tasks. These workarounds are not captured in any

organizational document. Since actual processes

oftentimes only reside in the minds of individuals, the

capability of groups to share knowledge with each

other is limited and is highly subject to staff turnover.

In addition, obtaining an accurate project status is a

time-consuming process. In an environment where

projects run in parallel, the immediate retrieval of

accurate project status is crucial. Project Managers,

Development Managers, and Architects all oversee

multiple projects at once. It is sometimes difficult to

know the current status of a project since every related

individual must be manually solicited for information.

Thus, process traceability is needed to alleviate these

issues.

3. Implementing the Software
Traceability Tool

We designed the software traceability tool to

address the existing problems stated in the previous

section. The tool was intended to achieve three main

goals: 1) enable the maintenance of traceability links

between key artifacts; 2) preserve the integrity of

documents; 3) support software development life cycle

activities. While the tool is not expected to

automatically generate traces between artifacts, the

tool is intended to ease the establishment and

maintenance of accurate traces by providing access to

all of the necessary information. To this end, the tool

must support the reuse of existing artifacts by

providing a search by keyword functionality, by

allowing access to all key artifacts that reside in

various groups, by identifying traced and untraced

artifacts, by assigning a unique ID to new artifacts, and

by updating the artifact status (i.e. active, new, retired,

etc).

 To preserve the integrity of the documents, the

tool must provide automated support for cascading

changes from one representation of an artifact to

another. In addition, a document must be stored in a

location that is accessible to all members of the

development team in order to eliminate manual

document reconciliation.

The tool should provide support for software

development life cycle activities by providing a user-

specific task list (each item in the list is a link to

another screen which aids users to perform the task),

document reviews, and document approvals. The task

list is simply a guidance mechanism, with no

enforcement controls. There is no strict ordering to the

tasks.

We used a three-tiered client-server architecture in

designing our tool. Figure 1 shows the main

components. We used MS SQL databases as our

artifact repository. We used MS SharePoint to provide

workflow support. Clients access the SharePoint

server via client browsers to enter data, perform

specific tasks or produce reports. MS InfoPath is also

used in generating reports. MS Word contains

macros to support document automation. The

embedded macros are able to directly access and

manipulate the database in order to maintain

traceability among artifacts.

Figure 1: Traceability Tool Design

Here is a usage scenario. In order to support

establishing of traces, users may search for existing

artifacts by keywords and view reports of

traced/untraced artifacts. Process support is provided

via user-specific task lists. Each item on the task list

links to another window which provides the

functionality for the user to accomplish the task.

Document integrity is guaranteed via bidirectional

updates. For example, when users create a document,

the artifacts in the document are automatically saved to

the database. Changes to the artifact may be made via

data entry forms provided in the workflow. The next

time users open the document, they can automatically

retrieve the latest artifact update from the database.

3.1. Preliminary Results

To evaluate the traceability tool, we tested the

artifact repository by populating the repository with

live data from new Wonderware projects. We also

allowed the entire organization to utilize the

SharePoint traceability site by giving them read-access.

The main test users of this tool are the Architect

Group. This group oversees the technical aspects of

every software project at Wonderware. We tested the

following functionalities: 1) mapping between trace

artifacts (Projects-Features, Use Cases, and Functional

Requirements); 2) maintaining document integrity; and

3) supporting the software development lifecycle, by

managing the artifact list, document creation, and

document reviews. Tracing between marketing

requirements and Use Cases has not been tested,

although the group was able to successfully import a

list of requirements into the artifact repository. In

addition, the Test Group was able to develop test cases

and trace them to the Functional Requirements. The

traceability tool has been running successfully for the

last six months.

According to feedback from the architects, the

traceability tool is a welcome change to the Architect

Group since performing their traceability tasks are now

much easier than before. These preliminary results

suggest that architects are now more efficient since

their tasks are now integrated into the workflow and

since process overhead has been minimized. Although

none of the architects received any training in using

the site, they still successfully performed their tasks.

Furthermore, document obsolescence and multiple data

entry have been largely eliminated.

Due to the success of the traceability tool, the

company plans to deploy the tool to the rest of the

organization. Wonderware is willing to fully adopt the

tool since the tool provides the substantial benefits of

traceability at low maintenance costs. In addition, the

cost of deployment is low. The traceability tool is a

web-based application where users can simply

download the latest version of a deployed code or

macro.

3.2. Guidelines Overview

The guidelines presented in this paper are not meant

to replace existing traceability techniques, but rather to

complement them. The purpose is to provide insights

in approaching a traceability problem in an industrial

setting.

Our aim is to provide an end-to-end requirements

traceability approach. Although we do not necessarily

cover each development phase, we select key global

trace artifacts that help us validate that the stated

requirements have been fulfilled globally.

While parts of the traceability tool are still in

development, we have identified key lessons which

have contributed to the success of our approach within

the Wonderware organization. We present the lessons

we learned as guidelines. These lessons reinforce

some current approaches in traceability while

challenging others. In addition, we have formulated

new ideas to meet company-specific requirements.

The guidelines are ordered from organization-level

guidelines to tool-specific guidelines.

Figure 2: Guidelines ordering

4. Guideline: Minimize Cost

4.1. Rationale

Given that we were developing a traceability tool in

a real-world setting with concrete goals and hard

deadlines, the main justification for undertaking the

traceability project at Wonderware is to minimize cost.

There are two main costs: 1) the number of labor hours

to train users to adopt a traceability strategy and the

number of labor hours to establish and maintain

traceability; and 2) the cost of purchasing or

developing a traceability tool. We designed our

approach with cost-minimization as our primary goal.

In retrospect, this guideline proved to be a key idea in

designing a practical and feasible approach.

Since Wonderware opted to develop a home-grown

traceability tool, it is important to minimize the cost of

tool evolution as well. We adopted an approach where

the tool can be easily modified to reflect changes in

actual processes (See Section 6).

4.2. Implementing Low-Cost Traceability
tool

Implementing a low-cost traceability tool is a high

level organizational goal that spawned some of the

other guidelines that we discuss below. For example,

minimizing the number of labor hours in performing

traceability tasks can be achieved by supporting

existing work practices. We also adopted a “just

enough traceability” strategy. How is this strategy

operationalized?

First, there must be a benefit derived from each

traceability link established. For example, tracing a

requirement to a Use Case identifies to the customer

that a specific requirement has been implemented.

Adding another link from the Use Case to a passed

Test Case proves to the customer that the requirement

has been tested. In this situation, establishing links to

implemented code is unnecessary since there is no

added value.

Second, the “just enough traceability” point is

achieved when the trace information enables users to

accomplish specific tasks. For example, if architects

can easily identify which requirements have not been

mapped to Use Cases, this provides them a list of

remaining requirements they must analyze. In

addition, if project managers can easily obtain an

accurate status report of a specific project, then an

adequate process traceability support has been

provided.

To lower the cost of maintaining a traceability tool,

Wonderware is phasing out the commercial traceability

tool they were using. The company also leveraged

existing company-owned tools as a platform for

developing the traceability tool: MS SQL, MS

SharePoint, etc. Using MS SharePoint was beneficial

since client access is web-based, lowering the cost of

deployment. MS SharePoint functionality can be

extended using WebParts, independent components

embedded on a SharePoint webpage.

4.3. Related Research

Minimizing cost implies a cost/benefit analysis in

adopting a traceability approach. This is consistent

with prioritizing artifacts according to stakeholder

values [3] and assigning values to trace links [7].

Minimizing cost also reinforces the “trace for a

purpose” strategy in [5].

5. Guideline: Bound the Problem Space

5.1. Rationale

Whereas minimizing cost tackles the traceability

problem from an economic standpoint, bounding the

problem space tackles the problem from a technical

viewpoint. We adopted this guideline from [6]. Since

the overall goal is to achieve end-to-end requirements

traceability, constraining the types of trace artifacts

becomes even more important. Not only is too much

traceability unnecessary, but it may cause more harm

than good. Excessive traceability increases the chance

of inaccurate traces, and a few inaccurate traces can

throw into question the validity of all the other traces

[8].

The types of requirements artifacts to trace are

artifacts specified in the company standard operating

procedures to achieve requirements traceability. Not

only do these artifacts represent various phases in

development spanning the entire lifecycle, they also

act as interfaces between group boundaries.

Cooperation between various groups is enhanced by

conforming to a bounded set of published artifacts.

For example, the Architect Group publishes a list of

Use Cases (UCs). The Development Team takes this

published list of artifacts and produces another set of

artifacts, namely code. The Architect Group has

complete control over tracing artifacts at a finer level

of granularity, as long as they trace to the list of UCs.

In the same token, the Development Team may also

establish finer granularity traces, but they must trace

back to the UCs. Thus, each group is free to

implement their own localized trace artifacts, given

that they trace to the company stated global trace

artifacts. A discussion of how this supports work

practices follows in the next section.

In retrospect, the distinction between global and

local trace artifacts is an important insight. Identifying

a few types of global trace artifacts enables end-to-end

traceability at the organization level while localized

traces distributes traceability tasks among different

groups. Essentially, this distinction allows us to bound

the problem space at various levels of granularity.

The types of process artifacts to trace are Product,

Project and Features. A Product is a collection of

Projects while a Feature is a collection of Use Cases.

We limit our scope to tracing artifacts at the Project

level, while supporting Project traces to the Product

level.

5.2. Identifying Global Trace Artifacts

Setting bounds on the problem space includes the

identification of global trace artifacts. We identified

two sets of global trace artifacts: requirements trace

artifacts and process trace artifacts. Requirements

trace artifacts include Marketing Requirements

(MRQ), Use Cases (UCs), Functional Requirements

(FRs), and Test Cases (TCs). The relationships

between these artifacts are shown in Figure 3. These

artifacts are also related to process trace artifacts which

include Product, Project, and Feature information (see

Figure 5). End-to-end requirements traceability is

achieved since artifacts are related from requirements

all the way to test cases.

Figure 3: Requirements Trace Artifacts

5.3. Related Research

Bounding the problem space builds on the approach in

[6] where a project manager defines trace data types.

We added the distinction between global trace artifacts

(organization level) and localized trace artifacts (group

level).

6. Guideline: Support Existing Work
Practices

6.1. Rationale

Since the company is concerned with process

traceability, capturing existing practices and

formalizing it into a workflow was emphasized by key

users from the start of the project. As we previously

mentioned, an effective end-to-end traceability strategy

requires cooperation between various groups within

Wonderware. This is achievable if the approach

supports existing work practices. Any traceability

tasks that users may have to do must be integrated with

their existing tasks to ensure that the task is

accomplished. In addition, showing users they directly

benefit from performing the traceability task minimizes

the distaste for establishing and maintaining

traceability [13] and increases the likelihood that the

trace information they provide is accurate.

Providing process support also enables work

processes to be standardized across organization. This

eliminates the need for ad-hoc workarounds and

supports organizational knowledge. Standardizing the

process especially helps raise the visibility of actual

process to remote users or groups in different

geographical locations. Thus, a group in Australia can

participate in the development processes in Lake

Forest.

Another advantage to supporting the current work

process is the increased productivity of users.

Providing automated support to manual tasks increases

the efficiency of users. In addition, streamlining the

flow of work as a task list lessens the cognitive load of

users.

Furthermore, supporting existing work practices

enables process traceability. This is essential to

collecting meaningful data for project management.

Figure 4: Task List

6.2. Supporting Software Development Life
Cycle with a Workflow

Requirements traceability is closely tied to process

traceability in Wonderware. The production and

consumption of trace artifacts are linked to various key

users who follow a specified process. Understanding

the process provides insights on how to incorporate

traceability tasks into existing tasks such that it does

not impose heavy burdens on users, minimizing cost in

terms of required man hours. Thus, once the global

trace artifacts were determined, we identified key users

as well as high level tasks that the workflow will

support. We selected to implement the workflow in

MS SharePoint since it has built-in process support

(e.g. document reviews) and it integrates well with

other tools used (e.g. MS Office).

We designed the workflow to cater to various key

users. Producers of trace information are marketing

group, architects, project managers, and test managers.

Consumers of trace information are the executive

group, developers, test engineers, and external

auditors.

Once the high level tasks were identified, they were

further subdivided into independent lower level tasks.

We emphasize “independent” since this minimizes the

cost of evolving the workflow to support process

changes. Independent subtasks were implemented as

separate functions that can be added, modified, or

removed independently of each other. We wrote these

functions as ASP WebPart components embedded into

a MS SharePoint web page. There is no ordering

imposed on the tasks. Users are presented with a task

list (see Figure 4) which links to another screen that

provides the functionality to help them accomplish that

specific task.

Figure 5 shows how the different artifacts are traced

and how the workflow supports the creation and

maintenance of these artifacts.

Figure 5: Software Traceability Model

6.3. Related Research

Few approaches take a process-oriented approach to

traceability. Process traceability is coupled with

requirements traceability in [16]. However, the focus

is on the requirements phase. [6] is also a related

approach although it focuses more on an organization

learning from experience to identify trace artifacts,

rather than supporting actual work practices to achieve

an end-to-end traceability throughout the software

lifecycle. Knowledge-Based Software Assistant

(KBSA) provides process support for the software

development life cycle [9]. KBSA describes an

integrated tool support that includes a Project

Management (PM), Work Breakdown Structure

(WBS), and a hyper-media tool (IBIS). While it

provides traces between a specified set of information

(issues, arguments, and positions), it does not provide

requirements traceability.

7. Guideline: Enter Information Once

7.1. Rationale

Due to the difficulties encountered in reconciling

multiple representations of the same artifact, we

adopted this guideline in designing the traceability

tool. Entering artifact information in multiple tools not

only requires extra labor hours to enter the same

information multiple times, but it also adds an

additional overhead of ensuring that these artifacts are

consistent with each other. Due to heterogeneous tools

used in supporting the development process, it

becomes impossible to enter the information once

since the tools do not interoperate.

Entering information once does not only apply to

having an artifact stored in different tools. It also

applies to information entered in one phase being

carried over to another phase. For instance, in the

planning phase, provisional Use Cases are created

without a unique identifier. During the design phase

the list of provisional Use Cases are revisited, with

some being accepted and others rejected. The

accepted Use Cases are then assigned a unique

identifier. This ensures that artifacts created earlier in

the phase do not “slip through the cracks” until the

testing phase uncovers the problem.

7.2. Centralizing Artifact Storage

Instead of storing artifacts in multiple tools, we

centralized artifact storage in several MS SQL

databases: MRQs are stored in a database owned by

the Marketing Group, UCs and FRs are stored in a

database owned by the Architect Group, and TCs are

stored by the Test Group. In addition, process artifacts

(Product, Project, Features) are stored in a database

owned by the Project Managers. Since the traceability

software tool is owned by the Architecture Group, the

tool has read only access to the other groups’

databases.

Tracing between distributed artifacts is possible as

long as each group abides by the unique identification

of the published artifacts. That is, a unique ID

assigned to published artifact will never change. The

relationship between artifacts is specified in Figure 3.

7.3. Related Research

Having redundant data is one of the main problems

of traceability [24], causing additional overhead of

reconciling data [23]. Another method of enabling

entering information once is through the information

integration approach [23]. This supports traceability

between heterogeneous artifacts by translating them to

a homogeneous representation. Once inside the

homogeneous environment, traces can be

automatically generated using a set of rules. In the

case of Wonderware, this environment can be used to

maintain traces, but not in establishing traces.

Mapping the key artifacts is based on architects’

requirements analysis and is difficult to automate. The

next guideline discusses this issue further.

8. Guideline: Automate Only When
Necessary

8.1. Rationale

Due to time constraints and the necessity to have

the framework of the software traceability tool up and

running quickly, we identified which tasks must be

automated right away, which tasks can be automated

but can wait, and which tasks do not need to be

automated at all. In retrospect, this analysis proved

useful not only in the short-term, but also in the long-

term as far as understanding the limitations of

automating traceability tasks.

High priority tasks for automation included

maintaining consistency between different

representations of the same artifact, bulk manipulation

of artifacts, and automatic generation of reports. In

order to migrate data to the traceability tool, it was also

necessary to automate the extraction of artifacts from

legacy documents.

Although automation can greatly alleviate the cost

of traceability, there are cases when manually

establishing traces is not only acceptable, but

necessary. In the case of Wonderware, Architects are

in charge of translating requirements (MRQs) to

implementable modules (UCs), and later ensuring that

the implementation meets the requirements. Thus, the

manual mapping between MRQs and UCs is part of the

Architects’ task of requirements analysis and does not

need to be automated.

It is important to know when automated support is

appropriate. Automation is necessary for tasks that are

tedious and error prone if manually done. This is the

case in manually maintaining consistency between

various forms of an artifact. For instance, a marketing

requirement is represented in two forms: a list form

stored as a table and a verbose form stored as a Word

document. Maintaining consistency between the same

artifacts in different representation qualifies for

automation.

Document automation, which involves the use of

embedded macros, is also necessary to ensure

consistency between an artifact stored in various

documents and avoiding document obsolescence. This

automation is necessary at Wonderware since there are

thousands of documents to manage. Document

automation also aids in extracting artifacts from legacy

documents that do not conform to the current

templates.

8.2. Maintaining Consistency Using
Document Automation

Since artifacts may have multiple representations,

and manually reconciling between representations is a

tedious task, we provide automated support in our tool.

One of the ways we achieve this is via document

automation with Word macros. Using macros

embedded in Word document templates, we can

extract artifacts using a set of criteria (i.e. using

keywords). The extracted artifacts are checked by a

user to ensure that they are valid trace artifacts. Once

they are checked, they are saved to the database.

We also use Word macros to implement

bidirectional updates between the artifact stored in the

database and the artifact represented as a document.

Thus, whenever a document is opened, it checks the

database for the latest version of the artifact. Once the

user closes the Word document, the artifacts are

automatically updated in the database. (Note: artifacts

may also be manipulated outside the Word document

through various forms related to the workflow support.

Since these changes are automatically reflected back to

the database, it is important to have automated support

to update the corresponding artifacts represented as a

Word document.)

In addition, since Wonderware has hundreds of

legacy documents not associated with a template, we

also used macros to extract trace artifacts in order to

migrate the documents to the current template. It was

doable to extract trace artifacts from Word documents

since they were tagged. For example, each Functional

Requirement in a Detailed Functional Specification

document is labeled as “FRxxx” where “x” is a unique

number assigned.

8.3. Related Research

Automating traceability tasks has its limitations

[11]. For instance, automatically generating trace links

is only as accurate as the user input [7]. Most of

traceability approaches deal with establishing

traceability links after the fact, and not during the

generation of artifacts to support the software

development life cycle [11]. The different types of

automated support available include 1) automated

generation of traceability links such as in [23] [21] [1];

and 2) traceability link support for automated queries

[5] which is concerned with traversing the related

traces. Although item (1) is useful in the context of

discovering traces for software maintenance, it does

not apply to Wonderware where traces are established

when artifacts are created. According to the

classification in [5], our traceability tool provides

semi-automated queries in that a set of traced artifacts

are returned. Event-based traceability (EBT) provides

automatic notification to traced artifacts that a related

artifact has changed, although consistency is not

enforced [4]. [20] is a commercial traceability tool that

provides limited support for maintaining consistency

between an artifact stored as a Word document and an

artifact stored within a tool. In contrast to our

traceability tool, change updates only flow in one

direction, from the Word document to the commercial

tool.

9. Discussion and Future Work

Designing a software traceability tool in the context

of an actual software development setting presented

several subtle and complex challenges. The tool must

clearly demonstrate end-to-end requirements

traceability, have a high return on investment, and gain

organization-wide acceptance. The wide range of

potential users, from upper management to test

engineers to external auditors, prompted us to take a

comprehensive view of traceability. The insights

presented in this paper are both adaptations of current

approaches in literature and novel ideas that resulted

from discussions with key users. A process-oriented

approach to requirements traceability not only supports

users in accomplishing their tasks, but it also

encourages users to adopt the traceability tool. The

identification of a few types of global artifacts

mitigates the complexity associated with traceability.

Differentiating between global and local trace artifacts

means that various groups maintain full ownership of

their localized trace artifacts while the organization

achieves a high level end-to-end requirements

traceability. Automation is limited to replacing

burdensome tasks associated with traceability, such as

maintaining consistency between various

representations of an artifact.

Since the approach described has only been

evaluated in one software development setting, it is

worthwhile to test whether these ideas hold in other

contexts. Other aspects of traceability such as tracing

non-functional requirements and tracing between

different levels of abstraction of an artifact (general to

detailed) are open issues. In addition, tracing artifacts

through the maintenance phase has not been

considered in our approach.

10. Acknowledgements

We would like to thank Jim McIntyre, the Systems

Architect at Wonderware, for driving the traceability

project and for all the insightful discussions.

11. References

[1] Antoniol, G., Caprile, B., Potrich, A., & Tonella, P.,

“Designcode traceability recovery: selecting the basic

linkage properties”, Sci. of Comp. Programming, 2001, 40,

pp. 213–234,

[2] Alexander, I., “Towards Automatic Traceability in

Industrial Practice”, Proc. of the First Intl. Workshop on
Traceability, 2002, pp 26-31.

[3] Boehm B., & Huang, L.G., “Value-based software

engineering: a case study”, Computer, 36, 3, pp. 33-41.

[4] Cleland-Huang J., Chang C.K., & Christensen M, “Event-

based traceability for managing evolutionary change”, IEEE
TSE, 29, 9, Sept. 2003, pp.796-810.

[5] Cleland-Huang J., Zemont G., & Lukasik W., “A

heterogeneous solution for improving the return on

investment of requirements traceability”, Proc.. 12th IEEE
Intl. Conf. Requirements Engineering, 2004, pp. 230-239.

[6] Domges R., & Pohl K., “Adapting traceability

environments to project specific needs”, CACM, 41, 12, Dec.

1998, pp.54-62.

[7] Egyed, A., Biffl, S., Heindl, M., & Grunbacher, P., “A

Value-Based Approach for Understanding Cost-Benefit

Trade-Offs During Automated Software Traceability”, Proc.
of the 3rd Intl. workshop on Traceability in emerging forms of
software engineering, Long Beach, CA, 2005, pp.2-7.

[8] Egyed, A., “A Scenario-Driven Approach to

Traceability”, Proc. of ICSE 2001 (ICSE 23), pp.123-32.

[9] Gerken, M.J., Roberts, N.A., & White D.A., “The

knowledge-based software assistant: a formal, object

oriented software development environment”, Proc. of
NAECON 1996. 2, New York, NY 1996, pp.511-18.

[10] Gotel, O.C.Z., & Finkelstein, C.W., “An analysis of the

requirements traceability problem”, Proc. of the First Intl.
Conference on Requirements Engineering, 1994, pp.94-101.

[11] Hayes, J. H., & Dekhtyar, A., “Humans in the

Traceability Loop: Can’t Live with ‘Em, Can’t Live Without

‘Em”, Proc. of the 3rd Intl. workshop on Traceability in
emerging forms of software engineering, Long Beach, CA,

2005, pp.20-23.

[12] IEEE Standard Computer Dictionary, IEEE, New York,

NY, Jan 1991.

[13] Jarke, M., “Requirements Tracing”, CACM, 41, 12, Dec.

1998, pp. 32-36.

[14] Leffingwell, D., & Widrig, D., “The Role of

Requirements Traceability in System Development”,

http://www-106.ibm.com/developerworks/rational/library/

content/RationalEdge/sep02/TraceabilitySep02.pdf, Viewed

Sep 5, 2006.

[15] Wallace, D., Ippolito, L., “A Framework for the

Development and Assurance of High Integrity Software”,

NIST Special Publication 500-223, Dec 1994, Taken from

http://hissa.nist.gov/publications/sp223/ on Sep 5, 2006.

[16] Pohl, K., Process-Centered Requirements Engineering,
Advanced Software Development Series, J. Wiley & Sons

Ltd., Taunton, England, 1996.

[17] Pohl, K., Brandenburg, M., & Gulich, A., “Integrating

Requirement and Architecture Information: A Scenario and

Meta-Model Based Approach”, 7th Intl. Workshop on Reqts.
Engr, 2001

[18] Ramesh, B. “Factors Influencing Requirements

Traceability Practice”,CACM, 41, 12, Dec. 1998, p. 37.

[19] Ramesh B., Powers T., Stubbs C., & Edwards M.

“Implementing requirements traceability: a case study”,

Proc. 2nd IEEE Intl. Symp. on Reqts. Engr,1995, pp. 89-95.

[20] IBM Rational Requisite Pro, http://www-306.ibm.

com/software/awdtools/reqpro/, Viewed Sep5, 2006.

[21] Richardson, J., & Green, J, "Automating traceability for

generated software artifacts", Proc. of the 19th Automated
Soft. Engr. Conf. (ASE), Linz, Austria, 2004, pp.24-33.

[22] Taken from Rolland, C., & Prakash, N., “From

conceptual modeling to requirements engineering”, Annals of
Software Engineering, 10(1-4), 2000, pp. 151-176.

[23] Anderson, K. M., Sherba, S. A., & Lepthien, W. V.,

"Towards Large-Scale Information Integration", Proc. of the
24th Intl. Con. on Software Engineering, May 2002.

[24] Singleton, M. Automating Code and Documentation
Management. Prentice-Hall, Inc. New Jersey. 1987.

[25] Strothman, J., “Wonderware Pioneer Pitsker Wins ISA

Life Achievement Award”, Intech, August 2006, p. 64.

12. Keywords

Requirements Traceability, Process Traceability, End-To-

End Traceability.

	UCI-ISR-06-16-cvr
	UCI-ISR-06-16-abs(2)
	AsuncionFrancoisTaylor_TechReport

