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Abstract 

 
Applications built in a strongly decoupled, event-

based interaction style have many commendable 
characteristics, including ease of dynamic configuration, 
accommodation of platform heterogeneity, and ease of 
distribution over a network. It is not always easy, 
however, to humanly grasp the dynamic behavior of such 
applications, since many threads are active and events 
are asynchronously (and profusely) transmitted. This 
paper presents a set of requirements for an aid to assist in 
exploring the behavior of such applications, with the aim 
of assisting in the development and understanding of such 
applications. A prototype tool is presented, indicating 
viable approaches to meeting requirements. Experience 
with the tool reinforces some of the requirements and 
indicates others. 

1. Introduction 

Event-based architectural styles are styles in which 
software building blocks, or components, communicate 
with each other via explicit software connectors using 
explicit events, or messages as their sole basis for 
communication. Each component behaves as if it runs in 
its memory space with its own thread(s) of control. 
Events, then, are discrete data objects and are not allowed 
to contain direct pointers to data in memory or control 
entities like thread objects. Because there is no basic 
assumption of a global clock or ordering of execution 
among components, event-based systems are 
fundamentally asynchronous—a component may send an 
event at any time, and may receive an event at any time. 
Systems built in such a manner have many beneficial 
characteristics such as low coupling, ease of dynamic 
reconfiguration and ease of distribution across multiple 
heterogeneous platforms. 

Understanding an event-based application without 
support tools and methods is a difficult task, due to the 
large number of events flowing through an architecture, 

the complex, asynchronous interactions among 
components, and the lack of explicit mechanisms within 
the application for understanding causal relationships 
between individual events. Since the interactions in an 
event-based system are so different from those of a 
tightly-coupled, synchronous system (like most object-
oriented systems being built today) tools that work well 
on them, such as traditional program debuggers, usually 
work poorly on event-based applications. Additionally, 
components in an event-based system may be created and 
maintained by an outside agency, such as a third-party 
software developer. In this case, source code or 
specifications for some components may be unavailable. 
Thus, it is useful to have techniques for understanding and 
testing event-based architectures that do not rely on the 
presence of source code or formal behavioral 
specifications for a component. 

1.1. Objectives 

This context suggests a set of broad challenges for 
tool support for aiding understanding of the behavior of 
an event-based system. 

• How can an event-based architecture be instrumented 
such that events can be gathered for viewing and 
analysis? 

• How can causal relationships between messages in an 
event-based architecture be determined? 

• How can messages be organized and visualized to 
cultivate a higher understanding of the system?  

Our experience with building and evolving event-
based systems, as well as the experience of others, led us 
to refine these general objectives to the following goals: 
 

Message Capture:  
• Message capture should be the primary source of data 

about the system.  Approaches must be able to deal 
with components without available source code or 
formal behavioral specification, due to constraints of 
the environment. 
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• Event acquisition should minimally disturb application 
characteristics.  Some effect on application 
performance must be expected, but semantic changes 
should be avoided. 

Message Relationships and Causality: 
• Causal relationships among messages must be 

determined without access to or modification of 
component source code, again, due to environmental 
constraints. 

• Determination of causality relationships need not 
always be accurate, but any inaccuracies in the 
approach to identifying causality should be 
accompanied by methods for a human to identify and 
weed out inaccurate results. 

• Any specifications needed to identify causality (above 
and beyond topological architecture descriptions and 
system traces) should be usable and applicable to 
complex, off-the-shelf components. 

Presentation: 
• Though the analysis is grounded in data from the 

implementation, results should be correlated and 
presented to the analyst in terms of events between 
components (i.e. at the architectural level). 

• Visualization tools and/or techniques should be 
provided that present the data in a way that does not 
overwhelm a user. 

• Visualization tools that provide multiple views of the 
data, and multiple methods of filtering those views, are 
preferable. 

Approaches that work in environments with 
distributed or dynamic event-based systems are 
preferable. Additional goals we have identified but not 
fully explored in our approach focus on the use of tracing 
and causality for objectives beyond simple program 
understanding.  We believe that good approaches can help 
support test case generation, system debugging at the 
architecture level, and possibly formal or semi-formal 
analysis. 

1.2. Overview of Approach 

We developed an approach that meets the basic goals 
above and evaluated its feasibility through creation and 
use of a prototype tool. The tool examines the 
architectural description of an event-based system, 
specified in xADL 2.0 �[5], and modifies it by 
interspersing “trace connectors” into the description. 
Trace connectors log messages that are exchanged 
between components. Because the architectural 
description is used to instantiate and configure the 
architecture, not to govern a component’s internal 
structure, no component’s source code is changed. The 

system architect also annotates the architecture 
description with rules that describe, for each component, 
considered as a black box, expected causality 
relationships among message types. Finally, a graphical 
tool allows the user to interact with the message log and 
explore message causality chains, using the specified 
rules as guides. 

Rules are interpreted heuristically, meaning that they 
may falsely indicate that a causality relationship exists 
between two messages when in fact there is none, but 
empirical use of our approach has revealed that this 
inaccuracy has minimal practical impact. Finally, a 
visualization tool is used to display and explore the causal 
relationships resulting from the trace and the applied 
rules. 

We applied our approach to two different event-based 
applications: KLAX and ArchStudio 3. KLAX is an 
interactive computer game specifically built to be highly 
asynchronous and interact with the user in real-time. 
ArchStudio 3 is a larger architecture with some very 
complex components and a mixture of synchronous and 
asynchronous interactions. A subset of the authors applied 
the approach and tools to these architectures without first-
hand knowledge of how they were developed, although 
we chose them partially because the original developers 
were available to answer questions and help us to verify 
our results. 

While our approach could not give us a complete and 
authoritative understanding of how the event-based 
systems worked, we were nonetheless surprised at how 
much useful information could be obtained from this 
approach. We were able to step through whole 
architectures following select messages of interest, and 
found that our approach is a significant improvement over 
manual tracing, and augments other techniques for 
program understanding, like reading code, well. 

2. Background 

Our work has been influenced by other types of 
analysis, understanding, testing, and debugging tools for 
both event-based and tightly coupled systems.  We review 
selected approaches here. 

 Rapide �[11] is an architecture description language 
or more specifically, an event pattern language, which is 
compiled and executed as a simulation to find event 
sequences, causalities and constraint violations. It is 
designed for prototyping system architectures. Rapide 
works with a causal event history and a set of events and 
relationships by creating a partial order of sets of events 
called posets. Relationships can be defined using maps 
(aggregators), which list the input event patterns and 
output event patterns. In terms of the goals outlined 
above, Rapide’s analysis of causality is based on 
complete behavioral specifications of components, and is 
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decoupled from running systems (i.e. there are no tools 
for matching a running system to its specification). This 
limits its suitability for use in the context of implemented, 
possibly COTS-based systems. 

Complex Event Processing (CEP) �[10]�[9], an 
extension to Rapide, shares a similar goal and assists in 
understanding of a system by organizing the activities of a 
system in an event abstraction hierarchy. CEP also 
introduces the concept of Event Processing Agents 
(EPAs) and Event Processing Networks (EPNs). An EPA 
is a simple object that consists of some component state, 
and rules with a “trigger” and a “body”. The trigger 
indicates the event sequence that will fire the body, which 
consists of actions. Actions may modify the state of the 
EPA, or emit output events. Like Rapide, CEP operates 
mostly on simulations and system specifications, rather 
than on implemented systems.  

Another popular approach towards analysis and 
verification is state-based analysis. LTSA �[2] (Labeled 
Transition System Analyzer) is a good example of this 
type of analysis. LTSA is a verification tool for 
concurrent systems that checks whether a system’s 
property specification satisfies its actual behavior. In 
LTSA, the system and its properties are modeled as state 
machines. Analysis is based on compositional 
reachability, which searches for violations. State-based 
process discovery and validation can be seen in Balboa 
�[4], which is based on formation of non-deterministic 
state-machine event behavioral patterns from the collected 
event data. State-based analysis can suffer from state-
explosion problems, and usually require full formal 
models of system behaviors to be effective.  Furthermore, 
few state-based analysis approaches provide the user with 
an interactive visualization of the information, allowing 
them to make higher-level inferences. 

Tracing-based approaches like ours have been used 
for debugging �[3]�[6]�[8] or performance analysis in 
distributed systems �[12] and in parallel programs �[7]. 
They have rarely been used to facilitate understanding of 
event-based architectures. When debugging, 
instrumentation and event collection is done at the source 
code level and analysis is usually based on traditional 
static analysis techniques like dataflow analysis with data 
and data relationships and/or control-flow analysis with 
call graphs, control flow graphs or program dependence 
graphs (PDGs). These techniques are usually rooted in 
source code analysis, and do not apply well to traces of 
black-box components or higher-level events like 
messages in event-based architectures. 

3. Approach 

As summarized earlier, we developed a three-part 
tool-based approach: 

 

1. One tool modifies the architectural description of a 
system by inserting “trace connectors” into the 
description. The system is then executed with these 
trace connectors in place, which log all messages sent 
between components and connectors in the system. 

2. The system architect annotates the architecture 
description with rules that describe, for each 
component, expected causality relationships among 
message types based on the known behavior of the 
component.  

3. A graphical tool allows the user to interact with the 
message log and explore message causality chains, 
using the specified rules as guides. 

 

We applied our approach to two systems built in the 
C2 style �[13], a style that is representative of event-based 
architectural styles in general, to see if it was useful or 
effective in giving us a better understanding of systems 
with which we had limited previous exposure.  The results 
of our evaluation are detailed in Section �4. 

3.1. Gathering architecture events 

A message trace is used as the primary basis for 
understanding the communication among components in 
an architecture.  This trace contains a log of all the 
messages sent in the architecture during an execution of 
the system. In our approach, real, implemented systems 
are instrumented, rather than relying on a specification 
that may or may not match the implemented system.  This 
is contrasted with approaches like Rapide’s �[11] and 
CEP’s �[9], which rely solely on a specification for 
information about an architecture’s behavior.   

 

 

Pass through interface 

Pass through interface 

A copy of each message is 
sent to a database through 
this third interface 

Trace 
Connector 

Message is 
copied 

 

Figure 1. Trace connector 

The obvious place to instrument an architecture to 
log all messages is in the underlying middleware or 
architecture framework, since all messages are handled by 
that framework. However, this would bind our approach 
to a specific framework or middleware. Instead, we 
developed an approach that works by modifying the 
architecture of the system itself, but, we would argue, in a 
rather benign manner. 
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We collect message traces by instrumenting an 
architecture with trace connectors (see Figure 1). Trace 
connectors intercept all messages passing through them, 
make a copy of each message, and send this copy to a 
distinguished component that logs each message to a 
relational database. The original messages are passed on 
unmodified. These trace connectors are first-class 
connectors, and are not part of any component in the 
architecture. Figure 2 shows an architecture before 
modification as well as the architecture after inserting 
trace connectors, which would be instantiated to gather 
the application’s messages. 

 
 

 

Original Architecture 

Instantiated Architecture 

Above is the architecture to be traced. Below is the 
architecture as it is actually instantiated. Trace 
Connectors  echo every message received on their top 
or bottom interface to the Traced Messages Connector, 
which forwards each message to the Message Logger. 

Component 

Connector 

Component Component 

Component 

Connector 

Component Component 

Trace Connector 

Trace Connector Trace Connector 

Message Logger 

Traced Messages Connector 

 

Figure 2. Gathering application events 

We developed a prototype tool that examines a 
xADL 2.0 description of a system’s structure and inserts 
trace connectors into that description. The system’s 
structure is modified so that each link in the original 
architecture is split into two links, with a trace connector 
in between. Because the infrastructure we used for our 
prototype instantiates architectures directly from their 
descriptions, no recoding is needed for instrumentation. 
Consequently, components in the application remain 
unaware of any architectural changes or the presence of 
the trace-connectors once the architecture is modified. 

Instrumentation, of course, results in an impact on the 
overall speed of the application, which we found to be 

dependent on the message traffic in the system (see 
Section �4 for details). However, this is inevitable in single 
processor systems since message logging necessarily 
produces extra load on the system. 

3.2. Determining causal relationships 

A critical part of understanding an architecture is 
understanding the causal relationships between messages. 
Our approach treats all components as black boxes (which 
some may truly be, due to lack of available source code). 
Thus, all that can be observed about in architecture are the 
messages sent between components and connectors.  This 
is a hard environmental constraint, and distinguishes our 
approach from those like Rapide CEP, and LTSA, which 
need formal models to operate correctly. 

Without explicit, complete models of the internal 
functions of components, which would likely be 
impossible or impractical to create, it is not possible to 
know with certainty the causal relationships between 
messages. That is, if a component receives message ‘A’ 
on one interface, and later sends out a ‘B’ on another 
interface, it may be that the receipt of ‘A’ caused the 
component to emit ‘B,’ but it is impossible to know for 
sure. However, we have found that it is possible to 
develop a simpler model of component behavior that can 
indicate that the receipt of ‘A’ probably caused the 
emission of ‘B’ with a high degree of accuracy. 

Of course, an ideal situation would be if the 
component itself tagged each emitted message with a list 
of ‘caused-by’ messages. However, this would require 
cooperation from the component developer or access to 
the component’s source code, which cannot be assumed 
in this environment. Rather than resort to modeling a 
component’s behavior with a finite state machine or some 
other complete modeling formalism (which is impractical 
for many reasons, chief among them state explosion) as 
some approaches require, we have developed a simple 
language of rules that are used to specify causal 
relationships between messages. Rules are a property of a 
component, and are specified by the software architect (or 
possibly the original component developer).  Rules are 
not complete specifications of a component’s behavior; 
rather, they describe, at varying levels of abstraction, how 
a component reacts to messages. 

Each rule defines a causal relationship by specifying 
a set of causes and a set of effects. Causes and effects are 
specified as sets of message characteristics, rather than 
specific message types or contents. For example, a cause 
might be described informally as “any message with the 
name ‘A’” rather than describing the entire contents of the 
message.  

In general, event-based applications may use any sort 
of structure for messages, so long as they obey the general 
rules of the architectural style (messages may not contain 
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pointers or control objects, etc.) This means that messages 
may be amorphous (a ‘bag of bits’) or highly structured 
(like an XML document). Knowledge of the message 
structure is required to express rules in our approach. For 
instance, to express a rule that matches messages by 
name, it must be understood that messages have names. 
For our prototype tools and rule language, we assume that 
messages consist of a name string and a set of name-value 
pair properties. Property names are character strings, and 
property values are arbitrary objects. The property set for 
a message may be empty. We chose this format because it 
is the one used by most applications built in the C2 style, 
including those that were the target of our evaluation. 

For each cause and effect, in addition to message 
characteristics, a number of required occurrences is 
specified, as well as the interface on which a message 
would be received or emitted. For purposes of discussion, 
we will specify message in this paper as follows: 

 

message name{ 
  property_name1 = property_value1; 
  property_name2 = property_value2; 
  … 
} 
 

For example, if a component in a game application 
requests the scores of the home and away teams it might 
emit a message: 

 

message request_team_scores{ } 
 

A component that knows the scores, upon receiving 
this message, might emit two responses: 

 

message current_team_score{ 
  team = “home_team”; 
  score = 21; 
} 
 

message current_team_score{ 
  team = “away_team”; 
  score = 17; 
} 
 

When we define our rules, we refer to a name and/or 
a set of property name/value pairs that an event must have 
in order to match that rule. For example, if we wanted to 
define a rule that applies to all events requesting scores, 
we would specify that the event has to have the name 
request_team_scores. 

We define two types of rules: MatchingN, and 
MostRecent. MatchingN indicates that a component will 
always send the complete set of effect messages when it 
receives a complete set of cause messages. Therefore, the 
nth set of cause messages will always be associated with 
the nth set of effect messages. Asking for the effects of the 

fourth request_team_scores messages above would yield 
the seventh and eighth current_team_score messages. 
Likewise, asking for the causes of the seventh or the 
eighth current_team_score message would yield only the 
fourth request_team_scores message. This rule type is 
especially applicable to components that queue up 
requests or that broadcast messages such as a C2 
connector. 

The rule that identifies the causal relationship for the 
component that keeps score in our example would look 
something like Table 1. 

Table 1. Request score rule 

Request Score Rule 
Rule Type: MatchingN 
Set of Causes:  

1. message request_team_scores{ } 
Set of Effects:  

1. message current_team_score{ 
  team = “home team” 
} 

2. message current_team_score{ 
  team = “away team” 
} 

 

The other rule type, MostRecent, indicates that a 
component will respond to a set of events immediately. 
The component that knows the score in a game may 
respond with a game_over message after receiving an 
increase_team_score message once a goal score is 
reached by either team. Applying a MostRecent rule to 
such a component would only associate the game_over 
message with the most recent increase_team_score 
message (which would be the last one received before the 
game ended). MostRecent rules are applicable towards 
components that respond immediately to messages they 
receive. 

MostRecent and MatchingN rules are subject to the 
following limitations: 

• If a component that is supposed to respond to all events 
of a particular type by emitting a message fails to do so 
for one of those events, the MatchingN rule will 
correlate all messages after the failure incorrectly, 

• If a component emits responses more slowly than it 
receives requests then MostRecent may incorrectly 
identify relationships between the requests and 
responses, and 

• There may, of course, be discrepancies between the 
specification of the rules and the system’s behavior, 
arising from either incorrect specifications or behavior. 



 

  Page 6 of 10
  

An interesting issue arises with these rules because of 
the asynchronous nature of event-based systems. There is 
no limitation on the time a component can take to process 
a message. Thus, in our example above, if the component 
that knows the team scores decides to emit the team 
scores of its own accord (perhaps it does so on a periodic 
basis), those score messages may incorrectly be reported 
as being caused by a request_team_scores message that 
happened earlier in the system execution. Usually, this 
kind of false positive can be identified by an abnormal 
amount of time passing between the cause and effect 
messages. 

When multiple rules apply to the same cause 
message(s), the results are combined. It might be that the 
rules complement each other and the combined results are 
valid. This might result if the rule in Table 1 were split 
into two separate rules, one for the “home team” effect 
message and one for the “away team” message. It is also 
possible that the combined results contain effects that are 
mutually exclusive (i.e. one of two rules applies to a 
particular situation, but not both at the same time). In this 
case, the user must determine which effect messages are 
actually valid by examining them. 

It is best to have rules that err on the side of including 
a false positive rather than rules that are too restrictive 
and may exclude a message that is the actual cause or 
effect. It is easier to find the true cause from a small list of 
potential causes than it is to find the true cause from the 
whole message log. Without an appropriate rule or a rule 
that is too restrictive, a causal relationship will not be 

presented. However, this aspect of the approach can be 
used advantageously by the rule writer since rules can be 
written that deliberately omit ‘uninteresting’ causal 
relationships. 

We believe that MatchingN and MostRecent rules 
capture many, if not most, of the types of causal 
relationships that occur in event-based systems. An 
additional virtue of these rules is that they can be used to 
programmatically find both causes and effects for a given 
message.  While there are bound to be some erroneous 
results, we found them to be, in practice, minor.  

Our approach trades off rule-writing effort for 
accuracy. Less complete specifications (or those with 
more general rules) will produce larger sets of possible 
cause and effect messages. More complete specifications 
will tend to narrow these lists.  

To test the viability of the rules we proposed above, 
we extended xADL 2.0 with syntactic constructs that 
allow a rule-writer to specify rules for components and 
connectors. We then annotated several event-based 
applications’ architecture descriptions with appropriate 
rules; our experience doing this will be described in 
Section �4. 

3.3. Visualizing application events 

A tool to visualize the traced events should: 
• Provide access to the complete and correct message 

log generated by the application; 

 

Control Pane: 
We have chosen to only view 
messages in the List Pane that went 
through the top or bottom interfaces 
of the StatusComponent component. 

Info Pane: 
Information about the 
highlighted message in the List 
Pane is displayed here. 

List Pane: 
The causal relationship for the highlighted message is 
displayed above this pane in the Detail Pane. Information 
about this message is displayed to the left in the Info 
Pane. It was a request to decrement the number of lives. 

Detail Pane: 
The causes and effects of the selected message are displayed 
on the top and bottom respectively. A request to decrement the 
number of player lives from Bus2 produced a notification of the 
new number of lives from the StatusComponent component. 

 
Figure 3. Visualization tool 
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• Provide the ability to filter the log to view messages 
of particular interest both through the use of custom 
filters and through the ability to examine a single 
component/interface combination; 

• Provide the ability to "zoom in" on a particular 
message or component to see its parameters, 
properties and property values; 

• Clearly display a list of possible causes and effects of 
a given event by implementing rule-based searches 
on the execution trace allowing the user to follow a 
chain of causes or effects; and 

• Provide a means to verify whether a reported cause or 
effect is accurate. 

 

We believe that the user’s ability to interact with the 
trace and causality data in a system is critical. Event-
based systems generate too much information to be 
viewed all at once.  Contrast this with Rapide’s event-
causality graphs, which can be so complicated as to be 
unreadable. An interesting future direction suggested by 
our work is to explore how different visualization 
techniques and views can assist the user in gaining a 
better understanding of the system. 

We developed a prototype graphical tool that allows 
the user to interact with the message log and explore 
message causality chains. The tool supports applications 
written in the C2 style (and is itself written in the C2 
style) but could be easily modified to other event-based 
topologies.  

The main screen of the display is segmented into four 
sections (See Figure 3): 

• The Control Pane allows a user to apply and modify 
custom filters that aid a user in finding a particular 
message or set of messages of interest independent of 
causality relationships, view components of the system, 
and select components of interest for analysis.  

• The List Pane displays messages in the message log. 

• The Info Pane displays “zoomed in” information about 
a message or component as well as options for a filter. 

• The Detail Pane displays lists of potential causes and 
effects of any given message. 

Our tool allows a user to view the message log in its 
entirety. However, users may limit the display to 
messages of a particular component/interface combination 
and/or applying custom filters which exclude messages 
outside a given time frame. Detailed information for each 
message or component is displayed in the info pane when 
the message or component is selected in the GUI.  

When a user selects a message in the list pane, the 
detail pane displays two lists of messages. The top list is 
the list of potential causes of the selected message and the 
bottom list is a list of its potential effects. A user may 
double click on a message in one of these lists to change 

the selected message, thus updating the detail pane to 
show the newly selected message’s lists of causes and 
effects. In this way, a user may “walk through” a message 
causality chain. 

Due to the heuristic nature of the approach, and 
possibly inaccurate rules, false causes and effects may be 
displayed, or true causes and effects may not be 
displayed. There are a few hints that generally indicate 
that one of these is the case: 

• The number of potential causes or effects listed is not 
equal to the number expected, or 

• The span of time between a message and a potential 
cause and effect is surprisingly large. 

There are four possible reasons for an inaccurate list 
of causes and effects: 

• The limitations of the MostRecent and MatchingN rule 
prevent correct assessment, 

• A rule is incorrect, 

• The expected event did not occur in the application, or 

• The application has a bug that prevented the 
appropriate event from occurring. 

When a list is incorrect, it is necessary to determine 
which, and if any, of the effects or causes are correct, 
which are incorrect, and whether true causes and effects 
were reported at all. It is always possible to accomplish 
this by examining the unfiltered message log since it is 
complete. If the event did not occur and it should have, 
then this may indicate a bug in the component. If the 
event did occur, but the effects and causes are not listed, 
then there is likely a defect in the rule specification. In 
practice, we have found that the most common inaccuracy 
is false positives. To ferret these out, it is usually adequate 
to view the details of each message and the rules of 
appropriate components to determine which messages are 
the false positives and which are not. 

4. Experience with the prototype 

To test our approach, we annotated components of 
two applications and proceeded to analyze the resulting 
message logs. We wanted to verify whether our approach 
allowed us to: 

• Apply our approach to an architecture without recoding 
any components; 

• Follow causal chains through components; and 

• Understand an architecture with which we had no 
previous exposure. 
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4.1. Tracing KLAX 

KLAX is an interactive computer game that is highly 
asynchronous and interacts with the user in real-time. We 
decided to trace KLAX because we had no previous 
knowledge about how KLAX works or how it was 
developed. It is a moderately complex single-process 
application with 16 components in all. 

Because we had the source code for KLAX available, 
one member of our team was tasked with annotating it by 
reading through the code. Annotating the architecture 
took approximately 6 hours, which was longer than we 
anticipated. However, this only has to be done once for an 
architecture, so it was a reasonable expenditure of time. 
Furthermore, our annotator was not an original KLAX 
developer; the architect who originally designed KLAX 
might benefit from previous knowledge and accomplish 
the same task in a fraction of the time. The annotator used 
xADL 2.0 tools to write the rules into the existing KLAX 
specification. We instrumented the KLAX description 
with our automated tool; the resulting architecture was not 
significantly slower than the original architecture. This is 
likely due to the fact that the game is synchronized to 
messages emitted by a clock component, which causes the 
application to have a significant amount of idle time in 
which messages may be logged. 

The tool captured approximately 7000 messages after 
40 seconds of execution. We began by stepping through 
the causal chain rooted at the very first application 
message logged in our database and found that a design 
diagram of the architecture was necessary to avoid getting 
lost within the architecture. We were able to progress 
down through various chains of effects and causes. 

On occasion we would come across a causal chain 
that would stop unexpectedly. After investigation, we 
found that in these cases there were typographical errors 
in the rule specification. Once the rule specification was 
corrected, the causal chain was also fixed. We also 
encountered situations where false effects would be listed, 
but these were easy to weed out by examining the relative 
times of the messages as well as their contents. 

Additionally, the limitation to the MostRecent rule 
caused some confusion. A component in KLAX named 
the ‘WellComponent’ implemented the rule specified in 
Table 2.  

We know from the way the game works that when 
the game is started, the ‘WellComponent’ does not emit 
any advance_tile events until the game has been played 
for a few seconds. The game clock component emits 
minor_tick events many times every second. This means 
that the very first minor_tick event couldn’t possibly 
cause an advance_tile event, yet this is exactly what our 
tool reported. It turns out that because the 
‘WellComponent’ does eventually follow this rule, there 
is a valid advance_tile event in the message log that 
occurs after the first minor_tick event. Consequently, the 
rule reports the advance_tile event as an effect of the first 
minor_tick event when it was really the effect of a 
minor_tick event that happened later in the application 
execution. We were able to verify this by looking at the 
message log as well as observing that the listed cause of 
the first advance_tile event was not the first minor_tick 
event. 

Minor setbacks aside, we felt that our understanding 
of KLAX was increased using our approach. We gained a 
general understanding of the system and its expected 
behavior. 

4.2. Tracing ArchStudio 3 

ArchStudio 3 �[1] is an architecture-based 
development environment created at UCI. It consists of 
components for manipulating and evaluating architecture 
descriptions and their implementations. ArchStudio is a 
more complex application than KLAX, containing 
approximately 20 components. In terms of code size, 
ArchStudio 3 is approximately three times larger than 
KLAX in terms of lines of code, indicative of the 
complexity of some of its components. 

We annotated 17 of the ArchStudio components with 
rules in approximately 5 hours. The trace of ArchStudio 
was successful, but the impact on tracing speed was more 
prevalent with a 50% performance hit. We believe that the 
speed is a more significant issue for ArchStudio than for 
KLAX because ArchStudio produces a higher volume of 
messages to be logged: approximately 18000 messages in 
15 seconds.  

After applying our approach and conferring with the 
original developers of ArchStudio 3, we found that the 
trace of the execution gave us a general understanding of 
the system's expected behavior. The trace confirmed the 
behavior of certain components. For example, the trace 
showed InvokableStateMessage messages sent during the 
beginning of the execution, which corresponds to the 
expected initialization behavior of invokable GUI 
components (e.g. ArchEdit). Some of the messages were 
easily associated with the user's actions during execution. 
By examining the message contents of messages 
originating from xArchADT, the data repository 
component, we were able to note when and how open 

Table 2. KLAX ‘WellComponent’ rule 

KLAX ‘WellComponent’ Rule 
Rule Type: MostRecent 
Set of Causes:  

1. message minor_tick{ } 
Set of Effects:  

1. message advance_tile{ } 
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architecture files were accessed. Furthermore, the 
messages were traceable back to the ArchEdit tool, which 
showed that the user was editing an architecture file with 
ArchEdit. Messages with warnings concerning the 
architecture file indicated that the critic framework was 
active. With closer examination, the exact critic reporting 
the issue(s) could be identified. 

The tool was ineffective at times when the rules were 
specified incorrectly. The annotations for the most part 
corresponded to the observed behavior, but a few 
inaccuracies were discovered in the message parameters 
of the rules when examining the trace. These inaccuracies 
were fixed, our tool restarted, and the messages were 
reanalyzed for causality. Consequently, the tool displayed 
the expected results according to the original architect. 

In ArchStudio 3, some messages did not have enough 
information to identify the purpose of the message when 
viewed in our visualization tool. As discussed earlier, in a 
message, the property values of a message may contain 
arbitrary—that is, binary—data. The tool will identify the 
data as binary instead of displaying the actual data, but 
this is insufficient for a person to determine whether the 
potential causes and effects for a message are correct or 
not. The tool is currently limited to displaying strings and 
numeric values. The messages for KLAX contained 
visualizable information (strings and numbers) so this was 
not a problem for KLAX, but the messages for 
ArchStudio sometimes contained other types of objects. 
This problem indicates how important the human user’s 
participation is in the process. Our visualization tool 
could be easily enhanced to support different types of data 
if necessary. 

4.3. Lessons learned 

In the evaluation of our approach, we learned where 
it is useful, as well as the incidence and severity of several 
drawbacks. Most notably, the accuracy of causality 
relationships was questionable at times due to the 
limitations of the rules concerning the MostRecent and 
MatchingN interpretations discussed earlier, and the more 
accidental limitations on viewing binary message 
contents. Since the tool heuristically determines causality 
with rules, the identified causality of a message may not 
be correct.  

We found that the ease of understanding a system 
through traces varied from application to application. 
KLAX messages contained clear state information, but 
ArchEdit often contained message content that only had 
meaning at runtime, such as numbers that represent 
information relevant to a particular component or pair of 
components during runtime, but not explicit state data.  

The tool is helpful for understanding the general 
behavior of a system, but the details of the execution may 
not be clear at times. However, we have found that 

understanding a system with traces and causality 
relationships is easier and faster with the visualization 
tool than any sort of manual trace or code inspection. Its 
most basic capability is to provide a more manageable set 
of data, with some data about causes and effects. For the 
applications we studied, which are moderately complex, a 
manual trace would have been infeasible simply due to 
the large amounts of messages and relationships involved. 

5. Future work 

The specification language that we used for rules 
worked well with the applications we examined, however, 
we did find that it could be adapted to increase its 
expressability. The ability to specify conditional 
properties, such as name > value, along with the ability to 
specify property values other than strings, such as binary 
data, would be beneficial. 

One of the most common reasons we found for 
erroneous results was an incorrectly specified rule. 
Generally, the error was the result of a typo such as 
specifying the message name as advanced_tile rather than 
the correctly named advance_tile. It would be very useful 
to determine if all rules specified in a system applied to at 
least one instance of the observed messages of a system. 
This would provide an easy way for the architect to avoid 
minor specification errors. 

Another useful feature would be the ability to analyze 
an application while it is running. In this way, a user may 
trigger an event in the program, see what messages were 
produced, then trigger another event. This would aid the 
user in associating actions performed by the application to 
messages processed within the architecture. The ability to 
examine a dynamic application, whose architecture 
changes at runtime, would also be useful. 

A graphical layout of the architecture during 
visualization would greatly help the user to keep track of 
where a message is in the greater context of the 
architecture. Adding appropriate highlights to the 
architecture to indicate the components involved in a 
message’s causality would also aid in understanding. Also 
useful would be a history of the causality chain being 
explored so that a user may jump back to previous causal 
links for further investigation of a particular causal 
relationship. 

In the long-term, we believe that message tracing and 
causality relationships have the potential to be valuable in 
other parts of the software development process.  Already, 
we have seen how causality relationships can indicate 
bugs or incorrect rule specifications in an architecture, 
indicating their usefulness in debugging and possibly 
requirements specification.  We believe that message 
traces and rules can also be useful in aspects of testing, 
such as test-case generation. 
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6. Conclusions 

This paper contributes a set of goals and future 
directions for using event traces as a basis for aiding 
developers in the creation and maintenance of event-
based systems, as well as an approach that demonstrates 
the validity and usefulness of some of these goals. The 
approach includes tools and techniques to gather a 
complete trace of events of an event-based application 
independently of the specific framework used for that 
application. A means of determining causal relationships 
between the gathered events of an application by using a 
heuristic approach has been implemented and found to be 
useful. The rule set used to specify these causal 
relationships is simple and usable, not fully formal, and 
applies to systems where component source may not 
always be available. A visualization tool is presented that 
displays message causality and provides a means of 
verifying whether or not reported causes and effects are 
accurate given a set of causality rules and a message log 
of a running application.  

We demonstrated the effectiveness of our approach 
by using it to analyze two different applications: KLAX 
and ArchStudio 3. We found that the ease of 
understanding a system through traces was increased 
when messages contained clear state information, but was 
more difficult when contents had meaning within contexts 
created at runtime. The approach was useful in increasing 
the overall understanding of an architecture but did not 
always provide insight into the complete details of 
execution. It was, however, much easier to understand an 
application using the analysis tool than by any sort of 
manual trace or code inspection. A manual trace of the 
applications we studied would have been infeasible due to 
the large amounts of messages and relationships involved. 

The beneficial properties of event-based architectures 
and increasing support from practitioners and researchers, 
means that it is likely that more and more event-based 
systems will be created. However, lack of end-to-end 
development and maintenance support for such 
architectures could hinder adoption and raise the costs of 
building event-based systems. Our approach contributes a 
usable, viable approach to understanding complex event-
based systems, but it also exposes several important 
issues in event-based development that we plan to 
investigate. These include using event tracing as a basis 
for testing and debugging, the role of heuristic techniques 
to find “good enough” answers to development problems, 
and finding novel ways to deal with the deluge of events 
that occur in even moderate-sized event-based systems. 

7. Acknowledgements 

Effort sponsored by the Defense Advanced Research 
Projects Agency (DARPA) and Air Force Research 

Laboratory, Air Force Materiel Command, USAF, under 
agreement number F30602-00-2-0599. The U.S. 
Government is authorized to reproduce and distribute 
reprints for Governmental purposes notwithstanding any 
copyright annotation thereon. The views and conclusions 
contained herein are those of the authors and should not 
be interpreted as necessarily representing the official 
policies or endorsements, either expressed or implied, of 
the Defense Advanced Research Projects Agency 
(DARPA), the Air Force Laboratory, or the U.S. 
Government. 

8. References 

[1] ArchStudio 3. URL: 
http://www.isr.uci.edu/projects/archstudio/ 
[2] Cheung, S.C. and Kramer, J. “Checking Subsystem Safety 
Properties in Compositional Reachability Analysis", Proc. of the 
18th Int’l Conference on Software Engineering, Berlin, 
Germany, March 1996, pp. 144-154. 
[3] Claudio, A.P.; Cunha, J.D.; Carmo, M.B; “Monitoring and 
debugging message passing applications with MPVisualizer,” 
Proceedings of the 8th Euromicro Workshop on Parallel and 
Distributed Processing, 2000. 
[4] Cook, J. E., "Process Discovery and Validation Through 
Event Data Analysis", Ph.D. Thesis, Department of Computer 
Science, University of Colorado, Boulder, Dec. 1996. 
[5] Dashofy, E.M., van der Hoek, A. and Taylor, R.N., "A 
Highly-Extensible, XML-Based Architecture Description 
Language", Proceedings of the Working IEEE/IFIP Conference 
on Software Architectures, Amsterdam, Netherlands, 2001 
[6] Frumkin, M.; Hood, R.; Lopez, L. “Trace-driven debugging 
of message passing programs”, Proceedings of the First Merged 
International Symposium on Parallel and Distributed 
Processing, 1998. 
[7] Kraemer, E.; Stasko, J.T., “Issues in visualization for the 
comprehension of parallel programs” Proceedings of the Third 
Workshop on Program Comprehension, 1994.  
[8] Lencevicius, R.; Ran, A.; Yairi, R. “Third Eye - 
Specification-based Analysis of Software Execution Traces”, 
Proc. of the Int’l Conference on Software Engineering, 2000. 
[9] Luckham D.C. The Power of Events: An Introduction to 
Complex Event Processing in Distributed Enterprise Systems, 
Addison Wesley Professional, 2002. 
[10] Luckham, D. C. and Frasca, B., “Complex Event 
Processing in Distributed Systems”. Stanford University 
Technical Report CSLTR --98—754,March 1998.  
[11] Luckham D. C., Kenney J. J., Augustin L. M., Vera J., 
Bryan D., Mann W, “Specification and Analysis of System 
Architecture Using Rapide”, IEEE Transactions on Software 
Engineering 21(4), 1995. 
[12] Moc, J.; Carr, D.A., “Understanding distributed systems via 
execution trace data”, Proc. of the 9th Int’l Workshop on 
Program Comprehension, 2001.  
[13] R.N. Taylor et. al. A Component- and Message-Based 
Architectural Style for GUI Software. IEEE Transactions on 
Software Engineering, June 1996. 




