
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Anita Sarma
University of California, Irvine
asarma@ics.uci.edu

A Survey of Collaborative Tools
in Software Development

March 2005

ISR Technical Report # UCI-ISR-05-3

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

A Survey of Collaborative Tools

in Software Development

Anita Sarma

Institute for Software Research

Donald Bren School of Information and Computer Sciences

University of California, Irvine

asarma@ics.uci.edu

ISR Technical Report # UCI-ISR-05-3

March 22, 2005

Abstract : Collaboration is at the heart of software development. Virtually all

software development requires collaboration among developers within and outside

their project teams, to achieve a common objective. A number of classification

frameworks exist that can be used to classify collaborative tools. In addition to

placing the various tools in context, developers can use these kind of frameworks to

select the right mix of tools for their situation. Each classification framework has a

different focus: some provide a detailed taxonomy to compare tools in a particular

area, some classify tools based on the functionality of the tools, some classify tools

based on the high-level approach to collaboration that the tools take, and so on.

However, currently no framework exists that classifies tools based on the user effort

required to collaborate effectively. This however is also a critical component in

choosing the “right” set of tools for a team.

In this survey, we take a look at collaborative tools from the perspective of user

effort. For the purposes of this paper, we define user effort as the time expended

in setting up the tools, monitoring the tools, and interpreting the information from

the tools. While we cannot quantify the efforts required of each tool in detail, it is

clear that there is a natural ordering among different groups of tools. We propose a

framework that identifies these groups and highlights this ordering. Based on this

framework, our survey organizes the individual tools into tiers.

1

1 INTRODUCTION

A Survey of Collaborative Tools

in Software Development

Anita Sarma

Institute for Software Research

Donald Bren School of Information and Computer Sciences

University of California, Irvine

asarma@ics.uci.edu

ISR Technical Report # UCI-ISR-05-3

March 22, 2005

1 Introduction

Collaboration is at the heart of software development. Virtually all software devel-

opment requires collaboration among developers within and outside their project

teams, to achieve a common objective. It has in fact been shown that about 70%

of a software engineer’s time is spent on collaborative activities [219]. Indeed, col-

laboration in software development has been studied by researchers in the fields of

Software Engineering and Computer Supported Cooperative Work (CSCW) since

the 1980s and has produced a wide range of collaborative tools.

Enabling software developers to collaborate effectively and effortlessly is a difficult

task. The collaboration needs of the team depend to a large extent on environmental

factors such as, the organizational structure of the team, the domain for which

the software is produced, the product structure, and individual team members.

Accordingly, research in collaborative development has produced a host of tools,

each typically focussing on a different aspect of collaboration. Most teams have

their favorite repertoire of tools that has been built from historical use. These

tools may not always be the best suited for the team, but the team still uses them

nevertheless as the inertia and cost of trying out new tools surpasses the benefits.

A number of classification frameworks exist that can be used to classify collaborative

tools. In addition to placing the various tools in context, developers can use these

frameworks to select the right mix of tools fit for their needs. Each classification

1

1 INTRODUCTION

framework has a different focus: some provide a detailed taxonomy to compare

tools in a particular area [44], some classify tools based on the functionality of the

tools [93], some classify tools based on the high-level approach to collaboration that

the tools take [218], and so on. However, currently no framework exists that classifies

tools based on the user effort required to collaborate effectively. This however is also

a critical component in choosing the “right” set of tools for a team.

In this survey, we take a look at collaborative tools from the perspective of user

effort. For the purposes of this paper, we define user effort as the time spent in

setting up the tools, monitoring the tools, and interpreting the information from

the tools. While we cannot quantify the efforts required of each tool in detail, it is

clear that there is a natural ordering among different groups of tools. We propose a

framework that identifies these groups and highlights this ordering. Based on this

framework, our survey organizes the individual tools into tiers.

Our framework is in the form of a pyramid consisting of five vertical layers and three

horizontal strands. The five layers in the pyramid are: (1) functional, (2) defined,

(3) proactive, (4) passive, and (5) seamless. Tools that are at a higher layer in

the pyramid provide more sophisticated automated support, thereby reducing the

user effort required in collaborating. Each level, thus, represents an improvement

in the way a user is supported in their day-to-day collaborative activities. The

three strands in the pyramid are: communication, artifact management, and task
management. These three dimensions, we believe, are critical needs crosscutting all

aspects of collaboration.

The remainder of this paper is organized as follows. In Section 2, we discuss a few

existing representative classification frameworks. Section 3 presents the details of

our framework. The five layers of the pyramid are discussed in Sections 4 through 8,

with the functional layer discussed in Section 4; the defined layer discussed in

Section 5; the proactive layer discussed in Section 6; the passive layer discussed

in Section 7; and the seamless layer discussed in Section 8. We present our obser-

vations in Section 9 and conclude in Section 10.

2

2 RELATED WORK

2 Related Work

Group collaboration among software developers has been studied by researchers

in software engineering and CSCW since the 1980s. Research in these areas has

produced a wide range of collaborative tools (e.g., tools that support communication,

task allocation, decision making). To better understand the functionalities of these

tools and how they compare with each other, a number of classification frameworks

have been proposed by others. In this section, we take a brief look at some of the

representative frameworks.

2.1 Space and Time Categorization

Grudin modified the DeSanctis and Gallupe space and time classification frame-

work [58] to create a 3x3 matrix (Figure 1). The original framework was a 2x2 matrix

that classified tools based on the temporality and the location of the teams (e.g., does

the tool support asynchronous communication for collocated or distributed teams).

Grudin improved DeSanctis and Gallupe’s framework by further distinguishing the

tools based on the predictability of the actions that they support [93]. Grudin’s

framework, then, is a 3x3 matrix that classifies tools based on the temporality of

activities, location of the teams, and the predictability of the actions.

Different but

 predictable

Different but

 predictable

Different and

unpredictable

Different and

unpredictable

Meeting

facilitation
Work shifts Team rooms

Same

Same

Telephone,

video , desktop

conferencing

Email Collaborative

writing

Interactive

multicast

seminars

Computer

board

Workflow

P
la

c
e

Time

Figure 1: Space and Time Categorization [93].

3

2 RELATED WORK

Figure 1 represents the space and time framework, each cell illustrating some repre-

sentative applications for the particular space and time categorization. The rows in

the matrix represent whether applications support collocated or distributed teams.

The top, the middle, and the bottom row of the matrix represent activities that can

be carried out at a single place, in several places that are known to the participants

(email exchanges), and in numerous places not all of which are known to participants

(message posted in a newsgroup), respectively. The columns in the matrix depict

whether applications support synchronous or asynchronous collaboration. The left,

the middle, and the right column of the matrix represent activities that can be car-

ried out “in real time” (a meeting), at different times that are highly predictable

(when one sends an email to a colleague expecting it to be read within a day or

so), and at different times that are unpredictable (open-ended collaborative writing

projects), respectively.

2.2 Workflow

Research in workflow advocates the use of models and systems to define the way

an organization performs work [165]. A workflow system is based on a workflow

model that divides the overall work procedure of an organization into discrete steps

with explicit specifications of how a unit of work flows through the different steps.

Workflow languages (e.g., E-net modelling [164], Information-control net (ICN) [70],

PIF [134]) implement the workflow model by providing constructs for defining each

Amount of Detail

Operational Abstraction

Required Conformance

1.0=Purely Operational

1.0=Fully Implemented

1.0=No Deviation

Figure 2: The Model Domain Space [165].

4

2 RELATED WORK

step (computation language) and how the unit of work flows between the steps

(coordination language).

Gary Nutt [165] created a three dimensional model domain space that is based on

how a workflow model models a work procedure. As illustrated in Figure 2, the

three dimensions in the model space are: (1) x axis − the amount of conformance

that is required by the organization for which the process is a model, (2) y axis −

the level of detail of the description of the process, and (3) z axis − the operational

nature of the model (whether the model describes how the process works rather than

what is required from it). In this domain, models that represent only structured

or explicit work [191, 31] are in the sub-space approximating x→1, y→1, and z→1,

whereas systems intended to address unstructured work belong to a subspace where

x→0, y→0, and z→0. All other process types fit in elsewhere in the 3D space (e.g.,

descriptive and analytic workflow models [70, 73] can be placed in the plane defined

by 0≤x≤1, 0≤y≤1, and z=1; conventional workflow enactment systems [31, 155, 146]

can be characterized by the line segment x=1, y→1, and z=1).

2.3 Interdisciplinary Theory of Coordination

Malone and Crowston [141] use coordination theory to investigate how people in

other disciplines manage the dependencies that arise in collaboration. They define

coordination as managing dependencies between activities and provide a framework

for classifying collaborative tools by identifying the coordination processes the tools

use to manage the different kinds of dependencies. Malone and Crowston take a

broad outlook and study coordination at an interdisciplinary level, with the objec-

tive of finding similarities in concepts and processes in different disciplines (e.g.,

economics, computer science, organization theory). These similarities would then

allow ideas to be transported across the discipline boundaries, which in turn would

help in enriching the existing processes in each discipline. For example, the way or-

ganization theory handles resource allocation (hierarchial resource allocation, where

managers at each level decide how the resources are allocated) can be modelled to

handle resource allocation in software development teams.

Malone and Crowston identified the coordination processes used by different disci-

plines to manage dependencies between activities. They then created a taxonomy

of collaborative tools, illustrated in Table 1, based on processes that the tools sup-

port in software development. Rows 1 through 4 in the table identify processes

for managing typical dependencies between developers and resources in a software

development team. For example, task assignment needs to ensure that tasks are as-

signed to developers who have the required expertise (row 1), the interdependencies

between tasks should be considered while creating tasks and subtasks (row 4), and

so on. In addition to the processes for managing the coordination dependencies,

communication and group decision making play an important role in collaboration

and have been added to the framework (rows 5 and 6). For instance, in case of

5

2 RELATED WORK

Process Example systems

Managing shared resources (task

assignment and prioritization)

Coordinator [225], Information Lens [142]

Managing producer/consumer re-

lationships (sequencing prerequi-

sites)

Polymer [45]

Managing simultaneity con-

straints (synchronizing)

Meeting scheduling tools [14]

Managing task/ subtask relation-

ship (goal decomposition)

Polymer [45]

Group decision making gIBIS [41], Sibyl [133], electronic meeting

rooms [57, 58]

Communication Electronic mail, computer conferencing (e.g.,

Lotus, 1989) electronic meeting rooms [57,

58], Information lens [142], collaborative au-

thoring tools [78, 71]

Table 1: A Taxonomy of Collaborative Tools Based on the Process They Sup-

port [141].

shared resources, a group needs to decide how to allocate the resources; in manag-

ing task / subtask dependencies, a group must decide how to segment tasks; and so

on.

2.4 Formal versus Informal Approach to Collaboration

The formal versus informal coordination model [218], illustrated in Figure 3, clas-

sifies tools based on their high level approach to collaboration. This framework

classifies tools into three categories, namely tools that follow formal process-based

approaches, tools that provide informal awareness-based coordination support, and

tools that combine these two approaches.

Tools that follow formal process-based approach provide coordination by breaking

the entire software development effort into discrete steps. At the end of each step,

developers are required to synchronize their work to maintain consistency. In this

approach the tool is responsible for the coordination protocols that the developers

are required to follow (e.g., the check-in/check-out model of SCM systems, workflow

systems). The chief advantages of the formal process-based approach are, that they

are group centric and scalable. Their drawback is that the insulation provided by the

workspaces quickly turns into isolation, as developers are not aware of the activities

of others that may affect their work.

Tools that follow the informal awareness-based approach provide coordination by

6

2 RELATED WORK

Conceptual Visualization

Formal process

based coordi-

nation

Informal

awareness

based

coordination

Continuous

coordination

Scalable; Control;

Insulation from

other activities;

Group-centri

Strengths Weaknesses

Flexible;

Promotes synergy;

Raises awareness;

User-centric

Resynchronization

problems;

Insulation becomes

 isolation

Not scalable;

Requires extensive

 human

intermediation

Expected to be the

strengths of both

formal and informal

coordination

To be discovered

by the current

research

Figure 3: Formal vs. Informal Approach [218].

explicitly or implicitly disseminating information (e.g., artifacts that have changed,

activities of other developers) to the members of a team. It is the responsibility of the

members of the team to interpret this information and pro-actively self-coordinate.

Usually this leads to some kind of informal agreement according to which developers

plan their activities. While this approach is user-centric and gives the users control

and flexibility in defining their coordination protocols, it requires extensive human

intermediation and is not scalable.

Neither the formal process-based approach nor the informal awareness-based ap-

proach is completely satisfactory. The weaknesses further compound when con-

fronted with the reality of coordination needs in distributed settings. To overcome

this problem, van der Hoek et al. [218] propose an integrated approach, called con-

tinuous coordination, that supports collaborative work by combining the strengths

of both the formal and informal coordination approaches. Applications that fol-

low this approach would be highly flexible and be able to continuously adapt their

coordination support to the needs of the task at hand. Research in continuous co-

ordination, however is new and has not yet produced any prototype applications,

therefore the strengths in the table are expected and the weaknesses have still to be

discovered.

2.5 Summary

Each of the frameworks discussed above approaches collaboration from a differ-

ent perspective: Grudin classifies collaboration tools based on whether they can

support synchronous or asynchronous communication for distributed or collocated

teams; Nutt classifies workflow systems based on the characteristics of the underly-

ing workflow model; Malone and Crowston focus on coordination processes that can

7

2 RELATED WORK

be shared between multiple disciplines; and van der Hoek et al. classify applications

based on their high-level approach to collaboration.

What is interesting to observe, however, is that none of these frameworks classify

tools based on the user’s effort required to collaborate effectively. In fact, all of the

frameworks look at coordination tools from a functionality point of view. For exam-

ple, the space and time categorization tells us which tools can support collaboration

at real time or which tools can support distributed collaboration; the formal versus

informal framework informs us which tools follow the formal process-based approach

and which the informal awareness-based approach. These frameworks do not specify

the expected kind of user effort that is required in using a particular kind of tool

for collaboration. In this survey, we introduce a new classification framework that

revolves around different classes of user effort required to collaborate effectively. We

discuss our framework in the next section.

8

3 CLASSIFICATION FRAMEWORK

3 Classification Framework

Our classification framework is based on two principal characteristics of collabora-

tive tools, namely: (1) the level of coordination support provided to users, and (2)

the focus of a tool on one of the three essential elements of collaboration: commu-

nication, artifact management, and task management. Our classification framework

combines these two characteristics to form a pyramid, as illustrated in Figure 4.

We distinguish five levels of coordination support and three different foci of tools.

The five levels of coordination support are organized vertically and we call them

“layers” from here on. The foci of the tools are organized horizontally, and we call

them “strands” from now on.

Layers are based on the “level of coordination support” provided by the tools. By

this, we mean that tools at a higher layer provide better automated support (and

therefore less user effort) than tools in layers below it. Each layer, thus, represents

an improvement in the way a user is supported in their day-to-day collaborative

activities. We identify five layers: (1) functional, (2) defined, (3) proactive, (4)

passive, and (5) seamless.

Strands in the pyramid represent the three elements that we consider intrinsic to

collaboration, namely: (1) communication among team members, (2) artifact man-

agement, and (3) task management. Research in collaboration has typically focused

on one of the strands at a time. By including all three strands in our pyramid, we

are able to create a common ground for classifying the tools that stem from different

approaches.

As we move up the layers in the pyramid, the level of support provided by collabora-

tion tools increases while at the same time the user effort in enabling collaboration

decreases. Tools at the higher layers in the pyramid provide advanced automated

support to users, can handle large and complex team structures, and reduce action

and information overload on users as compared to tools at the lower layers. We envi-

sion that the layers are not isolated, but functionally build upon each other. Layers

become stronger than when functioning in isolation, i.e., when combined with the

functionalities of the layers below it.

As we progress up the pyramid, the distinction among the strands becomes increas-

ingly blurred. The communication strand slowly but surely moves over into the

territory of the artifact management strand. So does the task management strand,

until all three strands merge in the highest layer of the pyramid. This merging rep-

resents insights from ethnographic studies [92, 124] which found that, to coordinate

their activities, users combine different cues and resources from the environment in

which they operate. Researchers and tool builders alike have recognized this, and

have broadened their focus to encompass support for more than one strand in their

tools.

9

Continuous coordination,

collaborative architecture,

seamless development environments,

Asynchronous communication
Access to common set of artifacts,

isolated workspaces and version control

Parallel development,

roles and access rights

Passive awareness of

development activites

and developers, manage

information overload

Task allocation and assignment

Email, SCM

(pessimistic), basic

 project management

 tools, bugtrackers

Communication archival

along with artifacts

Communication

F
u
n
c
ti
o
n
a
l

Collocation benefits to

distributed development

Organizational memory,

knowledge acquisition and

dissemination, social navigation

Advanced SCM functionality (merging),

Instant messaging, visualization systems,

 recommendation sytems, GDSS

Workflow, SCM (optimistic),

process environments, MUDs

 bugtrackers

Prescribed and defined

 coordination support

Artifact Management Task Management

Advanced conflict

detection

Awareness tools, collocation benefits

(screen sharing, war rooms, tangible user

 interfaces), event notification services,

 social callgraphs

Collaborative development environments,

collaborative architectures

D
e
fi
n
e
d

P
ro

a
c
ti
v
e

P
a
s
s
iv

e
S

e
a
m

le
s
s

Fine grained versioning,

conflict resolution

Instant Messaging,

monitoring changes

to artifacts

Research areas that have focused on capabilities

at a particular layer

F
ig

u
re

4
:

C
la

ssifi
ca

tio
n

F
ra

m
ew

o
rk

.

3 CLASSIFICATION FRAMEWORK

At this point, the pyramid is not complete. We have left the top of the pyramid

open to signify further research. We do not know if the seamless layer will be the

last layer in the pyramid or if it will split into additional layers. This is subject to

future research as we have barely begun to scratch the surface of this layer.

3.1 Layers

Tools in the functional layer enable collaborative development, but do so with

minimal technical support. Development teams at this level are small and work

with the bare minimum in tool support; developers can get by in collaboration,

but much manual effort is still required. For example, generally tools at this level

allow different developers to access the same set of artifacts or communicate using

email, but developers at this level are chiefly responsible for the actual coordination

activity of who changed which artifacts and at what time. Teams relying on tools

at this level depend on the developers’ knowledge of the product structure, of which

developer has been and is currently working on which changes, and of how the

various changes relate to each other.

As teams become larger in size, the bare bones coordination support offered at the

functional layer is insufficient. Developers in large teams often must make changes

to the same artifacts in parallel, because it is more difficult to make non-overlapping

task allocations in large teams. Tools at the defined layer provide exactly this kind

of support by guiding users with a well-defined set of prescribed steps. For instance,

tools in office automation or workflow help divide the development process into

discrete steps, help specify which developer should change which artifacts, and help

in directing what the changes to an artifact should be. These systems are “good”, as

developers can now rely on the system to support their coordination activities, (e.g.,

the system automatically routes the final checked-in code to the “test” team), but

at the same time they are “bad” as developers have to strictly follow the prescribed

steps and have little flexibility.

Tools at the proactive layer allow developers more control over the coordination

steps. Specifically, developers can be proactive in obtaining the information with

which they can fine tune the coordination steps to suit their project. For example,

using tools such as CVS-watch [20] and Coven [37], users can monitor changes to

artifacts of interest in order to avoid potential conflicts. Once the tools inform

users of such changes, they can either merge the changes using automated merge

tools [151] or not take any action at the moment. Developers with tools at this layer

clearly have control over the overall coordination process, but in order to achieve

this flexibility they have to be actively involved in the process.

Tools at the passive layer reduce the effort required to obtain the information

necessary to tailor their development process. At this layer, users can configure the

tools to view relevant, timely information. Some of the tools provide default modes

11

3 CLASSIFICATION FRAMEWORK

requiring little to no configuration, yet provide important information at opportune

times. Typically, the information is peripherally displayed in an unobtrusive manner,

to create a subtle “awareness” of what activities are occurring in parallel. For

instance, tools such as Palant́ır [194], JAZZ [36], and others [97, 109, 170] provide

passive workspace awareness by displaying which developers are changing which

artifacts. Developers can now realize which changes would affect them and with

whom they should coordinate their activities. Tools at the passive layer allow

developers to concentrate on their current development activity, knowing that they

will be notified if there are pertinent changes. However, a drawback of the tools

at this layer is that users have to typically run multiple applications, because each

of these tools provides a different set of information (process support mechanism,

awareness mechanism, conflict resolution mechanism, and so on) and each typically

is a stand alone tool.

At the final layer in our pyramid, the seamless layer, developers no longer have

to switch contexts while accessing different sets of information, as tools at this

layer are built such that they can be integrated seamlessly to provide continuous

coordination [218]. Research in environments such as Oz [19] and Serendipity [95] are

investigating exactly these kinds of integration, providing a single tool for seamless

task management, artifact management and communication (see Section 3.2 for each

of these strands). Research in this area is still very much in progress, but the hope

is that eventually there will be environments that allow developers to seamlessly use

all necessary collaboration facilities within their development environment.

As we move up the hierarchy, tools change from supporting the minimal needs

that barely enable coordination to providing full-featured, seamless coordination

support that places a minimal burden onto the user. We note that this change

has gradually occurred over time, but that layer development has not been strictly

historical. Sometimes, research has jumped a level (as in the case of Portholes [64],

see section 7.1.1) and sometimes research has returned to a lower level to spark

evolution at a higher level (as in research in social navigation, see section 6.3.3, where

research on email allowed subsequent development of recommendation systems [163,

166]).

We recognize that environmental factors impact research in collaboration. For ex-

ample, a change in the problem domain or the team structure often creates different

coordination needs. We consider two environmental factors, namely product struc-

ture and organizational structure, as factors that have shaped the collaboration

capabilities of tools at each layer. An example of a change in product structure

leading to new capabilities was the fact that programming evolved to include inter-

faces (promoting stronger separation of concerns), which has allowed easier impact

analysis. An example of a change in organizational structure was the emergence

of distributed teams that are geographically separated. This created a need for

workspace and presence awareness tools that operate across time and distances. We

describe the effect of these factors and the context as we introduce each layer.

12

3 CLASSIFICATION FRAMEWORK

Technology

Needs Activities

Figure 5: Three level interaction.

While creating the hierarchy of layers, we also consider experiences from tool us-

age that have influenced the needs for the tools at each layer. For example, when

users become experienced with their current tools they feel the need for advanced

features. By the same token, the approach taken by the tools in solving a particular

need creates a newer set of needs that have to be addressed. This is illustrated by

the relationship between needs, technology, and usage of technology in Figure 51 .

Typically, researchers identify a set of needs and then create the technology that

addresses those needs. Oftentimes the technological solution or the way users inter-

act with the technology creates a newer set of needs. A new generation of tools is

then created to address these additional set of needs, continuing the cycle.

For example, to address the coordination needs of a large software development

team, SCM tools created workspaces [20, 44, 51]. These workspaces allow developers

to make changes in private, and after completing their tasks, synchronize their

changes with the repository. On the one hand, the isolation created by workspaces

is “good”, because it allows developers to make changes without being affected by

others. On the other hand, this isolation is “bad”, since it inhibits developers from

being aware of their co-developers’ activities. This was confirmed in a study of a

software development organization, which revealed that developers planned their

activities based on the activities of their colleagues [89, 90]. The users gained this

information by querying the SCM repository to find out which artifacts had been

checked out by whom. Another study [55] investigated the informal convention of

using email that augmented the formal development process already in use. These

activities around the repository clearly imply the need for workspace awareness.

Such research is now in progress [194, 36, 157].

1Ddiscussion with Paul Dourish, professor, Informatics, UCI, Nov 2004.

13

3 CLASSIFICATION FRAMEWORK

3.2 Strands

The Cambridge dictionary defines collaboration as: “two or more people working

together to create or achieve the same thing” [179]. In the domain of software

development, collaboration involves the coordination of developers to create and

maintain software artifacts. Broadly speaking, collaborative support in software

tools must involve support for: (1) communication among team members, (2) ar-

tifact management, and (3) task management. We use these three aspects, which

we call “strands”, throughout the remainder of the paper as vertical slices of the

pyramid.

Communication: Teams use communication to keep each other up to date with

the tasks that have been completed, to communicate changes in schedules, to ask

questions or provide solutions to problems, to schedule meetings, and numerous

other purposes. When an organization does not have a good communication in-

frastructure, developers might hesitate to ask questions to colleagues whom they do

not know, not communicate changes to an artifact that others might depend on,

not be able to keep track of past communication, and so on. This lack of good

communication in teams often leads to project delays.

Artifact Management: Artifacts in software systems are highly interdependent

on each other. This interdependence implies that changes to software artifacts,

be it code or other artifacts produced during the life cycle (e.g., a requirements

specification, a design), need to be managed to ensure the correct behavior of the

program. In large projects, it becomes impossible for developers to manage changes

to software artifacts on their own. Developers therefore increasingly depend on tool

support to version their code, coordinate parallel development, resolve conflicts, and

integrate code, among other things.

We place artifact management as the central strand in our framework, since col-

laboration in software engineering primarily involves coordination of development

activities around a set of software artifacts. As we move up the pyramid, we note

that the distinction among the strands becomes blurred and that the other two

strands slowly but surely intrude into the territory of artifact management. As we

stated before, this is an explicit choice, namely to illustrate the change in research

focus wherein research is increasingly drawing on all three strands to provide tool

support. For example, in the proactive layer of the pyramid, developers can mon-

itor changes to artifacts. In the event of a change, the system notifies developers

who had registered interest on the artifact. Here, we see that “when” the communi-

cation is triggered or “who” the communication is sent to, depends on the artifacts

in question.

Task Management: Task management in software development involves, among

others, decomposing the project into smaller units, identifying developers with ex-

pertise, assigning tasks to developers, and creating a development schedule. In large

14

3 CLASSIFICATION FRAMEWORK

projects, task management is a time-consuming and difficult task. Managers of large

teams typically rely on project management tools to assign and monitor tasks. For

instance, workflow systems split the development process into discrete steps and

specify which developer should make what change to which artifact. Task alloca-

tion in large projects is seldom clean and managers rely on automated tool support

to continuously coordinate the activities of developers with overlapping task re-

sponsibilities. For example, concurrent changes to the same artifact have to merged

before they can be placed in the repository.

In the following sections, we discuss each layer and each of the three strands cross-

cutting a given layer. We begin with the functional layer and its communica-

tion, artifact management, and task management strands. This pattern is repeated

through the first four layers of the pyramid (Sections 4 through 7).

15

4 THE FUNCTIONAL SUPPORT LAYER

4 The Functional Support Layer

The functional layer is the first layer in the pyramid and forms its base. It depicts

the basic level of automated collaboration support provided by tools. Previous to

the tools in this layer, collaboration was managed manually. The tools at this layer

were promoted by the type of organization and product structure prevalent at that

time. From the organizational and product structure point of view, tools primarily

needed to support collaboration for small, “flat” teams working with structured

programming languages.

Based on the aforementioned criteria, tools at this layer provide basic automated

support for developers to communicate with each other, access and modify a common

set of artifacts, and enable managers to allocate and monitor tasks. These tools

form the transition from “no automated support” for collaboration to the “minimal

automated support” necessary to allow a team to function.

4.1 Communication

Communication is one of the key factors in coordinating the activities of team mem-

bers and has a big impact on how successful the team can be [123, 33]. Traditionally,

face-to-face meetings were the typical means of communication in a team, with re-

ports and memos being used for archival purposes.

As personal computers became popular, face-to-face communication was increas-

ingly replaced by electronic communication, primarily email. Email was widely

adopted as it allowed developers to asynchronously communicate over distances,

refer to previous replies, reply to a group, record communication with little extra

effort, and so on. Email has largely become popular because of its low learning curve

and the ability to resolve problems without having to schedule meetings. Currently,

there are a number of email clients, both commercial and open source [104, 142].

In addition to email, the open source community relies heavily on news groups and

discussion forums for their communication needs. While email is more directive and

chiefly used for point-to-point communications, news groups and discussion forums

are more open and allow interested people to subscribe to the list [26, 66]. Dis-

cussions in these forums usually start when someone in the list posts a question

or an interesting solution, that is then followed by discussion among other sub-

scribers. Often times, complex solutions are attained in these discussion forums

without members ever meeting face-to-face or sending personal email.

The open source community is an excellent example of a software development

community that primarily depends on the tools in the functional layer for their

collaboration support. Most of the team members never even meet each other face-

to-face. The core development teams in open source projects are relatively small

16

4 THE FUNCTIONAL SUPPORT LAYER

[181] and use email or discussion forums for most of their communication needs.

Successful projects produced by the open source community have demonstrated

that groups can successfully collaborate by relying solely on the tools in functional

layer [154].

4.2 Artifact Management

The basic support for managing artifacts in a collaborative software development

environment involves: access to a common set of artifacts, private workspaces that

allow developers to work uninterrupted on their tasks, and version control. Software

configuration management (SCM) systems provide exactly this kind of functional-

ity [215, 183]. Developers can check-out artifacts, in which they are interested, from

a central repository into a private workspace. There, they can make changes without

any interference from other developers. Once the changes are complete, they can

check-in the artifact back into the repository, making the artifacts and the changes

available to the rest of the team.

SCM systems also version artifacts such that changes can be made incrementally

and rolled back should the need arise. The SCM repository creates a new version

(a new identifier) for the artifact when it is checked-in. Versions are not directly

accessible, but have to be checked out from the repository. This process ensures that

artifacts in the repository cannot be changed directly and that changed artifacts are

always given a new version number. SCM systems thus support the development

process by maintaining the software artifacts, recording the history of the artifacts,

providing a stable working context for changing the artifacts, and allowing a team

to coordinate their changes to its artifacts [76].

The check-out/check-in model of SCM systems, as characterized by systems, such

as SCCS [187], RCS [214], and DSEE [131], is mainly pessimistic in nature. In this

model, once an artifact has been checked-out by a developer, it is locked by the

repository and is not available for modifications by others, until the changes are

checked back into the repository by the original developer and the lock is released

by the repository. Pessimistic SCM systems ensure that there are no conflicting

changes to the same artifact, but only ensure this by severely limiting the amount

of parallel work.2

SCM systems were the first applications that handled artifact management and

based on their success they have become the de facto system for managing software

artifacts, especially code [74]. Some systems, such as BSCW [6] and Orbits [143],

that manage artifacts by leveraging repositories. However, these tools are not as

popular or widely used as SCM systems. We discuss some of these systems later,

based on their advanced functionality in addition to basic artifact management.

2RCS does allow merging (rcsmerge [214]), but this is a functionality that we will discuss in
Section 6.

17

4 THE FUNCTIONAL SUPPORT LAYER

4.3 Task Management

In the functional layer, task management involves task allocation and task moni-

toring. Managers allocate tasks based on expertise of developers and in a manner to

avoid duplication of work or conflicting efforts [67]. Once tasks are assigned, man-

agers continuously monitor the progress of team members to ensure that individual

tasks are executed on time, to coordinate the activities of team members where

responsibilities overlap, and to keep the overall development effort on schedule.

In the past this was a purely manual activity, with schedules on paper, meetings

to assign tasks, status meetings for monitoring progress, and so on. The tools in

the functional layer of the pyramid provide managers with rudimentary task man-

agement support. Early versions of nowadays well established project management

tools like Milos [85], Autoplan [62], and MS-project [35] provided basic project plan-

ning and scheduling tools.

At this layer, we also include tools such as, email, basic SCM systems, and rudi-

mentary bug tracking systems as they too help in scheduling and monitoring task

assignments. Besides its critical role in communication among individual develop-

ers, email has come to play a central role in task management. It has been found

that senior managers spend a majority of their time answering email [66, 18]. Email

has become a popular management tool as it facilitates managerial activities like:

assigning tasks, scheduling meetings with the help of calendering systems that track

when a developer is busy, and placing reminders for themselves by flagging impor-

tant email or with to-do lists [16].

Pessimistic SCM systems (e.g., RCS [214], SCCS [187]) and bug tracking systems

(e.g., Mantis [144], Bugzilla [30]) serve as coordination tools for project management

by allowing managers to monitor changes to artifacts. For example, a manager can

query a SCM repository to detect which software artifacts are currently locked by

which developers, bug trackers can be used to detect which bug reports have been

closed and which are still open, and so on. Pessimistic SCM systems can also prevent

task duplication considerably, as in this model only one developer can work on an

artifact at any given time. This ensures that developers are always working with

the latest changes in the repository and therefore will not duplicate efforts that have

already been coded. As stated before, the open source community is a successful

example of software development teams that mainly depend on email, SCM systems

and bug trackers for their collaboration needs.

18

5 THE DEFINED LAYER

5 The Defined Layer

The tools discussed in the previous layer, the functional layer, provide only rudi-

mentary automated support for collaborative groups. They are sufficient for teams

that are small, have minimum overlapping of tasks, and low interdependencies in

functionalities. The structure of the teams changed as the field of software engineer-

ing matured and demand for software burgeoned, with different disciplines relying

on software for their applications (e.g., medical community, automobile industry,

telecommunication industry). Teams became larger in size and more structured in

nature. Moreover, in order to stay competitive and reduce the development time

and cost, parallel development was encouraged.

The tools at the functional layer can not handle these changed collaboration needs.

Well-defined software processes are needed to coordinate the activities of members in

a large team. The second layer in the pyramid, the defined layer, historically builds

on the functional layer and includes tools that support such well-defined software

processes to help in collaboration. The tools at this layer prescribe defined steps that

advise developers which steps they are required to take and who to communicate

which artifact with.

The birth of object oriented programming, in some ways, accelerated parallel devel-

opment, as programs could now be broken down into smaller modules with different

developers working on each module. Concepts like encapsulation allow modulariza-

tion with well-defined interfaces that can then be integrated back [172].

Tools at the defined layer are characterized by their support for larger teams with

clearly defined processes. An interesting observation regarding the systems discussed

at this layer is that they primarily focus on task management. This is in accordance

with the theme of this layer: prescribing defined coordination steps to help the team

in effectively collaborating.

5.1 Communication

Email as the sole communication medium for large teams is inadequate, given the

overwhelming number of email that are sent in a typical team. In such teams,

email users quickly become inundated with the volume of email they receive per

day and often end up scanning only the subject headers [86, 17]. Many times, users

have to retrieve previously discarded email, email that seemed unimportant then.

Retrieving old email, that may have been important, remains a daunting task in

spite of the sort mechanisms and filters provided by email clients [142].

Communication that is recorded along with the artifact is easier to retrieve at a

later stage than when archived separately (as in email). Artifacts such as project

schedules and bug reports play a crucial role in coordinating the development activ-

19

5 THE DEFINED LAYER

ities [30]. Artifacts playing an important role in coordination is depicted by the slow

migration of the communication strand into the artifact management strand at this

layer (See Figure 4). Moreover communication records that are tightly associated

with artifacts, such as bug reports [30] or check-in comments in SCM systems, allow

better access mechanisms since artifact storage usually leverages access and query

mechanisms of underlying database systems.

In addition to one-to-one communication, meetings are the next most common com-

munication medium, but scheduling face-to-face meetings to bring the entire team

together in a room often proves to be difficult. It is now a common practice to

either teleconference or video-conference with team members who cannot be physi-

cally present in the same room [105, 108]. Some companies even have mobile units

with conferencing facilities that allow developers to attend meetings when they are

travelling. In addition to the tele/video conferences, users can use the internet to

remotely login and use streaming video and audio to participate in meetings. De-

signers at the Jet Propulsion Laboratories frequently use web based conference calls

to participate in design meetings with their design teams that are geographically

separated [145].

We see that, at this layer, the technology has shifted from just email and infor-

mal communication conventions to communication that is recorded along with the

artifacts as supported by process based environments.

5.2 Artifact Management

As discussed earlier, parallel development became necessary to reduce overall devel-

opment time, which in turn made concurrent access to artifacts necessary. Coordi-

nating parallel access to multiple artifacts is too complicated to handle manually.

Teams need automated support to keep track of: which developers have access to

which artifacts, which developer is working on which artifacts, which versions have

been created that need to be integrated, and so on.

Parallel development can be either synchronous or asynchronous in nature. Group-

ware applications support synchronous editing, the majority of which deal with col-

laborative editing. These collaborative editors allow multiple users to simultaneously

access and edit documents (e.g., text documents, software code, design drawings).

To take a few examples, GROVE is a textual multi-user outlining tool [71]; ShrEdit

is a multi-user text editor [150]; DistEdit is a toolkit for implementing distributed

group editors [125]; and Flesce is a toolkit for shared software coding [60]. These

editors ensure the consistency of simultaneous changes either by using locks or by

ordering the editing events. Most of these editors also support shared views and

shared telepointers (MMM [22], GroupSketch [87]). Shared views allow different

users to see a part of the document in exactly the same manner as the other user

using the WYSIWIS (What You See Is What I See) metaphor [203]. Shared tele-

20

5 THE DEFINED LAYER

pointers allow multiple cursors, one for each user, which are shown at all sites and

updated in real time. The user interfaces of these applications are tightly coupled

such that the views of the users are updated to reflect the action of every user. Some

of these systems also provide support for speech and communication (GroupKit - a

real time conferencing toolkit [188]).

SCM systems support asynchronous editing (primarily software code), where devel-

opers edit artifacts in their private workspace and then synchronize their changes

with the repository [215]. SCM systems like CVS [20], Telelogic CM/Synergy [213],

and Rational ClearCase [3] are optimistic in nature and allow concurrent changes

to a common set of artifacts. Unlike the pessimistic SCM systems discussed in the

previous section (Section 4.3), optimistic SCM systems do not place locks on arti-

facts when they are checked-out. The repository allows a developer to check-out

an already checked-out artifact as long as the changes are later synchronized in the

repository. In the optimistic model, developers who complete their changes first

have the opportunity to check-in their code. The next person who tries to check-in

has to ensure that their changes integrate with the latest version in the repository.

Typically, this is supported by automated merge facilities [151]. Some SCM sys-

tems also can provide access rights to developers such that different developers have

different privileges based on their role in the project [76, 51].

Overall, the level of support has risen from providing basic support in artifact man-

agement to managing parallel development and means of integrating these changes.

The tools at the functional layer provided the basic infrastructure using which

developers could access and modify artifacts that were stored in central repository.

Tools at the defined layer provide enhanced support in artifact management and

allow both synchronous and asynchronous parallel development.

5.3 Task Management

Task management is at the heart of this layer. Task management is where one really

manages the steps in the process from creating project schedules to coordinating ac-

tivities of developers. Historically there have been two approaches: workflow and

process engineering. Both these approaches break the development process into steps

and prescribe the computation required at each step and the coordination protocol

between the steps. While initially they seem similar they are really complemen-

tary to each other. Workflow focuses on the unit of work that flows between the

steps [165], whereas process engineering focuses on the development steps [171, 173].

5.3.1 Workflow

The concepts and technologies involved in workflow systems evolved from work in

the 1970s on office information systems. Workflow systems are mainly useful for

21

5 THE DEFINED LAYER

domains that have standard procedures, for example office automation or inventory

control. A workflow system is built upon a workflow model that describes the

characteristics of the target system. The workflow model characterizes the target

system by focusing on the critical characteristics of the system while ignoring the

non critical ones.

The characteristics that a model considers critical depends to a large extent on the

purpose of the model. For example, a model of a purchasing procedure created for

teaching new employees the current procedure will focus on describing how autho-

rizations are obtained, how people in purchasing interact with vendors, and so on.

On the other hand, if the model is to be used to analyze the staffing requirements

of the purchasing department, characteristics such as the distribution of purchase

requests, and the amount of time required to identify a vendor would be critical [165].

The workflow model divides the work procedure in an organization into discrete steps

with explicit specifications of what actions are to be taken at which step and how the

unit of work flows through the different steps. A workflow language that describes

the model, thus, contains constructs to define a set of steps to represent units of work.

It does so with two languages, a sequential computation language [206, 135, 228] that

provides an interpretation for each step, and a coordination language (E-nets [164],

ICNs [70], Petri nets [119]) that defines how the unit of work flows among the steps.

A workflow model is created in a workflow modeling system such as IBM Flow-

mark [155, 135], Filenet Visual Workflo [68], or PIF [134]). These modelling systems

are editing environments that provide facilities for creating and browsing a repre-

sentation model (describing how a particular step is accomplished for the benefit of

human users), for applying algorithms to an analysis model (quantifying the vari-

ous aspects of a step’s execution), and for collaborative interaction and information

archival for design models (capturing requirements, constraints, relationships, and

algorithms for implementing an individual component).

Once a workflow model has been formulated it needs to be enacted, an operation

in which the model is encoded into a set of directives that will be executed either

by humans or computers in a workflow management system. Workflow enactment

systems establish the order in which steps should be executed for each work unit

and identify the software modules that would implement each step in a workflow

management system (e.g., FlowPath [31], FlowMark [135, 155], and InConcert [146]).

5.3.2 Process-centered Software Engineering Environments

Process-centered Software Engineering Environments (PSEEs) are environments

that provide a process model (a representation of the process) to support devel-

opment activities. These environments support the process designer in analyzing

the existing process, designing a process model, and enacting the model to create

22

5 THE DEFINED LAYER

directives that are then executed by the team and the computer system.

The heart of the process environment is the process model, as it is the model that

determines the accuracy of the process, its flexibility, and whether the process can

deal with exceptions. The process model describes the process to be used to carry

out a development task, the roles and responsibilities of developers, and the inter-

action of tools needed to complete the tasks. Process models are usually expressed

in a formal notation, so that they can support process analysis, process simulation,

and process enactment. Different paradigms exist that different process modeling

languages follow, such as state oriented notations (Petri nets [177]), rule-based lan-

guages [77], or logic languages [77].

Once the process model is defined, the environment enacts the model and provides

a variety of services, such as, among others, automation of routine tasks, invocation

and control of software development tools, and enforcement of mandatory rules and

practices. Several PSEEs are currently available, each with a slightly different focus.

We illustrate a few representative environments here.

• OIKOS : OIKOS is a research project [160] whose main goal is to ease the

construction of a PSEE. It is an environment to specify, design, and implement

PSEEs. It also helps in the comprehension and documentation of software

processes. It has been developed in Prolog [40] and is built in two separate

languages, Limbo [4] is for the requirement specification and Pate [5] for its

implementation.

• EPOS [42] has chiefly been designed to provide flexible and evolving process

assistance to multiple software developers involved in software development

and maintenance. Its process model is expressed in SPELL [43], an object-

oriented, concurrent, and reflexive modelling language. It has its own ver-

sioned database called EPOS-DB which is used to store the process models.

• The SPADE project [12] was created as an environment for software process

analysis, design, and enactment. SPADE adopts extended Petri-nets [177, 161]

and augments them with specific object-oriented constructs to support product

modelling.

• Arcadia [212] was built with the goal to create an environment that was tightly

integrated yet flexible and extensible enough to support experimentation with

alternate software processes and tools. The environment is comprised of two

complementary parts. The variant part consists of process programs and the

tools and objects used and defined by these programs. The other, fixed part,

or infrastructure, supports the creation, execution, and changes to the con-

stituents to the variant part. The infrastructure part is composed of a process

programming language and interpreter (Appl/A [103]), object management

system (PGraphite [224], Cactis [114]), and user interface management sys-

tem (Chiron [227]).

23

5 THE DEFINED LAYER

In addition to a well defined coordination process, managing changes to software

artifacts is an integral component in software development [215]. The importance of

SCM has been widely recognized by the software development community (“Indeed,

SCM is one of the few successful applications of automated process support” [74]).

Its importance is also reflected in particular in the Capability Maturity Model

(CMM) developed by the Software Engineering Institute (SEI) [175]. CMM defines

levels of maturity in order to assess software development processes in organizations.

Here SCM is seen as one of the key elements for moving from “initial” (undefined

process) to “repeatable” (project management and quality assurance being the other

two).

5.3.3 Summary

To summarize, workflow and process environments have changed the picture as

with respect to the previous layer from bare bones support in task management

to sophisticated systems that prescribe the development steps and the coordination

protocol required. Tools at the functional layer provided only rudimentary support

in task scheduling and task assignment. Compared to them, the tools at the defined

layer are sophisticated system that prescribe the ideal development process for an

organization and provide directives to enact it.

24

6 PROACTIVE

6 Proactive

While tools at the defined layer are useful and effective in breaking the development

process into smaller steps and coordinating developers’ activities between the steps,

developers using these tools soon realized that these systems made the development

process very rigid. As a result of the prescribed rules of coordination, developers no

longer had any flexibility in the development process. To work around these strict

rules, developers often cheated the system by creating their own ad-hoc coordination

processes. For instance, it was found in a study [55] at NASA/Ames, that developers

followed an informal convention where in they sent email to the developers’ mailing

list before checking-in their code. This email described their changes and its impact

on others thereby preparing others for the change. In another study [89], it was

found that developers in a software development company used the information

about who has currently checked-out what artifacts to coordinate their activities

outside of the provided and otherwise used SCM system. A flexible coordination

infrastructure was thus needed, one that recommends the desired coordination steps,

but is flexible enough to allow developers to change the process if necessary.

Tools at the third layer of the pyramid, the proactive layer, satisfy this need and

allow developers to be proactive by giving them more control over the development

process that they follow. These tools primarily allow developers to obtain informa-

tion regarding the state of the project to help them detect potential conflicts. The

critical advance in tools at this layer is that developers are no longer bound by strict

rules, but have the flexibility to take decisions to change the process if necessary.

6.1 Communication

In accordance with the theme of this layer, the communication tools at this layer

allow developers to be more proactive. They achieve this by: (1) allowing developers

to communicate with their colleagues in real-time, such that they no longer have to

wait for the other party to reply, and (2) by allowing developers to monitor changes

to their project space, such that they are informed when other developers change

artifacts of interest.

6.1.1 Synchronous Communication

In asynchronous communication, such as email, users do not have any control over

when their colleagues would reply. Sometimes email discussions can stretch over

days, with each party asking questions and waiting for answers. This waiting time

can be eliminated with synchronous communication, such as Instant Messaging (IM).

Here, similar to email, users have to initiate a conversation and wait for the other

party to respond, but once the person responds, users can immediately start con-

25

6 PROACTIVE

versing in real-time. Since IM is akin to having a conversation, it is much easier

and faster to discuss the issues involved with a particular problem and resolve it.

Compared to email, IM is much more informal, which allows users to quickly draft

messages and not worry about formalities [162, 26].

Users generally configure the IM environments to indicate whether it is an appropri-

ate time for others to approach them or not [162]. Most IM environments provide

a standard set of status messages, such as away, idle, and busy for this purpose.

Some environments (e.g., Yahoo) allow users to personalize the status messages to

make them better suited to the current situation (e.g., in a meeting, on the phone).

Researchers are currently investigating the effect of embedding emotions in IM en-

vironments [121, 184], such that users can better express their mood, which in turn

would reflect their emotional availability.

Instant messaging has been widely used for informal communication over the in-

ternet, but only recently has been adopted by businesses as acceptable means of

communication [104]. Researchers are now studying the effects of IM on employee

productivity [104] and interruption management techniques to help developers man-

age the continuous interruption caused by IM [56, 50]. IM environments also allow

users to archive their IM conversations that can then be later investigated. Cur-

rently IM archives are not widely used yet, but it is a resource that might be tapped

in the future. JAZZ [36], an awareness tool, is integrated with an IDE that allows

developers to start chats from the IDE and in the context of the code that they are

involved in. JAZZ then annotates the part of the code that was discussed with the

relevant chat message.

6.1.2 User Initiated Artifact Monitoring

The tools at the previous layer mostly coordinated development activities by iso-

lating developers in private workspaces and synchronizing their changes at specific

synchronization points. Even though this isolation was needed, it often lead to con-

flicting changes. Developers thus felt the need to break this isolation and be aware of

development activities around them, such that they could detect potential conflicts

before they become large and difficult to resolve.

Tools at this layer allow developers to monitor the artifacts that they are interested

in, but only if they explicitly register interest (tools at the next layer can provide

semi-automated monitoring, see Section 7.1.2). In the event of a change to an

artifact, the tool notifies those developers who have registered interest in the artifact.

Being notified of changes as they are occurring allows developers to gain an overall

understanding of their project, with respect to what changes are being made to

which artifacts and by which developer. This awareness helps developers understand

others’ changes and how that might affect them. Even though these tools require

manual registering of interest they are an advancement over tools at the previous

26

6 PROACTIVE

layer, where developers had no flexibility and were prescribed what steps to follow,

when to follow, and how to follow.

Since Software Configuration Management (SCM) systems continuously log which

developer has accessed or modified which artifact in the repository, these systems

are well suited for providing capabilities for monitoring artifacts. Whereas SCM

systems of the previous generation (tools at the defined layer) allowed developers

to access information regarding which developers are changing which artifacts by

manually querying the repository, SCM tools at this layer (e.g., Coven [37], CVS-

watch [20]), allow developers to obtain this information at real-time by registering

their interest on specific artifacts with the repository. Clearly, registering interest

in artifacts is an advantage only if it is easy to set the monitors or is a one-time

effort, otherwise it amounts to expensive user effort and will never get adopted by

the development community [92]. An interesting observation is that the next layer,

the passive layer, is the epitome of this, because in the passive layer we place tools

that aim to have no set up time whatsoever.

Most of the tools that build on SCM systems monitor artifacts that are stored in

the repository. Developers thus know when an artifact has been checked-out for

modification and when changes have been completed. However, they have no idea

of what changes are taking place in the workspace. Being aware of changes as they

are taking place in the workspace can be more important and timely in avoiding

conflicts, than when changes have already been made [97]. Only recently has research

in SCM started investigating monitoring changes at the workspace level [195, 170].

There are a number of CSCW applications that provide workspace awareness, but

they usually present this information in a passive format and we place those tools

in the next layer.

Some systems, like COOP/Orm [140, 139] and State treemaps [157], do not support

notification of changes, but allow developers to monitor changes to artifacts by

presenting them, as part of their regular interaction, with a view of parallel activity

in an easy to understand graphical format. We notice that these notifications of

changes are currently a very active mechanism in SCM. We could add the CSCW

tools that have similar features, but it turns out that most of these tools tend to

be more passive in nature and we therefore will discuss them in the next layer. For

example, in BSCW [6] there are query mechanisms akin to the SCM tools, but it

also provides some automated visualizations that display the information when a

user browses the repository.

6.1.3 Summary

To summarize, tools at the previous layer provided the process infrastructure that

defined the coordination protocols that developers were required to follow (who

to coordinate with and when). Developers were required to strictly follow these

27

6 PROACTIVE

prescribed steps. We note that the tools at this layer allow developers to be flexible

and represent the intertwining of the strands. Developers can be more flexible in the

way they handled their development process by using the communication tools of this

layer (e.g., IM and artifact change monitors). Developers no longer have to depend

on asynchronous communication media, but can directly chat with their colleagues

to quickly resolve problems. Another instance of this flexibility is that developers

can break the isolation promoted by workspaces and monitor development activities

in their project. Even though tools at this layer require users to explicitly set up

the monitors and actively investigate the notifications, they are still an advancement

from the isolation enforced by tools at the previous layer.

6.2 Artifact Management

Tools that support artifact management at the proactive layer allow developers

to avoid conflicts either by versioning artifacts at a lower granularity (smaller than

the source file level) or by allowing developers to share intermediate changes. In

addition to these mechanisms, which help developers avoid conflicts, tools at this

layer provide sophisticated conflict resolution support to help developers resolve

conflicts that cannot be avoided. We once again focus our discussion on SCM

tools, as SCM systems have been the forerunners in artifact management (“Product

management forms the core functionality of SCM systems” [74]).

6.2.1 Fine-Grained Versioning

SCM systems of the previous generation (e.g., RCS [214], SCCS [187], CVS [20])

version artifacts at the “source file” level, the file being the smallest unit in the

repository. But versioning at the file level often is not the best solution [139, 74].

In pessimistic SCM systems (RCS, SCCS) artifacts are locked to avoid conflicting

changes to the same artifact. Since the lock is applied to the entire source file,

developers who intend to make changes to non-conflicting sections of the file have

to wait for the lock on the file to be released. In large teams, waiting for locks can

quickly become a bottleneck, increasing the time and cost of development. Even

though optimistic SCM systems (CVS [20], Subversion [216]) do not suffer from

bottlenecks due to locking, versioning at the file level still makes it fairly cumbersome

to extract change histories of smaller units (e.g., a particular method or function)

from the version history of the source file containing the method/funtion.

Fine-grained versioning avoids these bottlenecks and difficulties in allowing access

to smaller software constituents. Most software artifacts can be broken down into

smaller units. For example, software programs are composed of functions that can be

further broken down into declarations and statements; text documents are composed

of sections and paragraphs; and so on. Software changes usually affect more than

28

6 PROACTIVE

one file [176], but “it is often the case that a change affects only a small part of

a document” [139]. Owing to encapsulation of concerns in methods, changes to

software artifacts are usually contained in smaller logical units, and most of the

times developers only change a specific method and do not touch other parts of

the program [140]. Empirical data collected by Perry et al. further supports this

observation [176].

Fine-grained versioning of artifacts takes advantage of this characteristic and allows

multiple developers to change different parts of the same artifact (e.g., methods,

collections of statements). Systems such as Coven [37], COOP/Orm [139], and

Desert/Poem [182] provide fine-grained versioning. Each of these systems version

and manage configurations directly in terms of functions, methods, or classes in

the source code with the goal to increase software reuse and collaborative program-

ming [136].

6.2.2 Conflict Management

Task allocation can seldom ensure that task responsibilities do not overlap. This

overlapping of task responsibilities, more often than not, results in conflicting changes.

Tools in areas such as CSCW and Workflow attempt to avoid conflicts by locking

artifacts. SCM systems that allow parallel development attempt to alleviate this

problem by supporting fine-grained versioning and providing awareness of parallel

activities. However, conflicting changes are still very much a reality and organiza-

tions lose time and money in resolving them [176]. Considerable research on conflict

detection and resolution has been done in the area of SCM [151, 44], since developers

are required to merge their changes and resolve any conflicts before they can check-

in their artifacts into the repository. These merge tools can be classified along two

dimensions, the ancestry of the artifact considered and the semantic level at which

merging is performed.

Three main merging techniques, based on whether the tool considers the parent of

the version or not, exist. Raw merging simply applies a set of changes in a different

context. For example, consider a change c2 that was originally performed indepen-

dently of a previous change c1 to an artifact. In raw merging, c2 is later combined

with c1 to produce a new version. Source Code Control System (SCCS [187]) sup-

ports raw merging. Two-way merging compares two versions of an artifact a1 and

a2 and merges them into a single version a3. It displays the differences to the user,

who then has to select the appropriate alternative incase of a conflict. A two-way

merge tool can merely detect differences, and cannot resolve them automatically

(Unix diff [116]). Three-way merging compares two versions of an artifact in a sim-

ilar fashion to two-way merging, but consults a common baseline if a difference is

detected. If a change has been applied in only one version, the change is incorpo-

rated automatically, otherwise a conflict is detected, which then needs to be resolved

manually. Compared to two-way merging, this resolves a number of ‘supposed’ con-

29

6 PROACTIVE

flicts automatically (false positives) [151]. Aide-de-Camp [118] offers a three-way

merge tool in addition to raw merging.

Crosscutting the various ancestry-based merge techniques is the semantic level at

which merging is applied [44]. Textual merging considers software artifacts merely

as text files (or binary files). The most common approach is line-based merging,
where each line is considered an indivisible unit (rcsmerge [214]). This approach

can detect when lines have been added or deleted, but cannot handle two parallel

modifications to the same line very well. It has been found in an industrial case

study that three-way, line-based merge tools are most popular and can resolve 90

percent of changed files without any need for user intervention [176, 130]. Syntactic
merging [29] is more powerful than textual merging as it recognizes the syntax of

the programming language, which in turn allows them to perform intelligent deci-

sions. Syntactic merging ignores conflicts due to differences in formatting or com-

menting and guarantees the syntactical correctness of the merge result. However,

syntactic merging is not trivial and has been implemented by only a few research

prototypes [29, 222]. Semantic merging builds on syntactic merging and takes the

semantics of the software program into account [21, 23, 111]. Semantic merge tools

perform sophisticated analyses in order to detect conflicts between changes. The

exact definition of a semantic conflict is a hard problem to solve and the merge al-

gorithms developed so far are applicable to only simple programming languages. In

addition to the basic merging techniques discussed above researchers are also investi-

gating structural, state-based, change-based and operation-based merge techniques.

Mens [151] provides a detailed discussion of these aforementioned techniques.

Researchers in areas other than traditional SCM have also investigated conflict res-

olution. We briefly describe some of the proposed solutions here. Asklund et al. [9]

in COOP/Orm use the structure of the program in its visualizations to help users

make merge decisions. The tool automatically performs a three-way, line based

merge and the user needs to interact with the tool only for conflicts that it cannot

automatically resolve. In such cases the tool helps users make merge decisions by

presenting them with a version graph of which developer has changed which arti-

facts. The artifacts in the graph that have conflicts are highlighted (Figure 6, top

panel). The editing panel of the tool annotates artifacts that have merge conflicts

with “< − >” (the parent window is showing a conflict in stack.java) and dis-

plays changes from both the files. Changes that are conflicting are color coded. For

example the bottom middle panel displays the conflict in the code for stack.java,

and shows two variations for the assignment statement for the variable curr. The

user then has to choose the changes that should be preserved.

Molli et al. investigate synchronization problems arising when changes are executed

in parallel. They have produced a number of prototypes (e.g., COO [156] and

divergence metric [158]) that attempt to coordinate parallel activity. The COO3

environment supports synchronization of development activities by encapsulating

3
COO stands for cooperation and coordination in the software process

30

6 PROACTIVE

Figure 6: COOP/Orm merge UI [9].

the activities as COO transactions. COO transactions relax the isolation property

enforced by traditional ACID4 transactions while maintaining the other properties.

The COO environment allows developers to share intermediate results. In COO

each developer works on their local copy of the artifact, makes changes and can

place an intermediate version of the artifact in the repository that can then be used

by another developer. COO creates a final stable version of the artifact based on the

order in which the transactions were performed [156]. In other research, the authors

investigate the divergence that can occur in an artifact when developers concurrently

change the same artifact. They calculate this divergence based on the operations

that have been made to the artifact (operational transformation algorithms) and

present the calculated divergence metrics as graphs. The aim of the tool is to

enable users to better understand the divergence that has emerged as an indication

of the effort involved in its resolution, which needs to be resolved.

6.2.3 Summary

Compared to the previous layer in our pyramid, artifact management has advanced

from just providing the infrastructure for allowing parallel development to providing

automated support for integrating parallel changes. The focus of the tools at the

previous layer was to create protocols that would allow multiple developers to access

and modify artifacts synchronously or asynchronously. If the protocol allowed an

artifact to be modified simultaneously by two or more developers, it was the respon-

4
ACID : Atomic, Consistent, Isolation, and Durable

31

6 PROACTIVE

sibility of the developer to integrate the parallel changes. This is problematic, as it

was found in a study that the amount of parallel work is proportional to the num-

ber of conflicts in a project [176]. Tools at this layer therefore focused on helping

developers to deal with conflicts arising out parallel development.

6.3 Task Management

The tools at this layer support task management mainly by drawing upon the ex-

tensive knowledge base that is already available in the repository archives, such as

change logs, design documents, check-in comments, and so on. The tools analyze

this information and display the results as visualizations (e.g., which developer has

changed which artifact, how many lines of code have been changed by a particu-

lar developer) or provide recommendations to developers (e.g., which developer can

help me, which artifacts are important for the task at hand, who has worked on

similar projects).

A thing to note is that these tools are useful to both managers and developers. In

fact many of the tools that we discuss here have been designed more for the developer

than the manager (e.g., Hipikat, a tool that allows new developers to be productive

faster). Another observation is that these tools support task management by mining

information from archived artifacts, which is a clear example of the blending of

artifact management and task management strands of the pyramid.

6.3.1 Visualizing Software Evolution

Managers need to maintain a comprehensive view of the status of their projects

along with the interdependencies between the software modules, so that they can

make informed decisions. Managers usually make these kind of decisions based on

their expert judgement, but as software systems become more complex in nature

and larger in size, keeping track of the software and its components becomes more

difficult.

Research in information visualization aims to represent software systems, their evo-

lution, and interdependencies between its constituents in an easy to understand

graphical format, such that users can better understand the project space and

thereby make informed decisions. Some of these visualizations concentrate at the

code-level (Augur [82], Figure 7), while others take a broader outlook and visualize

the software system at the structural level (Evolution Matrix [129], Figure 8). Some

systems are currently exploring displaying these visualizations at a central place

using multiple monitors [169]. Storey et al. [205] have surveyed such visualizations

that support awareness of development activities. We briefly describe a few such

systems here.

32

6 PROACTIVE

SeeSoft [69] and Augur [82] use the software code maintained in a SCM reposi-

tory to display the number of lines that a particular developer has changed in a

particular file. Figure 7 illustrates Augur’s multi-pane interface, with the central

pane displaying lines of code that are color coded to represent changes by different

developers (lines of code changed by a particular developer are colored in a single

color). This metric helps managers comprehend the contribution of each developer,

the evolution of the system, and existence of code decay. When code gets old (e.g.,

legacy systems), eventually there are parts of code and issues involved with them

that people forget. As the code keeps getting modified, its architecture degrades

with bits of code never being used or being duplicated. Code decay represents this

degradation of code that makes subsequent maintenance of the system or addition

of new functionalities a difficult task.

Figure 7: Multi-Pane Interface of Augur [82].

Hill and Hollan modified the ZMACS editor to create the Edit Wear and Read

Wear tool [110]. This tool displays documents with scroll bars placed in the mar-

gins. Scroll bars indicate how many times a particular line has been read or edited.

Additional information regarding the authors who have modified the document is

also presented as meta-data along with the scroll bars. This system can therefore

graphically answer which sections in a document are most stable (changing the

slowest) or unstable (being edited rapidly).

Evolution Matrix [129] focus on the architecture of the system to represent the

33

6 PROACTIVE

evolution of the system. The Evolution Matrix considers classes that have been

added, modified, or deleted in different versions and creates a 2-D matrix, where

each cell in the matrix represents a class. Figure 8 shows the code structure of

MooseFinder [204] as visualized by the tool. The rows in the matrix represent the

number of classes and the columns the versions of the artifact. The evolution of the

system (e.g., when have classes been added to the system, when the system has been

stagnating) can be easily understood by simply looking at the evolution matrix.

Figure 8: Evolution Matrix Showing Code Structure of MooseFinder [129].

SeeSys [11] is a visualization system that uses state treemaps [120] to display software

code. The state treemap visualization maps hierarchical information of directories

and files onto a rectangular 2-D display. In this method, nodes whose attributes are

of more importance are given a larger display area. SeeSys further uses color and

animation (zoom in and zoom out) to show historical changes to the system.

6.3.2 Organizational Memory

New developers need to understand the design, the architecture, and any existing

code of the system before they can become productive and start coding. Most

companies assign an experienced developer as a mentor to the new developer. The

mentor guides the new developer in understanding the design constraints of the

system and any other relevant information that is necessary to understand the cur-

rent task. Initially, the new developer requires more help from their mentors but

as the developer gains experience these interactions reduce. It has been found in

a study [108] that developers are more inclined to help their colleagues who are

collocated than colleagues who are separated [91, 107]. Therefore, when teams are

34

6 PROACTIVE

distributed in nature (e.g., virtual teams), new developers cannot always get the

advantage of having a mentor. In cases were new developers are on their own, they

have to spend a considerable amount of time getting acquainted with their project

and organization before they can be productive [46]. In this section, we discuss

tools that utilize the product and organization information already existing in the

software archives to help developers be up-to-date with their task. New developers

can use these tools to recommend the correct design practices, experts in a domain,

required artifacts for a given task, and so forth.

Software critics are used in design environments (ArgoUML [185], ArchStudio [52])

to help developers maintain the design specifications of the software system. Soft-

ware critics are active agents that support decision-making by continuously and pes-

simistically analyzing partial designs or architectures. Critics analyze the changes

made by developers and compare these changes with the architecture of the system.

If the design violates any constraints it immediately notifies the developer. Since

critics are continuous and pessimistic in nature, these environments allow the critics

to be switched off so that developers are not distracted in their design exercise. De-

velopers can start the critics to check their entire design once they have completed

their task.

Recommendation systems can be used for recommending either domain experts

(e.g., Expertise Recommender [148], Expertise Browser [153]) or artifacts (e.g.,

Hipikat [46, 47], Codebroker [226]) that are essential for the current task. Arti-

fact recommenders help newcomers become productive quicker by recommending

existing artifacts from the development set that are relevant to the task at hand.

For example, Hipikat [46] uses two techniques to help newcomers. First, the tool in-

fers links between artifacts that may have been apparent at one time to members of

the development team but that went unrecorded. Second, using these links the tool

acts as a mentor and suggests relevant information that would help the newcomer

with their task.

Expertise recommenders on the other hand use data from SCM systems to locate

people with desired expertise. They help locate developers who have expertise in a

particular domain or have worked extensively in a specific product. The Expertise

Browser [153], for example, quantifies the past experience of developers and presents

the result to the user. This enables a manager to easily distinguish a developer

who has only worked briefly in a particular area from someone who has extensive

experience. In addition to locating developer expertise, the tool also helps managers

discover expertise profiles of organizations.

6.3.3 Social Navigation

Social relationships are a strong factor in determining who collaborates with whom.

Social networks are used by groupware designers to provide a means of visualizing

35

6 PROACTIVE

existing and potential interaction in organizational settings [147]. Social networks

should ideally make software development environments more sensitive to social

situations and guide users toward effective collaborations.

Social networks typically represent groups of people and the connection among them.

A common approach is to use social network visualization as an overview of group

participation or group membership. Social network visualizations (e.g., Conversa-

tion Map [192], PeCo [166], Contact Map [163]) mainly analyze the communication

medium among developers. Conversation Map [192] provides a content visualization

by analyzing the message content and displays the network of participants. Ogata

et al. [166] use PeCo to facilitate finding the person with whom to collaborate by

mining and analyzing email exchanges among individuals. Contact Map [163] is a

personal communication and contact management system. It mines the email ex-

changes and allows the user to arrange their contacts based on people with whom

they interact more regularly or deem important.

6.3.4 Group Decision Support Systems

Managers spend a considerable amount of their time in meetings. When starting a

new project or if a project is behind schedule managers meet to discuss the potential

problems that the group faces and generate potential solutions to solve them. These

meetings usually involve multiple stakeholders who have to agree on the solution and

the way it would be implemented. The members in the meeting may not always be

collocated which makes the decision making process even harder. Group Decision

Support Systems (GDSS) [126] provide automated support that help managers in

their decision making process.

GDSS combine computing, communication, and decision support technologies to

facilitate formulation and solution of unstructured problems by a group of peo-

ple [58]. GDSS improve the process of group decision making by removing common

communication barriers, providing techniques for structuring decision analysis, and

systematically directing the pattern, timing, and content of the discussion. Tech-

nological advancements, such as electronic boardrooms, broadband local area net-

works, teleconferencing, and decision support software, have spurred research in this

area. The availability of advanced GDSS coupled with the fact that managers have

to participate in meetings while they are away has made decision-related meetings

more frequent and more effective [112].

6.3.5 Summary

In conclusion, task management at the previous layer focused on encoding the de-

velopment process such that the system could generate the coordination protocol

that is required for the team. Effort was mainly concerned with correctly analyzing

36

6 PROACTIVE

the current process and enacting it. Exceptions to the prescribed rules were not well

handled. The focus of the tools at this layer is to complement the existing process

infrastructure by providing further information about development activities, such

that developers and managers alike can monitor the project space. The goal of these

tools is to make developers aware of development activities around them such that

they can detect potential conflicts and take steps to avoid them. In addition to

providing information of development activities, the tools mine the already existing

organization memory [1, 2] to help developers in their task. These tools mainly help

developers by recommending the correct design practices, experts in the field, or

artifacts required for tasks that the developer is involved in.

37

7 PASSIVE

7 Passive

The tools at the previous layer allow developers to monitor development activities

around them and be proactive by resolving potential conflicting situations before

they become real. However, these tools require explicit user involvement in setting

up the monitors, investigating notifications (usually sent via email), or understand-

ing the visualizations [205]. Moreover, barring a few, most of these tools are stand

alone applications and require users to switch contexts from their development task

to the visualizations. The tools at the seamless layer focus on reducing this load

on users by providing awareness to users in a passive format, such that they are not

distracted from their tasks. The tools further reduce the overload on users by pro-

viding filtering mechanisms that allow developers to view only relevant information

with minimal or no configuration requirement.

The advance in Integrated Development Environments (IDE) facilitated the integra-

tion of awareness widgets into the IDE, thus reducing the context switch required in

monitoring activities. For example, tools such as Palant́ır [194] and JAZZ [36] use

the Eclipse plug-in development features [39] to create passive workspace awareness

embedded in the IDE.

In a study at a commercial development site, Sawyer and Guinan [196] investigated

the development practices of forty teams to assess the effects of production methods

and social processes on software product quality and team performance. Findings of

the study indicate that production methods, such as use of software methodologies

and automated development tools, provide no explanation for the variance in either

software product quality or the team performance. Social processes on the other

hand, such as the level of informal coordination and communication, the ability to

resolve intragroup conflict, and the degree of supportiveness in the team, can account

for 25 percent of the variations in software product quality. Heath and Luff, in their

seminal study [102, 101], investigated how collocated team members coordinate their

actions by monitoring the physical cues and actions of their colleagues. Developers

generally subconsciously monitor the ambient noises (e.g., people arriving or leaving,

phone ringing, conversations in the hallway) in the environment to coordinate their

actions [80].

Teams that are distributed cannot take advantage of these environmental cues

making communication and coordination even harder [108]. However, distributed

development has become the norm in technology companies. Organizations fre-

quently operate teams that are geographically separated to leverage expertise lo-

cated elsewhere, spread development across time zones, and reduce development

costs [67, 106]. This new development practice exacerbates the already existing

problems in communication and coordination [28], with developers having to work

across different time zones, languages, and cultures [167, 107]. Researchers in collab-

orative development have started investigating ways to provide collocation benefits

to distributed teams [72]. These awareness tools mainly focus on providing aware-

38

7 PASSIVE

ness of user presence and activities to help distributed users collaborate; other areas

are still to be addressed.

The tools in the fourth layer of the pyramid, the passive layer, mainly focus in

providing awareness of co-developers and their development activities in a non-

intrusive, relevant, and timely manner. The tools at this layer provide further

evidence of the three strands slowly but definitely merging into each other to provide

tools a well-rounded approach to collaboration.

7.1 Communication

Tools at the previous layer enabled developers to be proactive by allowing them to

monitor development activities and communicate at real time. However, users had

to be actively involved while using these tools. Tools at this layer attempt to reduce

the user effort involved in collaboration. The awareness tools at this layer provide

information of parallel activities in a passive format (Tukan [198], Elvin [80]) so as

to reduce the effort and context switch that users have to undertake to monitor the

changes to artifacts. Some of these awareness widgets (JAZZ [36], Palantir [194])

are integrated with the development environment to further help developers avoid

the context switch between their development task and monitoring others’ activities.

Notifications services (Siena [34], Yancees [199, 200]) allow developers to filter out

information in which they are interested thereby reducing the information overload.

7.1.1 Awareness

Awareness can be defined as “an understanding of the activities of others, which

provides a context for your own activity” [64]. This context allows developers to

ensure that their contributions are relevant to the activity of the group as a whole.

Research in promoting awareness in shared work has been widely recognized in the

CSCW community [80] and currently is being investigated by researchers in software

engineering.

Awareness applications can be broadly classified into three categories based on the

type of awareness that they provide [178]. Task-oriented awareness focuses on ac-

tivities performed to achieve a specific shared task. This kind of awareness is usu-

ally provided by information on the state of an artifact in a shared workspace or

changes to it. This information can then be used to coordinate activities of devel-

opers around the shared object (GroupDesk [83], Tukan [198]). Social awareness
presents information about the presence and activity of people in a shared envi-

ronment (Portholes [65], Social Awareness@work [217]). Systems focusing on social

awareness provide information about who is present in a shared environment and

about the activities the users are currently engaged in. The difference between

task-oriented and social awareness is the shared context. The shared context for a

39

7 PASSIVE

task-oriented awareness system is established by the artifact that is part of a collab-

orative process, whereas for social awareness it is the environment that is inhabited

by the users. The third approach, room based awareness, integrates the aforemen-

tioned approaches. In systems following this approach, virtual rooms provide a

shared location for the organization and collection of task-oriented objects (Team-

Rooms [189], Diva [201]). For example, users who collaborate on a particular task

share a room and information of someone working on a shared artifact contributes

to task-oriented awareness. Whereas, the mere presence of the person in the shared

environment represents social awareness.

An interesting observation is that tools that provide awareness are difficult to distin-

guish based on the strand in the pyramid that they support best, because these tools

largely encompass all the three strands in some way or another. For instance, the

same tools can be used to support collaboration in communication, artifact manage-

ment, task management or a combination thereof. This illustrates the fact that, as

research has matured, tools have taken a broader scope in supporting collaboration.

However, tools at this layer have not blended the three strands completely yet, but

lay the foundation for the tools at the next layer (the seamless layer) to do so.

Task-Oriented Awareness: The chief purpose of tools that provide task-oriented

awareness is to enable developers to have an idea of the development activities of

others so that they can coordinate their tasks accordingly. The amount of aware-

ness information that is required for a particular task is based on the nature of the

task in which the user is involved. For example, synchronous editing requires the

users to be aware of every mouse-click and key-stroke of their co-authors, whereas

the awareness details required for asynchronous or semi-synchronous applications

are much more coarse (e.g., a developer has finished working on an artifact, a user

has started work). Semi-synchronous applications allow users to work in both syn-

chronous and asynchronous mode and therefore the awareness information required

for these applications is dependent on the mode of collaboration in which they are

currently engaged. For example, a developer might code in asynchronous mode

when they need to concentrate on their task, but work in synchronous mode while

debugging to obtain help from their colleagues. There are a number of applications

that support each of these modes of collaboration (GroupDesk [83], ShrEdit [150],

SUITE [59], [88]) and a few that allow developers to change their modes (Tukan [198],

Sepia [100]). Tools that allow users to change their mode of collaboration are dis-

cussed in Section 7.3.

Awareness tools can also be categorized based on the manner in which they present

awareness information. Some attach this information along with the artifacts, which

the users then need to investigate (already discussed in the proactive layer), while

others present this information in a passive unobtrusive display [197]. There are

a number of approaches that tools have investigated to disseminate information in

an effective but unobtrusive manner. The most common approach is to provide

awareness widgets that are small and stay in the background, but change their ap-

40

7 PASSIVE

pearances to draw the attention of the user (desouza99, fritzpatrick02). Some tools

emulate the development interface with which the user is familiar to embed aware-

ness information (Groupdesk [83] uses the desktop metaphor, PoliAwac [202] uses

the windows explorer interface), while others embed this information directly in the

development environment (JAZZ [36], Palant́ır [194]). Many tools are investigating

media outside the desktop. Some of these media includes separate display screens,

multiple monitor displays, 3D display of artifacts, ambient devices (ambient globes),

and ambient noises (whirring of the fan, thud of mail dropping) [80, 178, 169].

Traditionally, CSCW applications have focused on providing workspace awareness

(gutwin96, GroupSketch [87], Quilt [78]) while SCM based tools have focused on

repository based awareness (Cover [99], State TreeMaps [157]). This was so, be-

cause the nature of work in the two communities differed, with CSCW applications

typically supporting synchronous activities and SCM tools supporting asynchronous

activities. Currently this division is getting erased with some CSCW applications

investigating repository based information [6, 143], while SCM based tools are ex-

ploring workspace awareness [97, 194, 170]. A thing to note is that repository based

tools are better suited to provide a history of past actions [198, 194] than tools that

support synchronous activity and workspace awareness.

Social Awareness: Collocated teams members are often aware of activities around

them by subconsciously monitoring cues from the environment (e.g., conversation in

the hallways, the humming of printers, people passing by offices). Presence aware-

ness tools support distributed teams in taking advantage of these environmental

cues by representing activities of developers in the organization, both distributed

and remote, in a digital format. Tools such as Portholes [65] and Polyscope [25] use

video technology to capture activities in public areas and offices and present them

as regularly-updated digitized video images on workstations. Glance [210], another

video monitoring tool, follows a slightly different metaphor and provides the elec-

tronic analog of strolling down a hallway and intentionally glancing into people’s

office.

Use of video technology raises privacy concerns among users (see Section 7.3.1).

To avoid privacy issues of users, some tools do not use video technology. These

tools monitor user activities and presence by monitoring activities, such as when

developers are working on their computer, the kind of activity in which the developer

is involved (read/edit), whether the developer is present in a shared area (physical

or digital), and so on (Work rhythms [15], awareness monitors [32, 113]). In addition

to monitoring the presence of users to ascertain when is the best time to contact a

developer, these tools also help in community building via a shared space [81]. A

more popular and lower bandwidth solution to presence awareness are IM messages

(Section 6.1.1). JAZZ [36], a collaborative development environment, enhances the

information that IMs currently provide by adding context information about the

task in which the user is currently involved, making the application more suitable

for development teams.

41

7 PASSIVE

Room-based Awareness: In collocated software development teams physical con-

versation spaces are indispensable to conduct meetings, review design documents,

resolve conflicts, disseminate information or just converse informally [53]. Organi-

zations usually designate a permanent shared space to be used by the team, serving

as a meeting room, work area, a place to store documents that are needed by

the teams projects, and more generally, as a focus for communication within the

group [189, 201]. Traditional team rooms have relied on the physical proximity of

the team members and their easy access to the room. However, as teams get in-

creasingly distributed and chances for face-to-face discussions reduce, team members

turn to virtual team spaces for their communication needs [117].

Research in CSCW has resulted in virtual rooms [189, 201] that support the team

room concept for virtual teams. Using these systems, teams that are distributed can

still get a feeling of belonging to the group, monitor which artifact has been changed

by which developer, be able to access team related documents, or start electronic

discussions with team members. BCSW [6] provides similar kinds of information

(which developer has last viewed an artifact, which artifact has been viewed the

most, who is currently working on shared artifacts) but in a web-based format.

Some room-based systems allow developers to interact with the artifacts and other

developers in the shared room in a 3D environment allowing developers to experi-

ence the benefits of collocation [63, 27]. The main drawback of such room-based

awareness systems is that they are non-contextual. These systems are created as

separate applications and developers have to switch from their development envi-

ronment to view activities in these rooms. Moreover, when developers belong to

multiple rooms it becomes difficult to monitor activities in different rooms or search

for a particular artifact in a particular room.

Figure 9: The Three-Layer Model of Orbit [143].

42

7 PASSIVE

Researchers have started investigating making team rooms better by avoiding the

aforementioned drawbacks [117]. Orbit [143, 79], a collaborative environment, is

based on the notion of locales, a conceptual place where groups of people come

together to work on a shared activity. Orbits implements locales by using a three-

layer model (Figure 9). The bottom layer contains artifacts, tools and resources

to be used by the organization. The middle layer defines locales based on specific

collaborative activities. Each locale is then mapped to the artifacts, resources, and

tools in the bottom layer that are relevant to it. The top layer signifies the individual

layer, where individuals can belong to more than one locale and access artifacts with

respect to the locale that they are currently working in.

7.1.2 Event Notification Systems

One of the primary responsibilities of awareness tools is to notify users of events in

which they are interested (an artifact getting modified, a developer exploring the

shared space, a discussion in the shared space). A drawback to the awareness tools

is the amount and complexity of information that a user is forced to process to take

advantage of the benefits of awareness. When users are not able to process this

large amount of information they simply ignore it, sometimes ignoring important

information. Traditionally, users set filters to streamline the information to suit

their needs [17, 18], but it is not the perfect solution, since users have to manually

set the filters up and the filters are not flexible enough.

Event notification services work based on the publish-subscribe model, which helps

reduce the information overload on the recipients while making information dis-

tribution easier for the sender [138]. In order to leverage this advantage many

awareness tool builders have started using event notification services for their infor-

mation distribution needs, instead of creating their own event distribution network.

A secondary, but important benefit of using notification services, is that they allow

information from disparate sources to be integrated [54]. There are a number of noti-

fication services currently available [180, 190]. Here, we discuss some characteristics

of notification services that are important for creating collaborative tools.

• Subscription type: whether the subscription matching is content based or chan-

nel based. Content-based subscription [80, 34] matches the content of the event

with the subscription expression and forwards only those events that satisfy

the expressions. Channel-based subscriptions [168, 209], on the other hand

have predefined named topics or channels that must be specified by both the

producer and the consumer.

• Pull vs Push: whether it is a pull-based or a push-based mechanism. In the

pull-based mechanism [138, 122], clients poll the event server and retrieve

matching events, whereas in the push-based mechanism [80, 34] events are

sent to clients as soon as they occur.

43

7 PASSIVE

• Persistency : whether the service stores the events persistently for later re-

trieval [138, 122] or loses the events once they have been delivered.

• Federation: whether they work in a federation of multiple servers [80, 34] to

increase the load bearing capabilities and provide wide-area scalability or work

with a single server [122].

• Infrastructure: whether they are strongly coupled with a collaborative tool

[174] or provide a notification infrastructure [178]. Researchers are currently

investigating making notification infrastructures more versatile [200].

Awareness tools have built on different notification services based on which char-

acteristic is important for the specific tool. For example, federation of servers is

suitable for large applications, content-based subscription matching provides more

flexibility, and so on.

7.1.3 Summary

To summarize, tools at the previous layer allowed developers to be proactive, but this

required active user involvement either when communicating with their colleagues

(IM conversation) or for monitoring development activities of others (explicitly set

up the monitors, interpret the visualizations). The tools at this layer concentrate

on reducing the user effort in acquiring the information and processing it. The

tools present awareness information in a passive unobtrusive format, reduce the

information overload that developers have to face, and allow developers the flexibility

to configure the amount and type of information that they want to view.

7.2 Artifact Management

Conflict resolution is a time consuming and tedious effort that reduces the pro-

ductivity of teams [176]. Researchers have investigated different methodologies to

help reduce conflicts ranging from programming paradigms (separation of concerns,

encapsulation of functionalities) [172] to conflict detection tools [36, 129, 6]. How-

ever, despite these tools and methodologies, conflicts are still very much a reality

in commercial software development. Indeed there are a slew of conflict resolution

and merge tools that are currently available (Section 6.2.2). It is a well known fact

that the earlier a conflict is detected the less expensive it is, therefore researchers

have focused on creating sophisticated tools that help detect and resolve conflicts

before they become large and difficult to resolve. Tools at the previous layer enabled

developers to understand and visualize the changes to artifacts, such that, based on

their experience and domain knowledge, they could identify potential conflicts and

take steps to avoid them. Tools at this layer analyze the changes to an artifact and

44

7 PASSIVE

its effect on other artifacts based on program analysis. These tools, thus, aim to

provide more accurate conflict detection and at the same time reduce the user effort

required.

7.2.1 Change Analysis

Software change impact analysis helps users to understand and implement changes

in large systems by a providing detailed examination of the consequences of changes

in software [8, 7]. A major goal of impact analysis is to identify the software ar-

tifacts that would be affected by a proposed change. Developers can then use this

information to evaluate and implement the proposed changes, potentially in a way

that causes less impact.

Dependency analysis and traceability analysis are the two main schools of thought

that constitute impact analysis. Dependency analysis [137] involves examining de-

tailed dependency relationships among program entities (e.g., variables, logic mod-

ules, methods). It provides a detailed evaluation of dependencies at the code level,

but does not provide any support for other artifacts created in the software life cycle

such as requirement specifications, design documents, test suites, and so on.

Traceability analysis [38] examines dependency relationships among all artifacts

that are created in the software’s life cycle. For instance, it can relate requirement

specifications with associated design components or components in the architecture

to software code. Although traceability covers many of the relationships among

artifacts that a software repository stores, these relationships typically are not very

detailed.

The aforementioned impact analysis methods are not new and have been extensively

used in program comprehension. However, these techniques have largely not been

used by collaborative tools. Research in collaboration has only recently started

investigating the impact of changes made by a developer on another [198], sarma03].

These tools attempt to inform a developer of the effect of others’ change on their

current task. Being aware of this effect, developers can take appropriate actions

to coordinate their activities with others to avoid any conflicting situations. A

secondary benefit of the impact analysis is that it helps developers identify the

people that they need to collaborate with.

7.2.2 Artifact relationships

As discussed in Section 7.1.1, developers need to have constant awareness of the

activities related to a shared product while collaborating. These activities are mainly

related to the parts of the product on which a developer is directly working, but a

developer may also need to be informed about activities related to other parts of

45

7 PASSIVE

the product that are somehow related to “their” parts. Researchers are increasingly

concentrating on the product model for providing awareness to developers regarding

which artifacts are of interest to the developer, which artifacts have an effect on the

current task, which other developers are working on artifacts that are relevant, and

so on. This model is particularly useful in a distributed development context because

the product is normally the main focus of work for the developers and the shared

product is something on which the developers need to collaborate.

Systems that use product models specifically to aid collaboration use the inherent

relationship between the artifacts to interpret the impact of changes. These models

mainly represent the artifacts (classes or methods) in the software project as a

semantic network [198]. Each artifact in this network is either mapped to a node in

a graph or connected to other artifacts based on a relationship model [75]. When

a developer creates a new artifact or makes changes to an existing one, the tool

scans the artifact for possible relations to other artifacts in the graph to predict

the impact of the change. These tools usually allow a developer to define the set

of artifacts in which they are interested (called the focus of the developer’s current

interest). Artifacts that are related to this set of artifacts create the shared interest

space (nimbus). These tools, thus, use the developers’ focus and nimbus to predict

changes in which the developer should be interested.

The relationships between artifacts can be mined either using the aforementioned

product models or by using dependency analysis to create social callgraphs [53].

Developers can then navigate these social callgraphs to identify developers who are

most likely to affect them and with whom they should probably coordinate their

activities.

Task based SCM systems, unlike popular systems (e.g., CVS [20], Subversion [216],

Visual Source Safe [193]) that version individual artifacts, track the modified arti-

facts that are related to a particular task (e.g., CCC/Harvest [10], CM/Synergy [223],

Rational ClearCase [211]). Developers in these SCM systems select the particular

task that they are working on, the SCM system then uses that information to track

all the changes that have been made by the developer. On finishing their task, the

developer can simply check-in the task and the SCM system ensures that all the

relevant artifacts are checked-in. Managers and developers can thus depend on the

SCM system for information, such as, which artifacts were associated with which

tasks, which set of changes have been implemented, which changes have been used

in the latest build, and so on.

7.2.3 Summary

We note that tools at this layer attempt to reduce conflicts in collaborative devel-

opment by investigating the relationships among artifacts. Tools at the previous

layer showed which artifact is being changed by which developer and it was the

46

7 PASSIVE

responsibility of the developer to leverage their experience and domain knowledge

to detect potential conflicts. Tools at this layer analyze the changes to artifacts and

their effects, thereby reducing the user effort. A secondary benefit of these tools is

that they allow developers to better understand the structure of their product and

identify colleagues whom they should collaborate with.

7.3 Task Management

Informal communication is an important part of coordination [196]. Distributed

teams lose this ability and its corresponding cues that sometimes lead to delays or

creates problems in development [108]. Awareness tools attempt to recreate the so-

cial cues in an organization by presenting users with presence awareness, awareness

of activities of others, and providing virtual shared rooms where distributed devel-

opers can interact. These systems serve the purpose of communication tools and

can be used for task management. We note that the three strands of the pyramid

merge here as tools take a broader perspective and combine more than one activity.

For example, the awareness tools that we discuss in Section 7.1.1, serve the purpose

of communication, but can be and are used by developers and managers for task

management.

In this section we discuss research that improves the awareness tools already dis-

cussed. In particular, we discuss research that addresses the privacy concerns in

presence awareness tools, interruptions that distract developers, and the different

modes of collaboration that users would like to be involved in based on their current

tasks.

7.3.1 Privacy Concerns

Collocated teams often coordinate their activities based on informal communication

(coffee hour discussion, supervisors looking over the shoulder to check progress),

which is lost in distributed development. Unfortunately, it has also been found

that developers who are geographically separated are less likely to collaborate and

help each other [128, 108]. To enable distributed developers to take advantage of

this informal communication, researchers have created tools that provide presence

awareness in organizations (Section 7.1.1).

A primary concern among users of such systems is the tradeoff between access to

presence data for legitimate uses, and concerns about privacy [84, 115]. Some of

the issues with privacy are camera shyness, threat of surveillance, loss of control

over privacy, lack of support of awareness of audience, and so on. Researchers

are investigating policies, such as reciprocity and ownership of data, to alleviate

privacy concerns. For example, users are not keen on sharing their information

with strangers, but are more comfortable with people whose information they can

47

7 PASSIVE

view [84, 104]. Systems that use video technology address privacy concerns of users

by allowing them to host their own pictures, place cameras in neutral positions, blur

users images, and so on [132].

7.3.2 Interruption Management

Developers have to manage a number of distractions (colleague dropping by, tele-

phone ringing, IM message), which slow and sometimes introduce errors in complex

tasks in which developers are involved [186]. In collocated teams, social cues help

determine whether a colleague can be interrupted or not (a developer may close the

door to their office when they need to work in privacy). In a distributed develop-

ment environment developers can use the presence awareness tools to create social

cues that inform others about their availability. However, these tools fail to avoid

interruptions from automated external agents, such as critics, source control moni-

tors, bug-database monitors, and so on. Filtering interruption by creating rules does

not always work either, as some interruptions may be useful and help in getting a

task accomplished better or faster. Based on the benefits of the interruption, users

may assign higher priority to some interruptions than others. This priority may also

change based on the task in which the user is currently involved.

Researchers have studied the way managers and developers handle interruptions,

and they have found that there is never a good time for interruptions, since inter-

ruptions invariably disrupt the current task [49, 113]. This observation implies that

interruption management systems should not queue possible interruptions for the

ideal time, but send them at the best relative time based on the work patterns of

the user. Interruption management tools, thus, need to incorporate a certain level

of social process to ease the challenge of limited attention of the users [56, 149].

7.3.3 Changing Modes of Collaboration

The amount of collaboration that developers need varies from working in isolation to

tightly coupled collaboration mode, based on the current task in which the developer

is involved [98]. For example, a developer might want to work in isolation and not be

interrupted while implementing a complex task that requires intense concentration.

However, once the developer has finished implementing the task, they may want to

collaborate with their colleague to debug the program.

The tools following the formal process-based approach required the users to work in

isolation and then synchronize their changes with the repository. The tools following

the informal awareness-based approach supported the other extreme in collaboration

(synchronous editors) [218]. Researchers have realized that the mode of collabora-

tion depends on the task in which the developer is currently involved [98, 60] and may

lie at any point in between the two extremes. Tools following this approach typically

48

7 PASSIVE

allow a user to work in three distinct modes, namely Synchronous, Asynchronous,
and Multi-Synchronous (SAMS environment [159], FLECSE [60]). Tukan [198] fur-

ther decomposes its available modes to create nine distinct modes of collaboration

in which developers may be involved. All these tools however require the user to

explicitly set and change the mode of collaboration. The tools at the next layer aim

to reduce the user effort involved in changing the modes and automatically alter the

mode based on the current task that the user is involved in.

7.3.4 Summary

The tools at the proactive layer supported both managers and developers alike

in managing task by visualizing the development activities in the project space

and providing organizational memory. However, the tools at that layer required

users to be actively involved in using them. The awareness tools at this layer

are an enhancement of the tools at the previous layer as they require less user

involvement. The tools at this layer also address concerns that arise from using

awareness tools, such as, privacy issues, distractions caused by interruptions, and

the need for different modes of collaboration. These tools have succeeded in bringing

presence awareness and task-oriented awareness to distributed development, but still

are very much a work in progress. These tools have not yet been able to completely

imitate the social cues in an organization, or be easy to install and use either (and

may never be able to do so).

49

8 SEAMLESS

8 Seamless

Collaboration in software development is a challenging task [127] that is further mag-

nified with large teams [48] and geographical separation [33]. Traditionally, software

engineering and CSCW have taken two very different approaches to collaboration.

Software engineering research advocate dividing the development process into dis-

tinct steps and prescribing the coordination protocols among the steps [13, 171],

while CSCW researchers have recognized the importance of awareness and environ-

mental factors in collaboration [208, 64, 218]. Both these approaches have produced

tools that are extensively used in software development [74, 26], but they also suf-

fer from drawbacks. Formal process-based systems are scalable to large teams, but

are rigid and do not handle exceptions to the process very well [171]. Informal

awareness-based approaches, on the other hand, are user centric, but are not scal-

able and overwhelm users with excessive amounts of information [113]. Researchers

are currently investigating combining both these approaches so as to build on their

strengths, while avoiding their drawbacks.

There are different ways in which both approaches can be integrated. Some re-

searchers are investigating integrating the collaborative features typically provided

by CSCW applications into software engineering tools [61, 194]. While others are

trying to understand the development process with respect to the activities and ar-

tifacts in which developers are involved, creating software product and supporting

them [220, 221].

Strubing [207] in his study found three other activities that developers consistently

carry out beyond coding: “organizing their working space and process, representing

and communicating design decisions and ideas, and communicating and negotiating

with various stakeholders”. However, coding has traditionally been considered the

most important activity of a developer in software engineering. As a result, tool

builders have focused on creating better programming languages and environments

that facilitate coding, while ignoring other activities. In the recent past, environ-

ments that support collaborative activities and software artifacts produced during

the software life cycle have become popular.

Researchers following this approach are investigating environments that either sup-

port different types of software artifacts or integrate tools that do so [211, 182, 152].

Using these environments developers usually partition their views to interact with

different types of artifacts (e.g., system specification, design document, code). Mod-

ifying parts of a system specification in one tool can introduce inconsistencies with

related parts of the system specified in other tools, between specifications shared

by different developers, or even cause inconsistencies within the same tool. In a

complex system involving multiple developers and development tools, developers

are often unaware of the introduction, or even existence of such inconsistencies [96].

Mechanisms for detecting these kinds of inconsistencies and for informing developers

are currently being researched [152, 94].

50

8 SEAMLESS

Booch and Brown [24] propose Collaborative Development Environments (CDE),

a virtual space wherein all the stakeholders of a project, collocated or distributed,

can collaborate by negotiating, brainstorming, sharing knowledge, and in essence

working together to create an executable deliverable and its supporting artifacts.

A similar approach by van der Hoek et al. advocate continuous coordination, a

paradigm where “humans must not and cannot have their method of collaboration

dictated, but should be supported flexibly with both the tools and the information

to coordinate themselves and collaborate in their activities as they see fit” [218].

The aforementioned approaches exemplify the trend in research to provide a flex-

ible unified environment that allows the user to effortlessly collaborate with addi-

tional stakeholders by using different artifacts, while providing them the flexibility

to choose the level of collaboration support that is required. We observe that the

three strands in the pyramid have begun to strongly blend at this layer to create

a unified environment that begins to seamlessly supports communication, artifact

management, and task management.

We acknowledge that collaboration is a difficult task and integrated environments

do not solve all the collaboration problems, but it definitely is a step in the right

direction. We also recognize that problems in global software development, such

as differing time zones, language and culture barriers have yet to be investigated.

We have left the top of the pyramid open to signify the need and room for further

research.

51

9 OBSERVATIONS

9 Observations

In this paper we present a survey that takes a different perspective from the existing

surveys in classifying collaborative tools. Our framework considers the user effort

that is required to collaborate effectively − a critical component in deciding whether

a tool is adopted or not [92]. For the purposes of this paper, we define user effort as

the attention and time that a user has to expend in using the tool to communicate

and coordinate their activities.

Our classification framework is in the form of a pyramid, with five layers and three

strands (Figure 4). The layers in the pyramid are arranged vertically and are: (1)

functional, (2) defined, (3) proactive, (4) passive, and (5) seamless. Tools

that are at a higher layer in the pyramid provide more sophisticated automated

support, thereby lowering the user effort required in using these tools. Crosscutting

the layers of the pyramid are three strands that we believe are the critical needs of

collaboration. These strands are: communication, artifact management, and task
management.

We note that there is a natural ordering of the collaborative tools based on the

user effort required in operating them. Our framework highlights this ordering by

placing them in successive layers of the pyramid. For example, tools that facili-

tate communication started by allowing teams to communicate by using electronic

mail in the functional layer, which was an advancement over the prevalent office

memos. The user effort that was required in determining when, who, and how to

send communication was reduced in the defined layer with tools archiving commu-

nication along with artifacts and sending certain notes automatically (e.g., “foo.c

has been checked out and is ready for testing”). The third layer of the pyramid,

the proactive layer, allowed developers to be proactive by allowing them to com-

municate asynchronously and monitor changes to artifacts. The tools at the next

layer, the passive layer, reduced the effort required to set the monitors and investi-

gate the changes by providing awareness of activities and co-developers in a passive

unobtrusive manner. Tools at the seamless layer take a step further and attempt

to provide a seamless environment that would make communication smooth and

effortless.

Tools that support task management reflect a similar ordering. Task management

has moved from ad hoc management techniques using tools at the functional

layer to well-defined coordination and computation steps prescribed by tools at the

defined layer. The undesirable rigidity enforced by tools at the defined layer is

broken by tools at the next layer. By using tools at the proactive layer users can

be proactive and have the flexibility to change the development process if needed.

The tools at this layer further help users in their task by leveraging the existing

information and history of past activities. The next layer, the passive layer, fur-

ther enhances task management by providing collocation benefits and awareness to

distributed teams. The final layer of the pyramid, seamless, attempts to create a

52

9 OBSERVATIONS

continuous and smooth coordination infrastructure that allows both developers and

managers to effectively manage their tasks.

We note that the changes in the functionality of the tools have gradually occurred

over time, but that layer development has not been strictly historical. Sometimes,

research has jumped a level (as in the case of Portholes [65], see section 7.1.1) and

sometimes research has returned to a lower level to spark evolution at a higher

level (as in research in social navigation, see section 6.3.3, where research on email

allowed subsequent development of recommendation systems [163, 166]). Another

interesting observation is that the requirements in collaboration have been signif-

icantly impacted by environmental factors and experience from usage of existing

tools.

The strands in the pyramid slowly but surely intertwine with each other until they

finally blend together, lending the shape of a pyramid to the framework. We note

that lower layer tools generally focused on a specific strand, but as they evolved

they took a broader approach encompassing more than one strand. This reflects

the maturity of the field and the fact that research in different areas have started

collaborating to create tools with a broader perspective.

We recognize that the manner in which collaboration is carried out depends to a

large extent on environmental factors and development practices. For example, use

of interfaces as part of object-oriented programming promoted stronger separation

of concerns, which in turn facilitated distributed development. Distributed develop-

ment, on the other hand, created the need and promoted research in collaborative

tools that facilitate communication and coordination over distances. There are a

number of problems in collaboration that have yet to be resolved (e.g., difficulties

like collaborating across different time zones and cultures caused by global software

development). We have left the top of the pyramid open to signify future research.

We do not know if the seamless layer will be the last layer or if it will split into

additional layers, and is subject to future research.

A secondary benefit of our framework is that users can relate tools in different

areas (e.g., workflow, CSCW, SCM) under a single classification framework as our

framework is independent of the methodology that a tool follows, and is based on

the functionalities of the tool and the user effort required in using these tools.

53

10 CONCLUSIONS

10 Conclusions

Software development is not just an engineering effort, it also inherently involves hu-

man interactions. Moreover, the collaboration needs of software developers are not

static and evolve over time. These needs are shaped by environmental factors and

prevalent development practices. For example, the collaboration needs of a team

vary based on the nature of the product (e.g., large government contract, in-house

development, commercial shrink wrap software); the programming paradigm used

(e.g., procedural languages, object-oriented programming, aspect-oriented program-

ming); the organizational structure (e.g., collocated, distributed, open-source); and

the amount of automation available to users.

Tool builders have recognized the collaboration needs of developers and are striv-

ing to incorporate collaboration features in their tool sets. However, collaboration

support for software development is nontrivial and difficult to achieve by merely

adding collaborative features to existing functionalities. Unfortunately, this is the

approach that the majority of tool builders have taken. Tools produced by the

software engineering community are typically built from a decidedly software engi-

neering perspective, with the collaborative aspects of the tools based on bits and

pieces of ideas borrowed from the CSCW community. For example, sophisticated

IDEs provide awareness through the simple addition of awareness widgets. The re-

verse holds true as well – the CSCW community produces development tools that,

while highly sophisticated in terms of collaboration mechanisms, have only mar-

ginal support for software-specific aspects, such as life cycle support, large group

coordination, and diverse artifacts.

To create intrinsic collaboration support for software development, researchers need

to reevaluate the traditional development practices to design development tools from

the ground up to truly support collaboration. This step requires researchers in both

CSCW and software engineering to work together to leverage the vast experiences in

both fields. Fortunately, researchers have started to realize this and are proposing

seamless and flexible environments that provide continuous coordination. In the

meantime, plug-in based development environments are gaining popularity as they

allow developers to find the right mix of tools that best suit their needs.

Our survey provides a framework that classifies tools based on the user effort re-

quired and the type of collaboration support provided. Our framework, thus, breaks

the unseen boundaries between different research areas and allows one to relate tools

in different areas. We hope that understanding the existing functionalities and relat-

ing them to each other will pave the way for a deeper understanding of collaboration

needs in software development and ultimately lead to newer and better tools.

54

REFERENCES

References

[1] M.S. Ackerman and C.A. Halverson. Considering an organization’s memory. In 1998
ACM conference on Computer supported cooperative work, pages 39–48, Seattle, Wash-

ington, 1998.

[2] M.S. Ackerman and C.A. Halverson. Reexamining organizational memory. Commu-
nications of the ACM, 43(1):58–64, 2000.

[3] L. Allen, G. Fernandez, K. Kane, D. Leblang, D. Minard, and J. Posner. Clearcase

multisite: Supporting geographically-distributed software development. In Interna-
tional Workshop on Software Configuration Management: ICSE SCM-4 and SCM-5
Workshops Selected Papers, pages 194–214, 1995.

[4] V. Ambriola, G.A. Cignoni, and C. Montangero. Enacting software processes in oikos.

In 4th ACM SIGSOFT Symposium on Software Developement Environments (SDE4),
pages 183–192, Irvine, 1990.

[5] V. Ambriola, R. Conradi, and A. Fuggetta. Assessing process-centered software engi-

neering environments. ACM Transactions on Software Engineering and Methodology
(TOSEM), 6(3):283–328, 1997.

[6] W. Appelt. Www based collaboration with the bscw system. In Conference on Current
Trends in Theory and Informatics, pages 66–78, 1999.

[7] R.S. Arnold. The year 2000 problem: Impact, strategies and tools. Technical report,

Software Evolution Technology, Inc. Tech. Report, February 1996.

[8] R.S. Arnold and S. A. Bohner. Impact analysis - towards a framework for comparison.

In Proceedings of the Conference on Software Maintenance, pages 292 – 301, 1993.

[9] U. Asklund and B. Magnusson. Support for consistent merge. In Proceedings of SCM-
10, 10th International Workshop on Software Configuration Management:New Prac-
tices, New Challanges and New Boundaries., pages 27–32, Toronto, Ontario, Canada,

2001.

[10] Computer Associates. Product solutions: http://www3.ca.com/products/, 2005.

[11] M.J. Baker and S. G. Eick. Space-filling software visualization. Journal of Visual
Languages and Computing, 6(2):119–133, 1995.

[12] Fuggetta A. Ghezzi C. Bandinelli, S. and L. Lavazza. Spade: An environment for

software process analysis, design, and enactment. In Software process modelling and
technology, pages 223 – 247. 1994.

[13] P. Barthelmess and K.M. Anderson. A view of software development environments

based on activity theory. Computer Supported Cooperative Work, 11(1-2):13–37, 2002.

[14] D. Beard, Humm A. Banks D. Nair A. Murugappan, P., and Y.-P. Shan. A visual

calendar for scheduling group meetings. In 3rd Conference on Computer Supported
Cooperative Work, pages 279–290. ACM Press, NY, 1990.

[15] J. Begole, J.C. Tang, R. B. Smith, and N. Yankelovich. Work rhythms: analyzing

visualizations of awareness histories of distributed groups. In 2002 ACM conference
on Computer supported cooperative work, pages 334–343, New Orleans, Louisiana,

2002.

55

REFERENCES

[16] V. Bellotti, B. Dalal, N. Good, P. Flynn, D.G. Bobrow, and N. Ducheneaut. What a

to-do: studies of task management towards the design of a personal task list manager.

In Conference on Human Factors in Computing Systems, pages 735–742, Vienna,

Austria, 2004.

[17] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith. Email-centric task management

and its relationship with overload, 2002.

[18] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith. Taking email to task: the

design and evaluation of a task management centered email tool. In Human Factors
in Computing Systems, SESSION: Integrating tools and tasks, pages 345–352, Ft.

Lauderdale, Florida, USA, 2003. ACM Press.

[19] I.Z. Ben-Shaul, G.T. Heineman, S.S. Popovich, P.D. Skopp, A.Z. Tong, and G. Vale-

too. Integrating groupware and process technologies in the oz environment. In Ninth
International Software Process Workshop: The Role of Humans in the Process, pages

114–116, Airlie VA, 1994. IEEE Computer Society Press.

[20] B. Berliner. Cvs ii: Parallelizing software development. In USENIX Winter 1990
Technical Conference, pages 341–352, 1990.

[21] V. Berzins. Software merge: Semantics of combining changes to programs. ACM
Transactions, Programming Languages and Systems, 16(6):1875–1903, 1994.

[22] E.A. Bier and S. Freeman. Mmm: A user interface architecture for shared editors

on a single screen. In ACM Symposium on User Interface Software and Technology,
pages 79–86, 1991.

[23] D. Binkley, S. Horwitz, and T. Reps. Program integration for languages with procedure

class. ACM Transactions, Software Engineering and Methodology, 4(1):3–35, 1995.

[24] G. Booch and A. Brown. Collaborative development environments. Advances in
Computers, 59, 2003.

[25] A. Borning and M. Travers. Two approaches to casual interaction over computer

and video networks. In SIGCHI conference on Human factors in computing systems:
Reaching through technology, pages 13–19, New Orleans, Louisiana, 1991.

[26] E. Bradner, W. Kellogg, and T. Erickson. The adoption and use of ’babble’: A

field study of chat in the workplace. In the Sixth European conference on Computer
supported cooperative work, pages 139–158, Copenhagen, Denmark, 1999. Kluwer Aca-

demic Publishers.

[27] S. Brave, H. Ishii, and A. Dahley. Tangible interfaces for remote collaboration and

communication. In 1998 ACM conference on Computer supported cooperative work,
pages 169–178, Seattle, Washington, USA, 1998.

[28] F. P. Brooks Jr. The mythical man-month. Datamation, 20(12):44–52, 1974.

[29] J. Buffenbarger. Syntactic software merging. In Software Configuration Management:
ICSE SCM-4 and SCM-5 Workshops Selected Papers, pages 153–172, 1995.

[30] Bugzilla. http://www.bugzilla.org.

[31] S.A. Bull. Introduction to flowpath. Technical report, May 1992.

[32] J.J. Cadiz, S.R. Fussell, R. E. Kraut, J.F. Lerch, and W.L. Scherlis. Awareness

monitor: A coordination tool for asynchronous, distributed work teams. Technical

report, Unpublished manuscript, Carnegie Mellon University, 1999.

56

REFERENCES

[33] E. Carmel. Global Software Teams: Collaborating Across Borders and Time Zones.
Prentice-Hall: Englewood Cliffs NJ, 1st edition edition, 1999.

[34] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of a wide-area

event notification service. ACM Transactions on Computer Systems, 2001. ACM

Trans. Comp. Sys.

[35] C.S. Chatfield and J.D. Johnson. Microsoft Project 2000 Step by Step. Microsoft

Press;, bk and cd-rom edition edition, 2000.

[36] Li-Te Cheng, S. Hupfer, S. Ross, and J. Patterson. Jazzing up eclipse with col-

laborative tools. In 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications / Eclipse Technology Exchange
Workshop, pages 102–103, Anaheim, CA, 2003.

[37] M.C. Chu-Carroll and S. Sprenkle. Coven: Brewing better collaboration through soft-

ware configuration management. In Eighth International Symposium on Foundations
of Software Engineering, pages 88–97, 2000.

[38] A. Cimitile, F. Lanubile, and G. Visaggio. Traceability based on design decisions.

In Proceedings of International Conference on Software Maintenance, pages 309–317,

Orlando, FL, 1992.

[39] E. Clayberg and D. Rubel. Eclipse: Building Commercial-Quality Plug-ins. Eclipse

Series. Addison-Wesley Professional, 2004.

[40] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer-Verlag, NY, USA,

3rd edition, 1987.

[41] J. Conklin and M.L. Begeman. gibis: A hypertext tool for exploratory policy dis-

cussion. In the Conference on Computer Supported Cooperative Work (CSCW ’88),
pages 140–152. ACM Press, NY, 1988.

[42] R. Conradi, M. Hagaseth, J-O. Larsen, M.N. Nguyn, B.P. Munch, P.H. Westby,

W. Zhu, M.L Jaccheri, and C. Liu. Epos: object-oriented cooperative process mod-

elling. In Software process modelling and technology, pages 33 – 70. 1994.

[43] R. Conradi, M.L. Jaccheri, C. Mazzi, M.N. Nguyen, and A. Aarsten. Design, use and

implementation of spell, a language for software process modelling and evolution. In

Second European Workshop on Software Process Technology, pages 167–177, 1992.

[44] R. Conradi and B. Westfechtel. Version models for software configuration manage-

ment. ACM Computing Surveys, 30(2):232–282, 1998.

[45] W.B. Croft and L.S. Lefkowitz. Using a planner to support office work. In ACM
Conference on Office Information Systems, pages 55–62. ACN, NY, 1988.

[46] D. Cubranic, G. Murphy, and K Booth. Hipikat: A developer’s recommender. In

OOPSLA, 2002.

[47] D. Cubranic and Gail C. Murphy. Hipikat: Recommending pertinent software arti-

facts. In International Conference on Software Engineering, pages 408 – 418, Portland,

Oregon, 2003.

[48] B. Curtis, H. Krasner., and N. Iscoe. A field study of the software design process for

large systems. Communications of the ACM, 31(11):1268–1287, 1988.

[49] E. Cutrell, M. Czerwinski, and E. Horvitz. Notification, disruption, and memory:

Effects of messaging interruptions on memory and performance. In Interact, Tokyo,

Japan, 2001.

57

REFERENCES

[50] M. Czerwinski, E. Cutrell, and E. Horvitz. Instant messaging and interruption: In-

fluence of task type on perform. In OZCHI 2000 Conference, pages 356–361, 2000.

[51] S. Dart. Concepts in configuration management systems. In Third International
Workshop on Software Configuration Management, pages 1–18, 1991.

[52] E. Dashofy, A. van der Hoek, and R. Taylor. A comprehensive approach for the devel-

opment of modular software architecture description languages. In ACM Transactions
on Software Engineering and Methodology, to appear., 2005.

[53] C. R. B. de Souza, P. Dourish, D. Redmiles, S. Quirk, and E. Trainer. From technical

dependencies to social dependencies. In Workshop in Social Networks for Design
and Analysis: Using Network Information in CSCW during the ACM Conference on
Computer-Supported Cooperative Work, Chicago, IL, 2004.

[54] C.R.B. de Souza, S.D. Basaveswara, and D Redmiles. Lessons learned using notifi-

cation servers to support application awareness. In Meeting of the Human Computer
Interaction Consortium (HCIC 2002 Frasier, CO), 2002.

[55] C.R.B. de Souza, D.F. Redmiles, G. Mark, J. Penix, and M. Sierhuis. Management of

interdependencies in collaborative software development. In ACM-IEEE International
Symposium on Empirical Software Engineering (ISESE 2003),, pages 294–303, 2003.

[56] Y. Dekel and S. Ross. Eclipse as a platform for research on interruption management

in software development. In Eclipse Technology Exchange Workshop at OOPSLA’04,

Vancouver, BC, Canada,, 2004.

[57] A.R. Dennis, F.G. Joey, L.M. Jessup, J.F. Nunamaker, and D.R. Vogel. Informa-

tion technology to support electronic meetings. Management Information Systems,
12(4):591–619, Dec 1988.

[58] G. DeSanctis and R. B. Gallupe. A foundation for the study of group decision support

systems. Management Science, 33(5):589–609, 1987.

[59] P. Dewan and R. Choudhary. A high-level and flexible framework for implementing

multi-user interfaces. ACM Transactions on Information Systems, 10(4):345–380,

1992.

[60] P. Dewan and J. Riedl. Toward computer-supported concurrent software engineering.

IEEE Computer, 26(1):17–27, 1993.

[61] E. Di Nitto and A. Fuggetta. Integrating process technology and cscw. In 4th European
Workshop on Software Process Technology, volume 413, pages 154–161, 1995.

[62] Diget. Autoplan. 2004.

[63] S.E. Dossick and G.E. Kaiser. A metadata-based distributed software development

environment. In Seventh European Software Engineering Conference together with the
Seventh ACM SIGSOFT International Symposium on the Foundations of Software
Engineering, pages 464–475, 1999.

[64] P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. In

ACM Conference on Computer-Supported Cooperative Work, pages 107–114, Mon-

terey, California, USA, 1992.

[65] P. Dourish and S. Bly. Portholes: Supporting awareness in a distributed work group.

In Human Factors in Computing Systems, CHI’92, pages 541–547, New York, 1992.

[66] N. Ducheneaut and V. Bellotti. E-mail as habitat: an exploration of embedded per-

sonal information management. interactions, Volume 8(Issue 5):30 – 38, 2001.

58

REFERENCES

[67] C. Ebert and P. De Neve. Surviving global software development. IEEE Software,
18(2):62–69, 2001.

[68] D.A. Edwards and M.S. McKendry. Exploiting read-mostly workloads in filenet file

system. In Proceedings of the Twelfth ACM Symposium on Operating Systems Prin-
ciples, pages 58–70, 1989.

[69] S. G. Eick, J.L. Steffen, and Jr. Summer, E.E. Seesoft-a tool for visualizing line

oriented software statistics. IEEE Transactions on Software Engineering, Special issue
on software measurement principles, techniques, and environments, 18(11):957–958,

1992.

[70] C.A. Ellis. Information control nets: A mathematical model of office information

flow. In ACM Press, editor, In Proceedings of the ACM Conference on Simulation,
Measurement and Modeling of Computer Systems, pages 225–240, Boulder, Colorado,

1979.

[71] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Design and use of a group editor. In Engineering
for Human Computer Interaction, pages 13–25, North Holland/Elsevier, Amsterdam,

1990.

[72] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware—some issues and experiences.

communications of the ACM, 34(1):38–58, 1999.

[73] C.A. Ellis and N. Naffah. Design of office information systems. 1987.

[74] J. Estublier, D. Leblang, A. van der Hoek, R. Conradi, G. Clemm, W. F. Tichy, and

D.W. Weber. Impact of software engineering research on the practice of software

configuration management. to appear (ACM Transactions of Software Engineering
and Methodology), 2005.

[75] B. A. Farshchian. Integrating geographically distributed development teams through

increased product awareness. Information Systems Journal, 26(3):123–141, 2001.

[76] P.H. Feiler. Configuration management models in commercial environments. Technical

Report SEI-91-TR-07, Software Engineering Institute, Carnegie Mellon University,

1991.

[77] A. Finkelstein, G. Kramer, and B. Nuseibeh. Software Process Modeling and Technol-
ogy. Research Studies Press. 1994.

[78] R.S. Fish, R. E. Kraut, and M.D.P. Leland. Quilt: a collaborative tool for cooperative

writing. ACM SIGOIS Bulletin, 9(2-3):30–37, April 1988.

[79] G. Fitzpatrick, S. Kaplan, and T. Mansfield. Physical spaces, virtual places and social

worlds: A study of work in the virtual. In Computer-Supported Collaborative Work
’96, pages 334–343, 1996.

[80] G. Fitzpatrick, S. Kaplan, T. Mansfield, D. Arnold, and B. Segall. Supporting pub-

lic availability and accessibility with elvin: Experiences and reflections. Computer
Supported Cooperative Work, 2002.

[81] G. Fitzpatrick, T. Mansfield, S. Kaplan, D. Arnold, T. Phelps, and B. Segall. Aug-

menting the workaday world with elvin. In Sixth European Conference on Computer
Supported Cooperative Work, pages 431–451, 1999.

[82] J. Froehlich and P. Dourish. Unifying artifacts and activities in a visual tool for dis-

tributed software development teams. In Proceedings of the International Conference
on Software Engineering, pages 387–396, Edinburgh, UK, 2004.

59

REFERENCES

[83] L. Fuchs, Pankoke-Babatz U., and W. Prinz. Supporting cooperative awareness with

local event mechanism: The group desk system. In European Computer Supported
Cooperative Work (ECSCW’95), pages 247–262. Kluwer, Dordrecht, 1995.

[84] P. Godefroid, J. Herbsleb, L.J. Jagadeesany, and D. Li. Ensuring privacy in pres-

ence awareness: an automated verification approach. In Proceedings of the 2000 ACM
conference on Computer supported cooperative work, pages 59–68, Philadelphia, Penn-

sylvania, USA, 2000. ACM Press.

[85] S. Goldmann, J. Mnch, and H. Holz. Milos: A model of interleaved planning, schedul-

ing, and enactment. In Web-Proceedings of the 2nd Workshop on Software Engineering
over the Internet, Los Angeles, CA, 1999.

[86] A. Graveline, C. Geisler, and M. Danchak. Teaming together apart: emergent pat-

terns of media use in collaboration at a distance. In 18th annual ACM international
conference on Computer documentation: technology and teamwork, pages 381–393,

Cambridge,Massachusetts, USA, 2000. IEEE Educational Activities Department.

[87] S. Greenberg and R. Bohnet. Groupsketch: A multi-user sketchpad for geographically-

distributed small groups. In Proceedings of Graphics Interface, 1991.

[88] S. Greenberg and M. Roseman. Groupware toolkits for synchronous work. In

Computer-Supported Cooperative Work (Trends in Software), volume 7, pages 135–

168, 1999.

[89] R.E. Grinter. Using a configuration management tool to coordinate software develop-

ment. In Conference on Organizational Computing Systems, pages 168–177, 1995.

[90] R.E. Grinter. Supporting articulation work using software configuration management

systems. Computer Supported Cooperative Work, 5(4):447–465, 1996.

[91] R.E. Grinter, J.D. Herbsleb, and D.E. Perry. The geography of coordination: Dealing

with distance in r&d work. In ACM Conference on Supporting Group Work (GROUP
99), pages 306–315, Phoenix, AZ, 1999.

[92] J. Grudin. Why cscw applications fail: problems in the design and evaluation of

organization of organizational interfaces. In Proceedings of the 1988 ACM conference
on Computer-supported cooperative work, pages 85–93, Portland, Oregon, 1988.

[93] J. Grudin. Cscw: History and focus. IEEE Computer, 27(5):19–27, 1994.

[94] J.C. Grundy and J.G. Hosking. Constructing integrated software development

environments with mviews. Interactional Journal Applied Software Technology,
2(3/4):133–160, 1996.

[95] J.C. Grundy and J.G. Hosking. Serendipity: integrated environment support for

process modelling, enactment and work coordination. Automated Software Engineer-
ing, 5(1):27–60, 1998.

[96] J.C. Grundy, J.G. Hosking, and W.B. Mugridge. Inconsistency management for multi-

view software development environments. IEEE Transactions on Software Engineer-
ing: Special Issue on Managing Inconsistency in Software Development, Vol. 24(No.

11), 1998.

[97] C. Gutwin and S. Greenberg. Workspace awareness for groupware. In CHI’96 Con-
ference Companion on Human Factors in Computing Systems, pages 208–209, 1996.

[98] A. Haake. Facilitating orientation in shared hypermedia workspaces. In International
ACM SIGGROUP Conference on Supporting Group Work, pages 365–374, 1999.

60

REFERENCES

[99] A. Haake and J.M. Haake. Take cover: Exploiting version support in cooperative

systems. In INTERCHI’93, pages 406–413, 1993.

[100] J.M. Haake and B. Wilson. Supporting collaborative writing of hyperdocuments in

sepia. In 1992 ACM conference on Computer-supported cooperative work, pages 138–

146, Toronto, Ontario, Canada, 1992. ACM Press.

[101] C. Heath, M. Jirotka, P. Luff, and J. Hindmarsh. Unpacking collaboration: the

interactional organisation of trading in a city dealing room. Computer Supported
Cooperative Work, 3(2):147–165, 1994.

[102] C. Heath and P. Luff. Collaboration and control: Crisis management and multimedia

technology in london underground line control rooms. Computer Supported Coopera-
tive Work, 1(12):69–94 rooms, 1992.

[103] D. Heimbigner, L. Osterweil, and S. Sutton. Appl/a: A language for managing rela-

tions among software objects and processes. Technical report, University of Colorado,

Department of Computer Science, Boulder, Colorado, 1987.

[104] J. Herbsleb, D.L. Atkins, B.G. Boyer, M. Handel, and T. A. Finholt. Introducing

instant messaging and chat in the workplace. In Proceedings of the SIGCHI conference
on Human factors in computing systems: Changing our world, changing ourselves,
pages 171–178, Minneapolis, Minnesota, USA, 2002.

[105] J. Herbsleb and R. E. Grinter. Splitting the organization and integrating the code:

Conway’s law revisited. In Proceedings of the 21st international conference on Software
engineering, pages 85–95, Los Angeles, CA, USA, 1999.

[106] J. Herbsleb and D. Moitra. Global software development. IEEE Software, 18(2):16–20,

2001.

[107] J. D. Herbsleb and R. E. Grinter. Architectures, coordination, and distance: Conway’s

law and beyond. IEEE Software, pages 63–70, 1999.

[108] J.D. Herbsleb, A. Mockus, T. A. Finholt, and R.E. Grinter. Distance, dependencies,

and delay in a global collaboration. In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pages 319–328, Philadelphia, PA, 2000.

[109] J. Hill and C. Gutwin. Awareness support in a groupware widget toolkit. In Pro-
ceedings of the 2003 international ACM SIGGROUP conference on Supporting group
work, pages 258–267, Sanibel Islands, Florida, USA, 2003. ACM Press.

[110] W. C. Hill and et al. Edit wear and read wear. In Proceedings of the ACM SIGCHI
Conference on Human Factors and Computing Systems, pages 3–9, 1992.

[111] S. Horwitz, Prins. J., and Reps. T . Integrating non-interfering versions of programs.

ACM Transactions, Programming Languages and Systems, 11(3):345–387, 1989.

[112] G. P. Huber. Issues in the design of group support systems. MIS Quarterly, September

1984.

[113] J.M. Hudson, J. Christensen, W.A. Kellogg, and T. Erickson. ”i’d be overwhelmed,

but it’s just one more thing to do”: availability and interruption in research man-

agement. In Proceedings of the SIGCHI conference on Human factors in computing
systems: Changing our world, changing ourselves, pages 97–104, Minneapolis, Min-

nesota, 2002.

[114] S. Hudson and R. King. The cactis project: Database support for software environ-

ments. IEEE Transactions on Software Engineering, 14(6):709–719, 1988.

61

REFERENCES

[115] S.E. Hudson and I. Smith. Techniques for addressing fundamental privacy disruption

tradeoffs in awareness support systems. In ACM, Computer-Supported Cooperative
Work (CSCW96), Boston, Massachusetts, USA, 1996.

[116] J.W. Hunt and T.G. Szymanski. A fast algorithm for computing longest common

subsequences. Communications of the ACM, 20(5):350–353, 1977.

[117] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson. Reinventing team spaces for a col-

laborative development environment. In ”Beyond Threaded Conversation” Workshop,
in CHI 2005 (to appear), 2005.

[118] Software Maintenance $ Development Systems Inc. Aide de camp product overview.

Technical report, 1994 1994.

[119] K. Jensen. Colored petri nets: Basic concepts, analysis methods, and practical use.

Springer-Verlag, 3:265, 1997.

[120] B. Johnson. Treeviz: Treemap visualization of hierarchically structured information.

In John Bennett Penny Bauersfeld and Gene Lynch, editors, Proceedings of the Confer-
ence on Human Factors in Computing Systems, pages 369–372, Monterey, California,

USA, 1992. ACM Press.

[121] R. E. Kaliouby and P. Robinson. Faim: integrating automated facial affect analysis

in instant messaging. In Proceedings of the 9th international conference on Intelligent
user interface, pages 244 – 246, Funchal, Madeira, Portugal, 2004.

[122] M. Kantor and D. Redmiles. Creating an infrastructure for ubiquitous awareness. In

Eighth IFIP TC 13 Conference on Human-Computer Interaction (INTERACT 2001),,
pages 431–438, Tokyo, Japan, 2001.

[123] D. W. Karolak. Global software development: managing virtual teams and environ-
ments. IEEE Computer Society, 1999.

[124] D. Kirsch. The context of work. Human-Computer Interaction, Vol 16:305–322, 2001.

[125] M.J. Knister and A. Prakash. Distedit: a distributed toolkit for supporting multiple

group editors. In Proceedings of the 1990 ACM conference on Computer-supported
cooperative work, Los Angeles, CA, 1990.

[126] K. Kraemer and J. L. King. Computer-based systems for cooperative work and group

decision making. ACM Computing Surveys (CSUR), 20(2):115–146, 1988.

[127] R.E. Krant and L.A. Streeter. Coordination in software development. Communications
of the ACM, 38(3):69–81, 1995.

[128] R. Kraut, C. Egido, and J. Galegher. Patterns of contact and communication in scien-

tific research collaboration. In Proceedings of the 1988 ACM conference on Computer-
supported cooperative work, pages 1–12, Portland, Oregon, 1988.

[129] M. Lanza. The evolution matrix: Recovering software evolution using software visu-

alization techniques. In 2001 International Workshop on the Principles of Software
Evolution, pages 28–33, 2001.

[130] D. Leblang. The CM challenge: configuration management that works, volume 2 of

Trends in Software of In Configuration management. John Wiley $ Sons, Inc., New

York,, 1995.

[131] D.B. Leblang and G.D. McLean. Configuration management for large-scale soft-

ware development efforts. In Proc. Workshop Software Eng. Environments for
Programming-in-the-Large, pages 122–127, 1985.

62

REFERENCES

[132] A. Lee, A. Girgensohn, and K. Schlueter. Nynex portholes: initial user reactions and

redesign implications. In Proceedings of the international ACM SIGGROUP confer-
ence on Supporting group work: the integration challenge: the integration challenge,
pages 385–394, 1997.

[133] J. Lee. Sibyl: A qualitative decision management system. Artificial Intelligence at
MIT: Expanding Frontiers, 1, 1990.

[134] J. Lee, G. Yost, and PIF Working Group. The pif process interchange format and

framework. Technical report, Technical Report, University of Hawaii Information and

Computer Science Department, February 1996.

[135] F. Leymann and W. Altenhuber. Managing business process as an information re-

source. IBM Systems Journal, 33(2), 1994.

[136] Y-J. lin and S.P. Reiss. Configuration management with logical structures. In Pro-
ceedings of the 18th international conference on Software engineering, pages 298–307,

Berlin, Germany, 1996. IEEE Computer Society.

[137] J.P. Loyall and S.A. Mathisen. Using dependency analysis to support the software

maintenance process. In Proceedings of International Conference of Software Mainte-
nance, pages 282–291, Montral, Quebec, Canada, 1993.

[138] L. Lvstrand. Being selectively aware with the khronika system. In In Proceedings
of the European Conference on Computer Supported Cooperative Work, ECSCW(91),
pages 265–278, Amsterdam, NL, 1991. ACM Press, New York.

[139] B. Magnusson and U. Asklund. Fine grained version control of configurations in

coop/orm. In Sixth International Workshop on Software Configuration Management,
volume 1167, pages 31–48, 1996.

[140] B. Magnusson, U. Asklund, and S. Minr. Fine-grained revision control for collabo-

rative software development. In Proceedings of ACM SIGSOFT ’93: Symposium on
Foundations of Software Engineering, pages 33–41, Los Angeles, CA, USA, 1993.

[141] T. W. Malone and K. Crowston. The interdisciplinary study of coordination. ACM
Computing Surveys (CSUR), 26(1):87–119, 1994.

[142] T. W. Malone, K.R. Grant, F.A. Turbak, S.A. Brobst, and M.D. Cohen. Intelligent

information-sharing systems. Communications of the ACM, (30):390–402, 1987.

[143] T. Mansfield, S. Kaplan, G. Fitzpatrick, P. Phelps, M. Fitzpatrick, and R.N. Taylor.

Toward locales: supporting collaboration with orbit. Journal of Information and
Software Technology, 41(6):367–382, 1999.

[144] Mantis. http://www.mantisbt.org/.

[145] G. Mark. Extreme collaboration. Communications of the ACM, 45(6):89–93, 2002.

[146] D.R. McCarthy and S.K. Sarin. Workflow and transactions in inconcert. IEEE Data
Engineering, 16(2):53–56, 1993.

[147] D.W. McDonald. Recommending collaboration with social networks: a comparative

evaluation. In Proceedings of the conference on Human factors in computing systems,
pages 593–600, Ft. Lauderdale, Fl, 2003.

[148] D.W. McDonald and M.S. Ackerman. Expertise recommender: a flexible recom-

mendation system and architecture. In Proceedings of the 2000 ACM conference on
Computer supported cooperative work, pages 231–140, Philadelphia, PA, USA, 2000.

ACM Press.

63

REFERENCES

[149] D.C. McFarlane. Comparison of four primary methods for coordinating the inter-

ruption of people in human-computer interactions. Human-Computer Interaction,

17(1):63–139, 2002.

[150] L.J. McGuffin and G. Olson. Shredit: A shared electronic workspace. Technical

Report 45, Cognitive Science and Machine Intelligence Laboratory, Tech report: 45,

University of Michigan, Ann Arbor, 1992.

[151] T. Mens. A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering, 28(5):449–462, 2002.

[152] S. Meyers. Difficulties in integrating multiview development systems. IEEE Software,
8(1):49–57, 1991.

[153] A. Mockus and J. Herbsleb. Expertise browser: A quantitative approach to identifying

expertise. In 2002 International Conference on Software Engineering, 2002.

[154] Fielding R. Mockus, A. and J.D. Herbsleb. Two case studies of open source software

development: Apache and mozilla. ACM Transactions on Software Engineering and
Methodology., 11(3):309–346, 2002.

[155] C. Mohan. Tutorial: State of the art in workflow management system research and

products. In A tutorial at the ACM SIGMOD International Conference on Manage-
ment Data, 1996.

[156] P. Molli. Coo-transactions: Supporting cooperative work. In R. Conradi, editor, Pro-
ceedings of Seventh International Workshop on Software Configuration Management
(SCM7), pages 128–141, Boston, MA, USA, 1997. Springer.

[157] P. Molli, H. Skaf-Molli, and C. Bouthier. State treemap: an awareness widget for

multi-synchronous groupware. In Seventh International Workshop on Groupware,
2001.

[158] P. Molli, H. Skaf-Molli, and G. Oster. Divergence awareness for virtual team through

the web. In Integrated Design and Process Technology, 2002.

[159] P. Molli, H. Skaf-Molli, G. Oster, and S. Jourdain. Sams: Synchronous, asynchronous,

multisynchronous environments. In Seventh International Conference on CSCW in
Design, Rio de Janeiro, Brazil, 2002.

[160] C. Montangero and V. Ambriola. Oikos: Constructing process centered sde’s. In

Software Process Modelling and Technology, pages 131 – 151. 1994.

[161] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541–580, 1989.

[162] B. Nardi, S. Whittaker, and E. Bradner. Interaction and outeraction: Instant mes-

saging in action. In Computer Supported Cooperative Work, Philadelphia, PA, 2000.

[163] B.A. Nardi, S. Whittaker, E. Isaacs, M. Creech, J. Johnson, and J. Hainsworth. Con-

tactmap: Integrating communication and information through visualizing personal

social networks. Communications of the ACM, 45(4):89–95, 2002.

[164] G. Nutt. The Formulation and Application of Evaluation Nets. Phd thesis, 1972.

[165] G. Nutt. The evolution towards flexible workflow systems. In Distributed Systems
Engineering, volume 3(4), pages 276–294, 1996.

[166] H. Ogata, Y. Yano, N. Furugori, and Q. Jin. Computer supported social networking

for augmenting cooperation. Computer Supported Cooperative Work: The Journal of
Collaborative Computing, 10:189–209, 2001.

64

REFERENCES

[167] G.M. Olson and J.S. Olson. Distance matters. Human-Computer Interaction,

15(2and3):139–178, 2000.

[168] OMG. CORBACos: Notification Service Specification v1.0.1. 2002.

[169] C. O’Reilly, D. Bustard, and P. Morrow. The war room command console (shared

visualization for inclusive team coordination). In To Appear (2nd ACM Symposium
on Software Visualization), St. Louis, Missouri, USA, 2005.

[170] C. O’Reilly, P. Morrow, and D. Bustard. Improving conflict detection in optimistic

concurrency control models. In Proceedings of the Eleventh International Workshop
on Software Configuration Management, pages 191–205, Portland, Oregon, 2003.

[171] L. Osterweil. Software processes are software too. In Proceedings of the 9th Interna-
tional Conference on Software Engineering, pages 2–13, Monterey, CA, 1987.

[172] D.L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, 15(12):1053–1058, 1972.

[173] D.L. Parnas and P.C. Clements. A rational design process: How and why to fake it.

IEEE Transactions on Software Engineering, SE, 12(2):251–257, 1986.

[174] J. Patterson, M. Day, and J. Kucan. Notification servers for synchronous groupware.

In Proceedings of the 1996 ACM conference on Computer supported cooperative work,
pages 122–129, Boston, Massachusetts, USA, 1996.

[175] M.C. Paulk, B. Curtis, M.B. Chrissis, and V.W. Weber. Capability maturity model,

version 1.1. IEEE Software, 10(4):18–27, 1993.

[176] D.E. Perry, H.P. Siy, and L.G. Votta. Parallel changes in large-scale software develop-

ment: An observational case study. ACM Transactions on Software Engineering and
Methodology, 10(3):308–337, 2001.

[177] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall, 1981.

[178] W. Prinz. Nessie: an awareness environment for cooperative settings. In Sixth Euro-
pean conference on Computer supported cooperative work, pages 391–410, Copengha-

gen, Denmark, 1999. Kluwer Academic Publishers.

[179] P. Procter. Cambridge International Dictionary of English. Cambridge University

Press, 1995.

[180] D. Ramduny, A. Dix, and T. Rodden. Exploring the design space for notification

servers. In 1998 ACM conference on Computer supported cooperative work, pages

227–235, Seattle, Washington, USA, 1998.

[181] E.S. Raymond. The Cathedral $ the Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O’Reilly,, 2001.

[182] S.P. Reiss. Simplifying data integration: The design of the desert software develop-

ment environment. In Proceedings of the 18th International Conference on Software
Engineering, pages 398–407, Berlin, Germany, 1996. IEEE Computer Society.

[183] W. Rigg, C. Burrows, and P. Ingram. Configuration Management Tools. PhD thesis,

1995.

[184] k. Rivera, N.J. Cooke, A.L. Rowe, and J.A. Bauhs. Conveying emotion in remote

computer-mediated-communication. In Conference companion on Human factors in
computing systems, pages 95–96, Boston, Massachusetts, USA, 1994. ACM Press.

65

REFERENCES

[185] J. Robbins and D. Redmiles. Software architecture critics in the argo design environ-

ment. Knowledge-Based Systems, 11(1):47–60, 1998.

[186] T.J. Robertson, S. Prabhakararao, M. Burnett, C. Cook, J.R. Ruthruff, and L. Beck-

with. Impact of interruption style on end-user debugging. In 2004 conference on
Human factors in computing systems, pages 287–294, Vienna, Austria, 2004. ACM

Press.

[187] M.J. Rochkind. The source code control system. IEEE Transactions on Software
Engineering, SE-1(4):364–370, 1975.

[188] M. Roseman and S. Greenberg. Groupkit: a groupware toolkit for building real-time

conferencing applications. In Proceedings of the 1992 ACM conference on Computer-
supported cooperative work, pages 43–50, Toronto, Ontario, Canada, 1992.

[189] M. Roseman and S. Greenberg. Teamrooms: Network places for collaboration. In In
Proceedings of ACM Computer Supported Cooperative Work, pages 325–333, 1996.

[190] D.S. Rosenblum and A. Wolf. A design framework for internet-scale event observa-

tion and notification. In Sixth European Software Engineering Conf./ACM SIGSOFT
Fifth Symposium on the Foundations of Software Engineering, pages 344–360, Zurich,

Switzerland, 1997.

[191] P. Sachs. Transforming work: Collaboration, learning, and design. Communications
of the ACM, 38(9):36–44, September 1995.

[192] W. Sack. Conversation map: A content-based usenet newsgroup browser. In Proceed-
ings of the International Conference on Intelligent User Interfaces, pages 233–240,

New Orleans, 2000. ACM Press.

[193] Visual Source Safe. http://msdn.microsoft.com/vstudio/previous/ssafe/.

[194] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantr: Raising awareness among

configuration management workspaces. In Twentyfifth International Conference on
Software Engineering, pages 444–454, Portland, Oregon, USA, 2003.

[195] A. Sarma and A. van der Hoek. Visualizing parallel workspace activities. In IASTED
International Conference on Software Engineering and Applications (SEA), pages

435–440, Marina Del Rey, California, 2003.

[196] .S Sawyer and P.J. Guinan. Software development: Processes and performance. IBM
Systems Journal, 37(4), 1998.

[197] K. Schmidt. The problem with ’awareness’: Introductory remarks on ’awareness in

cscw’. Computer Supported Cooperative Work, 11(3):285–298, 2002.

[198] T. Schmmer and J.M. Haake. Supporting distributed software development by modes

of collaboration. In Seventh European Conference on Computer Supported Cooperative
Work, pages 79–98, 2001.

[199] R. S. Silva Filho, C.R.B. de Souza, and D.F. Redmiles. The design of a configurable,

extensible and dynamic notification service. In Second International Workshop on
Distributed Event-Based Systems (DEBS 2003), In conjunction with The ACM SIG-
MOD/PODS Conference, San Diego, 2003.

[200] R.S. Silva Filho, C. R. B. de Souza, and D. Redmiles. Design and experiments with

yancees, a versatile publish-subscirbe service. Technical report, TR-UCI-ISR-04-1,

University of California, Irvine. Irvine, CA, April 2004.

66

REFERENCES

[201] M. Sohlenkamp and G. Chwelos. Integrating communication, cooperation, and aware-

ness: the diva virtual office environment. In Proceedings of the 1994 ACM conference
on Computer supported cooperative work, pages 331–343, Chapel Hill, North Carolina,

USA, 1994.

[202] M. Sohlenkamp, W . Prinz, and L. Fuchs. Poliawac: Design and evaluation of an

awareness-enhanced groupware client. AI and Society: Special issue on computer-
supported cooperative, 14(1):31 – 47, 2000.

[203] D.G. Stefik, M .and Bobrow, G. Foster, S. Lanning, and D. Tatar. Wysiwis revised:

early experiences with multiuser interfaces. ACM Transactions on Information Sys-
tems (TOIS), 5(2):147–167, 1987.

[204] L. Steiger. Recovering the evolution of object oriented software systems using a flexible
query engine. PhD thesis, University of Bern, (Diploma thesis), 2001.

[205] M-A. D. Storey, D. Cubranic, and D.M. German. On the use of visualization to support

awareness of human activities in software development: A survey and a framework.

In Proceedings of 2nd ACM Symposium on Software Visualization, 2005 (to appear),
St. Loius, Missouri, USA, 2005.

[206] P.D. Stotts and R. Furuta. alphatrellis: A system for writing and browsing petri-net-

based hypertext. In Proceedings of the 10th International Conference on Application
and Theory of Petri Nets, pages 312–328, Bonn, Germany, 1989.

[207] J. Strubing. Designing the working process: What programmers do besides program-

ming. User-Centered Requirements for Software Engineering Environments, 1994.

[208] L.A. Suchman. Plans and Situated Actions: The Problem of Human-Machine Com-
munication. Cambridge University Press, New York, 1987.

[209] SunMicrosystems. Java Message Service API. 2003.

[210] J.C Tang and M. Rua. Montage: providing teleproximity for distributed groups.

In Proceedings of the SIGCHI conference on Human factors in computing systems:
celebrating interdependence, pages 37–43, Boston, MA, 1994.

[211] A. Tate and K. Wade. Simplifying development through activity-based change man-

agement. White paper, IBM Software Group, October 2004.

[212] R. Taylor, F. Belz, L. Clarke, R. Osterweil, L .and Selby, J. Wileden, A. Wolf, and

M. Young. Foundations for the arcadia environment architecture. In In Proceedings of
the Software Engineering Symposium on Practical software development environments,
pages 1–13, 1988.

[213] Telelogic. Cm/synergy.

[214] W.F. Tichy. Rcs, a system for version control. Software - Practice and Experience,
15(7):637–654, 1985.

[215] W.F. Tichy. Tools for software configuration management. In In Proc. of the Int.
Workshop on Software Version and Configuration Control, pages 1–20, Grassau, 1988.

[216] Tigris.org. Subversion.

[217] K. Tollmar, O. Sandor, and A. Schmer. Supporting social awareness @ work design

and experience. In Proceedings of the 1996 ACM conference on Computer supported
cooperative work, pages 298–307, Boston, Massachusetts, USA, 1996. ACM Press.

67

REFERENCES

[218] A. van der Hoek and et.al. Continuous coordination: A new paradigm for collaborative

software engineering tools. In Proceedings of Workshop on WoDISEE, Scotland, 2004.

[219] I. Vessey and A. P. Sravanapudi. Case tools as collaborative support technologies.

Communications of the ACM, vol. 38:83–95, 1995.

[220] L. Votta. By the way, has anyone studied real programmers yet? In Ninth Interna-
tional Software Process Workshop, Reston, Virginia, 1994.

[221] G. Weinberg. The Psychology of Computer Programming. Dorset House Publishing,

1989.

[222] B. Westfechtel, B.P. Munch, and R. Conradi. A layered architecture for uniform

version management. IEEE Transactions on Software Engineering, 27(12):1111–1133,

2001.

[223] D. Wiborg Weber. Benefits of task-based change management. White paper, Telelogic,

September 2003.

[224] J.C. Wileden, A.L. Wolf, C.D. Fisher, and P.L. Tarr. Pgraphite: an experiment in

persistent typed object management. ACM SIGPLAN Notices, 24(2):130–142, 1989.

[225] T. Winograd and F. Flores. Understanding Computers and Cognition: A New Foun-
dation for Design. Addison-Wesley Professional, 1 edition, 1987.

[226] Y. Ye and G. Fischer. Information delivery in support of learning reusable software

components on demand. In 7th international conference on Intelligent user interfaces,
pages 159–166, San Francisco, California, USA, 2002. ACM Press.

[227] M. Young, R.N. Taylor, and D. B. Troup. Software environment architectures and

user interface facilities. IEEE Transactions on Software Engineering, 14(6):697–708,

1988.

[228] P. Zave and W. Schell. Salient features for an extensible specification language and

its environment. IEEE Transactions on Software Engineering, 12:312–325, 1986.

68

