
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Thomas A. Alspaugh Kristina Winbladh
University of California, Irvine University of California, Irvine
alspaugh@ics.uci.edu awinblad@ics.uci.edu

Susan Elliott Sim Hadar Ziv
University of California, Irvine University of California, Irvine

 ses@ics.uci.edu ziv@ics.uci.edu

Mamadou Diallo Debra J. Richardson
University of California, Irvine University of California, Irvine

 mdiallo@uci.edu djr@ics.uci.edu

The Importance of Clarity in Usable Requirements
Specification Formats

September 2006

ISR Technical Report # UCI-ISR-06-14

Institute for Software Research
ICS2 110

University of California, Irvine
Irvine, CA 92697-3455

www.isr.uci.edu

ISR Technical Report UCI-ISR-06-14 — September 2006

The Importance of Clarity in Usable Requirements Specification Formats

Thomas A. Alspaugh Susan Elliott Sim Kristina Winbladh Mamadou H. Diallo
Leila Naslavsky Hadar Ziv Debra J. Richardson

Institute for Software Research
Department of Informatics

University of California, Irvine
{alspaugh,ses,awinblad,mdiallo,lnaslavs,ziv,djr}@ics.uci.edu

Abstract

Clarity is underappreciated as a requirements specification quality attribute. We studied the clarity of requirements forms,
operationalized as ease of problem detection, least obstructive to understanding, and understandability by stakeholders.
A set of use cases for an industrial system was translated into sequence diagrams and ScenarioML; problems identified
during each translation were noted, and system stakeholders were interviewed and given a questionnaire on all three forms.
The data showed that ScenarioML best supported requirements clarity, then sequence diagrams but only for stakeholders
experienced with them, and finally use cases as the least clear form. Use cases were preferred for non-technical stakeholders
to write; sequence diagrams were most effective for details of individual events and for showing interaction with architectural
components; with ScenarioML preferred in all other situations.

ISR Technical Report UCI-ISR-06-14 — September 2006

The Importance of Clarity in Usable Requirements Specification Formats

Thomas A. Alspaugh Susan Elliott Sim Kristina Winbladh Mamadou H. Diallo
Leila Naslavsky Hadar Ziv Debra J. Richardson

Institute for Software Research
Department of Informatics

University of California, Irvine
{alspaugh,ses,awinblad,mdiallo,lnaslavs,ziv,djr}@ics.uci.edu

Abstract

Clarity is underappreciated as a requirements specifi-
cation quality attribute. We studied the clarity of require-
ments forms, operationalized as ease of problem detection,
least obstructive to understanding, and understandability
by stakeholders. A set of use cases for an industrial system
was translated into sequence diagrams and ScenarioML;
problems identified during each translation were noted, and
system stakeholders were interviewed and given a question-
naire on all three forms. The data showed that Scenario-
ML best supported requirements clarity, then sequence dia-
grams but only for stakeholders experienced with them, and
finally use cases as the least clear form. Use cases were
preferred for non-technical stakeholders to write; sequence
diagrams were most effective for details of individual events
and for showing interaction with architectural components;
with ScenarioML preferred in all other situations.

That I require a clearness: and with him to leave no rubs
nor botches in the work – The Tragedy of Macbeth, Act 3
Scene 1, by William Shakespeare

1. Introduction

High quality requirements are critical to the success of
a software project, because all other development activi-
ties depend on them [5, 6, 8]. Consequently, it is of ut-
most importance that requirements are clear and usable, so
that stakeholder needs are readily found and understood,
and mistakes and misunderstandings are avoided. An im-
portant limiting factor on the clarity of requirements doc-
uments is the clarity of requirements specification formats.
While properties such as expressibility, analyzability, and
completeness are generally accepted as desirable, clarity
has been little studied in the context of requirements doc-
uments or requirements specification formats.

In this paper, we report on an empirical study that evalu-
ates three requirements specification formats, use cases, se-
quence diagrams, and our own ScenarioML, for their clar-
ity. Our operational definition of clarity, gleaned from mul-
tiple dictionaries and thesauri, is as follows: (1) readily
seen, perceived, or understood, (2) distinctness of vision,
sound, expression, comprehension, and (3) freedom from
anything obstructive. From this definition, we derive the
following three research questions: (1) Which format more
readily permits the detection of problems in requirements?
(2) Which format has a structure that least obstructs under-
standability? and (3) Which format do stakeholders find
more clear? The first phase of our study was concerned with
evaluating the capabilities of the formats, the relative fre-
quency of problems, and ease of use. The second phase of
our study involved presenting the different representations
to stakeholders to ask them about their preferences and also
to test them on how well they could read and understand the
different formats.

We began by creating requirements documents for a sys-
tem in three different formats. The system was Mirth, an
open source middleware system for integration of health-
care applications, developed by WebReach. The initial re-
quirements elicitation was performed using use cases and
these were used as a baseline during the first phase of the
study. We then transformed the use cases independently
into two other formats: sequence diagrams, and Scenario-
ML. We performed the transformation step in order to set
up a fair comparison for the two formats, with a common
starting point that serves as a single source of information.
This translation was performed by two graduate students
and as they worked, they recorded the problems, issues,
and unresolved questions in the use cases that each trans-
lation uncovered. Finally, we presented these documents
to three Mirth stakeholders. We interviewed them to un-
derstand their overall experience with these formats and as-
sessed their ability to answer questions about requirements
presented in each of the formats.

ISR Technical Report UCI-ISR-06-14

The data from both phases of the study showed that the
ScenarioML format was the most clear, followed by use
cases, followed by sequence diagrams. In general, the stu-
dents were able to detect more problems, such as inconsis-
tency, when transforming use cases into ScenarioML than
when transforming them into sequence diagrams. While it
was easier to detect high-level problems with ScenarioML,
it was easier to detect problems with low-level details in se-
quence diagrams. Stakeholders also preferred ScenarioML
over use cases, and over sequence diagrams. They found
ScenarioML more clear and would choose to use this for-
mat, except in specific situations, such as showing commu-
nication between different levels of an architecture.

The rest of the paper is organized as follows. Section 2
discusses related work. Section 3 introduces the three for-
mats used in our study. Section 4 presents the method used
in our empirical study and Section 5 presents the results.
The discussion and analysis of the results is presented in
Section 6 followed by lessons learned in section 7. The pa-
per ends with conclusions and future work in section 8.

2. Related Work

Many textbooks and papers discuss desirable quality at-
tributes of requirements documents and formats. Most no-
tably, IEEE Standard 830 for Software Requirements Spec-
ification (SRS) states that a “good” SRS should be correct,
unambiguous, complete, consistent, ranked for importance,
verifiable, modifiable, and traceable [1]. Interestingly, the
IEEE Standard does not include clarity as desirable char-
acteristic of a good SRS. However, a standard textbook on
software engineering gives lack of clarity as one of the top
problems that arise when requirements are written in natural
language sentences [10, page 127]. There has been little in-
vestigation of clarity as a quality attribute of requirements.
We know of only one contribution that focuses on clarity,
the CLEAR (Cognitive Linguistic Elicitation and Represen-
tation) method for writing requirements and a case study
where CLEAR was applied to the requirements for a med-
ical device [11]. While CLEAR focuses specifically on the
language used in requirements, we are examining the im-
portance of clarity in the specification formats.

In recent years there has been a growing interest in evalu-
ating the various research contributions in requirements en-
gineering, as is evident is the series of CERE (Comparative
Evaluation in Requirements Engineering) workshops, now
in its fourth year. This field is in its infancy in requirements
engineering, and empirical methods are still being estab-
lished. Our study will use both a comparative approach as
well as an industrial subject systems and professional soft-
ware engineers.

Our paper follows the GQM (Goal Quality Metrics)
approach to measurement and evaluation as described by

Basili et al. [3]. In GQM, an empirical study or comparative
evaluation must first specify the goals for itself, then it must
trace those goals to the data that identifies those goals op-
erationally, and finally provide a framework for interpreting
the data with respect to stated goals. Thus, GQM employs a
measurement model with three levels, namely a conceptual
level (goals), an operational level (questions), and a quanti-
tative level (metrics).

3. Requirements Specification Formats

3.1. Use Cases

A use case is a description of a sequence of interactions
between the system and one or more external actors that re-
sults in an outcome that provide value to at least one actor.
According to Alistair Cockburn [7], a use case “describes
the system’s behaviors and interactions under various con-
ditions as a response to a request on behalf of one of the
stakeholders – the primary actor – showing how the primary
actor’s goal gets delivered or fails.”

Use cases are fundamentally a structured text form, typ-
ically written using a use case template. The use-case au-
thor fills in text fields such as use case name, goal, brief de-
scription, pre- and post-conditions, and normal, alternative,
and exceptional flows. Thus, a use case typically contains
multiple scenarios, each representing a specialization of the
actors stated goal, or alternative paths by which the actor
could reach that goal.

3.2. Sequence Diagrams

Sequence Diagrams are dynamic UML diagrams that
document, for each use case, the sequence of object in-
teraction that take place. They are typically used during
analysis and design activities but, much like use cases, have
been used at many different levels of detail and abstraction,
even as replacement for and in lieu of use cases. They illus-
trate the interplay between multiple actors and the system
during execution of a use case, by showing the interaction
and message passing between those actors and software ob-
jects in the system. The objects involved in the interaction
are arranged horizontally, while time progresses vertically.
Therefore, the messages or operations can be followed in
sequence by reading the diagram from top to bottom.

3.3. ScenarioML

ScenarioML is a language for scenarios, designed to
be read and written by people, while also accomodating
machine processing. ScenarioML uses a combination of
recursively-defined events, ontologies, references, and sce-
nario parameters to make scenarios that are more clear,

2

ISR Technical Report UCI-ISR-06-14

Figure 1. Scenario in human-oriented HTML
form

more useful, and more effective. The basic element of a
ScenarioML scenario is an simple event that describes in
words one thing happening in the world. A compound
event, groups several events to describe several things hap-
pening in the world in a particular sequence (or other
more complex temporal relation). Allen’s interval alge-
bra relations express the temporal relationships among the
subevents. An event schema compactly expresses a group
of possible event combinations, for example as an iteration
representing any of several chains of an event repeated some
number of times, and an alternation representing any one of
a group of alternative events. Finally, an episode uses an
entire scenario as one event of another scenario. Figure 1
shows a ScenarioML scenario incorporating several of these
kinds of events.

A ScenarioML ontology defines technical or specialized
terms of concepts, a set of types of entities in the world,
named instances of such types, and relationships among
types. Links from words and phrases in the scenario to
definitions in an ontology adds greater clarity to the text.
The ScenarioML language currently defines its own ontol-
ogy definition constructs rather than using an established
ontology language because we are still investigating the ex-
tent to which automatic processing of scenarios can make
use of ontological information.

ScenarioML also supports references to new entities cre-
ated or identified during the course of a scenario’s events.

Figure 2. ScenarioML scenario (excerpt)

This allows a scenario author to be clear about entities, and
is particularly useful for scenarios in which two of the same
kind of entity are discussed. An example in point from the
current study is the scenario “Add/Edit/Delete Users”, in
which the actor (who is a user) can add a new user, edit a
user (including himself), and delete a user (but not himself).
There are a number of references to a ‘user’ in this scenario,
but not all to the same user. ScenarioML references allow
this to be done unambiguously.

ScenarioML provides scenario parameters for adapting
a scenario to different contexts. Each episode that reuses a
scenario binds its parameters to arguments appropriate for
that context and use. The type of each parameter, i.e. the
set of its possible arguments, is specified as a type defined
in an ontology.

ScenarioML is defined in an XML representation of
which an example is seen in Figure 2. The definitions
of the ScenarioML constructs allow software tools to read
and operate on them, performing tasks such as checking that
references are grounded in definitions and transforming a
scenario with alternations into one with all choices made
(both implemented at this writing); inlining an episode by
replacing it with the corresponding scenario events with ar-
guments substituted for parameters, or the reverse process
of abstracting a new scenario from a compound event given
a desired list of scenario parameters; unrolling a fixed iter-
ation, or rolling up a chain of repetitions of an event; merg-
ing two or more scenarios using alternations for their differ-
ences; and other scenario refactorings and specializations.
Automated transformations such as these help scenario au-

3

ISR Technical Report UCI-ISR-06-14

thors and readers verify their understanding of a scenario
and edit scenarios more efficiently and with confidence that
the intended meaning will be expressed.

ScenarioML has been the basis of work with autonomous
animated social agents, [4], and in a novel visualization
of software scenarios as social interactions between au-
tonomous animated agents generated automatically from
the scenario text [2]. The principles behind Scenario-
ML have been applied in an approach for goal-driven
specification-based testing, in which the lower-level goals
for a system are organized into plans for achieving higher-
level goals and tested against them[12].

4. Method

Our goal was to investigate the clarity of three require-
ments formats and the documents written using these for-
mats. Using a GQM approach, we began with a the defi-
nition of clarity given in the introduction and derived three
research questions.

1. Which requirements format most readily permits the
detection of problems?

2. Which requirements format has a structure that least
obstructs understanding?

3. Which requirements format do stakeholders find more
clear?

Goal

Questions

Metrics

Examine the clarity of requirements
specification format

Permits the
detection of
problems

Least
obstructs

understanding

Most easily
understood by

stakeholder

Number of
problems

Type of
problems

Stakeholder
preference

Stakeholder
performance

Figure 3. GQM diagram

To answer these questions, we conducted a two-part em-
pirical study. In this study, we created and studied the re-
quirements for a single system, Mirth, expressed in three
different formats, use cases, sequence diagrams, and Sce-
narioML. In the first part, we examined the clarity of the
formats when creating requirements documents. The met-
rics that we collected were the effort required to produce
the documents, and the number and types of problems en-
countered when creating the documents. To this end, the
participants kept minute-by-minute logs while they worked.

In the second part, we examined the clarity of the formats
when being read by stakeholders. The metrics that we col-
lected were their subjective statements about their experi-
ences with the documents and their objective performance
in answering questions that tested their understanding of the
documents presented in different formats. See Figure 3 for
relationships between goal, questions, and metrics.

In the remainder of this section, we will describe in detail
the procedure that we used in our empirical study.

4.1. Subject System

The study uses requirements for the Mirth system from
WebReach. The use cases in our study were developed
for WebReach as part of a student project. Mirth is an
open source cross-platform HL7 interface engine that en-
ables bi-directional transfer between systems and applica-
tions over multiple transports. HL7 is the primary soft-
ware language of Health Information Systems. Mirth has
a channel-based architecture and allows messages to be fil-
tered, transformed, and routed based on user-defined rules.

4.2. Requirements Creation

In this part of the study, we investigated the clarity of the
requirements format during creation of documents. In order
to eliminate differences in the elicitation of requirements,
we used a set of use cases as a starting point and trans-
lated them into two other formats, sequence diagrams and
ScenarioML. By limiting our study to a translation activity,
we were able to focus on the effort of writing a require-
ments document in a particular format, thereby enabling a
fair comparison of the creation effort. Also, by restricting
the initial information source, the translation would reveal
problems and the clarity of the formats.

We chose sequence diagrams, because they are well
known and widely used. While the other two formats are
textual, we deliberately included a graphical format to draw
out their relative merits. We chose to use ScenarioML, be-
cause we wanted to conduct a formative evaluation and it is
similar in structure to use cases, but with additional features
to support analysis. In this sense, ScenarioML is more com-
plex than use cases, but produces documents that are more
straightforward, because event chains are linear.

4.2.1 Procedure

In this part of the study, we translated requirements from a
set of use cases to sequence diagrams and to ScenarioML.
We collected data on both the process and the outputs of the
translation. The logic of using a transformation step is that
we could have a pair of comparable operations. Figure 4
depicts the procedure that we used to conduct the transfor-
mation and analysis.

4

ISR Technical Report UCI-ISR-06-14

Use Cases

Sequence Diagram

Problem Analysis

ScenarioML

WebReach

Student L Student K

Student M Student M

Figure 4. Transformation & analysis process

Student L translated the use cases to sequence diagrams.
A second student, K, translated the use cases to Scenar-
ioML. They both kept minute-by-minute logs while they
worked that contain time-stamped problems discovered by
the students and general descriptions of how they accom-
plished the translation. A third student, M, analyzed the
logs and the artifacts produced to identify the number and
types of problems encountered. He identifed the types of
problems by inducing categories from the data, as is done
in a Grounded Theory approach [9].

4.2.2 Participants

The two students that participated in the translation task
were selected because they were familiar, but not expert,
with both the source and target specification formats, so that
their levels of expertise would not be a factor in comparing
their results. Each had a small amount of high-level famil-
iarity with Mirth but had not read the use cases. Student M
had experience in the analyzing process and product data,
as well as conducting comparative evaluations.

4.3 Stakeholder Experience

In the second part of the study, we presented the three
formats for evaluation by three stakeholders. We were able
to use all three formats in this part of the empirical study,
because the stakeholders were only presented with the final
documents. They were asked about their impressions of the
formats in an interview and then tested on their ability to
understand them.

4.3.1 Procedure

Each interview was conducted individually and lasted for
about one hour. We began by asking them about their im-
pressions and experiences with the formats. We then gave
each participant a small test to assess the clarity of the three
formats. Each participant was given three different sections
of the requirements, presented in one of three formats, and

asked questions to probe their understanding. We asked
questions to see if they fully grasped complex interactions,
understood potentially confusing material, and detected er-
rors. The three problems were carefully selected, because
each contained a potential problem in clarity.

Problem 1: Add/Edit/Clone/Delete a Channel This
use case was complex and involved inter-relations between
the main success scenario and alternate scenarios. A partic-
ipant who completely understood these requirements would
be able to paraphrase the steps and identify missing infor-
mation.

Problem 2: Deleting a User This requirement was in-
cluded in the study, because it contains an inconsistency.
There are only steps for adding a user and an alternative sce-
nario forbidding a user from deleting himself. Participants
were tested on their understanding when asked to describe
the sequence of steps necessary to complete this task.

Problem 3: Change Channel Status This requirement
was used in the test, because the steps on how to disable a
channel are missing. In addition, the alternate scenario does
not share any steps with the main scenario. Again, users
were asked to identify steps required to perform a task.

Given that we had three formats, three test problems, and
only three participants, we used a Latin square design. Each
participant saw each format and each problem but in differ-
ent combinations, so that we could perform between- and
within- participant comparisons of performance. Figure 5
depicts the order of presentation to each participant of the
different problems and three formats. The exception is Par-
ticipant A who mistakenly looked at a sequence diagram in-
stead of the ScenarioML document for one of the problems.
The order of presentation of problems was fixed, although
the order of the formats was randomized.

Participant A

Participant B

Participant C

Problem 3Problem 2Problem 1

Use Case Sequence DiagramSequence Diagram

ScenarioML Sequence DiagramUse Case

Sequence Diagram Use CaseScenarioML

Figure 5. Presentation of formats

The interviews were transcribed verbatim, without im-
posing sentence structure or clarification. We tagged and
categorized utterances in the transcripts. During analysis,
we identified statements that pertained to the clarity of each
of the formats. We were careful to consider both positive
and negative statements when summarizing the interviews
and selecting examples.

4.3.2 Participants

Three stakeholders at WebReach were participants in this
study. The first stakeholder has over 20 years of experi-

5

ISR Technical Report UCI-ISR-06-14

ence as an enterprise software architect. He has designed
and implemented solutions for clients in a wide variety of
industries and technologies. The second stakeholder has 20
years of software engineering and management experience.
His primary focus is business development and key-client
account management. The third stakeholder is software en-
gineering and helped lead the architecture and development
of the Mirth Project. He is also currently a PhD student.

4.4. Validity

In this subsection, we discuss the internal and external
validity of the study, as well as threats to validity.

Internal Validity. Internal validity is the soundness of
the relationships within a study. In the requirements trans-
lation portion of the study, we linked the clarity of a for-
mat with the clarity of a document produced using that for-
mat. These in turn, were measured indirectly in terms of
the problems that the format could reveal. A requirements
specification format demands inclusion of certain kinds of
information, and different formats have different demands.
Therefore, translating requirements from one format to an-
other will reveal shortcomings of the source document and
the source format.

External Validity. External validity is the degree to
which the results from the study can be generalized. In this
study, we used only one subject system, three students, and
three stakeholders. This is a small sample size on all counts.
However, we are not trying to create statistically significant
results that can be generalized to a population of subject
systems, students, nor stakeholders. Rather, we are seeking
to build theories and deepen understanding of requirements
specification formats. In the requirements creation part of
the study, we seek to reason analytically about properties
and qualities of the formats. These properties will hold
across subject systems and documents. In terms of stake-
holders, the data are not as strong, so we use these only as
corroborating evidence. However, we feel this evidence is
valid, because these are actual stakeholders.

If the four metrics converge, the findings will be persua-
sive, because the weight of their support will triangulate a
phenomenon, the importance of requirements clarity. Be-
cause the three kinds of data were produced in different
ways and show different viewpoints on the issues, it is un-
likely that all three will converge due to chance.

Threats to Validity. The students who participated in
this study are authors on this paper and involved in some
way in the design of ScenarioML. This may result in a
bias in favor of ScenarioML. We attempted to minimize this
threat by having the students work independently and hav-
ing different students perform different parts of the study.
In addition, we consulted stakeholders, rather than students,
regarding their preferences.

5. Results

In this section, we present our findings regarding our four
metrics. These metrics will be used to answer the questions
from the GQM method in the next section.

5.1. Number and Type of Problems

Following the translation exercise, Student M analyzed
the logs. A catalog of the problems found was created.
These problems were then grouped according to similari-
ties. Based on the classification, a taxonomy was created
so that each problem encountered fit into only one category.
The result was a comparison table (see Figure 6) between
the problems found during the two translation activities.
This table was verified by Students K and L to ensure that
the taxonomy was accurate.

The data shows that ScenarioML revealed more prob-
lems in the original use cases than the sequence diagrams.
However, sequence diagrams were better at showing prob-
lems with the details of events. In contrast, ScenarioML
more effectively show problems at a high level of detail and
interstitial problems, i.e., problems between use cases or be-
tween different parts of use cases.

Category 1 in the table in Figure 6 addresses inconsis-
tencies between the use case diagram and the textual use
cases. Some use cases seemed to be represented in both, but
under different names such as “CreateModifyModule” and
“CreateModifyViewModule”. Others were visible in the di-
agram and simply missing in the textual representation. An-
other problem that surfaced during the translation was that
use cases do not clearly express iterations, this type of prob-
lem is shown in category 2. Category 3 shows structural
problems, where clarity could have been gained by combin-
ing similar use cases. UC-03, UC-04, and UC-05, for ex-
ample, perform exactly the same steps with different actors.
Another problem was the confusing numbering of events
that resulted in ambiguous alternatives and exception sce-
narios. Category 4 shows such problems, which were found
in three of the ten use cases. Category 5 shows problems of
missing alternatives. The option of deleting a user, for ex-
ample, was listed as an option but there were no events that
described this process. Category 6 shows mistakes, such as
mixing up the order of events in the use cases. Category
7 addresses the problem of incompleteness, such as refer-
encing non existing use cases, while category 8 deals with
inconsistencies such using different names for the same ac-
tors. The last row combines problems in individual events,
such as where data can be stored.

6

ISR Technical Report UCI-ISR-06-14

1. Inconsistency between UC diagram
and textual UC
2. Iteration was not specified
3. Redundancy in the UCs

4. UC numbering scheme does not show
where alternative flows start/stop
5. All possible alternatives were not
specified
6. Mistakes in the UC
7. Incomplete UCs
8. Two names referring to the same term
9. Problems with details of events

Problems # found in
SDs

found in
scenarios

0 4

0 2
0 1

3 4

0 2

1 4
3 3
5 5

36

Figure 6. Problems found during translation

5.2. Stakeholder Preference

Each participant was interviewed individually and asked
about their preferences regarding the three formats. In gen-
eral, the participants preferred ScenarioML over the other
two formats. While they pointed out a few things that were
unclear and not intuitive in the scenarios, such as the star
that represents a number of iterations, they did not per-
ceive these as off-putting or thought that other stakeholders
would. However, they also thought that use cases might be
superior for initial requirements gathering and for users to
write themselves. Sequence diagrams were disliked by the
two participants who were not already familiar with the no-
tation. Sequence diagrams were seen as useful or advanta-
geous in more restricted contexts and audiences. The partic-
ipants liked ScenarioML although, they had same or less ex-
perience with this notation. The participants liked use cases
but found ScenarioML scenarios to be an improvement in
a number of ways. Below is a summary of the results per
format.

Use Cases. The participants perceived use cases as
“fairly easy to understand”. In particular they found it easy
to understand the steps described in the use cases, the sum-
maries of what the use cases do, and the main and alter-
native scenarios that express alternative flows. Things that
the users found difficult to understand included the number-
ing scheme for alternative scenarios, and the terms used in
events. The participants liked that the use cases were easy
to read and that the notation was familiar. Some things the
participants disliked were the lack of detail, the numbering
scheme, the inconsistency in terminology, and the lack of
hyperlinks to supporting documents.

Sequence Diagrams. Two of the participants perceived
the notation confusing, particularly confusing was how to
follow events. The third participant found the notation

“pretty easy”, and understood the calls between components
and the separation of layers. The subject that understood
the sequence diagrams liked them because of their graphi-
cal nature. Some things that the other two participants did
not like were the lack of readability, the visual overflow, and
the lack of hyperlinks to supporting documents.

ScenarioML. The participants found the notation easy
to understand. The participants understood the concepts of
parameters, ontology definitions, event chains, alternations,
references, and instances. There were some things that were
not apparent to the participants at first, such as the star no-
tation for iterations. The participants liked that the notation
was simple and textual with indentations, the declarative
statements with parameters, that there were better and more
consistent definitions of terms, that it was more rigid, and
had hyperlinks to supporting documents and terminology.

The overall observation is that the participants think Sce-
narioML specifies scenarios with greater clarity, except in
showing interactions with various layers of a system with a
layered architecture.

5.3. Stakeholder Performance

This section will shows the participants’ performance
on the questionnaire (see Section 4 for the particular ques-
tions).

Use Cases. Overall the participants performed poorly
when trying to identify problems in the use cases. In Prob-
lem 1, the participant with the use case managed to find a
problem regarding how the alternate extension fit into the
main use case. The participant failed to see any other prob-
lems, such as the event sequence for the “Clone” option not
making sense. The participant still thought he understood
what the use case was “trying” to do. The participant did
not think that this notation was particularly useful for find-
ing problems.

In Problem 2, the participant with the use case listed a
sequence of steps that did not make sense, since the option
was missing in the use case. The participant concluded that
the use case was “kind of ugly”. The participant had not no-
ticed this problem before, and did not think that the notation
did anything to point out this problem.

In Problem 3, the participant with the use case thought
it was difficult to determine the starting point of the two
scenarios (main and alternate), because they were different.
The participant did not notice this problem when looking
through the use cases during the interview.

Sequence Diagrams. In Problem 1, the participant with
the sequence diagram understood the notation pretty well,
and was positive toward the notation although no problems
were identified.

In Problem 2, the participant with the sequence diagram
listed that the user can add, modify, or delete a user, when in

7

ISR Technical Report UCI-ISR-06-14

fact only the add option is supported. The participant real-
ized that the option to modify a user was not well articulated
before starting the questionnaire, but did not think that the
notation is helpful for detecting these kinds of problems.

In Problem 3, there were two participants with sequence
diagrams. Neither of the participants could list the steps
to disable a channel. One participant noticed this problem
before the questionnaire, and the other participant thought
the notion of a step was difficult in general. One partic-
ipant thought that “This specification is really not a good
way to specify this problem and, as a result, it makes rel-
atively simple problem[s] difficult to spot.” and the other
participant found sequence diagrams in general to be “in-
comprehensible”.

ScenarioML. In Problem 1, the participant with the Sce-
narioML scenario understood the scenario well.

In Problem 2, the participant with the ScenarioML sce-
nario understood the scenario well, and pointed out that the
nested EventChain highlights the fact that something is
occurring in an otherwise flat sequence of events and draws
attention to it, and that “This causes me to further inspect
these nested events more closely as they often seem to be
problematic areas.”

In Problem 3, the participant with the ScenarioML sce-
nario mistakenly answered the question using a sequence
diagram instead of a scenario, which impairs the Latin
square. The participant confirmed this afterwards.

It is interesting to note that the subjects exhibited low
performance to find problems in the use cases and sequence
diagrams despite their familiarity with the subject system.
Another interesting observation is the low performance vs.
the high preference expressed in the interview. The in-
terview showed that all three participants felt positive to-
ward use cases and thought they were clear. Participants
showed more negativity toward use cases, when asked to
use them. It also shows that they were difficult to use be-
cause they were unclear, contradicting the initial reaction
from the stakeholders.

6. Discussion

6.1. Which requirements format most read-
ily permits the detection of problems?

In our study, the translation process is used to compare
the ease of problem detection in each of our target formats.
This comparison is based on the reasoning that information
required by a target format, but missing from the source for-
mat is indicative of a shortcoming in the source format. We
decide the strengths and weaknesses of a format by compar-
ing numbers and types of problems identified in the trans-
lation to that format. A drawback of this approach is it
does not permit a side-by-side comparison of use cases to

either sequence diagrams or ScenarioML scenarios, as use
cases were the source format in both translations. However,
data from the interviews and comprehension test show that
stakeholders detected few of the problems present in either
the use cases or sequence diagrams they examined, which is
consistent with the inference that use cases are not markedly
better than sequence diagrams for uncovering problems.

The list of problems uncovered (see Figure 6) support the
following inferences: that sequence diagrams more readily
detect problems in the details of events; and that Scenari-
oML scenarios more readily permit detection of larger-scale
problems related to clarity of requirements. Overall, 3 of
the problems found in the translations were uncovered only
using sequence diagrams, 15 problems were uncovered by
both formats, and 13 additional problems were uncovered
solely by ScenarioML scenarios. The data from the inter-
views provided evidence converging with that from compar-
ing the lists of problems uncovered during translation, indi-
cating stakeholders thought sequence diagrams more effec-
tive for design tasks in which layers and architectural com-
ponents are important, while ScenarioML scenarios would
be more effective for requirements, as a contract between
stakeholder and developer, and for high-level communica-
tion. This triangulation across two quite different sources
of data strengthen the inference drawn from each.

Overall, we infer that ScenarioML scenarios more read-
ily permit the detection of errors than sequence diagrams to
a substantial degree, but that sequence diagrams appear to
more readily permit detection of detailed problems within
individual events. There is some evidence that use cases are
equivalent to sequence diagrams in permitting detection of
errors, but this evidence is not strong.

6.2. Which requirements format has a
structure that least obstructs under-
standing?

The degree to which the three formats obstruct under-
standing is addressed by the notes from the translation pro-
cess, the comprehension tests, and the interviews. The
student who translated use cases to ScenarioML scenarios
commented that she frequently had to consult other doc-
uments for missing information. The comprehension test
showed that all three stakeholders found the use case form
obstructed understanding, with comments such as “it’s not
too helpful for me in understanding these types of issues
at all”, “doesn’t do anything to point it [the problem] out”,
and “more difficult to spot what is a problematic step”. The
stakeholder who was familiar with sequence diagrams did
not find any of the problems they contained (although he
felt they were easy to understand). The two stakeholders
who examined ScenarioML scenarios indicated the form
did not obstruct their understanding, and noted ways in

8

ISR Technical Report UCI-ISR-06-14

which they felt the form may have helped. The interview
data revealed essentially the same pattern: all stakehold-
ers identified ways in which use cases obstructed their un-
derstanding; stakeholders’ responses for sequence diagrams
were divided by whether they understood the form or not;
and all stakeholders commented on ways in which Scenar-
ioML enhanced their understanding,while identifying two
minor ways in which it obstructed their understanding. (The
stakeholders did not understand that an iterated event num-
bered with ∗ indicated it may occur many times; and they
wished they could optionally collapse compound events for
clarity when looking at the overall picture.)

All three sources of data converged on the inferences
that use cases most obstructed understanding, sequence di-
agrams did not obstruct understanding if one already un-
derstood the format, and ScenarioML tended to aid under-
standing rather than obstructing it.

6.3. Which requirements format do stake-
holders find more clear?

The questionnaires and interviews were the sources of
data for this question. All three stakeholders indicated they
felt they understood the original use cases, although one
also said of use cases “this form of specification is confus-
ing to me”. A second was less certain, saying “perhaps this
is a problem with the user creating the use cases versus the
format of the use case itself”, while the third did not com-
ment specifically. The responses for sequence diagrams cor-
responded to whether the stakeholder was already familiar
with them. The two stakeholders who examined Scenari-
oML scenarios said they were “clear” and “do I understand
what the event says? I think so ...”, respectively.

In the interviews, all three stakeholders were neutral to
moderately dissatisfied with use cases’ ease of understand-
ing, saying for example “it’s hard to tell”, “You don’t neces-
sarily get an idea of what the possible values are here”, and
“That’s not that clear” (but also “Fairly easy” to understand,
“pretty straightforward”, and “they’re easy to read”). The
comments for sequence diagrams correlated with whether
the stakeholder was familiar with them. All three stakehold-
ers found ScenarioML scenarios easy to understand, with
comments such as “Very easy”, “unambiguous”, “this is a
very good form for a developer to get something in”, “a
richer, more defined way of doing use cases”, “wow, ab-
solutely, I think that’s a definite improvement” (over use
cases), “That’s good, I like that”, and “It’s kind of like a
UseCase++”. Two stakeholders indicated contexts in which
they felt ScenarioML scenarios would not be appropriate:
“another guy in the company that’s just an über-genius and
something like this for him, just doesn’t need it, wouldn’t
help him, would just get in the way”, and “... if I was going
to have ... users author use cases, they may not be familiar

with this”.
The data from the questionnaires and interviews con-

verge, supporting the inference that the use case form is
least well understood by stakeholders despite their comfort
with the format, the sequence diagram form only under-
stood by those familiar with it but apparently well under-
stood in these cases, and that ScenarioML is easily under-
stood by stakeholders despite their inexperience with it. The
interview data on ScenarioML is strikingly positive on this
point.

7. Lessons Learned

Our study has lessons that can be applied to selecting
requirements formats, to designing requirements formats,
and to empirical evaluation of requirements formats.

When selecting a requirements specification format,
stakeholders and other software development participants
should be aware that some requirements specification for-
mats are inherently clearer than others. Although we do not
have definitive metrics, we have cataloged ways in which
formats can be unclear. For example, the numbering scheme
for event sequences needs to be easy to follow and under-
stand. Another problem can be found in graphical notations
that obscure readability by visual overflow and confusing
notations that lack clear definitions.

Clarity has been often overlooked in designing require-
ments specification formats, because of its seemingly sim-
ple character. Even though undergraduate textbooks in soft-
ware engineering mention it, the IEEE standard 830 for
Software Requirements Specification (SRS) [1] does not in-
clude clarity as one of its requirements quality attributes.
This research presents both an operational definition for
clarity and empirical methods to evaluate it. It shows the
importance of clarity and suggests clarity to be taken more
seriously. This study is a basis for further investigations on
the clarity of requirements in regard to current and future
formats.

8. Conclusion

In this paper, we reported on an empirical study that re-
vealed the importance of clarity in requirements. We com-
pared three requirements specification formats, use cases,
sequence diagrams, and ScenarioML. Our empirical study
consisted of creating documents in each of the formats, col-
lecting data on their creation, and evaluating the usability
of these documents from the point of view of stakehold-
ers. We compared the formats themselves, our experience
working with the formats, and stakeholder preference and
understanding of information in the formats. The data from
the transformation and user study showed that ScenarioML

9

ISR Technical Report UCI-ISR-06-14

was the format with the greatest clarity, followed by use
cases, followed by sequence charts. Despite stakeholders’
greater familiarity with use cases, they both preferred Sce-
narioML and found the format more clear. Our analytic re-
sults, stakeholders’ subject opinions, and stakeholders’ ob-
jective performance were are resounding endorsement of
ScenarioML.

Despite some modest initial goals for this study, we were
able to obtain a number of research contributions. The main
contribution of this research is an understanding of the im-
portance of clarity in requirements documents, and in turn
requirements formats. While many quality attributes for re-
quirements have been much more widely studied, little at-
tention has been paid to clarity. Yet clarity is critical to the
usability of a requirements format. Stakeholders and de-
velopers need to be able to find the information they need
easily, understand that information, and know when they
don’t understand the information. We suspect that clarity
has been little studied for three reasons: (1) clarity is the
responsibility of the software engineer creating the require-
ments; (2) clarity is not an attribute that can be controlled
at the level of a requirements format; and (3) clarity of re-
quirements is assumed by other research and improvements
beyond this are sought. Our research has brought all three
reasons into doubt. It is possible for a requirements specifi-
cation format to increase or decrease clarity, thereby helping
or hindering a software engineer. And finally, it is possible
and necessary to make research contributions that improve
a fundamental characteristic such as clarity.

To this end, we have made a number of theoretical and
methodological contributions to the study of clarity in re-
quirements. We have formulated an operational definition
of clarity. To reiterate, this definition is (1) clearly defined,
(2) readily seen, perceived, or understood, (3) distinctness
of vision, sound, expression, comprehension, etc., and (4)
freedom from anything obstructive. The most valuable as-
pect of this definition is it can be made measurable and used
in an empirical study. We have illustrated metrics for mea-
suring clarity of a requirements format and a technique for
applying the metrics. In addition, we have contributed a
method for conducting comparative evaluation of require-
ments formats. Our approach includes a method for creat-
ing comparable requirements documents and a method for
assessing the comprehension of stakeholders. These con-
tributions can serve as a template for others who wish to
conduct similar evaluations.

We have performed a careful analysis and thoughful em-
pirical study of clarity in requirements. This work is only
the beginning, but it paves the way for subsequent research
into clarity as a requirements quality attribute, requirements
specification formats that promote clarity, such as Scenari-
oML, and methods for studying requirements format qual-
ity. The benefits of clear requirements formats and in turn

clear requirements documents abound. While Macbeth re-
quired clearness, to “leave no rubs nor botches in the work,”
he did not achieve it and this led to tragedy. We hope to
avoid such sad endings for practitioners and stakeholders
alike.

References

[1] IEEE recommended practice for software requirements 830
specications, 1998.

[2] T. A. Alspaugh, B. Tomlinson, and E. Baumer. Using social
agents to visualize software scenarios. In ACM Symposium
on Software Visualization (SoftVis’06), 2006.

[3] V. R. Basili, G. Caldiera, and H. D. Rombach. The goal
question metric approach. In Encyclopedia of Software En-
gineering, pages 528–532. John Wiley and Sons, 1994.

[4] E. Baumer, B. Tomlinson, M. L. Yau, and T. A. Alspaugh.
Normative echoes: use and manipulation of player generated
content by communities of NPCs. In Artificial Intelligence
and Interactive Digital Entertainment (AIIDE-06), 2006.

[5] B. W. Boehm. Software Engineering Economics. Prentice-
Hall, 1981.

[6] F. P. Brooks, Jr. No silver bullet: Essence and accidents of
software engineering. IEEE Computer, 20(4):10–19, 1987.
Reprinted from Proceedings of the IFIP Congress, Dublin,
Ireland, 1986.

[7] A. Cockburn. Writing Effective Use Cases. Addison-Wesley
Longman Publishing Co., Inc., 2000.

[8] A. M. Davis. Software Requirements: Analysis and Specifi-
cation. Prentice-Hall, 1990.

[9] B. G. Glaser and A. L. Strauss. The Discovery of Grounded
Theory: Strategies for Qualitative Research. Aldine Pub-
lishing Company, 1967.

[10] I. Sommerville. Software Engineering. Addison-Wesley,
third edition, 1989.

[11] K. Wasson. A case study in systematic improvement of lan-
gauge for requirements. In Proceedings of The Fourth Inter-
national Workshop on Comparative Evaluation in Require-
ments Engineering, Minneapolis/St. Paul, Minnesota, USA,
September 2006.

[12] K. Winbladh, T. A. Alspaugh, H. Ziv, and D. J. Richardson.
An automated approach for goal-driven, specification-based
testing. In International Conference on Automated Software
Engineering (ASE’06), 2006. To appear.

10

	UCI-ISR-06-14-cvr.indd.pdf
	uci-isr-06-14-abs.pdf
	uci-isr-06-14.pdf

