
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Peyman Oreizy
University of California, Irvine
peymano@ics.uci.edu

Richard N. Taylor
University of California, Irvine
taylor@uci.edu

Decentralized Software Evolution

September 2003

ISR Technical Report # UCI-ISR-03-10

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

Decentralized Software Evolution

Peyman Oreizy and Richard N. Taylor

Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425 USA

{peymano, taylor}@ics.uci.edu

ISR Technical Report # UCI-ISR-03-10

September 2003

Abstract:

 We deÞne

decentralized software evolution

 as the ability to evolve software
independent of the original software vendor.

Decentralized software evolution (DSE) provides a means for third-party software vendors to
customize existing applications for particular domains and customers. This capability beneÞts
everyone involved: the original application vendor sells more product since customization
constitutes use; the third-party developer delivers a product in less time and with lower cost by
reusing software instead of starting from scratch; and the customer receives a higher quality
product in less time and with lower cost.

Although reliable, rapid, and cost effective software evolution has been a principal concern of
software research since the 1970�s, results to date do not directly address DSE. The principles and
techniques of software evolution�anticipation of change, separation of concerns, modularity,
information hiding, object-oriented design, mediator-based design, adaptive object-oriented
design, design patterns, aspect-oriented design, etc.�help

design

 evolvable software systems.
Unfortunately, the ßexibility attained using these techniques is lost when the application is com-
piled for use. The compilation process solidiÞes the plasticity of a design, making it exceedingly
difÞcult to accommodate a change that would otherwise be easy to make. The objective of DSE is
to preserve the design�s plasticity in the deployed system, thereby enabling third-party evolution.

1 INTRODUCTION

Software developers frequently confront a dilemma that may be characterized by the following:

�90% of the functionality requested by our customer is available in an existing off-the-shelf application, but
the missing 10% is vital to the customer. Unfortunately, we cannot customize or adapt the existing applica-
tion to meet our customer�s needs�we have no choice but to build a custom solution from scratch.�

As a result, a relatively small change in functionality necessitates a disproportionately large amount of effort, and curtails the
opportunity for software reuse. This undesirable outcome may have been avoided if the off-the-shelf application supported

decentralized software evolution

, which we deÞne as the ability to evolve software independent of the original software
vendor.

Decentralized software evolution (hereafter abbreviated DSE) provides a means for third-party software vendors to customize
existing applications for particular domains and customers. This capability beneÞts everyone involved: the original
application vendor sells more product since customization constitutes use; the third-party developer delivers a product in less
time and with lower cost by reusing software instead of starting from scratch; and the customer receives a higher quality
product in less time and with lower cost.

Although reliable, rapid, and cost effective software evolution has been a principal concern of software research since the
1970�s, results to date do not directly address DSE. The principles and techniques of software evolution�anticipation of
change, separation of concerns, modularity, information hiding [14], object-oriented design [2], mediator-based design [18],
adaptive object-oriented design [10], design patterns [7], aspect-oriented design [9], etc.�help

design

 evolvable software
systems. Unfortunately, the ßexibility attained using these techniques is lost when the application is compiled for use. The
compilation process solidiÞes the plasticity of a design, making it exceedingly difÞcult to accommodate a change that would
otherwise be easy to make. The objective of DSE is to preserve the design�s plasticity in the deployed system, thereby
enabling third-party evolution.

The rest of the paper is organized as follows. Section 2 characterizes DSE within the broader context of software evolution.
Section 3 surveys existing techniques for supporting DSE. Section 4 presents our approach to DSE, and section 5 summarizes
our experience in applying our approach to several applications. Section 6 discusses some open issues.

2 SOFTWARE EVOLUTION

Table 1 categorizes common software evolution technologies based on

when

 they can be applied and by

whom.

Software can
either be evolved by a centralized authority, such as the software vendor (top row), or by a decentralized group, such as
multiple independent software vendors (bottom row). Software can also be evolved during the design phase (left column), or
after it has been deployed to customers (right column).

Centralized, design-time evolution:

A large majority of the available techniques and tools support this category of
software evolution. For example, design notations and methods, such as the Booch and Rumbaugh object-oriented
methodologies, provide guidelines for system design and diagrammatic notations for design capture. Design tools, such as
Rational Rose, automate the diagramming process and provide analysis support. Group communication and collaboration
tools, such as e-mail, revision control tools, and conÞguration management systems, help teams members coordinate and
manage software changes.

Decentralized, design-time evolution:

Larger teams and geographic distribution differentiate decentralized design-time
evolution from its centralized counterpart. The impact of large teams on software engineering environments has been
investigated by Perry and Kaiser [15]. They argue that as a project grows above approximately 20 people, the number and
complexity of interactions increases. As a consequence, additional rules and mechanisms that enforce cooperation among

Decentralized Software Evolution

Peyman Oreizy and Richard N. Taylor

Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3425 USA

{peymano, taylor}@ics.uci.edu

ISR Technical Report # UCI-ISR-03-10

personnel are needed. Less well understood is the impact of geographic distribution on software development. Fielding and
Kaiser [5] describe the processes and tools adopted by one particular globally distributed team that develops the Apache Web
server. They identify the importance of e-mail communication, archival of e-mail communication (as a means to support
group memory), a shared information space accessible by project members, and coordination tools. Cutkosky et. al. [4] report
similar experiences using the Internet in the manufacturing domain.

Centralized, post-deployment evolution:

Software vendors evolving (i.e., upgrading) their deployed applications is
represented by this category. Since evolution is done by a single authority, change conßicts do not arise. As a result, most
technologies are concerned with the efÞcient distribution of upgrades. The most common technology in use today is the
binary patch Þle, which encodes the byte-level changes necessary to upgrade an application to a subsequent release. More
sophisticated tools, such as Tivoli�s TME/10 [21] and SoftwareDock [8], use software dependency information to guide
software upgrades.

Decentralized, post-deployment evolution:

Multiple software vendors independently evolving a deployed application is
represented by this category. The most popular techniques include software plug-ins, which are used by Netscape�s
Communicator to support new content types, and scripting languages. There are a host of issues and consequences inherent in
supporting this type of evolution. For example, conÞguration management becomes necessary if conßicts between
independently developed software add-ons can occur. Since applications are evolved in-the-Þeld, anomalies may arise from
unforeseen interactions between independently developed add-ons. Consequentially, application consistency must be veriÞed
whenever the application is modiÞed (i.e., when add-ons are installed or removed). Software add-on vendors must also use
standard formats for packaging and distributing add-ons. Furthermore, decentralized control over software evolution
complicates product support and documentation since no single authority represents an application that has been evolved by
multiple vendors. End-user installation of software add-ons necessitates that conÞguration management and analysis be
robust and accessible to non-technical users. We focus on this class of evolution in the remainder of the paper.

3 EXISTING TECHNIQUES FOR SUPPORTING DECENTRALIZED SOFTWARE EVOLUTION

The degree of ßexibility afforded by different approaches to DSE is depicted in Figure 1. At the extreme left of the spectrum,
the software vendor deploys the application�s source code, enabling anyone with sufÞcient expertise to modify any aspect of

the application�s functionality. Although this is rare in the commercial software market, numerous free-ware

1

 applications
adopt this approach, including the Linux OS, the Apache Web server, and the GNU tools (e.g., gcc, emacs). Netscape�s
Communicator is among the Þrst commercial products to distribute source code for independent extension. Although the
types of changes that can be made are unrestricted, it is extremely difÞcult to combine independently developed add-ons.
This is because determining whether or not two changes conßict requires careful analysis of the source code and cannot be

1. For a deÞnition of �free software�, see [6]

When

Design-time
(or pre-deployment)

evolution

Post-deployment
evolution

Who

Centralized
authority

(single
vendor)

Design notations, meth-
ods, and tools; process

system; group communi-
cation and collaboration
tools; conÞguration man-

agement tools

Release management sys-
tems; software patch Þles

Decentralized
group

(multiple
independent

software
vendors)

Design notations, meth-
ods, and tools; multi-site

process system; wide-
area group communica-
tion and collaboration

tools; distributed conÞgu-
ration management tools

Software plug-ins;
scripting languages;

developer APIs

Table 1: This 2x2 matrix categorizes different techniques used to support software evolution
based on who can evolve the system and when evolution can take place.

automated. The problem is analogous to merging several branches of a software revision tree in a software conÞguration
management system.

At the extreme right of the spectrum, the software vendor deploys the application as a monolithic entity, with a Þxed set of
user-selection options. A large majority of commercial software applications adopt this approach because (1) application
consistency may be assured since a single software vendor has exclusive control over its evolution, and (2) a software vendor
can protect their intellectual property rights by making it extraordinarily difÞcult for others to reverse engineer the
application.

Applications in between these two extremes support some form of software evolution by trading-off assured consistency
(right-end) for ßexibility (left-end). These systems enable end-users or third-party software vendors to customize or extend
the application�s functionality

independent

 of the original application vendor. A relatively small but growing number of
software applications lay between these two extremes. Some examples include Microsoft�s OfÞce suite, Adobe Photoshop,
and Qualcomm�s Eudora. The most common techniques for supporting DSE are brießy described below.

Application Programming Interfaces (APIs):

An API is a set of functions that an application provides for other
applications. APIs are commonly used as tool integration mechanisms since they enable other applications to invoke the
services of the host application without user involvement. APIs provide a limited subset of the operations necessary to
support evolution. For example, API-based software add-ons cannot replace or remove existing functionality, or interpose
new functionality between existing parts. As a consequence, the host application�s predetermined API circumscribes the class
of possible changes.

Software plug-ins:

The plug-in mechanism provides a place holder for third-party components. The host application
speciÞes the requirements and functional interface that all plug-ins must adhere to, and provides a mechanism by which new
plug-ins register themselves with the host. Netscape�s Communicator, for example, registers plug-ins by placing them in a
special Þle system directory queried on startup. The host application selects among the plug-ins and invokes them as
necessary. Plug-in based software add-ons can only provide alternative implementations for behaviors anticipated by the
original developers. The interposition and removal of functionality is not supported since dependency information between
plug-ins cannot be determined.

Scripting languages & macros:

A scripting language provides a domain-speciÞc language for specifying behavior using
language primitives and library functions. Scripting language-based mechanisms provide essentially the same ßexibility as
the API mechanism, except that the scripting language provides domain-speciÞc language constructs that can facilitate the
implementation of add-ons, and a built-in compiler and interpreter that lower the entry barrier for developing add-ons.

Dynamic link libraries (DLLs):

Dynamic link libraries provide a late-binding mechanism whereby an application can
load and link to an external software module during runtime. Applications employ DLLs to reduce runtime memory use and
to share common functionality. A software add-on can augment, replace, or remove functionality by masquerading as an
application DLL (e.g., by replacing the Þle representing the DLL in the Þle system). Balzer�s instrumented connector
technology [1] use this technique to alter Netscape�s Communicator browser to support browsing of virtual, encrypted Þle
systems. Although DLL-based software add-ons are unique in that they can be used to evolve an application in a manner
unanticipated by its developers, they have two limitations. One, DLL add-ons can only be use in place of existing DLLs,
which circumscribes the class of changes. Two, unexpected side-effects may result if the add-on DLL violates an unstated
assumption between the application and the DLL.

Component-based applications:

Component-based applications built using a component-object model, such as COM [3]
or CORBA [11], are applications composed of separately compiled modules, called components, that are linked to one

m
onolithic application

w
ith user-m

odifyable

preferences

source code

plug-ins

A
PIs

, D
L
L
s,

sc
ri
pt

in
g

la
ng

ua
ge

s

co
m

po
ne

nt
-b

as
ed

sy
st
em

s

flexibility assured consistency

Figure 1. The trade-off between ßexibility (on the left) and application consistency (on the right) made by different
decentralized software evolution mechanisms

another during runtime. Since each application component exposes its interface, component-based applications expose a
richer, more structured API, increasing the potential of supporting unanticipated changes. But since existing technologies do
not try to separate application functionality from component communication, components tend to be riddled with hard-coded
references to other components. This makes component replacement, removal, and interposition difÞcult.

All of the these techniques, except for source code, generally preserve only a small portion of the design�s ßexibility in the
deployed system. Not only does this restrict the set of potential changes, but it precludes changes unanticipated by the
original developers. Composition of software add-ons is also poorly supported by existing techniques. Most existing
techniques circumvent the composition problem by preventing interaction between add-ons. This is indeed the approach
advocated by Szyperski [19].

4 OUR APPROACH

Our approach to decentralized, post-deployment software evolution overcomes many of the limitations exhibited by previous
approaches. Our approach is based on evolving applications at the software architectural-level [16,17]. Our approach to DSE
is unique in following ways:

� We augment the abstractions provided at the architectural level with stylist rules that further facilitate DSE. We require
all components to communicate through connectors, which are preserved as explicit entities in the implementation and
act as communication routers. Furthermore, connectors encapsulate and localize the binding decisions between compo-
nents, which makes it possible to change binding decisions without altering the components.

� We include the application�s architectural model and a mechanism to maintain the consistency between this model and
the implementation with the deployed system. The deployed architectural model describes the interconnections between
components and connectors, and their mappings to implementation modules. The mapping enables changes speciÞed in
terms of the architectural model to effect corresponding changes in the implementation.

� We deploy an architecture evolution manager (AEM) with the application. The AEM maintains the correspondence
between the architectural model and the implementation as changes are made. If a change violates application consis-
tency, the AEM can reject the change.

Our approach enables software add-ons to leverage the architectural model�s rich semantics to guide changes. This avoids
many of the accidental difÞculties incurred by existing approaches. Since the application�s entire architecture is exposed and
remains malleable in the deployed system, the design�s plasticity is preserved and made accessibly to third-party add-on
vendors. This overcomes the limited scope of change exhibited by existing approaches. Software add-ons can inspect and
modify the system�s architectural model in order to achieve the necessary semantics. This, for example, greatly simpliÞes the
problem of interposing a new component between two existing components since the architectural model can be queried to
locate the affected components and connectors. As independently developed software add-ons are installed and removed, the
architectural model can be analyzed to detect inconsistencies. The availability of the architectural model can also be used to
detect conßicts between independently developed add-ons.

5 RESULTS TO DATE

We have implemented a prototype tool suite, called ArchStudio, that implements our approach for applications implemented
in the C2 architectural style [20]. ArchStudio�s conceptual architecture is depicted and brießy described in Figure 2. We have
used ArchStudio to implement two applications with several add-ons each. More details regarding ArchStudio and a sample

changes
applied to
model

changes
implicitly affect
implementation

Architectural
Model

Implementation

Sources of
Change

Architecture
Editors

Software
Add-ons

External
Analysis
Tools

Architecture
Evolution Manager

Figure 2. A conceptual architecture of the
ArchStudio tool suite. Software add-ons evolve
an application by inspecting and changing its
architectural model. Changes may include the
addition, removal, or replacement of
components and connectors, or changes to the
conÞguration of those components and
connectors. The Architecture Evolution
Manager is notiÞed of changes and has the
opportunity to revoke changes that violate
system integrity. The Architecture Evolution
Manager may utilize external analysis tools to
determine if changes are acceptable.

The lower portion of ArchStudio is deployed
with each application. When a user downloads
a new software add-on using their Web browser,
the add-on�s installation script is located and
executed.

application implemented using it are described in [12].

We have implemented a simple end-user tool for installing and removing software add-ons, called the Extension Wizard, that
is also deployed with the application. End-users use a Web browser to display a list of downloadable software add-ons, e.g.,
provided by the software vendor on their Web site. When the user selects the Þle representing the add-on, the Web browser
downloads the Þle and invokes the Extension Wizard. The software add-on Þle is a compressed archive containing new
implementation modules and an installation script. The Extension Wizard uncompresses the Þle, locates the installation script
it contains, and executes it. The software add-on�s installation script may query and modify the architectural model as
necessary. As the installation script queries and alters the architectural model, the AEM ensures that application invariants are
preserved. If the installation script violates any application invariants, the AEM prevents the change and throws an exception
to the installation script. If the installation succeeds, the Extension Wizard notiÞes the end-user and provides an option to un-
install the add-on.

6 CONCLUSIONS

Our results to date are encouraging, but several difÞcult issues remain. A general framework for ensuring application
consistency is needed. Our current architecture evolution manager only enforces C2-style rules, which do not, by themselves,
guarantee that changes will leave the application in a consistent state. Some aspects of the style do facilitate this type of in-
the-Þeld analysis [13]. We are currently investigating the suitability of graph grammars, architectural constraints, and event-
based resource models for representing application invariants. While these techniques hope to address software
compositionality, new techniques are needed to address the problems of �composing� documentation and product support in

a decentralized environment.

2

7 REFERENCES

1. R. Balzer. Instrumenting, monitoring, & debugging software architectures. http://www.isi.edu/software-sciences/papers/instru-
menting-software-architectures.doc, January 28, 1998.

2. G. Booch.

Object-oriented analysis and design

. Second edition. Benjamin/Cummings Publishing Company, Inc. 1994.
3. K. Brockschmidt.

Inside OLE 2

. Microsoft Press, 1994.
4. M. R. Cutkosky, J. M. Tenenbaum, J. Glicksman. Madefast: Collaborative engineering over the Internet.

Communications of the
ACM

, vol. 39, no. 9, September 1996.
5. R. Fielding, G. Kaiser. The Apache HTTP server project.

IEEE Internet Computing

, July-August 1997.
6. Free Software Foundation. Categories of free and non-free software. http://www.gnu.org/philosophy/categories.html, January

28, 1998.
7. E. Gamma, R. Helm, R. Johnson, J. Vlissides.

Design Patterns

. Addison-Wesley, 1995.
8. R. S. Hall, D. Heimbigner, A. van der Hoek, A. L. Wolf. An architecture for post-development conÞguration management in a

wide-area network.

17th International Conference on Distributed Computing Systems

, Baltimore, Maryland, May 1997.
9. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, J. Irwin. Aspect-oriented programming.

PARC Tech-
nical Report

, SPL97-008 P9710042. February 1997.
10. K. J. Lieberherr.

Adaptive object-oriented software�the Demeter method

. PWS Publishing Company. 1996.
11. Object Management Group.

The Common Object Request Broker: Architecture and SpeciÞcation

, Revision 2.0, July 1996. http:/
/www.omg.org/corba/corbiiop.htm

12. P. Oreizy, N. Medvidovic, R. N. Taylor. Architecture-based runtime software evolution. Proceedings of the

International Con-
ference on Software Engineering 1998,

Kyoto, Japan. April 1998.
13. P. Oreizy, R. N. Taylor. On the Role of Software Architectures in Runtime System ReconÞguration. Proceedings of the

Interna-
tional Conference on ConÞgurable Distributed Systems (ICCDS 4)

. Annapolis, Maryland, May 4-6, 1998.
14. D. L. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of ACM.

 vol. 15, no. 12,
December 1972.

15. D. E. Perry, G. E. Kaiser. Models of software development environments.

IEEE Transactions on Software Engineering

, vol 17,
no. 3. pp 283-295, March 1991.

16. D. E. Perry, A. L. Wolf, Foundations for the study of software architecture.

Software Engineering Notes

, vol 17, no 4, October
1992.

17. M. Shaw, D. Garlan.

Software Architecture: Perspectives on an Emerging Discipline

, Prentice-Hall, 1996.
18. K. Sullivan, D. Notkin. Reconciling environment integration and software evolution.

ACM Transactions on Software Engineer-
ing and Methodology

. vol 1, no 3, July 1992.
19. C. Szyperski. Independently extensible systems�software engineering potential and challenges.

Proceedings of the 19th Aus-
tralasian Computer Science Conference

, Melbourne, Australia, January 31- February 2, 1996.
20. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, J. E. Robbins, K. A. Nies, P. Oreizy, D. L. Dubrow. A Compo-

nent- and message-based architectural style for GUI software.

IEEE Transactions on Software Engineering,

 June 1996.

2. This material is based on work sponsored by the Defense Advanced Research Projects Agency, and Rome Laboratory, Air Force Mate-
riel Command, USAF, under agreement number F30602-97-2-0021. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the ofÞcial policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Rome Laboratory or the U.S. Government. Approved for Public Release - Distribution Unlimited.

21. Tivoli Systems Inc.

Applications Management SpeciÞcation

. http://www.tivoli.com/
22. N. Wirth. Program development by stepwise reÞnement.

Communications of the ACM

. vol. 14, no. 4, April 1971.

