
Institute for Software Research
University of California, Irvine

www.isr.uci.edu/tech-reports.html

Scott A. Hendrickson
Univ. of California, Irvine
shendric@ics.uci.edu

Eric M. Dashofy
Univ. of California, Irvine
edashofy@ics.uci.edu

Adrita Bhor
Univ. of California, Irvine
abhor@ics.uci.edu

Richard N. Taylor
Univ. of California, Irvine
taylor@ics.uci.edu

Santiago Li
Univ. of California, Irvine
lis@uci.edu

Nghi Nguyen
Univ. of California, Irvine
nghin@uci.edu

An Approach for Tracing and Understanding
Asynchronous Systems

December 2002

ISR Technical Report # UCI-ISR-02-7

Institute for Software Research
ICS2 210

University of California, Irvine
Irvine, CA 92697-3425

www.isr.uci.edu

An Approach for Tracing and Understanding Asynchronous Systems

Scott A. Hendrickson, Eric M. Dashofy, Adrita Bhor, Richard N. Taylor
Institute for Software Research
University of California, Irvine

{shendric, edashofy, abhor, taylor}@ics.uci.edu

Santiago Li, Nghi Nguyen
Information & Computer Science
University of California, Irvine

{lis, nghin}@uci.edu

ISR Technical Report # UCI-ISR-02-7

December 2002

Abstract: Applications built in a strongly decoupled, event-based interaction style have
many commendable characteristics, including ease of dynamic configuration,
accommodation of platform heterogeneity, and ease of distribution over a network. It is
not always easy, however, to humanly grasp the dynamic behavior of such applications,
since many threads are active and events are asynchronously (and profusely) transmitted.
This paper presents a set of requirements for an aid to assist in exploring the behavior of
such applications, with the aim of assisting in the development and understanding of such
applications. A prototype tool is presented, indicating viable approaches to meeting
requirements. Experience with the tool reinforces some of the requirements and indicates
others.

 Page 1 of 10

An Approach for Tracing and Understanding Asynchronous Systems

Scott A. Hendrickson, Eric M. Dashofy, Adrita Bhor, Richard N. Taylor, Santiago Li, and Nghi Nguyen

Institute for Software Research, University of California, Irvine
Irvine, CA 92697-3425

+1 949 824 4101
{shendric, edashofy, abhor, taylor}@ics.uci.edu, {lis, nghin}@uci.edu

ISR Technical Report # UCI-ISR-02-7

Abstract

Applications built in a strongly decoupled, event-

based interaction style have many commendable
characteristics, including ease of dynamic configuration,
accommodation of platform heterogeneity, and ease of
distribution over a network. It is not always easy,
however, to humanly grasp the dynamic behavior of such
applications, since many threads are active and events
are asynchronously (and profusely) transmitted. This
paper presents a set of requirements for an aid to assist in
exploring the behavior of such applications, with the aim
of assisting in the development and understanding of such
applications. A prototype tool is presented, indicating
viable approaches to meeting requirements. Experience
with the tool reinforces some of the requirements and
indicates others.

1. Introduction

Event-based architectural styles are styles in which
software building blocks, or components, communicate
with each other via explicit software connectors using
explicit events, or messages as their sole basis for
communication. Each component behaves as if it runs in
its memory space with its own thread(s) of control.
Events, then, are discrete data objects and are not allowed
to contain direct pointers to data in memory or control
entities like thread objects. Because there is no basic
assumption of a global clock or ordering of execution
among components, event-based systems are
fundamentally asynchronous—a component may send an
event at any time, and may receive an event at any time.
Systems built in such a manner have many beneficial
characteristics such as low coupling, ease of dynamic
reconfiguration and ease of distribution across multiple
heterogeneous platforms.

Understanding an event-based application without
support tools and methods is a difficult task, due to the
large number of events flowing through an architecture,

the complex, asynchronous interactions among
components, and the lack of explicit mechanisms within
the application for understanding causal relationships
between individual events. Since the interactions in an
event-based system are so different from those of a
tightly-coupled, synchronous system (like most object-
oriented systems being built today) tools that work well
on them, such as traditional program debuggers, usually
work poorly on event-based applications. Additionally,
components in an event-based system may be created and
maintained by an outside agency, such as a third-party
software developer. In this case, source code or
specifications for some components may be unavailable.
Thus, it is useful to have techniques for understanding and
testing event-based architectures that do not rely on the
presence of source code or formal behavioral
specifications for a component.

1.1. Objectives

This context suggests a set of broad challenges for
tool support for aiding understanding of the behavior of
an event-based system.

• How can an event-based architecture be instrumented
such that events can be gathered for viewing and
analysis?

• How can causal relationships between messages in an
event-based architecture be determined?

• How can messages be organized and visualized to
cultivate a higher understanding of the system?

Our experience with building and evolving event-
based systems, as well as the experience of others, led us
to refine these general objectives to the following goals:

Message Capture:
• Message capture should be the primary source of data

about the system. Approaches must be able to deal
with components without available source code or
formal behavioral specification, due to constraints of
the environment.

 Page 2 of 10

• Event acquisition should minimally disturb application
characteristics. Some effect on application
performance must be expected, but semantic changes
should be avoided.

Message Relationships and Causality:
• Causal relationships among messages must be

determined without access to or modification of
component source code, again, due to environmental
constraints.

• Determination of causality relationships need not
always be accurate, but any inaccuracies in the
approach to identifying causality should be
accompanied by methods for a human to identify and
weed out inaccurate results.

• Any specifications needed to identify causality (above
and beyond topological architecture descriptions and
system traces) should be usable and applicable to
complex, off-the-shelf components.

Presentation:
• Though the analysis is grounded in data from the

implementation, results should be correlated and
presented to the analyst in terms of events between
components (i.e. at the architectural level).

• Visualization tools and/or techniques should be
provided that present the data in a way that does not
overwhelm a user.

• Visualization tools that provide multiple views of the
data, and multiple methods of filtering those views, are
preferable.

Approaches that work in environments with
distributed or dynamic event-based systems are
preferable. Additional goals we have identified but not
fully explored in our approach focus on the use of tracing
and causality for objectives beyond simple program
understanding. We believe that good approaches can help
support test case generation, system debugging at the
architecture level, and possibly formal or semi-formal
analysis.

1.2. Overview of Approach

We developed an approach that meets the basic goals
above and evaluated its feasibility through creation and
use of a prototype tool. The tool examines the
architectural description of an event-based system,
specified in xADL 2.0 �[5], and modifies it by
interspersing “trace connectors” into the description.
Trace connectors log messages that are exchanged
between components. Because the architectural
description is used to instantiate and configure the
architecture, not to govern a component’s internal
structure, no component’s source code is changed. The

system architect also annotates the architecture
description with rules that describe, for each component,
considered as a black box, expected causality
relationships among message types. Finally, a graphical
tool allows the user to interact with the message log and
explore message causality chains, using the specified
rules as guides.

Rules are interpreted heuristically, meaning that they
may falsely indicate that a causality relationship exists
between two messages when in fact there is none, but
empirical use of our approach has revealed that this
inaccuracy has minimal practical impact. Finally, a
visualization tool is used to display and explore the causal
relationships resulting from the trace and the applied
rules.

We applied our approach to two different event-based
applications: KLAX and ArchStudio 3. KLAX is an
interactive computer game specifically built to be highly
asynchronous and interact with the user in real-time.
ArchStudio 3 is a larger architecture with some very
complex components and a mixture of synchronous and
asynchronous interactions. A subset of the authors applied
the approach and tools to these architectures without first-
hand knowledge of how they were developed, although
we chose them partially because the original developers
were available to answer questions and help us to verify
our results.

While our approach could not give us a complete and
authoritative understanding of how the event-based
systems worked, we were nonetheless surprised at how
much useful information could be obtained from this
approach. We were able to step through whole
architectures following select messages of interest, and
found that our approach is a significant improvement over
manual tracing, and augments other techniques for
program understanding, like reading code, well.

2. Background

Our work has been influenced by other types of
analysis, understanding, testing, and debugging tools for
both event-based and tightly coupled systems. We review
selected approaches here.

 Rapide �[11] is an architecture description language
or more specifically, an event pattern language, which is
compiled and executed as a simulation to find event
sequences, causalities and constraint violations. It is
designed for prototyping system architectures. Rapide
works with a causal event history and a set of events and
relationships by creating a partial order of sets of events
called posets. Relationships can be defined using maps
(aggregators), which list the input event patterns and
output event patterns. In terms of the goals outlined
above, Rapide’s analysis of causality is based on
complete behavioral specifications of components, and is

 Page 3 of 10

decoupled from running systems (i.e. there are no tools
for matching a running system to its specification). This
limits its suitability for use in the context of implemented,
possibly COTS-based systems.

Complex Event Processing (CEP) �[10]�[9], an
extension to Rapide, shares a similar goal and assists in
understanding of a system by organizing the activities of a
system in an event abstraction hierarchy. CEP also
introduces the concept of Event Processing Agents
(EPAs) and Event Processing Networks (EPNs). An EPA
is a simple object that consists of some component state,
and rules with a “trigger” and a “body”. The trigger
indicates the event sequence that will fire the body, which
consists of actions. Actions may modify the state of the
EPA, or emit output events. Like Rapide, CEP operates
mostly on simulations and system specifications, rather
than on implemented systems.

Another popular approach towards analysis and
verification is state-based analysis. LTSA �[2] (Labeled
Transition System Analyzer) is a good example of this
type of analysis. LTSA is a verification tool for
concurrent systems that checks whether a system’s
property specification satisfies its actual behavior. In
LTSA, the system and its properties are modeled as state
machines. Analysis is based on compositional
reachability, which searches for violations. State-based
process discovery and validation can be seen in Balboa
�[4], which is based on formation of non-deterministic
state-machine event behavioral patterns from the collected
event data. State-based analysis can suffer from state-
explosion problems, and usually require full formal
models of system behaviors to be effective. Furthermore,
few state-based analysis approaches provide the user with
an interactive visualization of the information, allowing
them to make higher-level inferences.

Tracing-based approaches like ours have been used
for debugging �[3]�[6]�[8] or performance analysis in
distributed systems �[12] and in parallel programs �[7].
They have rarely been used to facilitate understanding of
event-based architectures. When debugging,
instrumentation and event collection is done at the source
code level and analysis is usually based on traditional
static analysis techniques like dataflow analysis with data
and data relationships and/or control-flow analysis with
call graphs, control flow graphs or program dependence
graphs (PDGs). These techniques are usually rooted in
source code analysis, and do not apply well to traces of
black-box components or higher-level events like
messages in event-based architectures.

3. Approach

As summarized earlier, we developed a three-part
tool-based approach:

1. One tool modifies the architectural description of a
system by inserting “trace connectors” into the
description. The system is then executed with these
trace connectors in place, which log all messages sent
between components and connectors in the system.

2. The system architect annotates the architecture
description with rules that describe, for each
component, expected causality relationships among
message types based on the known behavior of the
component.

3. A graphical tool allows the user to interact with the
message log and explore message causality chains,
using the specified rules as guides.

We applied our approach to two systems built in the
C2 style �[13], a style that is representative of event-based
architectural styles in general, to see if it was useful or
effective in giving us a better understanding of systems
with which we had limited previous exposure. The results
of our evaluation are detailed in Section �4.

3.1. Gathering architecture events

A message trace is used as the primary basis for
understanding the communication among components in
an architecture. This trace contains a log of all the
messages sent in the architecture during an execution of
the system. In our approach, real, implemented systems
are instrumented, rather than relying on a specification
that may or may not match the implemented system. This
is contrasted with approaches like Rapide’s �[11] and
CEP’s �[9], which rely solely on a specification for
information about an architecture’s behavior.

Pass through interface

Pass through interface

A copy of each message is
sent to a database through
this third interface

Trace
Connector

Message is
copied

Figure 1. Trace connector

The obvious place to instrument an architecture to
log all messages is in the underlying middleware or
architecture framework, since all messages are handled by
that framework. However, this would bind our approach
to a specific framework or middleware. Instead, we
developed an approach that works by modifying the
architecture of the system itself, but, we would argue, in a
rather benign manner.

 Page 4 of 10

We collect message traces by instrumenting an
architecture with trace connectors (see Figure 1). Trace
connectors intercept all messages passing through them,
make a copy of each message, and send this copy to a
distinguished component that logs each message to a
relational database. The original messages are passed on
unmodified. These trace connectors are first-class
connectors, and are not part of any component in the
architecture. Figure 2 shows an architecture before
modification as well as the architecture after inserting
trace connectors, which would be instantiated to gather
the application’s messages.

Original Architecture

Instantiated Architecture

Above is the architecture to be traced. Below is the
architecture as it is actually instantiated. Trace
Connectors echo every message received on their top
or bottom interface to the Traced Messages Connector,
which forwards each message to the Message Logger.

Component

Connector

Component Component

Component

Connector

Component Component

Trace Connector

Trace Connector Trace Connector

Message Logger

Traced Messages Connector

Figure 2. Gathering application events

We developed a prototype tool that examines a
xADL 2.0 description of a system’s structure and inserts
trace connectors into that description. The system’s
structure is modified so that each link in the original
architecture is split into two links, with a trace connector
in between. Because the infrastructure we used for our
prototype instantiates architectures directly from their
descriptions, no recoding is needed for instrumentation.
Consequently, components in the application remain
unaware of any architectural changes or the presence of
the trace-connectors once the architecture is modified.

Instrumentation, of course, results in an impact on the
overall speed of the application, which we found to be

dependent on the message traffic in the system (see
Section �4 for details). However, this is inevitable in single
processor systems since message logging necessarily
produces extra load on the system.

3.2. Determining causal relationships

A critical part of understanding an architecture is
understanding the causal relationships between messages.
Our approach treats all components as black boxes (which
some may truly be, due to lack of available source code).
Thus, all that can be observed about in architecture are the
messages sent between components and connectors. This
is a hard environmental constraint, and distinguishes our
approach from those like Rapide CEP, and LTSA, which
need formal models to operate correctly.

Without explicit, complete models of the internal
functions of components, which would likely be
impossible or impractical to create, it is not possible to
know with certainty the causal relationships between
messages. That is, if a component receives message ‘A’
on one interface, and later sends out a ‘B’ on another
interface, it may be that the receipt of ‘A’ caused the
component to emit ‘B,’ but it is impossible to know for
sure. However, we have found that it is possible to
develop a simpler model of component behavior that can
indicate that the receipt of ‘A’ probably caused the
emission of ‘B’ with a high degree of accuracy.

Of course, an ideal situation would be if the
component itself tagged each emitted message with a list
of ‘caused-by’ messages. However, this would require
cooperation from the component developer or access to
the component’s source code, which cannot be assumed
in this environment. Rather than resort to modeling a
component’s behavior with a finite state machine or some
other complete modeling formalism (which is impractical
for many reasons, chief among them state explosion) as
some approaches require, we have developed a simple
language of rules that are used to specify causal
relationships between messages. Rules are a property of a
component, and are specified by the software architect (or
possibly the original component developer). Rules are
not complete specifications of a component’s behavior;
rather, they describe, at varying levels of abstraction, how
a component reacts to messages.

Each rule defines a causal relationship by specifying
a set of causes and a set of effects. Causes and effects are
specified as sets of message characteristics, rather than
specific message types or contents. For example, a cause
might be described informally as “any message with the
name ‘A’” rather than describing the entire contents of the
message.

In general, event-based applications may use any sort
of structure for messages, so long as they obey the general
rules of the architectural style (messages may not contain

 Page 5 of 10

pointers or control objects, etc.) This means that messages
may be amorphous (a ‘bag of bits’) or highly structured
(like an XML document). Knowledge of the message
structure is required to express rules in our approach. For
instance, to express a rule that matches messages by
name, it must be understood that messages have names.
For our prototype tools and rule language, we assume that
messages consist of a name string and a set of name-value
pair properties. Property names are character strings, and
property values are arbitrary objects. The property set for
a message may be empty. We chose this format because it
is the one used by most applications built in the C2 style,
including those that were the target of our evaluation.

For each cause and effect, in addition to message
characteristics, a number of required occurrences is
specified, as well as the interface on which a message
would be received or emitted. For purposes of discussion,
we will specify message in this paper as follows:

message name{
 property_name1 = property_value1;
 property_name2 = property_value2;
 …
}

For example, if a component in a game application
requests the scores of the home and away teams it might
emit a message:

message request_team_scores{ }

A component that knows the scores, upon receiving
this message, might emit two responses:

message current_team_score{
 team = “home_team”;
 score = 21;
}

message current_team_score{
 team = “away_team”;
 score = 17;
}

When we define our rules, we refer to a name and/or
a set of property name/value pairs that an event must have
in order to match that rule. For example, if we wanted to
define a rule that applies to all events requesting scores,
we would specify that the event has to have the name
request_team_scores.

We define two types of rules: MatchingN, and
MostRecent. MatchingN indicates that a component will
always send the complete set of effect messages when it
receives a complete set of cause messages. Therefore, the
nth set of cause messages will always be associated with
the nth set of effect messages. Asking for the effects of the

fourth request_team_scores messages above would yield
the seventh and eighth current_team_score messages.
Likewise, asking for the causes of the seventh or the
eighth current_team_score message would yield only the
fourth request_team_scores message. This rule type is
especially applicable to components that queue up
requests or that broadcast messages such as a C2
connector.

The rule that identifies the causal relationship for the
component that keeps score in our example would look
something like Table 1.

Table 1. Request score rule

Request Score Rule
Rule Type: MatchingN
Set of Causes:

1. message request_team_scores{ }
Set of Effects:

1. message current_team_score{
 team = “home team”
}

2. message current_team_score{
 team = “away team”
}

The other rule type, MostRecent, indicates that a
component will respond to a set of events immediately.
The component that knows the score in a game may
respond with a game_over message after receiving an
increase_team_score message once a goal score is
reached by either team. Applying a MostRecent rule to
such a component would only associate the game_over
message with the most recent increase_team_score
message (which would be the last one received before the
game ended). MostRecent rules are applicable towards
components that respond immediately to messages they
receive.

MostRecent and MatchingN rules are subject to the
following limitations:

• If a component that is supposed to respond to all events
of a particular type by emitting a message fails to do so
for one of those events, the MatchingN rule will
correlate all messages after the failure incorrectly,

• If a component emits responses more slowly than it
receives requests then MostRecent may incorrectly
identify relationships between the requests and
responses, and

• There may, of course, be discrepancies between the
specification of the rules and the system’s behavior,
arising from either incorrect specifications or behavior.

 Page 6 of 10

An interesting issue arises with these rules because of
the asynchronous nature of event-based systems. There is
no limitation on the time a component can take to process
a message. Thus, in our example above, if the component
that knows the team scores decides to emit the team
scores of its own accord (perhaps it does so on a periodic
basis), those score messages may incorrectly be reported
as being caused by a request_team_scores message that
happened earlier in the system execution. Usually, this
kind of false positive can be identified by an abnormal
amount of time passing between the cause and effect
messages.

When multiple rules apply to the same cause
message(s), the results are combined. It might be that the
rules complement each other and the combined results are
valid. This might result if the rule in Table 1 were split
into two separate rules, one for the “home team” effect
message and one for the “away team” message. It is also
possible that the combined results contain effects that are
mutually exclusive (i.e. one of two rules applies to a
particular situation, but not both at the same time). In this
case, the user must determine which effect messages are
actually valid by examining them.

It is best to have rules that err on the side of including
a false positive rather than rules that are too restrictive
and may exclude a message that is the actual cause or
effect. It is easier to find the true cause from a small list of
potential causes than it is to find the true cause from the
whole message log. Without an appropriate rule or a rule
that is too restrictive, a causal relationship will not be

presented. However, this aspect of the approach can be
used advantageously by the rule writer since rules can be
written that deliberately omit ‘uninteresting’ causal
relationships.

We believe that MatchingN and MostRecent rules
capture many, if not most, of the types of causal
relationships that occur in event-based systems. An
additional virtue of these rules is that they can be used to
programmatically find both causes and effects for a given
message. While there are bound to be some erroneous
results, we found them to be, in practice, minor.

Our approach trades off rule-writing effort for
accuracy. Less complete specifications (or those with
more general rules) will produce larger sets of possible
cause and effect messages. More complete specifications
will tend to narrow these lists.

To test the viability of the rules we proposed above,
we extended xADL 2.0 with syntactic constructs that
allow a rule-writer to specify rules for components and
connectors. We then annotated several event-based
applications’ architecture descriptions with appropriate
rules; our experience doing this will be described in
Section �4.

3.3. Visualizing application events

A tool to visualize the traced events should:
• Provide access to the complete and correct message

log generated by the application;

Control Pane:
We have chosen to only view
messages in the List Pane that went
through the top or bottom interfaces
of the StatusComponent component.

Info Pane:
Information about the
highlighted message in the List
Pane is displayed here.

List Pane:
The causal relationship for the highlighted message is
displayed above this pane in the Detail Pane. Information
about this message is displayed to the left in the Info
Pane. It was a request to decrement the number of lives.

Detail Pane:
The causes and effects of the selected message are displayed
on the top and bottom respectively. A request to decrement the
number of player lives from Bus2 produced a notification of the
new number of lives from the StatusComponent component.

Figure 3. Visualization tool

 Page 7 of 10

• Provide the ability to filter the log to view messages
of particular interest both through the use of custom
filters and through the ability to examine a single
component/interface combination;

• Provide the ability to "zoom in" on a particular
message or component to see its parameters,
properties and property values;

• Clearly display a list of possible causes and effects of
a given event by implementing rule-based searches
on the execution trace allowing the user to follow a
chain of causes or effects; and

• Provide a means to verify whether a reported cause or
effect is accurate.

We believe that the user’s ability to interact with the
trace and causality data in a system is critical. Event-
based systems generate too much information to be
viewed all at once. Contrast this with Rapide’s event-
causality graphs, which can be so complicated as to be
unreadable. An interesting future direction suggested by
our work is to explore how different visualization
techniques and views can assist the user in gaining a
better understanding of the system.

We developed a prototype graphical tool that allows
the user to interact with the message log and explore
message causality chains. The tool supports applications
written in the C2 style (and is itself written in the C2
style) but could be easily modified to other event-based
topologies.

The main screen of the display is segmented into four
sections (See Figure 3):

• The Control Pane allows a user to apply and modify
custom filters that aid a user in finding a particular
message or set of messages of interest independent of
causality relationships, view components of the system,
and select components of interest for analysis.

• The List Pane displays messages in the message log.

• The Info Pane displays “zoomed in” information about
a message or component as well as options for a filter.

• The Detail Pane displays lists of potential causes and
effects of any given message.

Our tool allows a user to view the message log in its
entirety. However, users may limit the display to
messages of a particular component/interface combination
and/or applying custom filters which exclude messages
outside a given time frame. Detailed information for each
message or component is displayed in the info pane when
the message or component is selected in the GUI.

When a user selects a message in the list pane, the
detail pane displays two lists of messages. The top list is
the list of potential causes of the selected message and the
bottom list is a list of its potential effects. A user may
double click on a message in one of these lists to change

the selected message, thus updating the detail pane to
show the newly selected message’s lists of causes and
effects. In this way, a user may “walk through” a message
causality chain.

Due to the heuristic nature of the approach, and
possibly inaccurate rules, false causes and effects may be
displayed, or true causes and effects may not be
displayed. There are a few hints that generally indicate
that one of these is the case:

• The number of potential causes or effects listed is not
equal to the number expected, or

• The span of time between a message and a potential
cause and effect is surprisingly large.

There are four possible reasons for an inaccurate list
of causes and effects:

• The limitations of the MostRecent and MatchingN rule
prevent correct assessment,

• A rule is incorrect,

• The expected event did not occur in the application, or

• The application has a bug that prevented the
appropriate event from occurring.

When a list is incorrect, it is necessary to determine
which, and if any, of the effects or causes are correct,
which are incorrect, and whether true causes and effects
were reported at all. It is always possible to accomplish
this by examining the unfiltered message log since it is
complete. If the event did not occur and it should have,
then this may indicate a bug in the component. If the
event did occur, but the effects and causes are not listed,
then there is likely a defect in the rule specification. In
practice, we have found that the most common inaccuracy
is false positives. To ferret these out, it is usually adequate
to view the details of each message and the rules of
appropriate components to determine which messages are
the false positives and which are not.

4. Experience with the prototype

To test our approach, we annotated components of
two applications and proceeded to analyze the resulting
message logs. We wanted to verify whether our approach
allowed us to:

• Apply our approach to an architecture without recoding
any components;

• Follow causal chains through components; and

• Understand an architecture with which we had no
previous exposure.

 Page 8 of 10

4.1. Tracing KLAX

KLAX is an interactive computer game that is highly
asynchronous and interacts with the user in real-time. We
decided to trace KLAX because we had no previous
knowledge about how KLAX works or how it was
developed. It is a moderately complex single-process
application with 16 components in all.

Because we had the source code for KLAX available,
one member of our team was tasked with annotating it by
reading through the code. Annotating the architecture
took approximately 6 hours, which was longer than we
anticipated. However, this only has to be done once for an
architecture, so it was a reasonable expenditure of time.
Furthermore, our annotator was not an original KLAX
developer; the architect who originally designed KLAX
might benefit from previous knowledge and accomplish
the same task in a fraction of the time. The annotator used
xADL 2.0 tools to write the rules into the existing KLAX
specification. We instrumented the KLAX description
with our automated tool; the resulting architecture was not
significantly slower than the original architecture. This is
likely due to the fact that the game is synchronized to
messages emitted by a clock component, which causes the
application to have a significant amount of idle time in
which messages may be logged.

The tool captured approximately 7000 messages after
40 seconds of execution. We began by stepping through
the causal chain rooted at the very first application
message logged in our database and found that a design
diagram of the architecture was necessary to avoid getting
lost within the architecture. We were able to progress
down through various chains of effects and causes.

On occasion we would come across a causal chain
that would stop unexpectedly. After investigation, we
found that in these cases there were typographical errors
in the rule specification. Once the rule specification was
corrected, the causal chain was also fixed. We also
encountered situations where false effects would be listed,
but these were easy to weed out by examining the relative
times of the messages as well as their contents.

Additionally, the limitation to the MostRecent rule
caused some confusion. A component in KLAX named
the ‘WellComponent’ implemented the rule specified in
Table 2.

We know from the way the game works that when
the game is started, the ‘WellComponent’ does not emit
any advance_tile events until the game has been played
for a few seconds. The game clock component emits
minor_tick events many times every second. This means
that the very first minor_tick event couldn’t possibly
cause an advance_tile event, yet this is exactly what our
tool reported. It turns out that because the
‘WellComponent’ does eventually follow this rule, there
is a valid advance_tile event in the message log that
occurs after the first minor_tick event. Consequently, the
rule reports the advance_tile event as an effect of the first
minor_tick event when it was really the effect of a
minor_tick event that happened later in the application
execution. We were able to verify this by looking at the
message log as well as observing that the listed cause of
the first advance_tile event was not the first minor_tick
event.

Minor setbacks aside, we felt that our understanding
of KLAX was increased using our approach. We gained a
general understanding of the system and its expected
behavior.

4.2. Tracing ArchStudio 3

ArchStudio 3 �[1] is an architecture-based
development environment created at UCI. It consists of
components for manipulating and evaluating architecture
descriptions and their implementations. ArchStudio is a
more complex application than KLAX, containing
approximately 20 components. In terms of code size,
ArchStudio 3 is approximately three times larger than
KLAX in terms of lines of code, indicative of the
complexity of some of its components.

We annotated 17 of the ArchStudio components with
rules in approximately 5 hours. The trace of ArchStudio
was successful, but the impact on tracing speed was more
prevalent with a 50% performance hit. We believe that the
speed is a more significant issue for ArchStudio than for
KLAX because ArchStudio produces a higher volume of
messages to be logged: approximately 18000 messages in
15 seconds.

After applying our approach and conferring with the
original developers of ArchStudio 3, we found that the
trace of the execution gave us a general understanding of
the system's expected behavior. The trace confirmed the
behavior of certain components. For example, the trace
showed InvokableStateMessage messages sent during the
beginning of the execution, which corresponds to the
expected initialization behavior of invokable GUI
components (e.g. ArchEdit). Some of the messages were
easily associated with the user's actions during execution.
By examining the message contents of messages
originating from xArchADT, the data repository
component, we were able to note when and how open

Table 2. KLAX ‘WellComponent’ rule

KLAX ‘WellComponent’ Rule
Rule Type: MostRecent
Set of Causes:

1. message minor_tick{ }
Set of Effects:

1. message advance_tile{ }

 Page 9 of 10

architecture files were accessed. Furthermore, the
messages were traceable back to the ArchEdit tool, which
showed that the user was editing an architecture file with
ArchEdit. Messages with warnings concerning the
architecture file indicated that the critic framework was
active. With closer examination, the exact critic reporting
the issue(s) could be identified.

The tool was ineffective at times when the rules were
specified incorrectly. The annotations for the most part
corresponded to the observed behavior, but a few
inaccuracies were discovered in the message parameters
of the rules when examining the trace. These inaccuracies
were fixed, our tool restarted, and the messages were
reanalyzed for causality. Consequently, the tool displayed
the expected results according to the original architect.

In ArchStudio 3, some messages did not have enough
information to identify the purpose of the message when
viewed in our visualization tool. As discussed earlier, in a
message, the property values of a message may contain
arbitrary—that is, binary—data. The tool will identify the
data as binary instead of displaying the actual data, but
this is insufficient for a person to determine whether the
potential causes and effects for a message are correct or
not. The tool is currently limited to displaying strings and
numeric values. The messages for KLAX contained
visualizable information (strings and numbers) so this was
not a problem for KLAX, but the messages for
ArchStudio sometimes contained other types of objects.
This problem indicates how important the human user’s
participation is in the process. Our visualization tool
could be easily enhanced to support different types of data
if necessary.

4.3. Lessons learned

In the evaluation of our approach, we learned where
it is useful, as well as the incidence and severity of several
drawbacks. Most notably, the accuracy of causality
relationships was questionable at times due to the
limitations of the rules concerning the MostRecent and
MatchingN interpretations discussed earlier, and the more
accidental limitations on viewing binary message
contents. Since the tool heuristically determines causality
with rules, the identified causality of a message may not
be correct.

We found that the ease of understanding a system
through traces varied from application to application.
KLAX messages contained clear state information, but
ArchEdit often contained message content that only had
meaning at runtime, such as numbers that represent
information relevant to a particular component or pair of
components during runtime, but not explicit state data.

The tool is helpful for understanding the general
behavior of a system, but the details of the execution may
not be clear at times. However, we have found that

understanding a system with traces and causality
relationships is easier and faster with the visualization
tool than any sort of manual trace or code inspection. Its
most basic capability is to provide a more manageable set
of data, with some data about causes and effects. For the
applications we studied, which are moderately complex, a
manual trace would have been infeasible simply due to
the large amounts of messages and relationships involved.

5. Future work

The specification language that we used for rules
worked well with the applications we examined, however,
we did find that it could be adapted to increase its
expressability. The ability to specify conditional
properties, such as name > value, along with the ability to
specify property values other than strings, such as binary
data, would be beneficial.

One of the most common reasons we found for
erroneous results was an incorrectly specified rule.
Generally, the error was the result of a typo such as
specifying the message name as advanced_tile rather than
the correctly named advance_tile. It would be very useful
to determine if all rules specified in a system applied to at
least one instance of the observed messages of a system.
This would provide an easy way for the architect to avoid
minor specification errors.

Another useful feature would be the ability to analyze
an application while it is running. In this way, a user may
trigger an event in the program, see what messages were
produced, then trigger another event. This would aid the
user in associating actions performed by the application to
messages processed within the architecture. The ability to
examine a dynamic application, whose architecture
changes at runtime, would also be useful.

A graphical layout of the architecture during
visualization would greatly help the user to keep track of
where a message is in the greater context of the
architecture. Adding appropriate highlights to the
architecture to indicate the components involved in a
message’s causality would also aid in understanding. Also
useful would be a history of the causality chain being
explored so that a user may jump back to previous causal
links for further investigation of a particular causal
relationship.

In the long-term, we believe that message tracing and
causality relationships have the potential to be valuable in
other parts of the software development process. Already,
we have seen how causality relationships can indicate
bugs or incorrect rule specifications in an architecture,
indicating their usefulness in debugging and possibly
requirements specification. We believe that message
traces and rules can also be useful in aspects of testing,
such as test-case generation.

 Page 10 of 10

6. Conclusions

This paper contributes a set of goals and future
directions for using event traces as a basis for aiding
developers in the creation and maintenance of event-
based systems, as well as an approach that demonstrates
the validity and usefulness of some of these goals. The
approach includes tools and techniques to gather a
complete trace of events of an event-based application
independently of the specific framework used for that
application. A means of determining causal relationships
between the gathered events of an application by using a
heuristic approach has been implemented and found to be
useful. The rule set used to specify these causal
relationships is simple and usable, not fully formal, and
applies to systems where component source may not
always be available. A visualization tool is presented that
displays message causality and provides a means of
verifying whether or not reported causes and effects are
accurate given a set of causality rules and a message log
of a running application.

We demonstrated the effectiveness of our approach
by using it to analyze two different applications: KLAX
and ArchStudio 3. We found that the ease of
understanding a system through traces was increased
when messages contained clear state information, but was
more difficult when contents had meaning within contexts
created at runtime. The approach was useful in increasing
the overall understanding of an architecture but did not
always provide insight into the complete details of
execution. It was, however, much easier to understand an
application using the analysis tool than by any sort of
manual trace or code inspection. A manual trace of the
applications we studied would have been infeasible due to
the large amounts of messages and relationships involved.

The beneficial properties of event-based architectures
and increasing support from practitioners and researchers,
means that it is likely that more and more event-based
systems will be created. However, lack of end-to-end
development and maintenance support for such
architectures could hinder adoption and raise the costs of
building event-based systems. Our approach contributes a
usable, viable approach to understanding complex event-
based systems, but it also exposes several important
issues in event-based development that we plan to
investigate. These include using event tracing as a basis
for testing and debugging, the role of heuristic techniques
to find “good enough” answers to development problems,
and finding novel ways to deal with the deluge of events
that occur in even moderate-sized event-based systems.

7. Acknowledgements

Effort sponsored by the Defense Advanced Research
Projects Agency (DARPA) and Air Force Research

Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-00-2-0599. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency
(DARPA), the Air Force Laboratory, or the U.S.
Government.

8. References

[1] ArchStudio 3. URL:
http://www.isr.uci.edu/projects/archstudio/
[2] Cheung, S.C. and Kramer, J. “Checking Subsystem Safety
Properties in Compositional Reachability Analysis", Proc. of the
18th Int’l Conference on Software Engineering, Berlin,
Germany, March 1996, pp. 144-154.
[3] Claudio, A.P.; Cunha, J.D.; Carmo, M.B; “Monitoring and
debugging message passing applications with MPVisualizer,”
Proceedings of the 8th Euromicro Workshop on Parallel and
Distributed Processing, 2000.
[4] Cook, J. E., "Process Discovery and Validation Through
Event Data Analysis", Ph.D. Thesis, Department of Computer
Science, University of Colorado, Boulder, Dec. 1996.
[5] Dashofy, E.M., van der Hoek, A. and Taylor, R.N., "A
Highly-Extensible, XML-Based Architecture Description
Language", Proceedings of the Working IEEE/IFIP Conference
on Software Architectures, Amsterdam, Netherlands, 2001
[6] Frumkin, M.; Hood, R.; Lopez, L. “Trace-driven debugging
of message passing programs”, Proceedings of the First Merged
International Symposium on Parallel and Distributed
Processing, 1998.
[7] Kraemer, E.; Stasko, J.T., “Issues in visualization for the
comprehension of parallel programs” Proceedings of the Third
Workshop on Program Comprehension, 1994.
[8] Lencevicius, R.; Ran, A.; Yairi, R. “Third Eye -
Specification-based Analysis of Software Execution Traces”,
Proc. of the Int’l Conference on Software Engineering, 2000.
[9] Luckham D.C. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems,
Addison Wesley Professional, 2002.
[10] Luckham, D. C. and Frasca, B., “Complex Event
Processing in Distributed Systems”. Stanford University
Technical Report CSLTR --98—754,March 1998.
[11] Luckham D. C., Kenney J. J., Augustin L. M., Vera J.,
Bryan D., Mann W, “Specification and Analysis of System
Architecture Using Rapide”, IEEE Transactions on Software
Engineering 21(4), 1995.
[12] Moc, J.; Carr, D.A., “Understanding distributed systems via
execution trace data”, Proc. of the 9th Int’l Workshop on
Program Comprehension, 2001.
[13] R.N. Taylor et. al. A Component- and Message-Based
Architectural Style for GUI Software. IEEE Transactions on
Software Engineering, June 1996.

