
Institute for Software Research
University of California, Irvine

http://www.isr.uci.edu/tech-reports.html

Roberto Silveira Silva Filho
University of California, Irvine
rsilvafi@ics.uci.edu

David F. Redmiles
University of California, Irvine
redmiles@uci.edu

Preserving Versatility in Event-Based Middleware

October 2004

ISR Technical Report # UCI-ISR-04-7

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

�

Preserving Versatility in Event-Based Middleware

Roberto Silveira Silva Filho, David F. Redmiles

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
{rsilvafi, redmiles}@ics.uci.edu

ISR Technical Report # UCI-ISR-04-7

October 2004

Abstract:

Existing commercial and research event-based middleware are limited in their ability to evolve in
order to support the requirements of novel applications. As a result, new infrastructures are being
proposed to attend to widening scope and changing demands. In this paper, we define the concept
of versatility generally and survey existing approaches that can be used to develop and preserve
versatility in middleware. We discuss our research in designing, implementing, and preserving
versatility in event-based middleware using YANCEES, a versatile event notification service
being developed at UC Irvine. The design of the system is briefly presented and the lessons
learned discussed.

UCI-ISR-04-7 – October 2004

1

Preserving Versatility in Event-Based Middleware

Roberto S. Silva Filho and David F. Redmiles
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425 USA
{rsilvafi, redmiles}@ics.uci.edu

ABSTRACT
Existing commercial and research event-based middleware are limited in their ability to evolve in order to support
the requirements of novel applications. As a result, new infrastructures are being proposed to attend to widening
scope and changing demands. In this paper, we define the concept of versatility generally and survey existing
approaches that can be used to develop and preserve versatility in middleware. We discuss our research in
designing, implementing, and preserving versatility in event-based middleware using YANCEES, a versatile event
notification service being developed at UC Irvine. The design of the system is briefly presented and the lessons
learned discussed.

INTRODUCTION

According to the Cambridge Advanced Learner’s Dictionary, versatility is the ability “to change easily from one
activity to another” or to be “able to be used for many different purposes.” In the context of software engineering,
versatility can be defined as the ability of a computational system to serve multiple purposes or to accommodate the
requirements of different use situations. In this article, we describe current technologies and approaches for
providing versatility to software infrastructures. Specifically, we discuss our experiences providing and maintaining
versatility in event-based publish/subscribe middleware, including a case study of a more general approach we have
been developing.

Middleware refers to the software layer between applications and the network protocols and supports software
engineers in developing distributed applications. Historically, middleware has been used to address issues related to
heterogeneity, communication, and distribution of components, relieving software engineers of the burden of
solving low-level, network issues, such as concurrency control, transaction management, distributed object location,
and communication, among others. Thus, middleware allows software engineers to focus on the actual application
requirements [1]. Because of these advantages, middleware has become very popular. In fact, in recent years,
standardized solutions such as OMG CORBA (Common Object Request Broker Architecture)[2] and SUN JMS
(Java Message Service) [3] along with their many implementations have been used in the development of a large
spectrum of applications. While CORBA is a distributed implementation of the remote method invocation paradigm,
JMS and their implementations are examples of message-oriented middleware (MOM), which integrate components
in a distributed system through the exchange of asynchronous messages.

Our team at the University of California Institute for Software Research has been researching the design and
development of collaborative software engineering environments, which generally require the integration and
coordination of different components such as editors, document repositories, awareness tools, and application
monitors, among others. In such environments, the use of the distributed publish/subscribe architectural style copes
with the scalability, dynamism, and loose coupling requirements and allows the integration of the heterogeneous
components. The distributed publish/subscribe architectural style is usually implemented through notification
services (or servers). Notification services mediate the communication between event sources (information
producers) and their interested parties (information consumers). As depicted in Figure 1, event producers publish
information in the form of events. Event consumers express interest in subsets of events using subscriptions, which
generally are logical expressions specifying the content and order of events. Notification services ensure the events
of interest are passed, as notifications, to the appropriate event consumers, which usually happens just after the event
is published in the system. For example, in the support for buddy lists in instant message tools, users define buddy
lists, that represent implicit subscriptions to the presence of those users in the network. Whenever a user logs in, an
event is produced and sent to the notification service. A notification is then sent to all the online users that have that
user in their buddy lists, providing the necessary presence awareness.

UCI-ISR-04-7 – October 2004

2

Notification
Service

Notification
Service

Producer 1

Producer 2

Producer 3

Consumer A

Consumer B

event

event

event

subscribe

subscribe

notification

notification
Figure 1 Basic components in a distributed publish/subscribe system.

When surveying the existing standards and infrastructures for implementing publish/subscribe architectures, we
did not find a single solution that simultaneously provided all the services required in our research. We required a
group communication infrastructure and a loosely coupled integration mechanism that could support and integrate
application components in various domains, including groupware, awareness, software and user monitoring, and
testing. We encountered various limitations. Content-based infrastructures such as Siena [4] did not support event
delivery policies such as pull, nor some event services, such as persistency, demanded by awareness applications
[5]. The CORBA notification service (CORBA-NS), although it supported many needed features, such as
persistency of events and pull delivery mechanisms, did not have support for information source discovery, as
CASSIUS [6], for example, which is an important feature for group awareness. Standardized message oriented
middleware, such as JMS implementations, did not provide high-level event processing, such as sequence detection
and event correlation, demanded by user monitoring tools. In fact the existence of so many different commercial and
research publish/subscribe infrastructures confirmed our observation that in spite of the availability of standardized
solutions such as CORBA-NS or JMS, new notification servers continue to be developed to address the needs of
novel applications such as Internet-scale event routing, mobile applications, inter-process communication,
groupware and others.

The proliferation of specialized solutions reveals limitations on the way publish/subscribe architectures are
designed and implemented. First and foremost, the publish/subscribe paradigm appears seductively simple. A basic
service can be programmed quickly before the complexities of the application it serves reveal themselves. Then,
when complexities manifest, they require significant extensions already implemented in existing, sophisticated
infrastructures. A second deterrent is that current publish/subscribe infrastructures are not designed to be extensible,
which hinders the addition or customization of new application services. For instance, CORBA-NS does not support
advanced event correlation primitives such as rules and abstraction. Such an addition would require changing the
publish/subscribe service source code or even aspects of the client application. Third, with rare exceptions such as
the READY [7] (a CORBA compliant notification service), current solutions are not configurable with respect to the
place where event processing happens in a distributed setting. For instance, some applications such as software
monitoring [8], require the execution of event processing on the application side where the events are collected,
whereas applications running on mobile devices may need a restricted set of services and components. Finally, with
the exception of a few research prototypes, none of existing event-based middleware approaches support the
selection and customization of features that the middleware should provide.

DEFINING VERSATILITY
In light of the above discussion, we proceeded to research ways of providing and maintaining good software

engineering qualities. We adopted the term versatility in order to embrace an extensive set of qualities. Moreover,
we sought a new term that could imply that that these qualities applied not only to technical needs but to the varying
needs of human stakeholders and application workplace settings. Hence, from a software engineering perspective,
and more specifically in the context of middleware and publish/subscribe architectures, versatility comprises the
following requirements.

UCI-ISR-04-7 – October 2004

3

Extensibility and programmability is the ability to augment middleware with new functionality. The most
common way to extend or provide new functionality to a publish/subscribe infrastructure is to directly change its
source code (which was not written for being extensible) or to build in the required features as part of the client
application. Aside from being cumbersome, this approach usually incurs extra delays in the overall application
development. More importantly, the lack of extension mechanisms usually results in ad-hoc extensions that cause
architectural drifting and non-interoperable solutions.

Functional Configurability is the ability to combine and select different functionality corresponding to different
application needs or heterogeneous hardware and software constraints. Note also that some interdependence may
exist between the functionalities provided. For example, in order to support pull event delivery, a notification service
usually needs to provide notification persistency. Being able to represent functional dependencies is also important
in fostering reuse of existing solutions. It also helps in reducing the service footprint, customizing and optimizing it
to the specific needs of the distributed applications.

Distribution Configurability defines the selection of the place to perform event processing, whether in the
publisher (producer), the event router (notification service), or in the subscriber (consumer). This requirement is
especially important, for instance, in the context of mobile applications, which may not be continuously in contact
with a central server; or for monitoring tools where part of the processing is performed in the event producers [8], a
way to minimize network traffic and preventing server overload.

Reuse supports common requirements by referring to existing designs and implementations of services and
components. Examples of the most common reusable features in publish/subscribe infrastructures are content-based
routing, event representation, and push or pull notification models and mechanisms. More advanced, though also
commonly required features include event correlation, abstraction and persistency, among others.

Usability refers to the ease with which software engineers apply an infrastructure as well as the usefulness of that
infrastructure’s functionality. It also refers to the ease and functionality the infrastructure provides end users with in
interactive applications. For instance, usability applies to the experience software engineers have defining new
subscription languages and extensions as well as the experience end users have with editing and changing specific
subscriptions, possibly through graphical user interfaces.

Besides the above qualities of versatility, publish/subscribe infrastructures need to support the essential
middleware requirements of scalability, interoperability, heterogeneity, network communication and coordination
[1]. Moreover, the versatility qualities presented above must not interfere with those essential requirements. In our
work, we are especially interested in two of those requirements:

Interoperability is the ability to integrate heterogeneous services. Because different event notification
infrastructures are used to support heterogeneous application domains, interoperability is an issue. For instance, in a
large organization, different subscription, notification, and protocol requirements need to coexist and inter-operate.
The lack of interoperable formats in current notification servers forces the use of different services by different
applications. As a consequence, the integration of these services may become a non-trivial task.

Scalability is the ability to support design and implementation choices required to cope with issues of magnitude,
issues of quantity and size. For instance, scale may refer to the number of nodes in a distributed system or to the size
and capability of hardware devices. Internet-scale notification services must deal with different timing, quality of
service, delays, and other issues that are a consequence of the large number of publishers and subscribers of the
system [9]. Scalability also requires integration and execution on different hardware platforms such as mobile
devices, desktop computers and rack mounted systems (servers).

COMMON BUT LIMITED APPROACHES TO VERSATILITY
Versatility is not usually designed into or implemented in current publish/subscribe infrastructures. As a result,

many workarounds are employed. Most commonly, missing features are added into the middleware by application
programmers or accommodation is made in the application itself. In this situation, long-term maintenance is not
always the highest priority. Consequently, maintenance and further evolution come at a high cost. Below are some
approaches to middleware for publish/subscribe architectures that are common, but in a sense sidestep the issue of
versatility.

One-size-fits-all
The most obvious approach to provide versatility is to implement the most comprehensive set of features

imaginable. This strategy is adopted by standard implementations such as CORBA-NS and their extensions, such as

UCI-ISR-04-7 – October 2004

4

READY. The CORBA-NS, for example, is an extension to the CORBA event service (CORBA-ES) [10] that allows
the definition and management of different event channels between CORBA distributed objects. Events can be typed
or un-typed, persistent or non-persistent. The subscription language permits the definition of event sequence
detection expressions with content-based filtering. The event delivery and observation can be performed using pull
or push approaches. Secure channels can be established between publishers and subscribers; and scalability is
addressed using federation of servers. Some implementations also provide event persistency. This approach, even
though effective suffers from two fundamental problems: (1) the implementation cannot be easily extended to
support new features (consider mobility, for example which requires support for publishers and subscribers
temporary disconnection and migration); (2) nor the set of functionality provided by the service can be reduced to
accommodate resource-constrained devices, such as PDAs or embedded systems.

Application-specific infrastructures
Another commonly used approach has been to develop application specific infrastructures, providing the

characteristics demanded by each application domain. For example, CASSIUS [6], an awareness-centric notification
service, was specifically designed with services to support those kinds of applications, providing event source
hierarchy representation and discovery; graphical subscriptions, as well as event persistency and notifications
summarization. This approach, however, still suffers from the same extensibility and configurability problems of
one-size fits all solutions, even though they are better fit to the applications they serve. An undesired side effect of
the adoption of many application-specific implementations is their lack of interoperability: different applications use
different event and subscription representations that not necessarily communicate with each another.

Minimal core
Due to the Internet-scale requirements of current applications, content-based systems such as Siena [4] and Elvin

[11] have became popular in the academia and industry. Content-based networks [12] allow the event routing
through the federation of servers and a smart schema of subscription covering, which allows them to scale to
Internet proportions . Also, by supporting event content-based filtering, they provide a very flexible subscription
model, based on a generic event representation. Scalability, however, limits the subscription language
expressiveness [9]. As the two approaches above, their lack of design for extensibility and reuse makes their
functional extension and customization process a challenging task. Not having been designed with extensibility in
mind, the addition of services such as event persistency, pull notification policy and mobile applications support
protocols, for example, remains as sets of features to be implemented by the application developers [5].

ADVANCED APPROACHES TO VERSATILITY
In the last several years, advanced techniques and approaches have been developed which enable the development

of middleware infrastructures with varying degrees of versatility. Those systems rely on the widespread adoption of
object-oriented techniques and approaches such as object-oriented frameworks and design patterns, as well as
relatively new approaches such as computational reflection, aspect-oriented programming and component-based
software architectures. In this section, we briefly discuss these approaches, their benefits and limitations, and some
examples on how can they be applied to design and implement more versatile middleware.

Software patterns and frameworks
Software Frameworks are skeletal groups of software modules that can be tailored for building domain-specific

applications. They provide reuse in the form of pre-programmed logic and adaptation points. They are usually
implemented in object-oriented languages, being described in terms of concrete and abstract classes, which together
specify the way instances of those classes collaborate [13]. As studied by Roberts and Johnson, the use of
frameworks can reduce the cost of developing an application by an order of magnitude since it promotes the reuse of
both design and code. Moreover, they have been adopted in a large set of applications and, for being built upon
existing object-oriented programming languages and techniques, they do not require new technology [14].

Recently, frameworks have been used in the development of configurable middleware, as the example of the
TAO ORB [15] and the Jakarta Tomcat and the Apache web server. The TAO ORB implements a CORBA ORB as
an extensible framework. The system is modeled in terms of its basic components, allowing the static configuration
of services and the runtime change of its strategic components. TAO can be configured to cope with different real-
time constraints of applications by selecting the appropriate implementation of each component of the ORB. It also
allows the definition of configurations where only necessary components are present, which addresses small
footprint requirements of mobile devices or special real-time constraints. In another example, the Apache web uses a
pluggable architecture where modules providing different functionality can be added. These modules or plug-ins can
be installed with the help of hooks and an internal API, over the different stages (request reception, request

UCI-ISR-04-7 – October 2004

5

translation, authentication, resource handling (using MIME types), response generation, logging, response) of the
internal dataflow-based architecture of the HTTP server. Apache supports plug-ins and extensions that can handle
different protocols such as WEBDAV and SSL, and externally-invoked applications such as CGI scripts.

Reflexive middleware
Computational reflection has been employed in designing configurable and open middleware. An example is

Open ORB [16]. A reflective system is one that is capable of reasoning about itself. This implies that the system has
some representation of itself in terms of its runtime programming structures. Reflection also provides access to the
basic execution mechanisms of the system. Through the Meta Object Protocol (MOP), programs can intercept and
adapt the middleware execution environment, including behavior such as message arrival, marshaling and un-
marshaling of messages, thread creation and so on. Reflection is a powerful mechanism that allows the fine-grained
extension of applications. However, it has some potential performance and integrity problems. Reflection itself does
not impose restrictions on when and how to extend the system, every point in an application is a potential extension
point. Hence it must be supplemented by architectural restrictions in the system and usually require the deep
knowledge of the middleware internals.

Aspect-oriented approaches
Aspect-oriented programming (AOP) [17] tems from the observation that in the development of applications,

separate concerns such as security, logging, persistency and other “ilities” are hard to modularize. In programming
paradigms such as object-oriented and functional programming, different, “cross-cutting” concerns are entangled in
code across many modules. AOP aims to solve this problem by allowing the separation of individual concerns in
different implementations (or aspects). Aspects are defined in an aspect language and are then interwoven in an
application with the help of special compilers. AspectJ [18] for example, is an aspect weaver (or compiler) that
allows the definition and weaving of aspects in Java programs.

AOP has been used to model and provide “ilities” to middleware. Filman et al. [19], for example, demonstrated
how to extend ORBs with non-functional requirements such as security and fault-tolerance using communication
interceptors (or filters). In more recent work, Zhang and Jacobsen [20] showed how to extract, model and implement
the different functionalities of an ORB as AOP cross-cutting concerns. Such separation allows the further rebuilding
of an ORB with a custom set of such concerns. FACET [21] is an extensible and configurable implementation of the
CORBA Event Service that was initially designed to allow the customization of this service to address the strict
footprint and real time requirements demanded by embedded systems. In FACET, features are modeled as aspects
that are weaved around a bare-bones implementation of the CORBA-ES standard.

ARCHITECTURAL APPROACHES BEYOND MIDDLEWARE
Instead of relying on middleware services alone, compositional approaches are being developed that achieve

some of the versatility qualities through the combination of different components in a distributed system. They rely
on additional services and tools and are far from standardized at this moment.

Model-driven architectures
OMG promotes the use of Model Driven Architectures (MDA) as a way to decouple the application specification

from its particular implementation on different middleware platforms. The approach maps platform independent
models defined in UML to middleware-specific implementations. The idea is to better isolate the application
specification from the specifics of different middleware, improving portability. The mapping from independent
specification to middleware is automated, and performed with the help of platform-specific models.

Service-oriented architectures
Service-oriented architectures (SOA) [22] are used to implement complex applications by the integration of

distributed services. A service is an application externalized through standardized programmatic interfaces, a façade
in the design patterns jargon [23], or a component in a software architecture point of view. Services hide the
implementation of more complex systems behind well defined interfaces, which should be operated according to a
richer semantic protocol. Hence, service-oriented approaches are not middleware extensibility approaches, but a
composition and integration strategy that combines distributed applications. For such, they use standardized
protocols, such as XML-RPC, SOAP, ODBC, and JMS, usually implemented using application servers such as
JBoss, IBM Webspheare and other EJB (Enterprise Java Beans) [24] application containers.

PROVIDING AND MAINTAINING VERSATILITY
The approaches discussed above provide mechanisms that ease the selection and implementation of different

aspects of versatility. However, simply the use of such approaches is still not sufficient to provide and maintain

UCI-ISR-04-7 – October 2004

6

versatility. As with any software approach, developers must use the available technology and techniques in the
context of each application domain and provide a usable adaptation interface. Specifically, the design of a versatile
software system must follow those generalized steps:

1. Initial Design / Domain analysis and understanding. The basic model underlying the application must be
first understood. For example, the generalized support provided by publish/subscribe middleware consists
of event creation, publication, routing (subscriptions), notification and delivery. Additionally, application-
specific protocols need to be identified to handle different interactions or services.

2. Refinement of the design. Once the basic model is understood, developers need to identify the many
functional and non-functional requirements that the infrastructure must provide. Those concerns may be
implemented in one or more of these design dimensions (some use the terms, “vertical” and “horizontal”
with dimensions). These define the general middleware process. For example, subscription-related
functions such as event sequence detection, content-based filtering and routing are functional (or vertical)
requirements associated to the subscription dimension alone; whereas concerns such as security, fault
tolerance and reliability are “cross-cutting” (or horizontal) concerns that spam different dimensions of this
model.

3. The selection of the extensibility mechanism based on the problem domain characteristic. Using
Jackson’s terminology, once the problem is framed [25], developers must select the proper approach and
technology. For example, if the middleware must support extensive variability of crosscutting concerns,
approaches as AOP or computational reflection may be more appropriate. On the other hand, applications
that require extensive variability in the middleware functional requirements, may adopt an object-oriented
framework approach. Intermediate solutions may require the combination of two or more approaches.

4. Building the software along the identified extensibility dimensions. Finally, once identified the
extensibility dimensions and their variability, developers should define principled rules, constraints, and
extension and configuration mechanisms in order to allow software developers first, to understand, and
then to adapt the infrastructure to the different applications.

YANCEES, A CASE STUDY
Based on the main steps described above, we implemented YANCEES notification service [26]. YANCEES is a

versatile publish/subscribe infrastructure based on the idea of plug-ins and extensible languages. As such, we
developed an object-oriented framework, described below.

Initial Design / Domain analysis and understanding. Rosemblum and Wolf described the main design
dimensions of a publish/subscribe system in the form of a design framework [27]. In their framework, the object
model describes the components that receive notifications (subscribers) and generate events (publishers). The event
model describes the representation and characteristics of the events; the notification model is concerned with the
way the events are delivered to the subscribers; the observation model describes the mechanisms used to express
interest in occurrences of events; the timing model is concerned with the casual and temporal relations between the
events; the resource model defines where, in the distributed system architecture, the observation and notification
computations are located, as well as how they are allocated and accounted; finally, the naming model is concerned
with the location of objects, events, and subscriptions in the system.

Even though very complete in terms of the design of pure pub/sub systems, this framework does not address the
new services a publish/subscribe system must support. In order to capture these new services, we introduce a new
design model, the protocol. The protocol model captures all the different interactions with the publish/subscribe
system that are not the common publishing and subscription of events. For example, the protocol model may be used
to support mobility, providing roaming primitives (move-in, move-out), can complement the push delivery
mechanism allowing the collection of events stored in the server (collect events), can be used to express
synchronization and communication messages used to federate different notification servers, and so on.

Finally, this framework does not account for the need for versatility. Hence, a versatility dimension that captures
the mechanisms and approaches used to configure, extend and program the notification service features was also
added to this model.

On the analysis of the problem, it is important to balance the Scope, Commonality and Variability (SCV) of the
design as proposed by Coplien et. al. [28]. The idea is to identify the scope of the problem, in this case,
publish/subscribe middleware and its basic requirements, model commonalities as the basic framework on top of

UCI-ISR-04-7 – October 2004

7

which the variability is defined, and identify the variability dimensions to consider. In our case, our extended design
framework provides the basic commonality dimensions whereas plug-ins and languages provide the variability.

Design refinement. In a publish/subscribe system, the functional requirements (vertical concerns) are mainly
related to the subscription and notification models. They specify different ways of correlating and delivering events.
One key characteristic in the publish/subscribe paradigm, however, is the asymmetry of publishers and subscribers
of information. Both publishers and subscribers may provide events and subscribe to this information in different
ways. For such characteristic, the interaction with the system is asymmetric: whereas clients publish events using the
service programmatic API bound to a specific programming language, subscriptions are expressed as logical
expressions in the service specific subscription language. In other words, whereas events are usually represented as
data structures in a target programming language (tuple records or hash tables, for example), subscriptions are
defined in a different language, using regular expressions, sequence detection keywords and so on. This important
characteristic represents a challenging point in providing versatility to publish/subscribe systems: the functional
variability and the extensions to the notification, subscription, event and protocol models need to be defined by both:
language extensions and the functionality implementation. In fact, this separation of languages and their
implementation over the pub/sub design dimensions is a key contribution of YANCEES.

Horizontal concerns such as security, scalability, fault tolerance and other “ilities” are usually handled by
applying policies and constraints in the way the notification servers are composed, events are represented and
subscriptions are preformed, hence they spam different models in our design.

Selection of the extensibility mechanism. For the implementation of YANCEES, we chose to provide an object-
oriented framework implementation where new functionality can be provided in each one of the publish/subscribe
models. Those features are represented in the form of plug-ins and language extensions.

Building the software along the identified extensibility dimensions. An extension is implemented by the
combined use of plug-ins and languages, installed along the basic publish/subscribe activities. In order to illustrate
the role of plug-ins, languages and the design models, we briefly sketch the main YANCEES concerns in Figure 2 as
follows. A detailed description of the system is provided in [26].

������

�����	�
��
���
�	�
�� ���
�� ���
�
�	�
�� ������

����� ��
��

�����
��
���

�	��	��

���
�
�	�
���

�	��	��

������

�	��	��

���
����

����	��������
���

�����
��
��

����
��

���
�
�	�
��

����
��
������
����� � �����
�����

������

�	��	��

�

�
�
�

�
�
	
��

�
�
��
�
�

�
�
�

�
�
�
�
�
�
�
�
��

�
��
�
�
��

�
	
�
�
	

�
�

�
�
��
�
�

�
�
�

���������

�� ���

���������

!	�"�
��

���������

�	��	��

����	��������
���

��������

����
���

�
�
�

�
�
	
��

�
�
��
�
�

�
�
�

�
�
�
�
�
�
�
�
��

�
��
�
�
��

�
	
�
�
	

�
�

�
�
��
�
�

�
�
�

�������������	

��	�����
����

����
��
��
���	�����	

��	�����
���

���
����������	� � ������������	�

������������	�

���������

��������

Figure 2 The generalized publish/subscribe process, the main YANCEES extensibility dimensions and their approach

UCI-ISR-04-7 – October 2004

8

As shown in Figure 2, YANCEES decomposes the notification service in main stages (purple boxes), each one
performing a main function in the process of publishing, routing, notifying and delivering events from their
producers to interested consumers. Along these main steps, plug-ins and filters can be installed. The combination
and activation of those plug-ins is performed at runtime, following the syntax of the user-provided subscriptions,
and notification languages, which can include event filtering expressions, event composition and correlation, as well
as notification policies and other user-defined extensions. In other words, plug-ins are dynamically composed
following a process trellis architectural style [29] that mimics the subscription and notification languages structure.

Besides plug-ins and filters, YANCEES also allows the specialization and implementation of custom event
dispatchers that implement specialized routing algorithms, and services, that provide common models and features,
that are shared by all plug-ins. These internal components are combined in configurations, defined in XML files,
used to bootstrap the framework. YANCEES also allows the dynamic configuration/installation of plug-ins, which
facilitates the upgrade and evolution of the whole service.

With YANCEES, developers can specify configurations (sets of interdependent plug-ins), that together compose
the functionality required by different applications. Plug-ins can be added to both client and server sides, which
increases the model flexibility. Plug-ins are also dynamically allocated, on a per-subscription basis. Since
subscriptions are recurring expressions on the content, order, timing and so on, plug-ins are usually combined to
accommodate these complex expressions, thus promoting reuse and separation of concerns. Moreover, the
publish/subscribe core can be replaced by existing event-based services such as Siena, Elvin, CORBA-NS or JMS,
which copes with interoperability.

We summarize the main features of YANCEES and how it provides the versatility qualities previously presented,
in Table 1 as follows.

Table 1 Summary of requirements and how they are addressed in our approach

Property Approach
Extensibility Achieved by the combination of extensible subscription, notification and protocol languages defined in XML and the

implementation of those extensions by means of plug-ins
Use of input/output filters and internal services;

Functional
configurability

Supported by the ability to define different configurations: sets of plug-ins, filters, services and dispatcher components;
Together with the ability to dynamically update or install new components.

Distribution
configurability

Ability to specify client-side (publisher and subscriber) or server-side plug-ins, filters and services, distributing the event
processing;

Reuse Extensions are defined in an incremental way with plug-ins implementing specific language extensions;
Existing plug-ins are dynamically composed, as they get used in logical subscription expressions
Existing notification services such as CORBA and Siena can be wrapped and used as the core publish/subscribe
service

Usability Use of object-oriented frameworks which specify specific extension points, hiding internal program details, and provide
standardized interfaces
Extensible languages based on XML and extended by XML-Schema which can be parsed and integrated in GUI tools;

Interoperability Allows the use of different simultaneous publish/subscribe cores, bridging heterogeneous notification services;
YANCEES can be used as an abstraction layer on top of existing notification servers, allowing standard interaction with
heterogeneous services, hiding different middleware idiosyncrasies from end users.

Scalability The ability to use existing solutions such as Elvin and Siena, which are designed for scale, allows the reuse and
incorporation of scalability in our model.
Protocols can be implemented to distribute and integrate different YANCEES instances in a federated way.

EXPERIENCES AND LESSONS LEARNED
As observed by Michael Jacskson [25], the engineering of software is the act of building machines. In the

beginning of computer history, software was a way to provide versatility to hardware. Similarly, what we propose
here is to build a machine, a framework out of domain analysis, where our “software” in the form can be used to
provide the variability and adaptability necessary to solve the application domain problem. In summary, we build an
open implementation in the form of a generic publish/subscribe machine on top of which our extensions can be
provided. The approach used to implement this framework was that of plug-ins and extensible languages.

In the design of YANCEES, we opted to mainly use a framework-based approach where plug-ins can be added.
Although this approach requires some extra effort in order to model a generic publish/subscribe system with its
many extension points; to the developers’ point of view, it represents a more natural and easy to learn approach.

UCI-ISR-04-7 – October 2004

9

Foremost, plug-ins make it easy for developers to customize and understand the software. They leverage separation
of concerns, providing reuse (plug-ins can depend on one another) and customization. Moreover, the representation
of the model in the form of a framework provides a principled (as opposed to ad-hoc) approach to manage the
extensibility, configurability and evolution of the infrastructure, which is a key point in maintaining the versatility
properties of the overall system. Finally, frameworks also hide internal application details, allowing their extenders
to concentrate in extending the system to their particular needs with no need to understand the implementation
details of the whole infrastructure.

A distinct contribution of YANCEES is the separation between implementation and languages. In other words, a
publish/subscribe system needs to cope with two complementary concerns: a programmatic model, which deals with
the extension of functionality based on source code (plug-ins in YANCEES); and a language model, which deals
with the event, subscription and notification languages representation. These two models need to be consistent with
one another. This separation has two advantages: it allows the consistent allocation of plug-ins, obeying the
language syntax, and improves the reuse of components, allowing plug-ins to depend on one another, being
combined in complex subscription and notification expressions. Moreover, to the point of view of the software
engineer, the language allows the parsing and validation of the subscription commands, preventing inconsistencies.
The separation between language and implementation also allows the dynamic installation and upgrade of plug-ins,
at runtime.

Usability is another key issue in maintaining versatility. Even though many approaches exist to extend and adapt
software infrastructures, the choice of more usable and understandable approaches such as framework-based may
considerably improve the overall maintainability of the system by the simple fact that it is closer to the everyday
vocabulary of the programmers. The easier a code is to understand and extend, the easier it can preserve the
versatility qualities provided by the approach.

No approach, however, can prevent developers from misusing it, e.g., by providing inefficient or incompatible
extensions. Those issues are more critical in less principled approaches such as AOP and Reflection. A common
way to tackle this problem is the use of plug-in dependency checking, software benchmarking and automated tools
that hide these issues from end users. YANCEES minimizes those problems by syntactically parsing subscriptions
and events, and by performing plug-in dependency checking when the server is started.

An ever present concern is performance. However, experiments with our prototype shows that the versatility
achieved with the use of extensible languages and plug-ins provides only a slight degradation in performance
compared to some monolithic approaches. Depending on overall application requirements, the performance drop is
compensated by the versatility obtained. More details including performance are published elsewhere [26].

If on the one hand, middleware needs to be transparent and hide the networking and communication details from
the application developers, on the other hand, the increasing diversity of applications and their fast evolution has
created a need for ways of adapting, extending and configuring middleware. As a consequence, it is essential to
provide versatile middleware implementations that can accommodate those new requirements, allowing the
evolution of middleware without loosing its properties.

ACKNOWLEDGEMENTS
This research was supported by the U.S. National Science Foundation under grants numbers 0205724 and

0326105, and by the Intel Corporation.

REFERENCES

[1] W. Emmerich, "Software Engineering and Middleware: A Roadmap," in The Future of Software

Engineering, A. Finkelstein, Ed.: ACM Press 2000, 2000.
[2] J. Siegel, "OMG overview: CORBA and the OMA in enterprise computing," in Communications of the

ACM, vol. 41, 1998, pp. 37-43.
[3] S. Microsystems, "Java Message Service API," vol. 2003: Sun Microsystems, 2003.
[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Design and Evaluation of a Wide-Area Event

Notification Service," ACM Transactions on Computer Systems, vol. 19, pp. 332-383, 2001.
[5] C. R. B. d. Souza, S. D. Basaveswara, and D. F. Redmiles, "Using Event Notification Servers to Support

Application Awareness," presented at IASTED International Conference on Software Engineering and
Applications, Cambridge, MA, 2002.

UCI-ISR-04-7 – October 2004

10

[6] M. Kantor and D. Redmiles, "Creating an Infrastructure for Ubiquitous Awareness," presented at Eighth
IFIP TC 13 Conference on Human-Computer Interaction (INTERACT 2001), Tokyo, Japan, 2001.

[7] R. E. Gruber, B. Krishnamurthy, and E. Panagos, "The Architecture of the READY Event Notification
Service," presented at ICDCS Workshop on Electronic Commerce and Web-Based Applications, Austin,
TX, USA, 1999.

[8] D. Hilbert and D. Redmiles, "An Approach to Large-scale Collection of Application Usage Data over the
Internet," presented at 20th International Conference on Software Engineering (ICSE '98), Kyoto, Japan,
1998.

[9] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, "Challenges for Distributed Event Services: Scalability vs.
Expressiveness," presented at ICSE '99 Workshop on Engineering Distributed Objects (EDO '99), Los
Angeles, CA, USA, 1999.

[10] OMG, "CORBA Event Service Specification (version 1.1)," March 2001 ed: Object Management Group,
2001.

[11] G. Fitzpatrick, T. Mansfield, D. Arnold, T. Phelps, B. Segall, and S. Kaplan, "Instrumenting and
Augmenting the Workaday World with a Generic Notification Service called Elvin," presented at European
Conference on Computer Supported Cooperative Work (ECSCW '99), Copenhagen, Denmark, 1999.

[12] A. Carzaniga and A. L. Wolf, "Content-Based Networking: A New Communication Infrastructure,"
presented at NSF Workshop on an Infrastructure for Mobile and Wireless Systems, 2001.

[13] R. E. Johnson and B. Foote, "Designing Reusable Classes," Journal of Object Oriented Programming -
JOOP, vol. 1, pp. 22-35, 1988.

[14] D. Roberts and R. Johnson, "Evolving Frameworks: A Pattern Language for Developing Object-Oriented
Frameworks," in Pattern Languages of Program Design 3, A. Wesley, Ed., 1996.

[15] D. C. Schmidt and C. Cleeland, "Applying a Pattern Language to Develop Extensible ORB Middleware,"
in Design Patterns and Communications, L. Rising, Ed.: Cambridge University Press, 2000.

[16] F. M. Costa, G. S. Blair, and G. Coulson, "Experiments with an architecture for reflective middleware,"
Integrated Computer-Aided Engineering Journal, vol. 7, pp. 313-325, 2000.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and J. Irwin, "Aspect-
Oriented Programming," presented at European Conference on Object-Oriented Programming, Jyväskylä,
Finland, 1997.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold, "Getting started with
ASPECTJ," in Communications of the ACM, vol. 44, ACM, Ed., 2001, pp. 59-65.

[19] R. E. Filman, S. Barrett, D. D. Lee, and T. Linden, "Inserting ilities by controlling communications," in
Communications of the ACM, vol. 45, 2001, pp. 116-122.

[20] C. Zhang and H.-A. Jacobsen, "Resolving feature convolution in middleware systems," presented at 19th
annual ACM SIGPLAN Conference on Object-oriented programming, systems, languages, and
applications, Vancouver, BC, Canada, 2004.

[21] F. Hunleth and R. K. Cytron, "Footprint and feature management using aspect-oriented programming
techniques," presented at Joint Conference on Languages, Compilers and Tools for Embeded Systems,
Berlin, Germany, 2002.

[22] W3C, "Web Services Activity. http://www.w3.org/2002/ws/," W3C, 2002.
[23] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented

Software: Addison-Wesley Publishing Company, 1995.
[24] EJBGroup, "Enterprise JavaBeans Specification, Version 3.0," EJB 3.0 Expert Group. Sun Microsystems,

2004.
[25] M. Jackson, Software Requirements & Specifications: A Lexicon of Practice, Principles and Prejudices, 1st

ed: ACM Press/Addison-Wesley, 1995.
[26] R. S. Silva-Filho, C. R. B. d. Souza, and D. F. Redmiles, "Design and Experiments with YANCEES, a

Versatile Publish-Subscirbe Service," Institute for Software Research, Irvine, CA UCI-ISR-04-1, April
2004 2004.

[27] D. S. Rosenblum and A. L. Wolf, "A Design Framework for Internet-Scale Event Observation and
Notification," presented at 6th European Software Engineering Conference/5th ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Zurich, Switzerland, 1997.

[28] J. Coplien, D. Hoffman, and D. Weiss, "Commonality and Variability in Software Engineering," in IEEE
Software, vol. 15, 1998, pp. 37-45.

[29] M. Factor, "The process trellis architecture for real-time monitors," presented at 2nd ACM SIGPLAN
symposium on Principles & practice of parallel programming, Seattle, Washington, United States, 1990.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

