
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Girish Suryanarayana
Univ. of California, Irvine
sgirish@ics.uci.edu

Justin Erenkrantz
Univ. of California, Irvine
jerenkra@ics.uci.edu

Scott A. Hendrickson
Univ. of California, Irvine
shendric@ics.uci.edu

Richard N. Taylor
Univ. of California, Irvine
taylor@ics.uci.edu

PACE: An Architectural Style for
Trust Management in Decentralized Applications

October 2003

ISR Technical Report # UCI-ISR-03-9

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

PACE: An Architectural Style for
Trust Management in Decentralized Applications

Girish Suryanarayana, Justin R. Erenkrantz, Scott A. Hendrickson, Richard N. Taylor
Institute for Software Research
University of California, Irvine

{sgirish,jerenkra,shendric,taylor}@ics.uci.edu

ISR Technical Report # UCI-ISR-03-9

September 2003

Abstract: Distributed applications that lack a central, trustworthy authority for control and vali-
dation are properly termed decentralized. Multiple, independent agencies, or “partners”, cooper-
ate to achieve their separate goals. Issues of trust are paramount for designers of such partners.
While the research literature has produced a variety of trust technology building blocks, few have
attempted to articulate how these various technologies can regularly be composed to meet trust
goals. This paper presents a particular, event-based, architectural style, PACE, that shows where
and how to incorporate various types of trust-related technologies within a partner, positions the
technologies with respect to the rest of the application, allows variation in the underlying network
model, and works in a dynamic setting. Initial experiments with variants of a sample decentral-
ized application developed in the PACE style reveal the virtues of dealing with all aspects of
application structure and trust in a comprehensive fashion.

PACE: An Architectural Style for
Trust Management in Decentralized Applications

Institute for Software Research
University of California, Irvine

{sgirish,jerenkra,shendric,taylor}@ics.uci.edu

ISR Technical Report # UCI-ISR-03-9, September 2003

Girish Suryanarayana, Justin R. Erenkrantz, Scott A. Hendrickson, Richard N. Taylor
Abstract
Distributed applications that lack a central, trustworthy

authority for control and validation are properly termed
decentralized. Multiple, independent agencies, or “part-
ners”, cooperate to achieve their separate goals. Issues of
trust are paramount for designers of such partners. While
the research literature has produced a variety of trust tech-
nology building blocks, few have attempted to articulate
how these various technologies can regularly be composed
to meet trust goals. This paper presents a particular, event-
based, architectural style, PACE, that shows where and how
to incorporate various types of trust-related technologies
within a partner, positions the technologies with respect to
the rest of the application, allows variation in the underly-
ing network model, and works in a dynamic setting. Initial
experiments with variants of a sample decentralized appli-
cation developed in the PACE style reveal the virtues of
dealing with all aspects of application structure and trust in
a comprehensive fashion.

1. Introduction
Decentralized applications are characterized by, among

other things, lack of a centralized controlling authority.
“Partners” in such an architecture must coordinate by mak-
ing local autonomous decisions based on potentially incom-
plete or inaccurate information collected from other
partners. A large class of decentralized architectures are
open, meaning that the set of partners belonging to the
application may change over time, and may consist of both
legitimate and illegitimate partners.

In an open, decentralized architecture, illegitimate part-
ners, or peers, may publish intentionally false or misleading
information while legitimate peers lack a central authority
that can, on their behalf, differentiate the legitimate infor-
mation from the illegitimate. Consequently, the responsibil-
ity of determining which information can be trusted falls
squarely on each participating agency, making trust man-
agement an essential issue of open, decentralized architec-

tures.
The existing literature has not directly addressed the

question of how to design peers for participation in such
appications. A large amount of research focused on decen-
tralized peer-to-peer applications has centered on designing
appropriate network architectures, particularly when the
application involves mobile elements. Research on trust has
emphasized the development and exploration of decentral-
ized trust models and algorithms, but has not articulated
clearly how they may be utilized in application design and
development. Our focus is on meeting this need, describing
how trust management may be incorporated in decentral-
ized applications, with an approach grounded in event-
based software architectures.

In particular, this paper presents PACE, a trust-centric
architectural style that addresses the concerns of trust man-
agement in open, decentralized applications. PACE pro-
vides explicit guidance on the incorporation of trust
mechanisms, while providing the freedom to experiment
with different trust models and underlying network archi-
tectures.

Though, a number of architectural styles exist in the
architectural community [4, 12, 23, 25, 26], none of them
address the issue of trust in decentralized environments
explicitly. However, some of these styles lend themselves
more naturally to the constraints imposed by trust and so
can be leveraged in our approach. In particular, we believe
that the event-based architectural styles which allow
loosely-coupled components to asynchronously interact
with each other best suit our purposes. PACE is built on
such a foundation.

The rest of the paper is organized as follows. The next
two sections elaborate on the concepts of decentralization
and trust, while Section 4 discusses related work. Section 5
presents the the PACE architectural style. Section 6 gives
an overview of the various PACE components. Section 7
presents our initial evaluation of a prototype decentralized
application that we built in the PACE style. Finally, we con-
clude with a discussion of the style in Section 8.

2. Decentralized Architectures
A decentralized architecture is a collection of entities,

called peers, that interact without the presence of a trusted
central controlling authority. Each peer works towards
achieving its own individual local goals, that may or may
not serve a common system goal. Furthermore, in an open,
decentralized architecture there is no authority preventing
the addition of peers with malicious goals. Therefore, each
decentralized peer is charged with the task of determining
the validity of information received from other peers. This
local autonomous determination is the defining principle of
open, decentralized architectures. The rest of this paper
will refer to open, decentralized architectures as simply
decentralized.

There are primarily two layers of abstraction in a decen-
tralized architecture: external and internal. The external
architecture facilitates the interaction between peers by
describing the topological arrangement of peers and the
underlying network infrastructure. On the other hand, the
internal architecture is responsible for directing the behav-
ior of a peer towards achieving its local goals. While there
has been research towards resolving issues in the external
architecture [5], the internal architecture has remained
mostly unexplored. Therefore, we believe that the internal
architecture warrants detailed investigation.

3. Threats of Decentralization
As discussed above, peers with malicious intent may

impose a threat to the goals of others. Peers must take
appropriate countermeasures in order to neutralize these
threats. A potentially effective countermeasure is to
develop trust relationships with others[1].

3.1. Trust Relationships
Many researchers have discussed the requirements for a

computational model for trust. One of the underlying prin-
ciples of trust which has been identified is the concept of
perception[9]. As others have pointed out, computational
trust models are also highly subjective[14, 18]. Therefore,
if we choose to quantify trust, then we must acknowledge
that any trust value will be subject to inherent internal
flaws due to errors in perception, and external inconsisten-
cies due to incorrect subjective evaluations of others.

For our purposes in a decentralized application, we will
consider trust as a measure of the perceived confidence
between two peers. More formally, we will use the defini-
tion of the trust relationship model introduced in [1]: a trust
relationship is always between two entities, is non-sym-
metrical, and is conditionally transitive.

3.2. Threat Modeling
Before a system is created, it is important to model

potential threats to that system. Thus, we will follow the
guideline for evaluating threats as presented in [24]:
1. Understand and assess the real threats to the system
2. Describe the policy required to defend threats
3. Design countermeasures to enforce policy
We now discuss some threats that we believe are intro-
duced by decentralization. In Section 5, we will outline the
constraints PACE introduces that should help defend
against these threats. In Section 7, we will evaluate the spe-
cific countermeasures PACE utilizes.
3.2.1. Impersonation

Malicious peers may attempt to conceal their identities
by portraying themselves as other users. This may happen
in order to capitalize on the pre-existing trust relationships
of the identities they are impersonating and the targets of
the impersonation. Therefore, the targets of the deception
need the ability to detect these incidents.
3.2.2. Fraudulent Actions

It is also possible for malicious peers to act in bad faith
without actively misrepresenting themselves or their rela-
tionships with others. A user can indicate that they have a
particular service available even when they knowingly do
not have it. Therefore, the system should attempt to mini-
mize the effects of bad faith.
3.2.3. Misrepresentation

Malicious users may also decide to misrepresent their
trust relationships with other peers in order to confuse.
This deception could either intentionally inflate or deflate
the malicious user’s trust relationships with other peers.
Peers could publish that they do not trust an individual that
they know to be trustworthy. Or, they could claim that they
trust a user that they know to be dishonest. Both possibili-
ties must be taken into consideration.
3.2.4. Collusion

A group of malicious users may also join together to
actively subvert the system. This group may decide to col-
lude in order to inflate their own trust values and deflate
trust values for peers that are not in the collective. There-
fore, a certain level of resistance needs to be in place to
limit the effect of malicious collectives.
3.2.5. Denial of Service

In an open architecture, malicious peers may launch an
attack on individuals or groups of peers. The primary goal
of these attacks is to disable the system or make it impossi-
ble for normal operation to occur. These attacks may flood
peers with well-formed or ill-formed messages. In order to
compensate, the system requires the ability to contain the
effects of denial of service attacks.
3.2.6. Addition of Unknowns

Initially, in an open architecture, when the system is
first created, the cold start situation arises: a particular peer

does not know anything about any other user on the sys-
tem. This can occur when the system is first initialized, or
when newcomers join the system after it has been estab-
lished.

Without any information relating to trust, peers may not
have enough knowledge to form solid trust evaluations of
others. Any trust metric based on prior knowledge will be
hampered until a sufficient body of prior knowledge is
established. Therefore, peers need the ability to bootstrap
when they have no pre-existing trust relationships.
3.2.7. Deciding Whom to Trust

In a large scale system, certain domain-specific behav-
iors may indicate the trustworthiness of a user. Trust rela-
tionships should generally improve when good behavior is
perceived of a particular peer. Similarly, when dishonest
behavior is perceived, trust relationships should be down-
graded accordingly.
3.2.8. Out-of-Band Knowledge

Out-of-band knowledge occurs when there is relevant
data that is not communicated through normal channels.
For example, Alice could indicate in person to Bob the
degree in which she trusts Carol. Bob may want to update
his system to adjust for Alice’s perception of Carol. While
trust values are assigned by an algorithm based on visible
interactions, there may exist important invisible interac-
tions that have an impact on trust that might not be taken
into consideration. Therefore, the system needs to facilitate
users being able to reconcile new information gathered
from other sources.

4. Related Work
This section gives an overview of relevant research

related to our work. We first look at peer architectures.
This is followed by an overview of various trust models
and algorithms.

4.1. Peer Architectures
4.1.1. INTERRAP Agent Architecture

The INTERRAP agent architecture[21] defines an
autonomous agent peer using a layered set of functional
components and a shared hierarchical knowledge base. The
main benefits of INTERRAP are the explicit modeling of
local autonomous behavior, and local and cooperative
plans. While these benefits certainly make the agent archi-
tecture of INTERRAP feasible for dynamic decentralized
multi-agent systems, the main shortcoming is an assump-
tion of implicit trust among agents. The architecture does
not consider the effect of information sent by malicious
agents which may prevent peers from achieving local
goals.
4.1.2. Trust Architecture

Another internal architecture is the local trust-based

admission control architecture presented in [14] that helps
access control using trust-based admission control policies.
This approach has two main shortcomings. The first is that
the global admission control process requires a centralized
application manager to coordinate the voting process for
admitting a new peer. The second is that, though this
framework takes an architecture-centric approach, they
store only trust and interaction data persistently, and com-
munication among the peers is not explicit.

4.2. Trust Models and Algorithms
The realization that trust is of immense significance in a

decentralized context has motivated a lot of research to be
focused on reputation and trust management models and
systems [7, 11, 20, 29, 30]. Below, we focus our attention
on some of the interesting trust models and algorithms dis-
cussed in research literature. However, while it is certainly
feasible to integrate these models into the internal architec-
ture, none of these approaches have identified mechanisms
to do this.
4.2.1. Efficient Data Models

One approach has been to invent efficient trust data
storage and mining techniques. For example, the P-Grid
approach[2, 3] stores data in an innovative decentralized
fashion and uses randomized algorithms that enable con-
structing the access structure, updating data, and perform-
ing search. This is done to address scalability issues that
arise in large agent populations when trust information is
stored on every peer.
4.2.2. Trust Models

Another set of approaches involve discovering new
ways of modeling and analyzing trust data. One of the ear-
liest models used a “recommendation” protocol to achieve
trust[1]. Another computes trust locally using the P-Grid
storage structure described above[3]. Poblano [6] is
another decentralized trust model implemented over JXTA
that allows reputation-guided searching.
4.2.3. Trust Algorithms

Recent efforts have also concentrated on developing
algorithms to compute trust values. For example, [15]
claims that beta probability density functions can be used
to combine feedback and derive reputation ratings in a
decentralized application. [16] describes a distributed
EigenTrust algorithm that computes global trust values for
each peer based on the peer’s history of uploads.

5. PACE Architectural Style

We now introduce the PACE architectural style. Since
peers are locally autonomous, they can choose how and
when to respond to information they receive. Due to the
fact that synchronous external interaction cannot be
expected, an asynchronous internal architecture may be

well-suited. Further, in order to better evaluate effects of
different network topologies, data and trust models, the
architectural style should facilitate dynamism supported
through loose coupling of components[22].

Event-based architectural styles have been successful in
addressing the constraints of asynchronicity, dynamism,
and loose coupling. C2 is one such architectural style that
naturally fits these constraints[28]. Additionally, C2 pro-
vides good tool support to facilitate rapid development.
Therefore, the PACE architectural style builds upon C2.
We now present an overview of the C2 style followed by
the introduction of the PACE architectural style.

5.1. C2 Architectural Style
C2 is an asynchronous, event-based architectural style,

which promotes reuse, dynamism, and flexibility through
limited visibility. Components and connectors have a
defined top and bottom that cause them to be arranged in
layers. Components are aware of elements that reside
above them but not below. Hence, they may send requests,
events that travel up an architecture, with an expectation
that they will be fulfilled by some set of components
above. Components may also send out notifications, mes-
sages that travel down an architecture, without any expec-
tation of whether they will be handled.

5.2. PACE Architectural Style
We now introduce the PACE architectural style and its

constraints upon the architecture that are geared towards
addressing the threats discussed in Section 3.
5.2.1. Identities

In a decentralized system, it is often necessary to iden-
tify which physical entity published some information.
Without the ability to associate identity with information, it
is a challenge to develop a meaningful relationship
between entities. Therefore, a critical constraint is having
enough knowledge to make judgements of trust. This can
be facilitated by the creation of digital identities.

It is possible that there is not a one-to-one mapping
between digital and physical identities. Multiple digital
personas under the control of one physical identity are
often common when each digital persona represents a role.
Each digital identity may be used to perform possibly dis-
tinct tasks by the same person.

Similarly, multiple physical identities could share one
digital identity. This can occur when there is a group
account shared by several people. There is also a special
case where one digital identity is shared: anonymous users.
These users do not identify themselves, so it is not possible
to know who they really are. Therefore, it is not always
possible to tie a digital identity back to one real individual
and make accurate evaluations of their behavior.

It becomes clear that an identity does not necessarily

represent any particular physical entity, but that it repre-
sents the actions performed by that entity in a particular
system. Therefore, a critical criteria of developing trust
relationships should be the actions performed by digital
identities.
5.2.2. Explicit Trust

Without a controlling authority that governs the trust
process, peers require information to make decisions
whether or not to trust. This information can be about a
particular identity, or about information produced by an
identity. Active collaboration between peers may provide
enough knowledge for peers to reach their local decisions.
Consequently, peers should publish their perceived trust
explicitly in order to facilitate active collaboration.

However, within an internal architecture, trust cannot
just be localized to one component. Each component
responsible for making local decisions needs the ability to
take advantage of the perceived trust of the information. If
perceived trust is not visible, then those components may
not be able to make accurate assessments. Therefore, the
trust relationships need to be visible to the components in
the peer’s architecture as well as published externally to
other peers.
5.2.3. Comparable Trust

Ideally, published trust values should be syntactically
and semantically comparable - that is, equivalent represen-
tations in one implementation have the same structure and
meaning in another. If the same value has different mean-
ings across implementations, then accurate comparisons
across peers cannot be made. A lot of discussion has cen-
tered on the best semantic representation for trust[1, 18].

There has been no clear consensus as to which trust
semantics provide the best fit for applications, therefore it
is believed that enforcing a constraint at the architectural
level to use a particular trust semantic would be too impos-
ing. While trust values should but not required to be
semantically comparable, a constraint can be imposed that
trust values must be syntactically comparable by enforcing
that they must be represented numerically.
5.2.4. Separation of Internal and External Data

Reflection on our previous work in decentralized emer-
gency response applications [27] revealed the importance
of modeling external data separately from internal data.
This separation is necessary to help resolve conflicts
between externally reported information and internal per-
ceptions. For example, a peer may choose not to trust
reported information in favor of information it has per-
ceived and believes to be accurate.
5.2.5. Dependencies of Layers

We have identified three generic functional areas that
are essential for managing decentralized applications: data
collection, storage, and analysis. We believe that in order to

allow evaluation of the specific implementations of these
functional groups, they should be isolated at the architec-
tural level. As depicted in Figure 1, the PACE architectural
style consists of the following layers of functionality:
1. Communication
2. Information
3. Trust
4. Application

The Communication layer is responsible for performing
data collection and transmitting data to other external
peers. The PACE architectural style requires that all exter-
nal communication must be performed through this layer.
However, the activity of data collection does not have any
dependencies upon data storage or analysis. Therefore, this
layer can reside at the top of a C2-based architecture.
Externally received data can be sent as notifications, and
information to be sent can be processed as requests. These
notifications are not implicitly trusted.

All notifications emitted from the Communication layer
and all data within the system should be stored within the
Information layer. Data may be selectively queried,
updated, and deleted from this layer.

The next layer is the Trust layer which is responsible for
evaluating the received messages and updating the Infor-
mation layer with the results of these evaluations. Since the
trust manager depends on internal data for its evaluations,
it must be below the Information layer.

While the layers described above are generic and may
be implemented in an application-independent fashion, the
Application layer is domain-specific. This layer is prima-
rily responsible for controlling the local behavior of the
peer and can build upon the services provided by the
generic layers. Therefore, an application developer is
responsible primarily for implementing the Application
layer.

Thus, the arrangement of these layers is influenced both
by their explicit interaction and C2’s architecture visibility
rules discussed in Section 5.1. Each of the components that
comprise these layers is discussed further in Section 6.

5.2.6. Implicit Trust
PACE assumes implicit trust of components constitut-

ing the internal architecture with the exception of the Com-
munication layer. This is due to the fact that the
Communication layer is not responsible for validating the
messages from other peers. So, any notification sent by the
Communication layer can not be trusted. Therefore, these
notifications require an explicit trust value.

Since the Communication layer is the only one that can
have external communications and is situated at the top of
the architecture, it can not issue requests to other layers.
Rather, requests can originate only from components
below the Communication layer. Since these components
are internal and thereby trusted, requests originating from
them should be implicitly trusted.

Consequently, components within the architecture may
treat requests and notifications differently. For example,
the Information layer only allows requests to query, update,
or delete stored information.

6. PACE Framework
The internal architecture of a peer that can be built using

the PACE framework is illustrated in Figure 2. This frame-
work provides the generic functionality of the upper layers
which the Application layer may utilize. The system archi-
tect may have to select the components that are best suited

Figure 1. External Architecture

C om m unication

In fo rm ation

T rust
A pp lication

C arol
C om m unication

In fo rm ation
T rust

A pplication

B ob

C om m unication
Inform ation

T rust

A pplication

A lice

N etw ork

Figure 2. Internal Architecture in PACE

C
om

m
un

ic
at

io
n

La
ye

r
In

fo
rm

at
io

n
La

ye
r

Tr
us

t
La

ye
r

A
pp

lic
at

io
n

La
ye

r

Communication Manager

External
Information

Internal
Information

Key
Manager

 Signature Manager

Trust
Manager

Application
Trust Policy

HTTP Sender Custom Protocols Multicast Manager

Multicast Handler

Credential
Manager

A P P L I C A T I O N

for the particular application. This section discusses below
the constraints on individual components in the PACE
framework.

6.1. Communication Layer
The Communication layer handles the interaction of a

peer with other peers. This layer has four main functions:
1. abstraction of underlying connection protocols
2. allowing multiple connection mechanisms at once
3. signing of messages
4. verification of identities

In order to achieve maximum flexibility, the nature of
the underlying protocols used are isolated to the protocol
handler component. Each protocol handler is controlled by
the communication manager. Underneath the communica-
tion manager is the signature manager which performs the
signing and verification of messages as they pass through
the architecture.
6.1.1. Protocol Handler

An architecture may have multiple protocol handlers,
such as HTTP, SMTP, or another protocol, which are
responsible for transferring data between peers using pro-
tocol-specific messages. A protocol handler may also inter-
face with a particular network infrastructure such as
FLAPPS[19] and Tarzan[13]. Each handler is responsible
for translating internal events into the specific format best
suited for the protocol it handles and vice-versa.

There are two categories of protocols that can be sup-
ported with PACE: stateful and stateless. Stateful protocols
often require a persistent connection, or setup with a spe-
cific server or group of nodes. Therefore, a single protocol
handler for a stateful protocol can only service a single
instance of the protocol. Consequently, multiple protocol
handlers for a protocol can be present - each instance will
be associated with one instance of the protocol. If a proto-
col is stateless, then one protocol handler can be reused to
service all requests for this protocol.

In order to support dynamically created protocol han-
dlers, PACE relies upon URLs to determine which handler
should service the message. Therefore, stateless protocol
handlers can service all requests for its associated scheme.
However, stateful protocol handlers can only deal with its
specific instance of the scheme.
6.1.2. Communication Manager

The communication manager is responsible for the
dynamic creation of protocol handlers. This creation is
determined by having a registry of current protocol han-
dlers and the protocol specified in the address field of a
message.
6.1.3. Signature Manager

The signature manager is responsible for signing
requests and verifying notifications. This component may

implement relevant public-key infrastructure stan-
dards[10]. Since the PACE architectural style requires that
identity should be explicit, the signature manager adds the
configured public key of the local peer in the outbound
messages. To provide non-repudiation and integrity check-
ing, it also digitally signs this message with the public key.
When an event is received on another peer, this public key
can be used to verify the signature.

Since the architecture supports multiple protocols, hav-
ing a signature manager allows for the embedding of signa-
tures within protocols that do not explicitly support digital
signatures. Also, for added security, the signature manager
may also facilitate the encryption of outbound requests and
decryption of incoming notifications.

6.2. Information Layer
As discussed in Section 5, the PACE architectural style

creates a distinction between internal information gener-
ated within a peer and external information collected from
other peers. The PACE framework, therefore, consists of
two components: the internal information component that
stores requests, and the external information component
that stores notifications. Additionally, information stored in
this layer can be queried and potentially modified by
requests.
6.2.1. Internal Information

The data stored in the internal information component is
typically intended to be persistent across instantiations of a
peer. This allows a peer to accumulate a historical record of
its own prior actions and beliefs. This component only
allows direct modifications and queries through requests in
order to prevent unintentional distribution of data to other
peers. Certain data may be intended for distribution to
other peers. Only if a request is tagged with an address
field, the message will be stored locally and forwarded to
the Communication layer for transmission.
6.2.2. External Information

In contrast with the internal information component, the
external information component contains only messages
received from other peers and is not meant to be persistent.
It is imperative to understand that the external information
may be incomplete or include intentionally false informa-
tion published by another peer. As discussed next, the Trust
layer is responsible for assigning trust values on this infor-
mation.

6.3. Trust Layer
As mentioned before, information received externally

can be distinguished as either information or information
about another peer. The Trust layer is responsible for
implementing the trust management policies of the local
peer.

6.3.1. Key Manager
The key manager component is responsible for generat-

ing the unique key pairs that the signature manager will use
to sign externally-bound requests. Configured public and
private key pairs are stored in the internal information
component. If the key manager does not detect a config-
ured public and private key pair, it can generate a new set
of keys. This new set is stored in the internal information
component and sent to the signature manager for its use.
6.3.2. Credential Manager

The credential manager component is responsible for
maintaining the locally cached identity information stored
in the Information layer. It may request public keys from
other peers when needed and also respond to key revoca-
tion notifications.
6.3.3. Trust Manager

The trust manager assigns explicit trust values to mes-
sages received from other peers. This component can
leverage different trust models and algorithms such as
those discussed in Section 4. Different algorithms may uti-
lize various sources of information, such as pre-existing
trust relationships, as necessary to assign a trust value to a
peer or message.

6.4. Application Layer
The Application layer consists of components which

depend upon the specific needs of the application. The
PACE framework does not provide implementation of
these components, and expects the application developer to
select suitable implementations.
6.4.1. Application Trust Policy

There can be several dimensions of trust relationships
that can be meaningful in an application. One could be

topic-based[1] where, for example, Alice may trust Bob
completely when it comes to buying books, but may trust
Carol more when it comes to buying cars. Due to these
dimensions, there can be multiple ways in which a particu-
lar trust value may be computed by the trust model. This
requires the relationships between these different trust
dimensions to be explicitly defined. This is supported in
PACE by the application trust policy component. Addition-
ally, this component may assign trust values based on
domain-specific semantic meanings of messages. The use
of this component is discussed further in Section 7.1.
6.4.2. Application

This component defines the local behavior of each peer
that is specific to an application. The application compo-
nent may be a sub-architecture that can take advantage of
the services provided by the other layers. It can include
such functionality such as providing an interface to the user
and carrying out the local goals of the peer.

7. Initial Evaluation
This section evaluates how the architectural constraints

within PACE, introduced in Section 5, can address the
threats discussed in Section 3. Additionally, we will
describe a problem domain, decentralized auctioning, that
we successfully implemented in the PACE architectural
style

7.1. Threat Countermeasures
An overview of the threats, associated policies, and

components responsible for the countermeasures are sum-
marized in Table 1 and also discussed below.
7.1.1. Impersonation

Since all external communication in the PACE architec-

Table 1. Summary of Threats, Policies, and Key Components in PACE

Threats Policies Key Components Comments

Impersonation Signatures Key manager,
Signature manager

Without correct private key, the signature will not validate as
coming from the public key

Fraudulent
Actions

Trust Values,
Broadcasts

Application layer, Trust man-
ager, Communication layer

In response, malicious users may be assigned a low trust value,
which can be broadcast to others to warn

Misrepresenting
Trust Trust Values Application layer, Trust man-

ager, Communication layer
Users are able to consider the evaluations of others; messages

may be published to warn others of malicious activity

Collusion Signatures,
Transitivity

Signature manager,
Trust manager

A malicious collective can be defeated with explicit trust com-
munication and digitally signed messages

Denial of Service Isolation Communication layer By isolating protocols to the Communication layer, malicious
attacks can be blocked at this layer

Addition of
Unknowns

Untrusted Events
Still Seen Signature manager Unsigned or incorrectly signed messages are still passed

through, but no trust values are assigned
Deciding Whom

To Trust
Domain-Specific

Policies Application trust policy Each application may have certain behavior indicative of good-
ness or maliciousness that can be detected

Out-of-Band
Knowledge Overrides Application layer Almost infeasible to have trust model capture all relevant inputs,

therefore the user may need to adjust manually

ture is constrained to the Communication layer, there is a
single point where impersonation can be detected. If a
malicious peer tries to impersonate a user without the cor-
rect private key available or does not digitally sign the
message, this deception can be easily identified by the fact
that the signature does not verify or exist. The signature
manager, key manager, and trust manager components
work together to implement signing and verification of
messages.

Additionally, if a private key has been compromised, a
revocation for that key can be transmitted. The credential
manager can store this revocation in the Information layer,
while the trust manager can then refuse to assign trust val-
ues to revoked public keys even if they have a valid signa-
ture.
7.1.2. Fraudulent Actions

Since PACE is designed for open, decentralized archi-
tectures, there is little that can be done to prevent the entry
of malicious users. However, a peer may issue warnings
about malicious actions to others through explicit trust
communications. Trust managers of peers that receive
these messages can consider these warnings in their local
evaluations.
7.1.3. Misrepresenting Trust

Additionally, since PACE facilitates explicit communi-
cation of comparable trust values between peers, it is possi-
ble for a peer to incorporate trust relationships of other
peers. For example, if Alice publishes that she distrusts
Bob, then Carol can use that information to determine if
she should trust Bob’s published trust relationships. This
can be accomplished by implementing a transitive trust
model in the trust manager which allows peers to disregard
trust relationships reported by distrusted peers.
7.1.4. Collusion

Even if a single peer can be detected that misrepresents
its relationships with others, collusion is a greater concern
because more malicious peers are involved. However,
combined with the ability to detect impersonation in
PACE, it has been proven that explicit communication
between peers can overcome a malicious collective[17].
7.1.5. Denial of Service

The separation of the Communication layer allows iso-
lation of the effects of denial of service attacks. Incor-
rectly-formed messages can be disposed of by the protocol
handlers. The communication manager can also compen-
sate for well-formed message floods by introducing rate
limiting or other policies designed to reduce the threat of
these attacks. These actions will reduce the impact of the
attack on the rest of the architecture.
7.1.6. Addition of Unknowns

Even though a local peer may not have previously inter-

acted with another peer or a message may be known to be
forged, the Application layer can still receive these events.
Without enough information to make an evaluation, the
message will not be assigned a trust value by the trust man-
ager. However, the user can still make the final decision to
trust the contents of the message.
7.1.7. Deciding Whom To Trust

In order to automate the process of classifying patterns
of interaction, PACE introduces an application trust policy
component that allows for automated reinforcements of
specified patterns of behavior. The detection of good
behavior by this component can cause the trust relationship
stored in the Information layer to be increased, while spe-
cifically bad behavior could cause a decrease of the associ-
ated trust relationship.
7.1.8. Out-of-Band Knowledge

While PACE confines all electronic communication to
the Communication layer, it is still possible for relevant
trust relationships to be conveyed in person, or through
other out-of-band mechanisms. Therefore, the Application
layer can issue requests that modify the trust relationship
for either a specific message or peer on behalf of the user.

7.2. A Decentralized Auction
We have implemented an auctioning system in the

PACE architectural style. In our auctioning model, there is
no trusted central controlling authority that controls all the
auctions. Instead, either each peer may be responsible for
administering every auction it initiates or delegate this
responsibility to another trusted peer.

Figure 3 depicts a traditional auctions where a seller
advertises the availability of some goods for sale and buy-
ers can then place bids for the items. Our example also sup-
ports reverse auctions where a buyer advertises an interest
in some quantity of goods and sellers can then place quotes
to the buyer to fulfill the requested demand.

Figure 3. A Decentralized Auction

A lice

B o b C a ro l

B id ($ 2 0 /u n it)

S e ll

A
dv

er
tis

e
(1

0
un

its
)

A d v e rtise (1 0 u n its)

B
id

 ($
25

/u
ni

t) B o b tru sts A lice = tb a(B id s) = 0 .4
B o b tru sts C a ro l = tb c(B id s) = 0 .8
A lice tru s ts B o b = tab(S e ll) = 0 .8
C a ro l tru sts B o b = tcb (S e ll) = 0 .8

O rd e rin g o f E v en ts :
1 . B o b ad v e rtise s to A lice an d C a ro l
2 . A lice an d C a ro l re sp o n d w ith b id s
3 . B o b tru s ts C a ro l m o re th an A lice
4 . B o b d ec id es to se ll to C aro l ev en
 th o u g h A lice o ffe rs a h ig h e r b id .

7.2.1. Modeling Auctioning in PACE
We now discuss how the auction application was mod-

eled in the PACE architectural style. Since completed auc-
tions in our domain result in two-party transactions, the
peer that initially advertises the auction can directly control
the bidding process or delegate it to a third party. Each
advertisement specifies a URL that indicates where bids
may be placed. This URL may refer to the peer itself, or to
a trusted third-party that will manage the auction.

It is important to note that the communication mecha-
nisms used during the auctioning may be asymmetrical.
Advertisements may be distributed through a broadcast
channel, while bids may be placed through a private chan-
nel. Both these channels exist as protocol handlers in
PACE.

For this application, we use public and private keys to
uniquely identify peers in the system. Due to the random-
ness involved in creating key pairs, each peer is allowed to
create their own key pair independently with the assump-
tion that these keys do not conflict with other peers.

Each peer can also assign explicit trust values to a peer
and a specific message. Each peer currently uses the same
trust model to allow semantic comparison of trust values
across peers. Peers may also inform other peers about their
current trust relationships through messages. Trust values
are also presented to users to allow for manual evaluation
of the trust in the messages.

The internal and external separation of the data is
enforced by the external information component which
strips any part of an externally received notification which
indicates its trust. This is to prevent malicious peers from
trying to trick the peer into believing their evaluations of
trust.

The auction application utilizes a framework that pro-
vides an implementation of the Communication, Informa-
tion, and Trust layers of PACE. This framework is generic
and does not contain any domain-specific constraints.
Instead, as described in Section 5, we restrict the domain-
specific functionality to the Application layer.
7.2.2. Implementation Details

Since the PACE architectural style builds upon the C2
style, applications written in PACE can reuse technology
designed for C2. In particular, we described the auction
architecture using xADL[8] and used the c2.fw framework
to implement the auction in Java.

In order to manage public and private key pairs, the
java.security framework was used in the key manager and
signature manager components. For the purposes of this
application, we used a multicast UDP protocol handler pro-
vided in the c2.fw framework within the Communication
layer to broadcast a message sent by a peer to all other
peers in the system.

The Information layer contained separate internal and

external information components which stored data in a
relational database to allow storage and queries. The trust
manager in the Trust layer incorporated a simplistic trust
model that divides trust into two dimensions: the buying
and selling of items.

In order to facilitate interaction with the user, a graphi-
cal user interface was implemented. This interface enabled
the user to create regular and reverse auctions, bid for
advertised items, and also review previously perceived
actions by displaying all recorded events stored in the
Information layer. Furthermore, it allowed the user to
directly modify the trust levels of a particular message or a
peer to address out-of-band knowledge.

Additionally, our example was able to validate that fol-
lowing the PACE architectural style can address several
other threats discussed in the previous section. In particu-
lar, the signature manager tags a message as verified if and
only if there is a valid digital signature of the message.
Since all received messages must pass through the signa-
ture manager, all attempts at impersonation are exposed.
However, we used a trust model which did not implement
transitivity, so we were not able to verify whether the
detection of misrepresentation of trust works in practice.

8. Discussion
There is an abundance of technologies that can help

address the essential aspects of communication and trust
management in decentralized applications. So far, these
approaches have remained disjoint with no guide for com-
posing them to construct decentralized applications. Addi-
tionally, as described in Section 5, the absence of explicit
trust at the architectural level makes it a challenge to accu-
rately assess information in a component-based implemen-
tation.

The PACE architectural style addresses these challenges
by presenting an approach for integrating communication,
data and trust models independently within an internal
architecture to support dynamic modification. Our evalua-
tion has revealed that as long as the constraints introduced
by the PACE style are strictly followed and a suitable trust
model is adopted, threats of decentralization can be
addressed.

We have also implemented a decentralized auction sys-
tem using a generic reusable framework constrained by the
PACE architectural style. Experiments with this prototype
have illustrated the feasibility of the PACE architectural
style as a guide to integrating trust into decentralized appli-
cations with explicit benefits.

9. Acknowledgements
This material is based upon work supported by the

National Science Foundation under Grant No. 0205724.

10. References
[1] Abdul-Rahman, A. and Hailes, S. A Distributed Trust
Model. In Proceedings of the New Security Paradigms Workshop.
Langdale, Cumbria UK, 1997.
[2] Aberer, K. P-Grid: A self-organizing access structure for
P2P information systems. In Proceedings of the 9th International
Conference on Cooperative Information Systems. Trento, Italy,
September 5-7, 2001.
[3] Aberer, K. and Despotovic, Z. Managing Trust in a Peer-2-
Peer Information System. In Proceedings of the Conference on
Information and Knowledge Management. Atlanta, Georgia,
November 5-10, 2001.
[4] Batory, D. and O'Malley, S. The Design and Implementation
of Hierarchical Software Systems with Reusable Components.
ACM Transactions on Software Engineering and Methodology.
1(4), p. 355-398, October, 1992. <http://www.cse.msu.edu/
~cse870/Materials/Frameworks/tosem-92.pdf>.
[5] Carzaniga, A., et al. Achieving Scalability and Expressive-
ness in an Internet-Scale Event Notification Service. In Proceed-
ings of the Nineteenth ACM Symposium on Principles of
Distributed Computing. p. 219-227, ACM Press. Portland, OR,
July, 2000.
[6] Chen, R. and Yeager, W. Poblano: A Distributed Trust
Model for Peer-to-Peer Networks. <http://www.jxta.org/docs/
trust.pdf>.
[7] Damiani, E., et al. A Reputation-Based Approach for Choos-
ing Reliable Resources in Peer-to-Peer Networks. In Proceedings
of the 9th ACM Conference on Computer and Communications
Security. Washington DC, November, 2002.
[8] Dashofy, E.M., et al. An Infrastructure for the Rapid Devel-
opment of XML-based Architecture Description Languages. In
Proceedings of the 24th International Conference on Software
Engineering (ICSE 2002). p. 266-276, ACM. Orlando, Florida,
May, 2002.
[9] Deutsch, M. Cooperation and Trust: Some Theoretical
Notes. In Nebraska Symposium on Motivation, Jones, M.R. ed.
Nebraska University Press, 1962.
[10] Diffie, W. and Hellman, M.E. New Directions In Cryptogra-
phy. IEEE Transactions on Information Theory. 22(6), p. 644-
654, November, 1976.
[11] Dragovic, B., et al. XenoTrust: Event-based distributed trust
management. Report, <http://www.cl.cam.ac.uk/~ek247/research/
XenoTrust-DEXA.pdf>.
[12] Fielding, R.T. Architectural Styles and the Design of Net-
work-based Software Architectures. Ph.D. Thesis. Information
and Computer Science, University of California, Irvine, 2000.
<http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm>.
[13] Freedman, M. and Morris, R. Tarzan: A Peer-to-Peer Anony-
mizing Network Layer. In Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security. Washington,
DC, November, 2002.
[14] Gray, E., et al. Towards a Framework for Assessing Trust-
Based Admission Control in Collaborative Ad Hoc Applications.
Distributed Systems Group, Department of Computer Science,
Trinity College, Report TCD-CS-2002-66, 2002. <http://
www.cs.tcd.ie/publications/tech-reports/reports.02/TCD-CS-
2002-66.pdf>.

[15] Josang, A. and Ismail, R. The Beta Reputation System. In
Proceedings of the 15th Bled Electronic Commerce Conference.
Bled, Slovenia, June 17-19, 2002.
[16] Kamvar, S., et al. The EigenTrust Algorithm for Reputation
Management in P2P Networks. In Proceedings of the WWW.
Budapest, Hungary, May 20-24, 2003.
[17] Lamport, L., et al. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems. 4(3), p.
382-401, July, 1982.
[18] Marsh, S. Formalising Trust as a Computational Concept.
Thesis. Department of Mathematics and Computer Science, Uni-
versity of Stirling, 1994.
[19] Michel, B.S. and Reiher, P. Peer-to-Peer Internetworking. In
Proceedings of the OPENSIG 2001 Workshop. Imperial College,
London, 24-25 September 2001, 2001.
[20] Mui, L., et al. A Computational Model for Trust and Reputa-
tion. In Proceedings of the 35th Hawaii International Conference
on System Sciences. Hawaii, 2002.
[21] Muller, J.P. and Pischel, M. An architecture for dynamically
interacting agents. International Journal of Intelligent and Coop-
erative Information Systems (IJICIS). 3(1), p. 25-45, 1994.
[22] Oreizy, P. and Taylor, R.N. On the Role of Software Archi-
tectures in Runtime System Reconfiguration. In Proceedings of
the Fourth International Conference on Configurable Distributed
Systems. p. 61-70, IEEE Computer Society Press. 1998.
[23] Perry, D.E. and Wolf, A.L. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering
Notes. 17(4), p. 40-52, October, 1992. <http://citeseer.nj.nec.com/
perry92foundation.html>.
[24] Schneier, B. Secrets and Lies: Digital Security in a Net-
worked World. 432 pgs., John Wiley & Sons, Inc., 2000.
[25] Shaw, M. Architectural issues in software reuse: it's not just
the functionality, it's the packaging. In Proceedings of the 1995
Symposium on Software Reusability. 20, August, 1995.
[26] Shaw, M. and Garlan, D. Software Architecture: Perpectives
on an Emerging Discipline. 242 pgs., Prentice Hall, 1996.
[27] Suryanarayana, G. and Taylor, R.N. A Decentralized Algo-
rithm for Coordinating Independent Peers: An Initial Examina-
tion. In Proceedings of the Tenth International Conference on
Cooperative Information Systems (CoopIS). p. 213-229, Irvine,
California, October 30 - November 1, 2002.
[28] Taylor, R.N., et al. A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transactions on Soft-
ware Engineering. 22(6), p. 390-406, June, 1996.
[29] Yu, B. and Singh, M. An Evidential Model of Distributed
Reputation Management. In Proceedings of the First Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent
Systems. p. 294-301, 2002.
[30] Zacharia, G. and Maes, P. Collaborative Reputation Mecha-
nisms in Electronic Marketplaces. In Proceedings of the 32nd
Hawaii International Conference on System Sciences. Hawaii,
1999.

	Abstract
	1. Introduction
	2. Decentralized Architectures
	3. Threats of Decentralization
	3.1. Trust Relationships
	3.2. Threat Modeling
	3.2.1. Impersonation
	3.2.2. Fraudulent Actions
	3.2.3. Misrepresentation
	3.2.4. Collusion
	3.2.5. Denial of Service
	3.2.6. Addition of Unknowns
	3.2.7. Deciding Whom to Trust
	3.2.8. Out-of-Band Knowledge

	4. Related Work
	4.1. Peer Architectures
	4.1.1. INTERRAP Agent Architecture
	4.1.2. Trust Architecture

	4.2. Trust Models and Algorithms
	4.2.1. Efficient Data Models
	4.2.2. Trust Models
	4.2.3. Trust Algorithms

	5. PACE Architectural Style
	5.1. C2 Architectural Style
	5.2. PACE Architectural Style
	5.2.1. Identities
	5.2.2. Explicit Trust
	5.2.3. Comparable Trust
	5.2.4. Separation of Internal and External Data
	5.2.5. Dependencies of Layers
	5.2.6. Implicit Trust

	6. PACE Framework
	6.1. Communication Layer
	6.1.1. Protocol Handler
	6.1.2. Communication Manager
	6.1.3. Signature Manager

	6.2. Information Layer
	6.2.1. Internal Information
	6.2.2. External Information

	6.3. Trust Layer
	6.3.1. Key Manager
	6.3.2. Credential Manager
	6.3.3. Trust Manager

	6.4. Application Layer
	6.4.1. Application Trust Policy
	6.4.2. Application

	7. Initial Evaluation
	7.1. Threat Countermeasures
	7.1.1. Impersonation
	7.1.2. Fraudulent Actions
	7.1.3. Misrepresenting Trust
	7.1.4. Collusion
	7.1.5. Denial of Service
	7.1.6. Addition of Unknowns
	7.1.7. Deciding Whom To Trust
	7.1.8. Out-of-Band Knowledge

	7.2. A Decentralized Auction
	7.2.1. Modeling Auctioning in PACE
	7.2.2. Implementation Details

	8. Discussion
	9. Acknowledgements
	10. References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

